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Abstract
Bardoxolone methyl [methyl-2-cyano-3, 12-dioxooleana-1, 9(11)dien-28-oate (CDDO-Me)], an activator of the nuclear 
factor erythroid-derived 2-related factor2 pathway, is a potential therapeutic candidate for the treatment of kidney diseases. 
However, its effect against cellular senescence remains unclear. This study aimed to investigate whether CDDO-Me protects 
cells against cisplatin-induced cellular senescence using an in vitro model. The human renal proximal tubular epithelial cell 
line HK-2 was treated with cisplatin for 6 h, followed by treatment with or without CDDO-Me (0.1 or 0.2 μmol/L). Senes-
cence markers were analyzed using western blotting and real-time PCR. Apoptosis was evaluated through TUNEL staining. 
Cisplatin induced changes in the levels of markers specific for proliferation, cell cycle, and senescence in a time- and dose-
dependent manner. Furthermore, IL-6 and IL-8 levels in the culture medium increased markedly. These data suggested that 
cellular senescence-like alterations occurred in HK-2 cells exposed to cisplatin. CDDO-Me treatment reversed the cisplatin-
mediated alterations in the levels of cellular senescence markers. The antioxidant enzymes, HO1, NQO1, GPX1, and CAT  
were upregulated by CDDO-Me treatment. Furthermore, CDDO-Me treatment induced apoptosis in cisplatin-exposed HK-2 
cells. Pretreatment with Ac-DEVD-CHO, the caspase inhibitor, suppressed the reversal effect of CDDO-Me against cisplatin-
induced cellular senescence-like alterations. This study showed that CDDO-Me attenuated cisplatin-induced premature 
senescence of HK-2 cells. This beneficial effect may be related to Nrf2 activation. Our findings also showed that CDDO-Me 
induced apoptosis in cisplatin-treated HK-2 cells, potentially protecting the kidneys from cellular senescence. CDDO-Me 
appears to be a candidate treatment for acute kidney injury.
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Introduction

Acute kidney injury (AKI) is a complex syndrome char-
acterized by renal dysfunction and is associated with high 
morbidity and mortality worldwide. Patients with post-AKI 
are at an increased risk for chronic kidney disease, CKD 
[1–3]. Proximal tubule injury caused by AKI triggers several 
features of CKD by inducing inflammation and interstitial 
fibrosis [4]. Therefore, it is important to protect the proxi-
mal tubules for preventing the progression of AKI to CKD; 
however, the definitive evidence for this effect is lacking.

There is an association between cellular senescence in 
proximal tubular epithelial cells (PTCs) and CKD in the ani-
mal models of hypertension [5] or diabetes [6]. Senescence is 
a tumor suppressor mechanism by which cells adapt to DNA 
damage, oxidative stress, and telomere shortening. Senescence 
induces cell cycle arrest in cells exposed to various stresses 
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[7, 8]. Senescent cells secrete pro-inflammatory molecules 
in order to recruit immune cells. This behavior is termed 
as senescence-associated secretory phenotype, SASP [9]. 
These pro-inflammatory molecules, including cytokines and 
chemokines, can lead to the clearance of senescent cells in 
the damaged tissue [10, 11]. In contrast, the chronic secretion 
of these SASP factors promotes inflammation and epithelial-
to-mesenchymal transition, thereby reducing the functional 
reserve of tissues. Thus, senescence is protective in the acute 
phase; however, chronic senescence can be harmful to tissue 
homeostasis. Senescent cells undergo an anti-apoptotic state 
[12–14], leading to the constitutive secretion of SASP fac-
tors. Chronic secretion of SASP factors can spread senescence 
to nearby cells [15]; therefore, the removal of senescent cells 
by activating apoptosis seems to be a critical mechanism for 
protecting the proximal tubule and preventing CKD progres-
sion. In fact, much effort has been made to eliminate senescent 
cells using novel drugs called senolytics. These drugs remove 
senescent cells by inducing apoptosis [16] or by blocking 
their resistance to apoptosis [17, 18]. Therefore, protecting 
PTCs from cellular senescence could prevent CKD develop-
ment; however, effective treatments that target senescence are 
lacking.

Methyl-2-cyano-3, 12-dioxooleana-1, 9(11)dien-28-oate 
(CDDO-Me), also known as bardoxolone methyl, is a semi-
synthetic triterpenoid and the most potent activator of the 
nuclear factor erythroid-derived 2-related factor2 (Nrf2) path-
way [19–21]. Besides activating Nrf2, CDDO-Me upregulates 
the antioxidant response and suppresses pro-inflammatory 
signaling reducing oxidative stress and inflammation, and 
promoting mitochondrial function [22, 23]. CDDO-Me and 
its analogs have beneficial effects on CKD associated with 
type 2 diabetes [24, 25], obesity [26], and angiotensin-induced 
kidney injury [27]. Furthermore, CDDO-Me induces apoptosis 
[28]; therefore, CDDO-Me could be beneficial for eliminat-
ing cellular senescence. CDDO-Me is an attractive therapeutic 
candidate for managing cellular senescence in kidney diseases, 
but the precise effects remain unknown.

Cisplatin is one of the most widely used anti-cancer drugs; 
however, its use is limited because of its nephrotoxicity, which 
causes AKI [29]. Cisplatin treatment is widely used as a model 
for AKI; it induces cellular senescence, both in vitro [30, 31] 
and in vivo [32, 33]. The aim of this study was, therefore, to 
investigate whether CDDO-Me protects PTCs against cispl-
atin-induced cellular senescence to explain the beneficial effect 
of CDDO-Me.

Materials and methods

Cell culture

The human renal proximal tubular epithelial cell line HK-2 
was cultured in Dulbecco’s Modified Eagle’s Medium: 
Nutrient Mixture F-12 (DMEM/F12, Fujifilm Wako 
Chemical Co., Osaka, Japan) supplemented with 10% 
fetal bovine serum (FBS, Biosera, Inc., Nuaille, France) 
and 1% penicillin–streptomycin, as previously described 
[34]. Cells were treated with 0–50 µmol/L cisplatin in 
low-glucose DMEM containing 0.1 mg/mL human serum 
albumin for 6 h. The medium was then replaced with 
fresh medium with or without 0.1–0.2 μmol/L CDDO-
Me (Sigma-Aldrich Co., St. Louis, MO, USA). The cells 
were treated with 5 or 50 µmol/L of the caspase inhibitor, 
Ac-DEVD-CHO (Selleckchem, Houston, TX, USA), for 
60 min before adding CDDO-Me to the medium. Cells 
were cultured for 24–72 h, and proteins or mRNA were 
extracted at the indicated points.

Western blot (WB) analysis

The cultured cells were solubilized in lysis buffer 
(150  mmol/L NaCl, 50  mmol/L Tris–HCl, 5  mmol/L 
EDTA–2Na, 1% Triton X-100, and 1 tablet/10 mL com-
plete mini EDTA-free) and centrifuged at 15,000 × g at 
4 °C for 30 min. Samples were separated by SDS-PAGE 
and then transferred to PVDF membranes. The mem-
branes were first blocked in a buffer containing 25 mmol/L 
Tris–HCl (pH 7.4), 150 mmol/L NaCl, 0.1% Tween 20, 
and 4% skim milk for 1 h and then incubated with primary 
antibodies at 4 °C overnight. This was followed by incu-
bation with horseradish peroxidase-conjugated second-
ary antibodies for 1 h. Primary antibodies against human 
 p21Waf1/Cip1,  p16INK4a, phosphorylated H2AX (Ser139, 
γ-H2AX), retinoblastoma (Rb), phosphorylated Rb 
(Ser780, pRb), cyclin D, and caspase-3 were all purchased 
from Cell Signaling Technology, Inc. (Beverly, MA, USA). 
Antibodies against human cyclin A (Novocastra Laborato-
ries Ltd., Newcastle, UK),  p16INK4a (BD Biosciences, Inc., 
Farmingdale, NY, USA), Ki-67 (Dako from Agilent, Santa 
Clara, CA, USA), p62/SQSTM1, and β-actin (Santa Cruz 
Biotechnology, Santa Cruz, CA, USA) were also used. The 
immunoreactive proteins were then detected by enhanced 
chemiluminescence (GE Healthcare, Fairfield, CT, USA). 
Immunoblots were quantified using the CS Analyzer 3.0 
software (ATTO, Tokyo); β-actin expression was used as 
the internal control.
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Real‑time reverse transcription‑PCR (RT‑qPCR)

Total RNA and cDNA from HK-2 cells were prepared 
using the ISOGEN-II (Nippon Gene, Tokyo) and Prime 
Script RT-PCR kits (Takara Bio, Shiga), according to the 
manufacturer’s instructions. The primers used for qPCR 
are shown in Supplementary Table 1. qPCR was performed 
on a 7500 Real-Time PCR System (Applied Biosystems) 
in a 96-well reaction plate using Power SYBR Green. The 
mRNA expression of the target genes was normalized to 
that of GAPDH, using the delta–delta Ct method.

Cell cycle analysis using flow cytometry

HK-2 cells were harvested, washed, and resuspended in 
phosphate buffered saline. Cells were then fixed with 70% 
ethanol and stored at 4 °C overnight. Subsequently, cells 
were incubated with 100 µg/mL RNase for 30 min at 37 °C 
and stained with 5 µg/mL propidium iodide (PI) for 10 min. 
Flow cytometry analyses were performed using a BD FAC-
SCalibur (BD Biosciences). Cell cycle phase distributions 
were determined using Modfit LT software version 3.0 (Ver-
ity Software House, Topsham, ME, USA).

A B

C D

Fig. 1  Cisplatin induces cellular senescence-like alterations in HK-2 
cells. HK-2 cells were treated with 0–50 µmol/L cisplatin, and west-
ern blot analysis revealed changes in the expression levels of prolifer-

ation, cell cycle, and senescence markers in a time- (A) and dose- (B) 
dependent manner. Densitometric analysis is shown in C–D. n = 4–6, 
*P < 0.05, **P < 0.01
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Determination of cytokine levels by ELISA

Following exposure to cisplatin, supernatants were collected 
from the culture medium. Cytokine levels were determined 
using ELISA kits for IL-6 and IL-8 (R&D Systems, Min-
neapolis, MN, USA) as per the manufacturer’s instructions.

TdT‑mediated dUTP‑biotin nick end labeling 
(TUNEL) staining

TUNEL staining was performed using a commercial kit 
(Takara Bio), following each treatment described above. 
The percentage of apoptotic cells was determined by count-
ing the TUNEL-positive cells and the total number of cells 
(nucleus) in four to six photomicrographs (× 200 magni-
fication, approximately 1500 cells) by a blinded observer. 

This experiment was performed thrice, on different days. 
The apoptosis rate was expressed as the means ± standard 
deviation (SD) from three independent experiments.

Statistical analysis

All data are reported as the mean ± SD. The RT-qPCR and 
WB analysis data are presented as the fold change rela-
tive to the controls (untreated cells). The RT-qPCR data 
were evaluated using Students t-test to assess differences 
between the control and cisplatin-treated cells. Other data 
were analyzed using analysis of variance (ANOVA) with 
post hoc comparisons using the Student–Newman–Keuls 
method. P values < 0.05 were considered statistically 
significant.

A B C D

E F G H

Fig. 2  Cisplatin treatment induces the increase in senescence-related 
gene transcriptions and cytokine secretion. The mRNA expression of 
senescence-related genes, MKI67 (A), CDKN2A (B), CDKN1A (C), 
CCND1 (D), IL-6 (E), and IL-8 (F), after cisplatin (20 µmol/L) treat-

ment was determined by qPCR. Cytokine levels, IL-6 (G) and IL-8 
(H), in cultured medium of cisplatin (20 or 50 µmol/L)-exposed cells 
were quantified by ELISA. n = 3, *P < 0.05, **P < 0.01
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Results

Cisplatin treatment induces cellular senescence‑like 
alterations in HK‑2 cells

First, we examined whether cisplatin exposure induces cellular 
senescence in HK-2 cells. Cisplatin treatment induced altera-
tions in the expression of proliferation, cell cycle, and senes-
cence markers in a time- and dose-dependent manner (Fig. 1). 
The expression of Ki-67, a proliferation marker, significantly 
increased after exposure to 20 μmol/L cisplatin; it decreased 
after exposure to 50 μmol/L cisplatin compared to that after 
exposure to 20 μmol/L cisplatin. The expression of the cell 
cycle markers pRb, Rb, cyclin D, and cyclin A increased in 
cisplatin-exposed HK-2 cells. Cisplatin treatment increased the 
levels of  p16INK4a in a time-dependent manner. The expression 
level of  p21Waf1/Cip1 was decreased at 48 h; however, it was 
increased at 72 h. Cisplatin treatment increased the level of 
γ-H2AX, a DNA damage marker. The mRNA expression of 
MKI67 (encoding Ki-67), CDKN1A (encoding  p21Waf1/Cip1), 
CDKN2A (encoding  p16INK4a), and CCND1 (encoding cyc-
lin D1) increased 48 h after exposure to 20 μmol/L cisplatin 
(Fig. 2A–D). Furthermore, the mRNA levels of IL-6 and IL-8 

increased markedly (Fig. 2E, F). An increase in the cytokine 
levels was observed in the culture medium of cells exposed 
to 50 μmol/L cisplatin (Fig. 2G, H). These data suggest that 
cisplatin treatment induced proliferation, DNA damage, and 
subsequent cellular senescence-like alterations in HK-2 cells.

CDDO‑Me reverses cisplatin‑induced cellular 
senescence‑like alterations in HK‑2 cells

CDDO-Me treatment normalized the cisplatin-induced 
alterations in the expression of the cellular senescence 
markers Ki-67, cyclin A, cyclin D, pRb/Rb, and  p16INK4a 
in HK-2 cells (Fig. 3). Cell cycle analysis using cytometry 
revealed that CDDO-Me treatment ameliorated cisplatin-
induced cell cycle abnormalities (Fig. 4). Cisplatin mark-
edly decreased the percentage of cells in the G1 phase and 
increased that in the S phase. The cells in the G2 phase 
also tended to increase after cisplatin treatment. However, 
CDDO-Me treatment increased the number of G1-phase 
cells and decreased that of S- and G2-phase cells. 

A B

Fig. 3  CDDO-Me treatment reversed the cisplatin-induced cellular 
senescence phenotype in HK-2 cells. HK-2 cells were exposed to 
20  µmol/L cisplatin for 6  h, followed by treatment with or without 
CDDO-Me (0.1 or 0.2  µmol/L). Proteins were collected 48  h after 

treatment and analyzed by western blotting (A), and protein bands 
were quantified by densitometry (B). n = 4–6, *P < 0.05, **P < 0.01 
vs. control (Ctrl); +P < 0.05, ++P < 0.01 vs. cisplatin
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CDDO‑Me upregulates the expression of antioxidant 
enzymes

To evaluate the mechanisms by which CDDO-Me protected 
the cisplatin-exposed HK-2 cells against cellular senes-
cence-like alterations, we evaluated whether the expres-
sion of antioxidant enzyme gene were upregulated under 
the present conditions (Fig. 5). The mRNA of antioxidant 
enzymes, heme oxygenase-1 (HO1), NAD(P)H:quinone oxi-
doreductase (NQO1), glutathione peroxidase 1 (GPX1), and 
catalase (CAT ), were upregulated by CDDO-Me treatment. 
However, CDDO-Me treatment did not significantly increase 
the mRNA expression of superoxide dismutase 1 (SOD1).

CDDO‑Me induces apoptosis in cisplatin‑treated 
HK‑2 cells

The effect of CDDO-Me on apoptosis was evaluated because 
CDDO-Me treatment significantly decreased the cell num-
ber in cisplatin-exposed HK-2 cells (Fig. 6A). CDDO-Me 
induced apoptosis in cisplatin-exposed HK-2 cells; however, 
only cisplatin treatment also induced apoptosis, as observed 
using TUNEL staining (Fig. 6B, C). WB analysis confirmed 
that CDDO-Me treatment induced apoptosis, decreased the 
level of pro-caspase-3, and increased the level of cleaved 
caspase-3 and p62/SQSTM1 in HK-2 cells (Fig. 7A, B). 
CDDO-Me accelerated the phosphorylation of H2AX in cis-
platin-treated HK-2 cells. To elucidate whether CDDO-Me 

A B C

D E F

Fig. 4  CDDO-Me protects cells against cisplatin-induced abnormali-
ties in cell cycle. Cisplatin (20  µmol/L)-exposed cells were treated 
with 0.2  µmol/L CDDO-Me for 48  h. Cells were harvested and 

stained with propidium iodide, and then analyzed by flow cytometry 
(A–C). The statistics of each cell cycle phase (D–F). n = 3, *P < 0.05, 
**P < 0.01
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reverses cisplatin-induced cellular senescence-like altera-
tions via apoptosis, cisplatin-exposed cells were treated with 
Ac-DEVD-CHO, a caspase inhibitor, before the CDDO-Me 
treatment. Ac-DEVD-CHO treatment inhibited the decrease 
in Ki-67, cyclin A, cyclin D, and  p16INK4a expression levels 
induced by CDDO-Me (Fig. 7C, D).

Discussion

CDDO-Me therapy improves renal function in CKD 
patients, in clinical trials [24, 25, 35]. However, the renal 
protective mechanism of CDDO-Me on the AKI-CKD 

transition remains unknown. Protecting the proximal tubules 
from AKI, which causes cellular senescence, is important 
for preventing CKD development. This study elucidated the 
protective effect of CDDO-Me on cisplatin-induced cellular 
senescence in cultured human PTCs, HK-2, which is one of 
the most used cells for the study of senescent PTCs [36–38]. 
In this study, WB analysis revealed an increased expression 
of Ki-67 in HK-2 cells following cisplatin treatment; chronic 
increase in proliferation induces cellular senescence in PTCs 
[39]. Accelerated proliferation may be one mechanism by 
which cellular senescence is induced in cisplatin-treated 
cells. In addition to a pool of proliferating cells, elevated cell 
cycle arrest markers were observed, indicating the presence 

A

C D E

B

Fig. 5  CDDO-Me induces ARE-related gene transcription by activat-
ing the Keap1-Nrf2 pathway. HK-2 cells were exposed to 20 µmol/L 
cisplatin for 6  h, followed by treatment with or without CDDO-Me 
(0.1 or 0.2  µmol/L). The mRNA expression levels of Nrf2-related 

genes were analyzed by qPCR 48  h after treatment: heme oxyge-
nase-1 (A), NAD(P)H:quinone oxidoreductase (B), superoxide dis-
mutase 1 (C), glutathione peroxidase 1 (D), and catalase (E). n = 3, 
*P < 0.05, **P < 0.01
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of a pool of senescent cells following cisplatin treatment. 
This was demonstrated by the upregulation of cyclin-
dependent kinase inhibitors, such as  p16INK4a,  p21Waf1/Cip1, 
and phosphorylated Rb in cells exposed to cisplatin for 72 h. 
An increase in  p21Waf1/Cip1 and  p16INK4a induces G2/M arrest 
through the phosphorylation of Rb [40]. Flow cytomet-
ric analysis showed an increase in the number of S-phase 
cells in cisplatin-treated cultures. Thus, cisplatin treatment 
seemed to be associated with S- or G2/M-phase arrest by 
regulating  p16INK4a and/or  p21Waf1/Cip1. Cisplatin stalls cell 
proliferation by damaging DNA and inhibiting DNA syn-
thesis, which is cytotoxic during the S phase [41]. In fact, 
γ-H2AX, a DNA damage marker, was elevated in cisplatin-
treated cells. Furthermore, cisplatin treatment induced the 
upregulation and secretion of IL-6 and IL-8 in the medium. 
These results indicate that cisplatin-exposed cells undergo 
premature cellular senescence, consistent with the results 
from previous studies [30, 31].

This study showed that CDDO-Me treatment decreased 
senescence markers in PTCs exposed to cisplatin. Upon acti-
vation by CDDO-Me, Nrf2 translocates to the nucleus and 
induces the transcription of antioxidant enzyme genes via 
the antioxidant response element, ARE [42]. This was dem-
onstrated by the upregulation of the antioxidant enzymes 
following the CDDO-Me treatment of the cisplatin-treated 
HK-2 cells. Aleksunes et al. elucidated using in vivo stud-
ies that cisplatin accelerates cell proliferation and secretion 
of IL-1β, IL-6, and TNF-α in the kidney; importantly, this 
phenotype was inhibited by CDDO-lm, an analog of CDDO-
Me, through the increase of Nrf2 signaling [43]. Treatment 
with the antioxidant N-acetylcysteine ameliorates cellular 
senescence in PTCs induced by multiple cisplatin treat-
ments [32]. Furthermore, an in vitro study using human 
PTCs showed that the upregulation of the antioxidant genes 
by Nrf2 enhanced cell viability [44]. These studies suggest 
that removing oxidative stress via the Keap1-Nrf2 pathway 
protects PTCs from cellular senescence.

A

C

B

Fig. 6  CDDO-Me treatment decreases the cell number in cisplatin-
exposed HK-2 cells by inducing apoptosis. Cisplatin (20  µmol/L)-
exposed HK-2 cells were cultured in medium with or without 
0.2 µmol/L CDDO-Me. Cell numbers were counted at 48 h (A). n = 3, 
**P < 0.01. Apoptotic cells were detected in cisplatin (20  µmol/L)-

exposed cultures after treatment with or without 0.2 µmol/L CDDO-
Me by TUNEL staining (original magnification × 200) (B), and the 
number of apoptotic cells was expressed as the apoptosis rate (C). 
Data are presented as mean ± SD from three independent experi-
ments. **P < 0.01
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Overdosing with CDDO-Me induces apoptosis [28]. 
Eliminating the senescent cells by activating apoptosis 
has a protective effect on tissue aging [16–18]. There-
fore, we evaluated whether CDDO-Me induced apopto-
sis and reversed senescence via an apoptotic mechanism. 
We showed that CDDOM-Me decreased the cell number, 
which occurs through the apoptotic mechanism. CDDO-Me 
treatment increased the level of cleaved caspase-3 and the 
number of TUNEL-positive cells. Furthermore, CDDO-Me 
accelerated the phosphorylation of H2AX, which occurs in 

response to DNA damage and induces apoptosis by mito-
chondrial cytochrome C release [45]. Additionally, CDDO-
Me increases p62/SQSTM1 expression, which plays a criti-
cal role in both autophagy and apoptosis [46, 47]. Inhibition 
of apoptosis suppressed the reversal effect of CDDO-Me 
against cisplatin-induced cellular senescence-like altera-
tions. Therefore, CDDO-Me induces apoptosis and sup-
pressed cellular senescence in cisplatin-treated cells. The 
activation of apoptosis could contribute to the removal of 
senescent cells and improved kidney functions.

A

C D

B

Fig. 7  CDDO-Me induces apoptosis in cisplatin-treated HK-2 cells. 
HK-2 cells were exposed to 20 µmol/L cisplatin for 6 h, followed by 
treatment with or without CDDO-Me (0.1 or 0.2 µmol/L). Apoptotic 
marker proteins were analyzed by western blotting (A), and pro-
tein bands were quantified by densitometry (B). n = 4–6, *P < 0.05, 
**P < 0.01 vs. control (Ctrl), #P < 0.05, ##P < 0.01 vs. cisplatin, 
+P < 0.05, ++P < 0.01 vs. cisplatin + CDDO-Me (0.1 µmol/L). Cispl-

atin-exposed cells were treated with 5 or 50 µmol/L Ac-DEVD-CHO, 
a caspase inhibitor, for 60  min prior to adding 0.2  µmol/L CDDO-
Me to the medium. Senescence markers were analyzed using west-
ern blotting (C) and the expression was quantified using densitometry 
(D). n = 4–5, *P < 0.05, **P < 0.01 vs. cisplatin, #P < 0.05, ##P < 0.01 
vs. cisplatin + CDDO-Me
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The use of only one cell line was a limitation of this study. 
HK-2 cells were used in this study, because senescence could 
be easily induced by treating the HK-2 cells with d-serine, 
indoxyl sulfate, and hydrogen peroxide [36–38]. Addition-
ally, HK-2 cells maintain biochemical properties similar to 
that in the in vivo proximal tubule cells [48, 49]. Therefore, 
this model was well-suited for this study. However, HK-2 
cells lack expression of organic anion transporter 1, 3, and 
organic cation transporter 2, which are important for drug 
metabolism [50]. Therefore, drug metabolism in HK-2 might 
not be completely similar to that in the in vivo state. It is 
unclear whether CDDO-Me removes senescent cells selec-
tively in vivo; therefore, we cannot conclude that activation 
of apoptosis by CDDO-Me protects against kidney injury in 
humans. Further in vivo studies are needed to evaluate the 
protective effect of CDDO-Me against cellular senescence 
in PTCs.

In conclusion, our results demonstrated a beneficial effect 
of CDDO-Me on cellular senescence in HK-2 cells. It is 
hypothesized that this beneficial effect is related to Nrf2 
activation. CDDO-Me appears to be a candidate therapeutic 
for AKI. Our findings also showed that CDDO-Me induced 
apoptosis in cisplatin-treated HK-2 cells and potentially pro-
tects the kidneys from cellular senescence. Future studies are 
needed to assess the effects of CDDO-Me-induced apoptosis 
on cellular senescence and kidney function in AKI animal 
models.
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