Skip to main content
Log in

Protective effects of dissolved molecular hydrogen against hydrogen peroxide-, hydroperoxide-, and glyoxal-induced injuries to human skin keratinocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Molecular hydrogen (H2) is recognized as a gaseous antioxidant, and it is expected to ameliorate various disorders related to oxidative stress and inflammation. However, there are still many unclear points regarding its effectiveness in the skin. Therefore, the purpose of this study was to examine the protective effect of H2 against ultraviolet (UV) irradiation-related stress injury in human epidermal HaCaT cells. We investigated the effects of H2 against three types of UV-derived oxidative stress using human skin keratinocytes: hydrogen peroxide (H2O2)-induced oxidative stress, tert-butyl hydroperoxide (t-BuOOH)-induced lipid peroxidation stress, and glyoxal-induced carbonyl stress. Our results showed that H2 exerted cytoprotective effects against stress induced by H2O2, t-BuOOH, and glyoxal. Furthermore, our results also revealed that H2 suppressed H2O2-induced increases in intracellular peroxide and H2O2 levels, and suppressed the progression of lipid peroxidation. Taken together, our results demonstrate that H2 can exert protective effects against oxidative stress-, lipid peroxidation-, and carbonyl stress-induced cellular injuries in human keratinocytes, partly mediated via suppression of intracellular oxidative stress and peroxide generation. Therefore, H2 is expected to be utilized as an effective and attractive component in cosmetic formulations in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Kageyama H, Waditee-Sirisattha R (2019) Antioxidative, anti-inflammatory, and anti-aging properties of mycosporine-like amino acids: molecular and cellular mechanisms in the protection of skin-aging. Mar Drugs 17(4):222. https://doi.org/10.3390/md17040222

    Article  CAS  PubMed Central  Google Scholar 

  2. Xiao L, Kaneyasu K, Saitoh Y, Terashima Y, Kowata Y, Miwa N (2009) Cytoprotective effects of the lipoidic-liquiform pro-vitamin C tetra-isopalmitoyl-ascorbate (VC-IP) against ultraviolet-A ray-induced injuries in human skin cells together with collagen retention, MMP inhibition and p53 gene repression. J Cell Biochem 106(4):589–598. https://doi.org/10.1002/jcb.22032

    Article  CAS  PubMed  Google Scholar 

  3. Xiao L, Aoshima H, Saitoh Y, Miwa N (2010) Fullerene-polyvinylpyrrolidone clathrate localizes in the cytoplasm to prevent Ultraviolet-A ray-induced DNA-fragmentation and activation of the transcriptional factor NF-kappaB. J Cell Biochem 111(4):955–966. https://doi.org/10.1002/jcb.22784

    Article  CAS  PubMed  Google Scholar 

  4. Saitoh Y, Miyanishi A, Mizuno H, Kato S, Aoshima H, Kokubo K, Miwa N (2011) Super-highly hydroxylated fullerene derivative protects human keratinocytes from UV-induced cell injuries together with the decreases in intracellular ROS generation and DNA damages. J Photochem Photobiol B 102(1):69–76. https://doi.org/10.1016/j.jphotobiol.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  5. Kato S, Aoshima H, Saitoh Y, Miwa N (2014) Fullerene-C60 derivatives prevent UV-irradiation/ TiO2-induced cytotoxicity on keratinocytes and 3D-skin tissues through antioxidant actions. J Nanosci Nanotechnol 14(5):3285–3291. https://doi.org/10.1166/jnn.2014.8719

    Article  CAS  PubMed  Google Scholar 

  6. Saitoh Y, Ohta H, Hyodo S (2016) Protective effects of polyvinylpyrrolidone-wrapped fullerene against intermittent ultraviolet-A irradiation-induced cell injury in HaCaT cells. J Photochem Photobiol B 163:22–29. https://doi.org/10.1016/j.jphotobiol.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  7. Saitoh Y, Tanaka A, Hyodo S (2021) Protective effects of polyvinylpyrrolidone-wrapped fullerene against nitric oxide/peroxynitrite-induced cellular injury in human skin keratinocytes. J Nanosci Nanotechnol 21:4579–4585

    Article  CAS  Google Scholar 

  8. Awad F, Assrawi E, Louvrier C, Jumeau C, Giurgea I, Amselem S, Karabina SA (2018) Photoaging and skin cancer: Is the inflammasome the missing link? Mech Ageing Dev 172:131–137. https://doi.org/10.1016/j.mad.2018.03.003

    Article  CAS  PubMed  Google Scholar 

  9. Merwald H, Klosner G, Kokesch C, Der-Petrossian M, Hönigsmann H, Trautinger F (2005) UVA-induced oxidative damage and cytotoxicity depend on the mode of exposure. J Photochem Photobiol B 79:197–207. https://doi.org/10.1016/j.jphotobiol.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  10. Moldogazieva NT, Mokhosoev IM, Mel’nikova TI, Porozov YB, Terentiev AA (2019) Oxidative Stress and Advanced Lipoxidation and Glycation End Products (ALEs and AGEs) in Aging and Age-Related Diseases. Oxid Med Cell Longev. https://doi.org/10.1155/2019/3085756

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yokota M, Tokudome Y (2016) The Effect of Glycation on Epidermal Lipid Content, Its Metabolism and Change in Barrier Function. Skin Pharmacol Physiol 29:231–242. https://doi.org/10.1159/000448121

    Article  CAS  PubMed  Google Scholar 

  12. Sakai S, Kikuchi K, Satoh J, Tagami H, Inoue S (2005) Functional properties of the stratum corneum in patients with diabetes mellitus: similarities to senile xerosis. Br J Dermatol 153:319–323. https://doi.org/10.1111/j.1365-2133.2005.06756.x

    Article  CAS  PubMed  Google Scholar 

  13. Ogura Y, Kuwahara T, Akiyama M, Tajima S, Hattori K, Okamoto K, Okawa S, Yamada Y, Tagami H, Takahashi M, Hirao T (2011) Dermal carbonyl modification is related to the yellowish color change of photo-aged Japanese facial skin. J Dermatol Sci 64(1):45–52. https://doi.org/10.1016/j.jdermsci.2011.06.015

    Article  CAS  PubMed  Google Scholar 

  14. Verzijl N, DeGroot J, Thorpe SR, Bank RA, Shaw JN, Lyons TJ, Bijlsma JW, Lafeber FP, Baynes JW, TeKoppele JM (2000) Effect of collagen turnover on the accumulation of advanced glycation end products. J Biol Chem 275:39027–39031. https://doi.org/10.1074/jbc.M006700200

    Article  CAS  PubMed  Google Scholar 

  15. Yoshinaga E, Kawada A, Ono K, Fujimoto E, Wachi H, Harumiya S, Nagai R, Tajima S (2012) N(ε)-(carboxymethyl)lysine modification of elastin alters its biological properties: implications for the accumulation of abnormal elastic fibers in actinic elastosis. J Invest Dermatol 132:315–323. https://doi.org/10.1038/jid.2011.298

    Article  CAS  PubMed  Google Scholar 

  16. Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S (2007) Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med 13(6):688–694. https://doi.org/10.1038/nm1577

    Article  CAS  PubMed  Google Scholar 

  17. Kato S, Matsuoka D, Miwa N (2015) Antioxidant activities of nano-bubble hydrogen-dissolved water assessed by ESR and 2,2’-bipyridyl methods. Mater Sci Eng C Mater Biol Appl 53:7–10. https://doi.org/10.1016/j.msec.2015.03.064

    Article  CAS  PubMed  Google Scholar 

  18. Iida A, Nosaka N, Yumoto T, Knaup E, Naito H, Nishiyama C, Yamakawa Y, Tsukahara K, Terado M, Sato K, Ugawa T, Nakao A (2016) The Clinical Application of Hydrogen as a Medical Treatment. Acta Med Okayama 70(5):331–337. https://doi.org/10.18926/amo/54590

    Article  CAS  PubMed  Google Scholar 

  19. Ohta S (2015) Molecular hydrogen as a novel antioxidant: overview of the advantages of hydrogen for medical applications. Methods Enzymol 555:289–317. https://doi.org/10.1016/bs.mie.2014.11.038

    Article  CAS  PubMed  Google Scholar 

  20. Ge L, Yang M, Yang NN, Yin XX, Song WG (2017) Molecular hydrogen: a preventive and therapeutic medical gas for various diseases. Oncotarget 8(60):102653–102673. https://doi.org/10.18632/oncotarget.21130

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kawamura T, Higashida K, Muraoka I (2020) Application of Molecular Hydrogen as a Novel Antioxidant in Sports Science. Oxid Med Cell Longev 2020:2328768. https://doi.org/10.1155/2020/2328768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ohta S (2014) Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine. Pharmacol Ther 144(1):1–11. https://doi.org/10.1016/j.pharmthera.2014.04.006

    Article  CAS  PubMed  Google Scholar 

  23. Saitoh Y, Harata Y, Mizuhashi F, Nakajima M, Miwa N (2010) Biological safety of neutral-pH hydrogen-enriched electrolyzed water upon mutagenicity, genotoxicity and subchronic oral toxicity. Toxicol Ind Health 26:203–216. https://doi.org/10.1177/0748233710362989

    Article  CAS  PubMed  Google Scholar 

  24. Watanabe S, Fujita M, Ishihara M, Tachibana S, Yamamoto Y, Kaji T, Kawauchi T, Kanatani Y (2014) Protective effect of inhalation of hydrogen gas on radiation-induced dermatitis and skin injury in rats. J Radiat Res 55:1107–1113. https://doi.org/10.1093/jrr/rru067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mei K, Zhao S, Qian L, Li B, Ni J, Cai J (2014) Hydrogen protects rats from dermatitis caused by local radiation. J Dermatolog Treat 25:182–188. https://doi.org/10.3109/09546634.2012.762639

    Article  CAS  PubMed  Google Scholar 

  26. Guo Z, Zhou B, Li W, Sun X, Luo D (2012) Hydrogen-rich saline protects against ultraviolet B radiation injury in rats. J Biomed Res 26:365–371. https://doi.org/10.7555/jbr.26.20110037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ono H, Nishijima Y, Adachi N, Sakamoto M, Kudo Y, Nakazawa J, Kaneko K, Nakao A (2012) Hydrogen(H2) treatment for acute erythymatous skin diseases. A report of 4 patients with safety data and a non-controlled feasibility study with H2 concentration measurement on two volunteers. Med Gas Res 2:14. https://doi.org/10.1186/2045-9912-2-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ishibashi T, Ichikawa M, Sato B, Shibata S, Hara Y, Naritomi Y, Okazaki K, Nakashima Y, Iwamoto Y, Koyanagi S, Hara H, Nagao T (2015) Improvement of psoriasis-associated arthritis and skin lesions by treatment with molecular hydrogen: A report of three cases. Mol Med Rep 12:2757–2764. https://doi.org/10.3892/mmr.2015.3707

    Article  CAS  PubMed  Google Scholar 

  29. Tanaka Y, Saitoh Y, Miwa N (2018) Electrolytically generated hydrogen warm water cleanses the keratin-plug-clogged hair-pores and promotes the capillary blood-streams, more markedly than normal warm water does. Med Gas Res 8(1):12–18. https://doi.org/10.4103/2045-9912.229598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kato S, Saitoh Y, Miwa N (2013) Inhibitions by hydrogen-occluding silica microcluster to melanogenesis in human pigment cells and tyrosinase reaction. J Nanosci Nanotechnol 13(1):52–59. https://doi.org/10.1166/jnn.2013.6848

    Article  CAS  PubMed  Google Scholar 

  31. Asada R, Saitoh Y, Miwa N (2019) Effects of hydrogen-rich water bath on visceral fat and skin blotch, with boiling-resistant hydrogen bubbles. Med Gas Res 9(2):68–73. https://doi.org/10.4103/2045-9912.260647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kato S, Saitoh Y, Iwai K, Miwa N (2012) Hydrogen-rich electrolyzed warm water represses wrinkle formation against UVA ray together with type-I collagen production and oxidative-stress diminishment in fibroblasts and cell-injury prevention in keratinocytes. J Photochem Photobiol 106:24–33. https://doi.org/10.1016/j.jphotobiol.2011.09.006

    Article  CAS  Google Scholar 

  33. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106(3):761–771. https://doi.org/10.1083/jcb.106.3.761

    Article  CAS  PubMed  Google Scholar 

  34. Saitoh Y, Ikeshima M, Kawasaki N, Masumoto A, Miwa N (2016) Transient generation of hydrogen peroxide is responsible for carcinostatic effects of hydrogen combined with platinum nanocolloid, together with increases intracellular ROS, DNA cleavages, and proportion of G2/M-phase. Free Radic Res 50(4):385–395. https://doi.org/10.3109/10715762.2015.1131823

    Article  CAS  PubMed  Google Scholar 

  35. Saitoh Y, Kawasaki N, Eguchi N, Ikeshima M (2021) Combined treatment with dissolved hydrogen molecule and platinum nanocolloid exerts carcinostatic/carcinocidal effects by increasing hydrogen peroxide generation and cell death in the human gastric cancer cell line NUGC-4. Free Radic Res in printing. https://doi.org/10.1080/10715762.2021.1902514

    Article  Google Scholar 

  36. Saitoh Y, Morishita A, Mito S, Tsujiya T, Miwa N (2013) Senescence-induced increases in intracellular oxidative stress and enhancement of the need for ascorbic acid in human fibroblasts. Mol Cell Biochem 380(1–2):129–141. https://doi.org/10.1007/s11010-013-1666-y

    Article  CAS  PubMed  Google Scholar 

  37. Saitoh Y, Xiao L, Mizuno H, Kato S, Aoshima H, Taira H, Kokubo K, Miwa N (2010) Novel polyhydroxylated fullerene suppresses intracellular oxidative stress together with repression of intracellular lipid accumulation during the differentiation of OP9 preadipocytes into adipocytes. Free Radic Res 44(9):1072–1081. https://doi.org/10.3109/10715762.2010.499905

    Article  CAS  PubMed  Google Scholar 

  38. Shangari N, O’Brien PJ (2004) The cytotoxic mechanism of glyoxal involves oxidative stress. Biochem Pharmacol 68(7):1433–1442. https://doi.org/10.1016/j.bcp.2004.06.013

    Article  CAS  PubMed  Google Scholar 

  39. Banach MS, Dong Q, O’Brien PJ (2009) Hepatocyte cytotoxicity induced by hydroperoxide (oxidative stress model) or glyoxal (carbonylation model): prevention by bioactive nut extracts or catechins. Chem Biol Interact 178(1–3):324–331. https://doi.org/10.1016/j.cbi.2008.10.003

    Article  CAS  PubMed  Google Scholar 

  40. Saitoh Y, Ouchida R, Kayasuga A, Miwa N (2003) Anti-apoptotic defense of bcl-2 gene against hydroperoxide-induced cytotoxicity together with suppressed lipid peroxidation, enhanced ascorbate uptake, and upregulated Bcl-2 protein. J Cell Biochem 89(2):321–334. https://doi.org/10.1002/jcb.10506

    Article  CAS  PubMed  Google Scholar 

  41. Saitoh Y, Miwa N (2004) Cytoprotection of vascular endotheliocytes by phosphorylated ascorbate through suppression of oxidative stress that is generated immediately after post-anoxic reoxygenation or with alkylhydroperoxides. J Cell Biochem 93(4):653–663. https://doi.org/10.1002/jcb.20245

    Article  CAS  PubMed  Google Scholar 

  42. Haeiwa H, Fujita T, Saitoh Y, Miwa N (2014) Oleic acid promotes adaptability against oxidative stress in 3T3-L1 cells through lipohormesis. Mol Cell Biochem 386(1–2):73–83. https://doi.org/10.1007/s11010-013-1846-9

    Article  CAS  PubMed  Google Scholar 

  43. Ohwada R, Ozeki Y, Saitoh Y (2017) High-dose ascorbic acid induces carcinostatic effects through hydrogen peroxide and superoxide anion radical generation-induced cell death and growth arrest in human tongue carcinoma cells. Free Radic Res 51(7–8):684–692. https://doi.org/10.1080/10715762.2017.1361533

    Article  CAS  PubMed  Google Scholar 

  44. Moore GA, Jewell SA, Bellomo G, Orrenius S (1983) On the relationship between Ca2+ efflux and membrane damage during t-butylhydroperoxide metabolism by liver mitochondria. FEBS Lett 153:289–292. https://doi.org/10.1016/0014-5793(83)80626-7

    Article  CAS  PubMed  Google Scholar 

  45. Comporti M (1987) Glutathione depleting agents and lipid peroxidation. Chem Phys Lipids 45:143–169. https://doi.org/10.1016/0009-3084(87)90064-8

    Article  CAS  PubMed  Google Scholar 

  46. Thornalley PJ, Langborg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 344(Pt 1):109–116

    Article  CAS  Google Scholar 

  47. Aldini G, Dalle-Donne I, Facino RM, Milzani A, Carini M (2007) Intervention strategies to inhibit protein carbonylation by lipoxidation-derived reactive carbonyls. Med Res Rev 27(6):817–868. https://doi.org/10.1002/med.20073

    Article  CAS  PubMed  Google Scholar 

  48. Saitoh Y, Yoshimura Y, Nakano K, Miwa N (2009) Platinum nanocolloid-supplemented hydrogendissolved water inhibits growth of human tongue carcinoma cells preferentially over normal cells. Exp Oncol 31(3):156–162

    CAS  PubMed  Google Scholar 

  49. Li SY, Sigmon VK, Babcock SA, Ren J (2007) Advanced glycation endproduct induces ROS accumulation, apoptosis, MAP kinase activation and nuclear O-GlcNAcylation in human cardiac myocytes. Life Sci 80:1051–1056. https://doi.org/10.1016/j.lfs.2006.11.035

    Article  CAS  PubMed  Google Scholar 

  50. Iuchi K, Nishimaki K, Kamimura N, Ohta S (2019) Molecular hydrogen suppresses free-radical-induced cell death by mitigating fatty acid peroxidation and mitochondrial dysfunction. Can J Physiol Pharmacol 97(10):999–1005. https://doi.org/10.1139/cjpp-2018-0741

    Article  CAS  PubMed  Google Scholar 

  51. Ohta S (2020) Will the hydrogen therapy be approved shortly? Ann Transl Med 8(6):264. https://doi.org/10.21037/atm.2020.03.70

    Article  PubMed  PubMed Central  Google Scholar 

  52. Iuchi K, Imoto A, Kamimura N, Nishimaki K, Ichimiya H, Yokota T, Ohta S (2016) Molecular hydrogen regulates gene expression by modifying the free radical chain reaction-dependent generation of oxidized phospholipid mediators. Sci Rep 6:18971. https://doi.org/10.1038/srep18971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kamimura N, Ichimiya H, Iuchi K, Ohta S (2016) Molecular hydrogen stimulates the gene expression of transcriptional coactivator PGC-1α to enhance fatty acid metabolism. NPJ Aging Mech Dis 2:16008. https://doi.org/10.1038/npjamd.2016.8

    Article  PubMed  PubMed Central  Google Scholar 

  54. Begum R, Kim CS, Fadriquela A, Bajgai J, Jing X, Kim DH, Kim SK, Lee KJ (2020) Molecular hydrogen protects against oxidative stress-induced RAW 264.7 macrophage cells through the activation of Nrf2 and inhibition of MAPK signaling pathway. Mol Cell Toxicol 16:103–118. https://doi.org/10.1007/s13273-020-00074-w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Daigo Matsuoka for his technical assistance.

Funding

This work was partly supported by JSPS KAKENHI Grant Number 20K11627.

Author information

Authors and Affiliations

Authors

Contributions

YS designed the study. YY and YO performed the experiments and analyzed the data. YS wrote the manuscript. All the authors approved the final version of the manuscript.

Corresponding author

Correspondence to Yasukazu Saitoh.

Ethics declarations

Conflicts of interest

All the authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saitoh, Y., Yamaguchi, Y. & Okada, Y. Protective effects of dissolved molecular hydrogen against hydrogen peroxide-, hydroperoxide-, and glyoxal-induced injuries to human skin keratinocytes. Mol Cell Biochem 476, 3613–3622 (2021). https://doi.org/10.1007/s11010-021-04189-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04189-z

Keywords

Navigation