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Abstract
Vitamin C, also known as ascorbic acid or ascorbate, is a water-soluble vitamin synthesized in plants as well as in animals 
except humans and several other animal species. Humans obtain vitamin C from dietary sources and via vitamin supple-
mentation. Vitamin C possesses important biological functions, including serving as a cofactor for many enzymes, acting 
as an antioxidant and anti-inflammatory compound, and participating in regulating stem cell biology and epigenetics. The 
multifunctional nature of vitamin C contributes to its essentialness in maintaining and safeguarding physiological homeo-
stasis, especially regulation of immunity and inflammatory responses. In this context, vitamin C has been investigated for 
its efficacy in treating diverse inflammatory disorders, including sepsis, one of the major causes of death globally and for 
which currently there is no cure. Accordingly, this Mini-Review surveys recent major research findings on the effectiveness 
of vitamin C and the underling molecular mechanisms in sepsis intervention in both experimental animal models and ran-
domized controlled trials. To set a stage for discussing the effects and mechanisms of vitamin C in sepsis intervention, this 
Mini-Review begins with an overview of vitamin C redox biochemistry and its multifunctional properties.
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Abbreviations
Asc  Ascorbate
DHA  Dehydroascorbate
DHAR  Dehydroascorbate reductase
GLUT  Glucose transporter
GSH  Reduced form of glutathione
HAT  Hydrocortisone, ascorbic acid, and thiamine
HO-1  Heme oxygenase-1
iNOS  Inducible nitric oxide synthase
LPS  Lipopolysaccharide;
NOX  NADPH oxidase
NQO1  NADPH:quinone oxidoreductase 1
SVCT  Sodium-dependent vitamin C transporter
Tet  Ten eleven translocase

Introduction

Vitamin C, also known as ascorbic acid or ascorbate, was 
discovered in 1928 by Szent-Györgyi [1], who was subse-
quently awarded the Nobel Prize in Physiology or Medicine 
in 1937 for his discoveries in connection with the biologi-
cal combustion processes, with special reference to vitamin 
C and the catalysis of fumaric acid. In addition to being 
produced by plant cells, this water-soluble vitamin is also 
synthesized endogenously in animal species except humans, 
monkeys, bats, guinea pigs, and some reptiles [2]. Humans 
lost this capability because of a series of inactivating muta-
tions of the gene encoding gulonolactone oxidase (GULO), 
a key enzyme for the biosynthesis of vitamin C [3]. Humans 
normally acquire vitamin C from dietary sources through a 
substrate-saturable transport mechanism and oral vitamin C 
intake produces plasma concentrations that are tightly regu-
lated. Once the oral intake of vitamin C exceeds 200 mg 
daily, it is difficult to further raise the plasma vitamin C 
concentration through increasing the oral intake [4]. The 
maximal plasma concentration attainable by oral intake of 
vitamin C has been estimated to be about 200 µM though 
the physiological plasma concentrations of vitamin C in 
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healthy humans range from 40 to 100 µM [4, 5]. On the 
other hand, parenteral administration (e.g., via intravenous 
injection) of a large dose of vitamin C (e.g., 10 g) can yield 
millimolar concentrations of plasma vitamin C [6, 7], and 
this megadose-based strategy has been employed for cancer 
treatment (reviewed in [8]).

Despite the micromolar concentration range of vitamin 
C in the plasma under physiological conditions and with 
typical dietary intake of vitamin C, intracellular levels of 
vitamin C are in the millimolar range. This high concentra-
tion is due to selective intracellular accumulation via a vita-
min C transport system present in the plasma membrane [9] 
(see section ‘Intracellular dynamics of vitamin C’ for more 
details). The high intracellular concentration of vitamin C 
in mammalian tissues is in line with its essential roles in 
maintaining physiological homeostasis (reviewed in [4, 5, 
10]). In this Mini-Review, we first describe the novel redox 
properties and functions of vitamin C, and then discuss 
major recent research evidence supporting its multitasking 
functions in controlling oxidative stress and inflammatory 
responses and in treating sepsis, a major contributor to the 
global burden of disease.

Redox chemistry of vitamin C

On the one hand, the redox chemistry of vitamin C deter-
mines its biological functions. On the other hand, the bio-
logical milieu also influences the redox chemistry of vitamin 
C. In this context, vitamin C has been shown to exist in dif-
ferent redox forms in biological systems [11]. As illustrated 
in Fig. 1, vitamin C  (AscH2) has two ionizable hydroxyl 
groups. At a physiological pH, vitamin C exists predomi-
nantly as a monoanion, i.e., ascorbate monoanion  (AscH−). 
 AscH− acts as a reducing agent and is converted to ascor-
bate radical  (Asc·−, also known as semidehydroascorbate) 
after donating one-electron. After losing another electron, 
 Asc·− is converted to dehydroascorbate (DHA) [4]. DHA is 
commonly known as the oxidized form of vitamin C. Like-
wise, ascorbic acid  (AscH2 or  AscH−) is commonly known 
as the reduced form of vitamin C. Hence, vitamin C can be 
considered as a generic name referring to both ascorbic acid 
and DHA. For this reason, ascorbic acid or ascorbate is more 
commonly used in research literature as it specifies the redox 
form of the vitamin [4].

It should be noted that the above redox reactions are 
reversible. For example,  Asc·− can be reduced by one-elec-
tron to  AscH−. DHA can also be reduced by either one-
electron to  Asc·− or by two electrons to  AscH−. The two-
electron reduction of DHA to  AscH− is catalyzed by DHA 
reductase (DHAR) using the reduced form of glutathione 
(GSH) as an electron donor [12]. The reduction of DHA 
to  AscH− can be catalyzed also by the selenoenzyme, 

thioredoxin reductase [13], highlighting the intimate inter-
action between vitamin C and other cellular redox factors.

Intracellular dynamics of vitamin C

Specific transporting systems are involved in the absorp-
tion of vitamin C as well as its intracellular distribution 
(reviewed in [8, 10]). Historically, vitamin C transport 
across cell membranes had been an area of extensive 
research in neurobiology. In this context, the highest tis-
sue concentrations of vitamin C are found in the brain 
and in neuroendocrine tissues, especially adrenal glands, 
which may range from 1 to 3 mM. These concentrations 
are 15–50 times higher than those in the plasma [14, 15], 
pointing to the existence of active transporting mecha-
nisms. Early seminal work by Diliberto et al. showed that 
adrenomedullary cells accumulate vitamin C through 
a saturable and energy-dependent process and that the 
newly taken-up vitamin C is also secreted from the cells 
through specific transporter mechanisms [16–19]. It is now 
well-established that vitamin C enters and accumulates 
in neurons as well as other types of cells via two differ-
ent transporting systems—(i) sodium-dependent vitamin 
C transporters and (ii) glucose transporters. As described 
below, utilization of the specific transporting systems also 
depends on the redox forms of vitamin C.

Fig. 1  Redox chemistry of vitamin C. As depicted, ascorbate can 
undergo two sequential one-electron oxidation reactions to form 
ascorbate radical and DHA, respectively. Conversely, DHA can 
undergo two sequential one-electron reductions to yield ascorbate 
radical and ascorbate, respectively. Moreover, DHA can be reduced 
by two electrons to form ascorbate, and this two-electron reduction 
reaction is catalyzed by DHA reductase (DHAR) using the reduced 
form of glutathione (GSH) as an electron donor. During the reaction, 
GSH is oxidized to glutathione disulfide (GSSG)
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Transport of the reduced form of vitamin C

As reviewed previously [8], the reduced form of vitamin 
C is transported into cells via sodium-dependent vitamin 
C transporters (SVCT1 and SVCT2). SVCT1 (the product 
of the SLC23A1 gene in humans) is primarily expressed 
in intestinal and renal epithelial cells, where it helps medi-
ate absorption and re-absorption of vitamin C, respectively. 
SVCT2 (the product of the SLC23A2 gene in humans) 
is found in cells of most other tissues. Both SVCT1 and 
SVCT2 mediate high affinity, sodium- and energy-dependent 
transport of vitamin C into cells and are essential to establish 
steep concentration gradients of vitamin C across the plasma 
membrane [14]. Notably, SVCTs, particularly SVCT2, also 
transport the reduced form of vitamin C from the cytosol 
into the mitochondrial matrix [20] (also reviewed in [21]).

Transport of the oxidized form of vitamin C

Fourteen glucose transporters (GLUTs) are expressed in 
the human, and they include transporters for substrates 
other than glucose, such as fructose, myoinositol, and urate 
[22, 23]. The primary physiological substrates for at least 
half of the 14 GLUT proteins are either uncertain or com-
pletely unknown. The four well-established GLUT isoforms, 
namely, GLUTs 1–4, have been demonstrated to have dis-
tinct regulatory and/or kinetic properties that reflect their 
specific roles in cellular and whole-body glucose homeosta-
sis [22, 23]. Besides transporting glucose, GLUTs 1, 3, and 
4, have been shown to also transport the oxidized form of 
vitamin C (i.e., DHA) from extracellular milieu into cells. 
It is noteworthy that, of all cell types, human erythrocytes 
express the highest level of GLUT1. However, glucose 
transport decreases during human erythropoiesis despite 
a more than 3-log increase in GLUT1 transcripts. In con-
trast, GLUT1-mediated transport of DHA is dramatically 
enhanced. Mechanistically, stomatin, an integral erythrocyte 
membrane protein, is responsible for regulating the switch 
from glucose to DHA transport [24].

Some GLUT isoforms are also expressed in the mito-
chondrial inner membrane. GLUT1 is the most extensively 
studied GLUT isoform in terms of mediating the transport 
of DHA into the mitochondrial matrix [25, 26]. In addition 
to GLUT1, a recent study demonstrated that GLUT10 is also 
expressed in mitochondria and may participate in transport-
ing DHA from the cytosol into the mitochondrial matrix 
[27]. Once transported into the matrix, DHA is reduced to 
ascorbic acid (the reduced form of vitamin C) primarily by 
the mitochondrial electron transport chain [28]. The high 
concentrations of vitamin C in the mitochondrial matrix sug-
gest a role for this molecule in maintaining mitochondrial 
redox homeostasis and function. Indeed, depletion of mito-
chondrial vitamin C causes mitochondrial oxidative stress 

and dysfunction, leading to neurodegeneration in an animal 
model of Alzheimer’s disease [29]. On the other hand, selec-
tive targeting of vitamin C to mitochondrial compartment 
protects against oxidative stress in this organelle [30].

Vitamin C as a multifunctional molecule

As a cofactor for conventional enzymes

Vitamin C serves as a cofactor for multiple well-known 
enzymes in humans [4]. The most notable ones are proline 
hydroxylase and lysine hydroxylase, which are involved in 
collagen synthesis (reviewed in [31]). The other enzymes for 
which vitamin C acts as a cofactor are involved in carnitine 
synthesis, catecholamine synthesis, peptide amidation, and 
tyrosine metabolism [28]. Due to its essential role in col-
lagen biosynthesis, deficiency of vitamin C compromises 
the integrity of blood vessels, leading to scorbutic gums and 
pinpoint hemorrhage, characteristic manifestations of vita-
min C deficiency [32].

As an antioxidant

Vitamin C is notable for its antioxidative activity and, as 
such, is widely recognized as a natural antioxidant [33]. 
Mechanistically, as described below, vitamin C may fulfill 
its antioxidative function via four means: (i) directly scav-
enging free radicals and reactive oxygen/nitrogen species 
(ROS/RNS); (ii) downregulating ROS/RNS-generating 
enzymes; (iii) facilitating the action of other cellular anti-
oxidants; and (iv) activating Nrf2 signaling.

Scavenging ROS/RNS

The unique redox chemistry of vitamin C renders it the 
readiness to directly react with free radicals and ROS/RNS 
[33]. In many in vitro systems, vitamin C has been found to 
quench free radicals and ROS/RNS and protect cells from 
oxidative damage. Accumulation of vitamin C in mitochon-
dria, a major source of cellular ROS [34], is particularly 
important for counteracting cellular oxidative stress and 
inflammation. In this regard, mitochondrial ROS play a 
critical role in both oxidative stress injury [35, 36] and pro-
inflammatory responses [37, 38].

Downregulating ROS/RNS‑generating enzymes

Vitamin C inhibits the expression of NADPH oxidase 
(NOX) subunit  p47phox induced by inflammatory insults, 
thereby decreasing the formation of ROS from this impor-
tant cellular source [39]. Mechanistically, vitamin C reduces 
the oxidative activation of Jak2/Stat1/IRF1 pathway that is 
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involved in the inducible expression of  p47phox [39]. In addi-
tion to NOX, the inducible expression of inducible nitric 
oxide synthase (iNOS) in septic mice is also inhibited by 
vitamin C [40].

Facilitating the action of other cellular antioxidants

Vitamin C acts to regenerate α-tocopherol and coenzyme Q 
from α-tocopherol radical and coenzyme Q radical, respec-
tively, and thereby plays a critical role in maintaining the 
antioxidant activities of α-tocopherol and coenzyme Q, two 
important lipophilic antioxidants in cells [41]. Vitamin C is 
able to also reduce 1-Cys peroxiredoxin [42]. Peroxiredoxin 
is crucial for the detoxification of hydrogen peroxide and 
peroxynitrite [43]. As noted above (section ‘Redox chemis-
try of vitamin C’), vitamin C and GSH cooperate to act as an 
efficient dual-antioxidant system in mammalian cells [44].

Activating Nrf2 signaling

Nrf2 is a major regulator of cellular antioxidative and other 
cytoprotective genes [45]. In a rat model of severe acute 
pancreatitis and an in vitro model of taurocholate-induced 
injury in AR42J rat pancreatic acinar cells, vitamin C has 
been shown to attenuate pancreatic cell injury likely via acti-
vating the Nrf2/NQO1/HO-1 pathway [46]. Notably, the pro-
tective effects of vitamin C on taurocholate-induced AR42J 
cell injury was attenuated by Nrf2 knockdown [46], sug-
gesting a causal role for Nrf2 signaling in mediating vitamin 
C cytoprotection. Presently, how vitamin C activates Nrf2 
signaling remains unclear though an early study suggested 
a possible involvement of phosphoinositide 3-kinase [47].

As an anti‑inflammatory compound

Vitamin C shows an efficacy in protecting against inflam-
matory disorders, including sepsis (see section ‘Vitamin C 
in sepsis intervention’). As outlined below, several mecha-
nisms may contribute to the anti-inflammatory activities of 
vitamin C.

Reducing ROS/RNS flux

As ROS/RNS are intimately involved in inflammation [48], 
quenching these reactive species or inhibiting their genera-
tion (via decreasing NOX and iNOS expression [39, 40]) by 
vitamin C would blunt inflammatory tissue injury.

Nrf2 activation

On the one hand, Nrf2 positively regulates antioxidant gene 
expression, boosting cellular antioxidant defense capacity 
[49]. On the other hand, Nrf2 is also a negative regulator 

of proinflammatory genes, and activation of Nrf2 signaling 
leads to suppression of inflammatory responses [50, 51]. 
Furthermore, vitamin C induces heme oxygenase-1 (HO-1) 
[52], an enzyme that produces the anti-inflammatory mol-
ecule—carbon monoxide [53]. Hence, activation of Nrf2 
signaling by vitamin C may also contribute to its anti-inflam-
matory activities. Indeed, an early study showed that vitamin 
C protected against lipopolysaccharide (LPS)-induced endo-
toxemia in mice in an Nrf2-dependent manner [47].

NF‑κB suppression

NF-κB is a crucial transcription factor involved in the posi-
tive regulation of proinflammatory gene expression [54]. 
Vitamin C reduces NF-κB activation via two mechanisms. 
One is through inhibiting ROS-mediated activation of 
NF-κB [55]. The other is via inhibition of a kinase by DHA 
(the oxidized form of vitamin C). DHA, but not ascorbic 
acid, directly inhibits IκBα kinase β (IKKβ) and IKKα enzy-
matic activity, thereby leading to inhibition of NF-κB acti-
vation [56]. Hence, vitamin C possesses a dual molecular 
action on NF-κB signaling—Ascorbic acid quenches ROS 
involved in the activation of NF-κB and is oxidized to DHA, 
which directly inhibits IKKβ and IKKα enzymatic activity 
[56].

As an important player in stem cell biology 
and epigenetics

Multiple studies suggest an important role for vitamin C 
in stem cell biology and epigenetics. Somatic cells can be 
reprogrammed into induced pluripotent stem cells (iPSCs) 
by defined factors, such as Oct4/Klf4/Sox2 or Oct4/Klf4/
Sox2/cMyc [57]. However, the low efficiency and slow 
kinetics of the reprogramming process have hampered pro-
gress with this technology. Two studies found that vitamin 
C enhances the reprogramming efficiency of mouse and 
human fibroblasts transduced with either three (Oct4/Klf4/
Sox2) or four (Oct4/Klf4/Sox2/cMyc) factors [58, 59]. 
Mechanistically, vitamin C may alleviate cell senescence 
(a roadblock for reprogramming) by p53 repression and 
accelerate reprogramming by synergizing with epigenetic 
regulators [58, 59]. More recently, several studies have also 
identified a novel function of vitamin C in promoting Tet 
enzyme-mediated generation of 5-hydroxymethylcytosine 
(5-hmC), suggesting that the availability of vitamin C may 
have a profound effect on many cellular functions dictated by 
DNA demethylation (reviewed in [60]). Here Tet enzymes 
denote the DNA demethylases ten eleven translocases. 
Indeed, vitamin C acts as a critical mediator of the interface 
between the genome and environment [61–64], especially 
in mediating intergenerational epigenetic effects [63] and 
in suppressing tumorigenesis [64]. In this regard, vitamin 
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C accumulates within hematopoietic stem cells (HSC) to 
promote Tet activity, thereby suppressing leukemogenesis 
[64]. As Tet enzymes play an important role in maintaining 
the homeostasis of immunity [65–67], activation of Tet by 
vitamin C might counteract dysregulated immune responses 
seen in inflammatory disorders, such as sepsis. The interac-
tion between vitamin C and Tet enzymes as well as stem 
cell homeostasis in the context of inflammatory syndrome 
and sepsis warrants investigations. Such studies would help 
delineate the detailed molecular mechanisms underlying 
vitamin C redox biology and its role in disease intervention.

Vitamin C in sepsis intervention

Overview

According to the Third International Consensus Defini-
tion for Sepsis and Septic Shock (Sepsis-3) [68], sepsis is 
defined as life-threatening organ dysfunction resulting from 
dysregulated host responses to infection, and septic shock is 
defined as a subset of sepsis in which underlying circulatory, 
cellular, and metabolic abnormalities are profound enough 
to substantially increase the risk of mortality. The extent of 
organ dysfunction is assessed by Sequential Organ Failure 
Assessment score, commonly known as the SOFA score 
[69]. Based on the Sepsis-3 definition, sepsis is now clas-
sified into two categories: (i) sepsis, and (ii) septic shock. 
The traditional classification of sepsis into (i) sepsis, (ii) 
severe sepsis, and (iii) septic shock is obsolete and has now 
changed to (i) infection, (ii) sepsis, and (iii) septic shock. A 
key criterion for the current Sepsis-3 definition is the occur-
rence of organ dysfunction due to infection. Without organ 
dysfunction, the condition is categorized as infection only 
[70].

Pathophysiologically, sepsis is the culmination of com-
plex interactions between the infecting microorganisms and 
the host immune, inflammatory, and coagulation responses, 
leading to death due to multiorgan failure. Although the 
overall outcomes of sepsis management have improved over 
the past decade, mortality remains exceptionally high which 
accounts for over 30% of all hospital deaths in the United 
States and nearly 20% of all global deaths [71]. Currently, 
there is no cure for sepsis, and developing therapies that 
improve clinical outcomes of sepsis remains a global prior-
ity [72].

Recent advances in delineating the molecular patho-
physiology of sepsis facilitate the development of novel 
and effective mechanistically based therapeutic modalities 
for this dread disorder [72–74]. In this context, substantial 
evidence suggests an important role for oxidative stress and 
dysregulated inflammation in the initiation and progres-
sion of multiorgan dysfunction and injury in sepsis in both 

experimental animals and human subjects [72–74]. Regard-
ing the molecular basis of oxidative stress in sepsis, multiple 
studies show that, in inflammatory cells, mitochondrial ROS 
play an important role in activating NF-κB-dependent pro-
inflammatory responses to cause multiorgan dysfunction in 
sepsis [38]. On the other hand, activation of Nrf2 signaling 
suppresses sepsis in animal models [75]. These mechanistic 
findings have prompted the search for effective therapies 
targeting the multiple molecular and signaling pathways 
underlying sepsis. Due to its multifunctional properties (see 
section ‘Vitamin C as a multifunctional molecule’), vitamin 
C has been investigated extensively over the past two dec-
ades as a potential treatment of sepsis. The sections below 
survey latest major research findings on vitamin C in sepsis 
intervention in both animal models and human subjects with 
a focus on key findings from major randomized controlled 
trials.

Studies on experimental sepsis

The effectiveness of vitamin C in treating sepsis has been 
demonstrated extensively in animal models of experimental 
sepsis, including LPS-induced endotoxemia and polymicro-
bial sepsis. In these experimental models, treatment with 
parenteral vitamin C (given either intravenously or intraperi-
toneally) results in: (i) suppression of oxidative stress and 
NF-κB-driven pro-inflammatory responses; (ii) amelioration 
of microcirculation abnormalities and multiorgan dysfunc-
tion, and (iii) improvement of survival [76–80]). In addi-
tion, combination of vitamin C with glucocorticoid drugs 
shows synergistic effects in treating experimental sepsis 
[81]. This synergism observed in experimental sepsis has 
also prompted clinical trials to evaluate the efficacy of the 
vitamin C-glucocorticoid combination therapy in sepsis and 
septic shock (see section ‘Randomized controlled trials’). 
Moreover, three drug-combination treatment (Hydrocor-
tisone, Ascorbic acid, and Thiamine)—the so called HAT 
therapy has been shown to dramatically decrease oxidative 
stress, ameliorate cardiovascular dysfunction, and improve 
survival in experimental sepsis in mice [82]. The efficacy 
of HAT therapy in treating severe sepsis or septic shock has 
also been evaluated in multiple randomized controlled trials 
(see section ‘Randomized controlled trials’).

Randomized controlled trials

The clinical trials on vitamin C in sepsis intervention can 
be categorized into the following three groups: (i) vitamin 
C compared with placebo; (ii) HAT therapy compared with 
hydrocortisone alone; and (iii) HAT therapy compared with 
placebo.
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Vitamin C versus placebo

Multiple earlier preliminary clinical studies suggested 
a potential efficacy for intravenous megadose vitamin C 
in treating patients with sepsis or endotoxemia [83–86]. 
Recently, the potential clinical efficacy of high doses of vita-
min C therapy in patients with sepsis has been investigated 
in the CITRIS-ALI randomized, placebo-controlled trial. 
Up to date, this is the only major randomized trial compar-
ing vitamin C versus placebo in sepsis intervention. The 
CITRIS-ALI trial, involving 167 patients (mean age 54.8), 
aimed primarily to determine the effect of intravenous vita-
min C infusion (50 mg/kg in dextrose 5% in water every 
6 h for 96 h) on organ dysfunction and biological markers 
of inflammation and vascular injury in patients with sepsis 
and acute respiratory distress syndrome (ARDS) [87]. Upon 
perusing only the abstract of CITRIS-ALI trial, one would 
easily notice that the trial produced null results—“a 96-h 
infusion of vitamin C compared with placebo did not sig-
nificantly improve organ dysfunction scores or alter markers 
of inflammation and vascular injury.”

Scrutinization of the data reported in the CITRIS-ALI 
trial, however, may lead to an intriguing preliminary conclu-
sion. In this regard, the trial did show a potential benefit of 
vitamin C therapy in reducing the mortality: at day 28, mor-
tality was 46.3% (38/82) in the placebo group versus 29.8% 
(25/84) in the vitamin C group (p = 0.03) [87]. This signifi-
cant reduction (36% reduction compared to placebo) in mor-
tality with the vitamin C therapy, though not mentioned in 
the abstract of the paper, is perhaps one of the most notable 
findings of the trial. This finding, though being considered 
preliminary, points to an exciting opportunity of using high 
doses of vitamin C to save lives in patients with sepsis and 
ARDS. This preliminary finding in sepsis patients is also 
consistent with the well-demonstrated effectiveness of vita-
min C in treating experimental sepsis in animal models (see 
section ‘Studies on experimental sepsis’). Apparently, the 
efficacy of high-dose vitamin C therapy in patients with sep-
sis and ARDS warrants further randomized controlled trials 
with a focus on mortality reduction and long-term survival. 
The potential survival benefit of high-dose vitamin C infu-
sion suggested by the CITRIS-ALI trial may also necessitate 
clinical studies of this readily available, low-cost therapy in 
other life-threatening respiratory disorders, such as severe 
Covid-19 currently in pandemic. Indeed, a trial is currently 
underway to assess the efficacy of high-dose vitamin C infu-
sion in treating Covid-19 [88].

HAT therapy versus hydrocortisone alone

The efficacy of the HAT therapy versus hydrocortisone alone 
in treating septic shock has recently evaluated in the VITA-
MIN randomized clinical trial [89]. This trial, involving 216 

patients (mean age 61.7 years), was designed to determine 
the effects of the combination of hydrocortisone, ascorbate, 
and thiamine (i.e., HAT therapy; hydrocortisone, 50 mg 
every 6 h; ascorbate, 1.5 g every 6 h; thiamine, 200 mg every 
12 h), compared with hydrocortisone alone (50 mg every 
6 h), on the duration of time alive and free of vasopres-
sor administration in patients with septic shock [89]. The 
trial concluded that “In patients with septic shock, treatment 
with intravenous vitamin C, hydrocortisone, and thiamine, 
compared with intravenous hydrocortisone alone, did not 
significantly improve the duration of time alive and free of 
vasopressor administration over 7 days.” It is worth noting 
that the VITAMIN trial involved only critically ill patients 
with septic shock. In addition, the vitamin C dose (1.5 g 
every 6 h for 4 days is also lower than the one used in the 
CITRIS-ALI trial (50 mg/kg every 6 h for 4 days; this would 
translate to 3.5 g every 6 h for 4 days for an average adult 
body weight of 70 kg).

The potential effectiveness of HAT therapy versus hydro-
cortisone alone in pediatric septic shock was also investi-
gated in a single-centered, propensity score-matched cohort 
study involving 557 children with septic shock [90]. The 
study reported that pediatric patients who received HAT 
therapy had lower mortality than notched hydrocortisone 
alone at 30 days (9% versus 28%, p = 0.03) and 90 days (14% 
versus 33%, p < 0.04) [90]. The study concluded that HAT 
therapy, when administered early in the clinical course could 
reduce mortality in children with septic shock. This encour-
aging finding should prompt randomized controlled trials to 
further evaluate the efficacy of the vitamin C-based therapy 
in pediatric sepsis.

HAT therapy versus placebo

In patients with  sepsis or  septic shock In a retrospective 
before-after clinical study involving 94 patients with severe 
sepsis and septic shock, in 2017, Marik et al. reported that 
the early use of intravenous vitamin C, together with corti-
costeroids and thiamine, was associated with significantly 
attenuated progressive organ dysfunction, including acute 
kidney injury, and reduced mortality (8.5% in treated group 
versus 40.4% in control group) of the patients [91]. Subse-
quently, in 2020, in a randomized, placebo-controlled trial 
(the ORANGES trial) involving 137 patients with sepsis 
or septic shock (mean age 68.5 years), Iglesias et  al. [92] 
showed that compared with placebo (normal saline), the 
combination of intravenous hydrocortisone, ascorbic acid, 
and thiamine (hydrocortisone, 50  mg every 6  h; ascorbic 
acid, 1.5 g every 6 h; thiamine, 200 mg every 12 h; all for a 
maximum of 4 days) significantly reduced the time to reso-
lution of shock (27 versus 53 h). The study, however, did 
not show a difference in SOFA score, ICU stay, or hospital 
mortality.
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On the other hand, in a randomized controlled trial (the 
HYVCTTSSS trial) involving 80 patients with sepsis and 
septic shock (mean age 61.6 years), Chang et al. [93] dem-
onstrated a significant improvement in SOFA score (3.5 
versus 1.8, p = 0.02) following HAT therapy (hydrocorti-
sone, 50 mg every 6 h for 7 days; vitamin C, 1.5 g every 
6 h for 4 days; thiamine, 200 mg every 12 h for 4 days) 
as compared with placebo (normal saline). Although the 
study did not reveal a statistically significant reduction in 
28-day all-cause mortality (27.5% versus 35%, p = 0.47), 
in prespecified subgroup analysis, patients of the HAT 
treatment subgroup diagnosed with sepsis within 48 h 
showed lower mortality than those in the control subgroup 
(13.6% versus 47.6%, p = 0.02) [93]. This suggests that 
the efficacy of vitamin C-based therapy may vary among 
different subgroups of septic patients.

In critically ill patients with septic shock The ACTS rand-
omized trial [94] was designed to evaluate the efficacy of 
HAT therapy in septic shock rather than in a mixed popu-
lation of patients with sepsis or septic shock. This multi-
center trial involved 205 patients with septic shock (mean 
age 68  years), and the patients were randomly assigned 
to receive intravenous hydrocortisone (50  mg), ascorbic 
acid (1.5 g), and thiamine (100 mg) every 6 h for 4 days 
or placebo in matching volumes at the same time points. 
Overall, the study found no statistically significant differ-
ence between the HAT treatment and placebo regarding 
SOFA score and mortality, though subgroup analysis sug-
gested an improvement in cardiovascular function in the 
HAT group [94].

More recently, the effectiveness of HAT therapy was 
further evaluated in the VICTAS randomized trial [95]. 
This multicenter, placebo-controlled trial involved 501 
critically ill patients (mean age 62 years) with sepsis-
induced respiratory and/or cardiovascular dysfunction. 
The trial concluded that among critically ill patients with 
sepsis, treatment with vitamin C, thiamine, and hydro-
cortisone (vitamin C, 1.5 g; thiamine, 100 mg; hydrocor-
tisone, 50 mg; all given every 6 h for 4 days) compared 
with placebo, did not significantly increase ventilator-and 
vasopressor-free days within 30 days. On the other hand, 
the authors stated that the trial was terminated early for 
administrative reasons and may have been underpowered 
to detect a clinically important difference [95].

The overall null findings from the ACTS and the VIC-
TAS trials indicate that the vitamin C-based HAT therapy 
(with a vitamin C dose regimen of 1.5 g every 6 h for 
4 days) might not be useful for critically ill patients with 
septic shock or sepsis-induced respiratory and/or cardio-
vascular dysfunction. This notion, however, does not nec-
essarily invalidate the vitamin C-based therapy in treating 
sepsis. As discussed below, many factors must be taken 

into consideration when interpreting a null finding from 
a clinical trial.

Clinical perspectives

Collectively, the findings from the randomized controlled 
trials on vitamin C either as “monotherapy” or in combina-
tion with hydrocortisone and thiamine are not clear-cut. This 
is in contrast to the effectiveness demonstrated consistently 
by numerous studies using experimental sepsis animal mod-
els. While the controversy on the clinical value of vitamin 
C in sepsis intervention continues, several points warrant 
consideration with regard to interpretation of current clini-
cal research findings as well as guiding future clinical trials. 
Firstly, the inconsistency may arise due to the variations 
in vitamin C pharmacokinetics among individual septic 
patients and among the different vitamin C dosage regimens. 
In this context, a randomized trial of 4 intravenous vitamin 
C regimens in critically ill patients with multiple organ dys-
function found that the 2 g per day dose was associated with 
normal plasma concentrations, and the 10 g per day dose 
was associated with supranormal plasma concentrations, and 
more importantly, sustained therapy (infusion) was needed 
to prevent hypovitaminosis [7]. Secondly, the patients’ age 
can be another major factor; studies in specific age groups 
would help delineate the age effect. Thirdly, the severity 
of sepsis (sepsis versus septic shock), the patients’ nutri-
tional status and comorbidities, and the timing and dura-
tion of vitamin C administration may also affect the overall 
clinical outcomes. Fourthly, the gender and ethnicity of the 
patients may influence plasma concentrations of vitamin 
C and subsequent responsiveness. In this context, studies 
showed that gender might affect vitamin C tissue distribu-
tion and pharmacokinetics [96, 97]. Lastly, but not the least, 
the optimal dosage regimen of vitamin C in treating sepsis 
remains poorly characterized.

The most-commonly used vitamin C dose regimen (i.e., 
1.5 g every 6 h for 4 days) in clinical trials on sepsis may 
not be optimal for counteracting the pathophysiological 
processes (e.g., oxidative stress, dysregulated inflamma-
tion, and microcirculation dysfunction) underlying sepsis. 
The redox chemistry of vitamin C is significantly influ-
enced by its concentrations as well as other substances in 
biological milieu (see section ‘Redox chemistry of vitamin 
C’). For example, a supraphysiological concentration of 
vitamin C may cause oxidative stress, and this prooxida-
tive potential of mega-dose vitamin C has been harnessed 
to treat various types of cancer [8]; cancer cells are more 
susceptible to oxidative stress-induced cytotoxicity due 
to their relative antioxidant deficiency. On the other hand, 
low doses of vitamin C may not be adequate for exerting 
sufficient antioxidative and anti-inflammatory action to 
counteract the pathophysiology underlying sepsis. Hence, 



4456 Molecular and Cellular Biochemistry (2021) 476:4449–4460

1 3

an optimal dose must be one that exerts maximal antioxi-
dative/anti-inflammatory effects without causing a signifi-
cant prooxidative state (Fig. 2).

While it is imperative to develop an optimal regimen 
for using vitamin C to treat septic patients, efforts should 
also be devoted to determining if vitamin C-based strate-
gies could also be employed for preventive purpose in 
high-risk patients, such as those with advanced age, dietary 
insufficiency, comprised immunity, or other concomitant 
morbidities. In this regard, a recent systemic review and 
meta-analysis suggested that vitamin C supplement in nor-
mal individuals could reduce the risk of respiratory tract 
infections, including influenza [98].
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