Skip to main content
Log in

Hyaluronan synthase 2 (HAS2) regulates cell phenotype and invadopodia formation in luminal-like breast cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Although luminal breast cancer cells are typically highly cohesive epithelial cells and have low invasive ability, many eventually develop metastasis. Until now, the underlying mechanisms remain obscure. In this work, we showed that the level of hyaluronic acid synthase 2 (HAS2) was positively correlated with the malignant phenotype of breast cancer cells. Notably, the increased expression of HAS2 promoted the invasive and migratory abilities of luminal breast cancer cells in vitro, followed by a reduced expression of E-cadherin, β-catenin, and ZO-1, and an elevated expression of N-cadherin and vimentin. Furthermore, overexpression of HAS2 promoted while knockdown of HAS2 impeded invadopodia formation, which subsequently increased or decreased the activation of cortactin, Tks5, and metalloproteinases (MMPs). Activation of these invadopodia-related proteins was prevented by inhibition of HAS2 or disruption of HA, which in turn attenuated the increased motility and invasiveness. Further, in vivo study showed that, HAS2 increased tumor growth and the rate of lung metastasis via driving transition to an invasive cell phenotype in SCID mice that were orthotopically transplanted with luminal breast cancer cells. Collectively, our results showed that HAS2 promoted cell invasion by inducing transition to an invasive phenotype and by enhancing invadopodia formation in luminal breast cancer cells, which may provide new mechanistic insights into its role in tumor metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, Nielsen TO, Gelmon K (2010) Metastatic behavior of breast cancer subtypes. J Clin Oncol 28:3271–3277. https://doi.org/10.1200/jco.2009.25.9820

    Article  PubMed  Google Scholar 

  2. Ewald AJ, Brenot A, Duong M, Chan BS, Werb Z (2008) Collective epithelial migration and cell rearrangements drive mammary branching morphogenesis. Dev Cell 14:570–581. https://doi.org/10.1016/j.devcel.2008.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheung KJ, Gabrielson E, Werb Z, Ewald AJ (2013) Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155:1639–1651. https://doi.org/10.1016/j.cell.2013.11.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li P, Xiang T, Li H, Li Q, Yang B, Huang J, Zhang X, Shi Y, Tan J, Ren G (2015) Hyaluronan synthase 2 overexpression is correlated with the tumorigenesis and metastasis of human breast cancer. Int J Clin Exp Pathol 8:12101–12114

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Itano N, Atsumi F, Sawai T, Yamada Y, Miyaishi O, Senga T, Hamaguchi M, Kimata K (2002) Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proc Natl Acad Sci USA 99:3609–3614. https://doi.org/10.1073/pnas.052026799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Auvinen P, Tammi R, Parkkinen J, Tammi M, Agren U, Johansson R, Hirvikoski P, Eskelinen M, Kosma VM (2000) Hyaluronan in peritumoral stroma and malignant cells associates with breast cancer spreading and predicts survival. Am J Pathol 156:529–536. https://doi.org/10.1016/s0002-9440(10)64757-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Auvinen P, Tammi R, Kosma VM, Sironen R, Soini Y, Mannermaa A, Tumelius R, Uljas E, Tammi M (2013) Increased hyaluronan content and stromal cell CD44 associate with HER2 positivity and poor prognosis in human breast cancer. Int J Cancer 132:531–539. https://doi.org/10.1002/ijc.27707

    Article  CAS  PubMed  Google Scholar 

  8. Okuda H, Kobayashi A, Xia B, Watabe M, Pai SK, Hirota S, Xing F, Liu W, Pandey PR, Fukuda K, Modur V, Ghosh A, Wilber A, Watabe K (2012) Hyaluronan synthase HAS2 promotes tumor progression in bone by stimulating the interaction of breast cancer stem-like cells with macrophages and stromal cells. Cancer Res 72:537–547. https://doi.org/10.1158/0008-5472.can-11-1678

    Article  CAS  PubMed  Google Scholar 

  9. Udabage L, Brownlee GR, Nilsson SK, Brown TJ (2005) The over-expression of HAS2, Hyal-2 and CD44 is implicated in the invasiveness of breast cancer. Exp Cell Res 310:205–217. https://doi.org/10.1016/j.yexcr.2005.07.026

    Article  CAS  PubMed  Google Scholar 

  10. Lien HC, Lee YH, Jeng YM, Lin CH, Lu YS, Yao YT (2014) Differential expression of hyaluronan synthase 2 in breast carcinoma and its biological significance. Histopathology 65:328–339. https://doi.org/10.1111/his.12390

    Article  PubMed  Google Scholar 

  11. Itano N, Sawai T, Atsumi F, Miyaishi O, Taniguchi S, Kannagi R, Hamaguchi M, Kimata K (2004) Selective expression and functional characteristics of three mammalian hyaluronan synthases in oncogenic malignant transformation. J Biol Chem 279:18679–18687. https://doi.org/10.1074/jbc.M313178200

    Article  CAS  PubMed  Google Scholar 

  12. Mader CC, Oser M, Magalhaes MAO, Bravo-Cordero JJ, Condeelis J, Koleske AJ, Gil-Henn H (2011) An EGFR–Src–Arg–cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion. Cancer Res 71:1730–1741. https://doi.org/10.1158/0008-5472.can-10-1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Di Martino J, Henriet E, Ezzoukhry Z, Goetz JG, Moreau V, Saltel F (2016) The microenvironment controls invadosome plasticity. J Cell Sci 129:1759–1768. https://doi.org/10.1242/jcs.182329

    Article  CAS  PubMed  Google Scholar 

  14. Juin A, Planus E, Guillemot F, Horakova P, Albiges-Rizo C, Génot E, Rosenbaum J, Moreau V, Saltel F (2013) Extracellular matrix rigidity controls podosome induction in microvascular endothelial cells. Biol Cell 105:46–57. https://doi.org/10.1111/boc.201200037

    Article  CAS  PubMed  Google Scholar 

  15. Gurski LA, Xu X, Labrada LN, Nguyen NT, Xiao L, van Golen KL, Jia X, Farach-Carson MC (2012) Hyaluronan (HA) interacting proteins RHAMM and hyaluronidase impact prostate cancer cell behavior and invadopodia formation in 3D HA-based hydrogels. PLoS ONE 7:e50075. https://doi.org/10.1371/journal.pone.0050075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao P, Xu Y, Wei Y, Qiu Q, Chew TL, Kang Y, Cheng C (2016) The CD44s splice isoform is a central mediator for invadopodia activity. J Cell Sci 129:1355–1365. https://doi.org/10.1242/jcs.171959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jolly MK, Preca BT, Tripathi SC, Jia D, George JT, Hanash SM, Brabletz T, Stemmler MP, Maurer J, Levine H (2018) Interconnected feedback loops among ESRP1, HAS2, and CD44 regulate epithelial-mesenchymal plasticity in cancer. APL Bioeng 2:031908. https://doi.org/10.1063/1.5024874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang G, Guo L, Yang C, Liu Y, He Y, Du Y, Wang W, Gao F (2016) A novel role of breast cancer-derived hyaluronan on inducement of M2-like tumor-associated macrophages formation. Oncoimmunology 5:e1172154. https://doi.org/10.1080/2162402x.2016.1172154

    Article  PubMed  PubMed Central  Google Scholar 

  19. Oser M, Yamaguchi H, Mader CC, Bravo-Cordero JJ, Arias M, Chen X, Desmarais V, van Rheenen J, Koleske AJ, Condeelis J (2009) Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation. J Cell Biol 186:571–587. https://doi.org/10.1083/jcb.200812176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jacob A, Jing J, Lee J, Schedin P, Gilbert SM, Peden AA, Junutula JR, Prekeris R (2013) Rab40b regulates trafficking of MMP2 and MMP9 during invadopodia formation and invasion of breast cancer cells. J Cell Sci 126:4647–4658. https://doi.org/10.1242/jcs.126573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mader CC, Oser M, Magalhaes MAO, Bravo-Cordero JJ, Condeelis J, Koleske AJ, Gil-Henn H (2011) An EGFR-Src-Arg-cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion. Cancer Res 71:1730–1741. https://doi.org/10.1158/0008-5472.CAN-10-1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Castagnino A, Castro-Castro A, Irondelle M, Guichard A, Lodillinsky C, Fuhrmann L, Vacher S, Agüera-González S, Zagryazhskaya-Masson A, Romao M, El Kesrouani C, Noegel AA, Dubois T, Raposo G, Bear JE, Clemen CS, Vincent-Salomon A, Bièche I, Chavrier P (2018) Coronin 1C promotes triple-negative breast cancer invasiveness through regulation of MT1-MMP traffic and invadopodia function. Oncogene 37:6425–6441. https://doi.org/10.1038/s41388-018-0422-x

    Article  CAS  PubMed  Google Scholar 

  23. D’Angelo RC, Liu XW, Najy AJ, Jung YS, Won J, Chai KX, Fridman R, Kim HR (2014) TIMP-1 via TWIST1 induces EMT phenotypes in human breast epithelial cells. Mol Cancer Res 12:1324–1333. https://doi.org/10.1158/1541-7786.mcr-14-0105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang C, Liu Y, He Y, Du Y, Wang W, Shi X, Gao F (2013) The use of HA oligosaccharide-loaded nanoparticles to breach the endogenous hyaluronan glycocalyx for breast cancer therapy. Biomaterials 34:6829–6838. https://doi.org/10.1016/j.biomaterials.2013.05.036

    Article  CAS  PubMed  Google Scholar 

  25. Yang C, Cao M, Liu H, He Y, Xu J, Du Y, Liu Y, Wang W, Cui L, Hu J, Gao F (2012) The high and low molecular weight forms of hyaluronan have distinct effects on CD44 clustering. J Biol Chem 287:43094–43107. https://doi.org/10.1074/jbc.M112.349209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang C, He Y, Zhang H, Liu Y, Wang W, Du Y, Gao F (2015) Selective killing of breast cancer cells expressing activated CD44 using CD44 ligand-coated nanoparticles in vitro and in vivo. Oncotarget 6:15283–15296. https://doi.org/10.18632/oncotarget.3681

    Article  PubMed  PubMed Central  Google Scholar 

  27. Boregowda RK, Appaiah HN, Siddaiah M, Kumarswamy SB, Sunila S, Thimmaiah KN, Mortha K, Toole B, Banerjee S (2006) Expression of hyaluronan in human tumor progression. J Carcinog 5:2. https://doi.org/10.1186/1477-3163-5-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cai J, Guan H, Fang L, Yang Y, Zhu X, Yuan J, Wu J, Li M (2013) MicroRNA-374a activates Wnt/beta-catenin signaling to promote breast cancer metastasis. J Clin Invest 123:566–579. https://doi.org/10.1172/JCI65871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xue B, Krishnamurthy K, Allred DC, Muthuswamy SK (2013) Loss of Par3 promotes breast cancer metastasis by compromising cell-cell cohesion. Nat Cell Biol 15:189–200. https://doi.org/10.1038/ncb2663

    Article  CAS  PubMed  Google Scholar 

  30. Cheng G, Fan X, Hao M, Wang J, Zhou X, Sun X (2016) Higher levels of TIMP-1 expression are associated with a poor prognosis in triple-negative breast cancer. Mol Cancer 15:30. https://doi.org/10.1186/s12943-016-0515-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81572821, 81502490, 81502491, 81672843, 81702852, 81974445, 81974446, 82073199), the Natural Science Foundation of Shanghai Municipality (14YF1412200), the Program of Shanghai Leading Talents (2013–038), the Shanghai Shen-Kang Hospital Development Center (SHDC22014004), Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20171924).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Gao or Cuixia Yang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest associated with this research manuscript.

Ethical approval

All procedures for experimental protocols of the present study involving animals were performed in accordance with the ethical standards of the institution of practice at which the studies were conducted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 438 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, Y., Cao, M., Liu, Y. et al. Hyaluronan synthase 2 (HAS2) regulates cell phenotype and invadopodia formation in luminal-like breast cancer cells. Mol Cell Biochem 476, 3383–3391 (2021). https://doi.org/10.1007/s11010-021-04165-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04165-7

Keywords

Navigation