Skip to main content
Log in

Loss of Znt8 function in diabetes mellitus: risk or benefit?

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The zinc transporter 8 (ZnT8) plays an essential role in zinc homeostasis inside pancreatic β cells, its function is related to the stabilization of insulin hexameric form. Genome-wide association studies (GWAS) have established a positive and negative relationship of ZnT8 variants with type 2 diabetes mellitus (T2DM), exposing a dual and controversial role. The first hypotheses about its role in T2DM indicated a higher risk of developing T2DM for loss of function; nevertheless, recent GWAS of ZnT8 loss-of-function mutations in humans have shown protection against T2DM. With regard to the ZnT8 role in T2DM, most studies have focused on rodent models and common high-risk variants; however, considerable differences between human and rodent models have been found and the new approaches have included lower-frequency variants as a tool to clarify gene functions, allowing a better understanding of the disease and offering possible therapeutic targets. Therefore, this review will discuss the physiological effects of the ZnT8 variants associated with a major and lower risk of T2DM, emphasizing the low- and rare-frequency variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

T1DM:

Type 1 diabetes mellitus

T2DM:

Type 2 diabetes mellitus

GWAS:

Genome-wide association studies

ZiP:

Zinc importers

ZnTs:

Zinc transporters

MT:

Metallothioneins

Zn2+ :

Zinc ions

KATP :

Potassium channels activated by ATP

ATP:

Adenosine triphosphate

ADP:

Adenosine diphosphate

CDF:

Cationic diffusion facilitators

Ca2+ :

Calcium ions

K+ :

Potassium ions

SNP:

Single nucleotide polymorphism

IAPP:

Islet amyloid polypeptide

GABA:

Gamma aminobutyric acid

iPSCs:

Induced pluripotent stem cells

CRISPR:

Clustered regularly interspaced short palindromic repeats

siRNA:

Small interfering RNA

G6PC2:

Glucose-6-phosphatase catalytic subunit 2

PDX1:

Pancreatic and duodenal homeobox 1

MAPK:

Mitogen-activated kinase pathway

Glut2:

Glucose transporter 2

KO:

Knock down

ZnT8A:

ZnT8 autoantibodies

GADA:

GAD65 autoantibodies

IA-2A:

Islet antigen-2 autoantibodies

IAA:

Insulin autoantibodies

HLA:

Human leukocyte antigen

LADA:

Latent autoimmune diabetes in adults

HFD:

High-fat diet

5-HT:

5-Hydroxytryptamine

MCH:

Mean corpuscular hemoglobin

GESTALT:

Genome editing of synthetic target arrays for lineage tracing

LINNAEUS:

LINeage tracing by Nuclease-Activated Editing of Ubiquitous Sequences

References

  1. Jiang W, Peng Y, Yang K (2018) Cellular signaling pathways regulating β-cell proliferation as a promising therapeutic target in the treatment of diabetes (review). Exp Ther Med 16:3275–3285. https://doi.org/10.3892/etm.2018.6603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kieffer TJ, Woltjen K, Osafune K et al (2018) Beta-cell replacement strategies for diabetes. J. Diabetes Investig. 9:457–463

    Article  Google Scholar 

  3. Mezza T, Cinti F, Cefalo CMA et al (2019) B-cell fate in human insulin resistance and type 2 diabetes: a perspective on islet plasticity. Diabetes 68:1121–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Davidson HW, Wenzlau JM, O’Brien RM (2014) Zinc transporter 8 (ZnT8) and β cell function. Trends Endocrinol. Metab. 25:415–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao T, Huang Q, Su Y et al (2019) Zinc and its regulators in pancreas. Inflammopharmacology 27:453–464

    Article  CAS  PubMed  Google Scholar 

  6. Nedumpully-Govindan P, Ding F (2015) Inhibition of IAPP aggregation by insulin depends on the insulin oligomeric state regulated by zinc ion concentration. Sci Rep. https://doi.org/10.1038/srep08240

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schweigel-Röntgen M (2014) The Families of Zinc (SLC30 and SLC39) and Copper (SLC31) Transporters. In: Current Topics in Membranes. Academic Press Inc., pp 321–355

  8. Baltaci AK, Yuce K (2018) Zinc Transporter proteins. Neurochem Res 43:517–530

    Article  CAS  PubMed  Google Scholar 

  9. Dwivedi OP, LehtovirtaHastoy MB et al (2019) Loss of ZnT8 function protects against diabetes by enhanced insulin secretion. Nat Genet 51:1596–1606. https://doi.org/10.1038/s41588-019-0513-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang L, Tepaamorndech S (2013) The SLC30 family of zinc transporters—a review of current understanding of their biological and pathophysiological roles. Mol Aspects Med 34:548–560

    Article  CAS  PubMed  Google Scholar 

  11. Flannick J, Thorleifsson G, Beer NL et al (2014) Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet 46:357–363. https://doi.org/10.1038/ng.2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Flannick J, Mercader JM, Fuchsberger C et al (2019) Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls. Nature 570:71–76. https://doi.org/10.1038/s41586-019-1231-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885. https://doi.org/10.1038/nature05616

    Article  CAS  PubMed  Google Scholar 

  14. Kleiner S, Gomez D, Megra B et al (2018) Mice harboring the human SLC30A8 R138X loss-of-function mutation have increased insulin secretory capacity. Proc Natl Acad Sci 115:201721418. https://doi.org/10.1073/pnas.1721418115

    Article  CAS  Google Scholar 

  15. Grotz AK, Abaitua F, Navarro-Guerrero E et al (2019) A CRISPR/Cas9 genome editing pipeline in the endoC-βH1 cell line to study genes implicated in beta cell function [version 1; peer review: 3 approved, 1 approved with reservations]. Wellcome Open Res 4:150. https://doi.org/10.12688/wellcomeopenres.15447.1

    Article  CAS  PubMed  Google Scholar 

  16. Flannick J (2019) The contribution of low-frequency and rare coding variation to susceptibility to type 2 diabetes. Curr Diab Rep 19:25

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pound LD, Sarkar SA, Ustione A et al (2012) The physiological effects of deleting the mouse Slc30a8 gene encoding zinc transporter-8 are influenced by gender and genetic background. PLoS ONE 7:e40972. https://doi.org/10.1371/journal.pone.0040972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Syring KE, Boortz KA, Oeser JK et al (2016) Combined deletion of Slc30a7 and Slc30a8 unmasks a critical role for ZnT8 in glucose-stimulated insulin secretion. Endocrinology 157:4534–4541. https://doi.org/10.1210/en.2016-1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hardy AB, Wijesekara N, Genkin I et al (2012) Effects of high-fat diet feeding on Znt8-null mice: Differences between β-cell and global knockout of Znt8. Am J Physiol Endocrinol Metab 302:E1084-96. https://doi.org/10.1152/ajpendo.00448.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ghazvini Zadeh EH, Huang ZJ, Xia J et al (2020) ZIGIR, a granule-specific Zn2+ indicator, reveals human islet α cell heterogeneity. Cell Rep. https://doi.org/10.1016/j.celrep.2020.107904

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cai Y, Kirschke CP, Huang L (2018) SLC30A family expression in the pancreatic islets of humans and mice: cellular localization in the β-cells. J Mol Histol 49:133–145. https://doi.org/10.1007/s10735-017-9753-0

    Article  CAS  PubMed  Google Scholar 

  22. Huang Q, Du J, Merriman C (2019) Gong Z (2019) Genetic, functional, and immunological study of ZnT8 in diabetes. Int J Endocrinol. https://doi.org/10.1155/2019/1524905

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nygaard SB, Larsen A, Knuhtsen A et al (2014) Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells. BMC Res Notes. https://doi.org/10.1186/1756-0500-7-84

    Article  PubMed  PubMed Central  Google Scholar 

  24. Slucca M, Harmon JS, Oseid EA et al (2010) ATP-sensitive K+ channel mediates the zinc switch-off signal for glucagon response during glucose deprivation. Diabetes 59:128–134. https://doi.org/10.2337/db09-1098

    Article  CAS  PubMed  Google Scholar 

  25. Chimienti F, Devergnas S, Pattou F et al (2006) In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci 119:4199–4206. https://doi.org/10.1242/jcs.03164

    Article  CAS  PubMed  Google Scholar 

  26. Cotrim CA, Jarrott RJ, Martin JL, Drew D (2019) A structural overview of the zinc transporters in the cation diffusion facilitator family. Acta Crystallogr Sect D Struct Biol 75:357–367

    Article  CAS  Google Scholar 

  27. Lemaire K, Chimienti F, Schuit F (2012) Zinc transporters and their role in the pancreatic β-cell. J Diabetes Investig 3:202–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smidt K, Pedersen SB, Brock B et al (2007) Zinc-transporter genes in human visceral and subcutaneous adipocytes: lean versus obese. Mol Cell Endocrinol 264:68–73. https://doi.org/10.1016/j.mce.2006.10.010

    Article  CAS  PubMed  Google Scholar 

  29. Fukue K, Itsumura N, Tsuji N et al (2018) Evaluation of the roles of the cytosolic N-terminus and His-rich loop of ZNT proteins using ZNT2 and ZNT3 chimeric mutants. Sci Rep 8:14084. https://doi.org/10.1038/s41598-018-32372-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lampasona V, Liberati D (2016) Islet autoantibodies. Curr Diab Rep. https://doi.org/10.1007/s11892-016-0738-2

    Article  PubMed  Google Scholar 

  31. Parsons DS, Hogstrand C, Maret W (2018) The C-terminal cytosolic domain of the human zinc transporter ZnT8 and its diabetes risk variant. FEBS J 285:1237–1250. https://doi.org/10.1111/febs.14402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wenzlau JM, Juhl K, Yu L et al (2007) The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci USA 104:17040–17045. https://doi.org/10.1073/pnas.0705894104

    Article  PubMed  PubMed Central  Google Scholar 

  33. Achenbach P, Lampasona V, Landherr U et al (2009) Autoantibodies to zinc transporter 8 and SLC30A8 genotype stratify type 1 diabetes risk. Diabetologia 52:1881–1888. https://doi.org/10.1007/s00125-009-1438-0

    Article  CAS  PubMed  Google Scholar 

  34. Andersson C, Vaziri-Sani F, Delli A et al (2013) Triple specificity of ZnT8 autoantibodies in relation to HLA and other islet autoantibodies in childhood and adolescent type 1 diabetes. Pediatr Diabetes 14:97–105. https://doi.org/10.1111/j.1399-5448.2012.00916.x

    Article  CAS  PubMed  Google Scholar 

  35. Hasilo CP, Negi S, Allaeys I et al (2017) Presence of diabetes autoantigens in extracellular vesicles derived from human islets. Sci Rep. https://doi.org/10.1038/s41598-017-04977-y

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rutman AK, Negi S, Gasparrini M et al (2018) Immune response to extracellular vesicles from human islets of langerhans in patients with type 1 diabetes. Endocrinology 159:3834–3847. https://doi.org/10.1210/en.2018-00649

    Article  CAS  PubMed  Google Scholar 

  37. Boesgaard TW, Žilinskaite J, Vänttinen M et al (2008) The common SLC30A8 Arg325Trp variant is associated with reduced first-phase insulin release in 846 non-diabetic offspring of type 2 diabetes patients—the EUGENE2 study. Diabetologia 51:816–820. https://doi.org/10.1007/s00125-008-0955-6

    Article  CAS  PubMed  Google Scholar 

  38. Majithia AR, Jablonski KA, McAteer JB et al (2011) Association of the SLC30A8 missense polymorphism R325W with proinsulin levels at baseline and after lifestyle, metformin or troglitazone intervention in the diabetes prevention program. Diabetologia 54:2570–2574. https://doi.org/10.1007/s00125-011-2234-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fuchsberger C, Flannick J, Teslovich TM et al (2016) The genetic architecture of type 2 diabetes. Nature 536:41–47. https://doi.org/10.1038/nature18642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Flannick J, Fuchsberger C, Mahajan A et al (2017) Data Descriptor: sequence data and association statistics from 12,940 type 2 diabetes cases and controls. Sci Data 4:1–22. https://doi.org/10.1038/sdata.2017.179

    Article  CAS  Google Scholar 

  41. Cirulli ET, White S, Read RW et al (2020) Genome-wide rare variant analysis for thousands of phenotypes in over 70,000 exomes from two cohorts. Nat Commun. https://doi.org/10.1038/s41467-020-14288-y

    Article  PubMed  PubMed Central  Google Scholar 

  42. Marquez M, Huyvaert M, Perry JRB et al (2012) Low-frequency variants in HMGA1 are not associated with type 2 diabetes risk. Diabetes 61:524–530. https://doi.org/10.2337/db11-0728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Prudente S, Bailetti D, Mendonca C et al (2015) Infrequent TRIB3 coding variants and coronary artery disease in type 2 diabetes. Atherosclerosis 242:334–339. https://doi.org/10.1016/j.atherosclerosis.2015.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Emdin CA, Khera AV, Chaffin M et al (2018) Analysis of predicted loss-of-function variants in UK Biobank identifies variants protective for disease. Nat Commun 9:1–8. https://doi.org/10.1038/s41467-018-03911-8

    Article  CAS  Google Scholar 

  45. Dupuis J, Langenberg C, Prokopenko I et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42:105–116. https://doi.org/10.1038/ng.520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Strawbridge RJ, Dupuis J, Prokopenko I et al (2011) Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes. Diabetes 60:2624–2634. https://doi.org/10.2337/db11-0415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Okura T, Fujioka Y, Nakamura R et al (2020) Hepatic insulin clearance is increased in patients with high HbA1c type 2 diabetes: a preliminary report. BMJ Open Diabetes Res Care 8:1149. https://doi.org/10.1136/bmjdrc-2019-001149

    Article  Google Scholar 

  48. Wijesekara N, Dai FF, Hardy AB et al (2010) Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 53:1656–1668. https://doi.org/10.1007/s00125-010-1733-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nicolson TJ, Bellomo EA, Wijesekara N et al (2009) Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58:2070–2083. https://doi.org/10.2337/db09-0551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pound LD, Sarkar SA, Benninger RKP et al (2009) Deletion of the mouse Slc30a8 gene encoding zinc transporter-8 results in impaired insulin secretion. Biochem J 421:371–376. https://doi.org/10.1042/BJ20090530

    Article  CAS  PubMed  Google Scholar 

  51. Mitchell RK, Hu M, Chabosseau PL et al (2016) Molecular genetic regulation of Slc30a8/ZnT8 reveals a positive association with glucose tolerance. Mol Endocrinol 30:77–91. https://doi.org/10.1210/me.2015-1227

    Article  CAS  PubMed  Google Scholar 

  52. El Muayed M, Lowe WL (2011) The beta and alpha cell-specific Znt8-knockout mouse model: new mechanistic insights? Diabetologia 54:207–208

    Article  PubMed  Google Scholar 

  53. Ilonen J, Lempainen J, Veijola R (2019) The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol 15:635–650

    Article  CAS  PubMed  Google Scholar 

  54. Rogowicz-Frontczak A, Pilacinski S, Wyka K et al (2018) Zinc transporter 8 autoantibodies (ZnT8-ab) are associated with higher prevalence of multiple diabetes-related autoantibodies in adults with type 1 diabetes. Diabetes Res Clin Pract 146:313–320. https://doi.org/10.1016/j.diabres.2018.11.007

    Article  CAS  PubMed  Google Scholar 

  55. Faccinetti NI, Guerra LL, Steinhardt AP et al (2016) Characterization of zinc transporter 8 (ZnT8) antibodies in autoimmune diabetic patients from Argentinian population using monomeric, homodimeric, and heterodimeric ZnT8 antigen variants. Eur J Endocrinol 174:157–165. https://doi.org/10.1530/EJE-15-0681

    Article  CAS  PubMed  Google Scholar 

  56. Rochmah N, Faizi M, Windarti SW (2020) Zinc transporter 8 autoantibody in the diagnosis of type 1 diabetes in children. Korean J Pediatr 63:402–405. https://doi.org/10.3345/cep.2019.01221

    Article  CAS  Google Scholar 

  57. Williams CL, Long AE (2019) What has zinc transporter 8 autoimmunity taught us about type 1 diabetes? Diabetologia 62:1969–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bhatty A, Baig S, Fawwad A et al (2020) association of zinc transporter-8 autoantibody (ZnT8A) with type 1 diabetes mellitus. Cureus. https://doi.org/10.7759/cureus.7263

    Article  PubMed  PubMed Central  Google Scholar 

  59. Vehik K, Bonifacio E, Lernmark Å et al (2020) Hierarchical order of distinct autoantibody spreading and progression to type 1 diabetes in the Teddy study. Diabetes Care 43:2066–2073. https://doi.org/10.2337/dc19-2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Baumann K, Kesselring K, Lampasona V et al (2020) Autoantibodies against zinc transporter 8 further stratify the autoantibody-defined risk for type 1 diabetes in a general population of schoolchildren and have distinctive isoform binding patterns in different forms of autoimmune diabetes: results from th. Diabet Med. https://doi.org/10.1111/dme.14389

    Article  PubMed  Google Scholar 

  61. Niechciał E, Rogowicz-Frontczak A, Piłaciński S et al (2018) Autoantibodies against zinc transporter 8 are related to age and metabolic state in patients with newly diagnosed autoimmune diabetes. Acta Diabetol 55:287–294. https://doi.org/10.1007/s00592-017-1091-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pöllänen PM, Ryhänen SJ, Toppari J et al (2020) Dynamics of islet autoantibodies during prospective follow-up from birth to age 15 years. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgaa624

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yu L, Boulware DC, Beam CA et al (2012) Zinc transporter-8 autoantibodies improve prediction of type 1 diabetes in relatives positive for the standard biochemical autoantibodies. Diabetes Care 35:1213–1218. https://doi.org/10.2337/dc11-2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kawasaki E, Uga M, Nakamura K et al (2008) Association between anti-ZnT8 autoantibody specificities and SLC30A8 Arg325Trp variant in Japanese patients with type 1 diabetes. Diabetologia 51:2299–2302. https://doi.org/10.1007/s00125-008-1165-y

    Article  CAS  PubMed  Google Scholar 

  65. Faccinetti NI, Guerra LL, Sabljic AV et al (2017) Prokaryotic expression and characterization of the heterodimeric construction of ZnT8 and its application for autoantibodies detection in diabetes mellitus. Microb Cell Fact 16:196. https://doi.org/10.1186/s12934-017-0816-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yu K, Huang Z, Zhou J et al (2019) Transcriptome profiling of microRNAs associated with latent autoimmune diabetes in adults (LADA). Sci Rep. https://doi.org/10.1038/s41598-019-47726-z

    Article  PubMed  PubMed Central  Google Scholar 

  67. Trabucchi A, Faccinetti NI, Guerra LL et al (2012) Detection and characterization of ZnT8 autoantibodies could help to screen latent autoimmune diabetes in adult-onset patients with type 2 phenotype. Autoimmunity 45:137–142. https://doi.org/10.3109/08916934.2011.604658

    Article  CAS  PubMed  Google Scholar 

  68. Heneberg P, Šimčíková D, Čecháková M et al (2019) Autoantibodies against ZnT8 are rare in Central-European LADA patients and absent in MODY patients, including those positive for other autoantibodies. J Diabetes Complications 33:46–52. https://doi.org/10.1016/j.jdiacomp.2018.10.004

    Article  PubMed  Google Scholar 

  69. Idevall-Hagren O, Tengholm A (2020) Metabolic regulation of calcium signaling in beta cells. Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2020.01.008

    Article  PubMed  Google Scholar 

  70. Tokarz VL, MacDonald PE, Klip A (2018) The cell biology of systemic insulin function. J Cell Biol 217:1–17

    Article  Google Scholar 

  71. Braun M, Ramracheya R, Bengtsson M et al (2010) γ-aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic β-cells. Diabetes 59:1694–1701. https://doi.org/10.2337/db09-0797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Epstein FH, Johnson KH, O’brien TD et al (1989) Islet amyloid, islet-amyloid polypeptide, and diabetes mellitus. N Engl J Med 321:513–518

    Article  Google Scholar 

  73. Rorsman P, Ashcroft FM (2018) Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol Rev 98:117–214. https://doi.org/10.1152/physrev.00008.2017

    Article  CAS  PubMed  Google Scholar 

  74. Slepchenko KG, Daniels NA, Guo A, Li YV (2015) Autocrine effect of Zn2+ on the glucose-stimulated insulin secretion. Endocrine 50:110–122. https://doi.org/10.1007/s12020-015-0568-z

    Article  CAS  PubMed  Google Scholar 

  75. Westermark P, Andersson A, Westermark GT (2011) Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 91:795–826

    Article  CAS  PubMed  Google Scholar 

  76. Slepchenko KG, James CBL, Li YV (2013) Inhibitory effect of zinc on glucose-stimulated zinc/insulin secretion in an insulin-secreting β-cell line. Exp Physiol 98:1301–1311. https://doi.org/10.1113/expphysiol.2013.072348

    Article  CAS  PubMed  Google Scholar 

  77. Braun M, Ramracheya R, Bengtsson M et al (2008) Voltage-gated ion channels in human pancreatic β-cells: electrophysiological characterization and role in insulin secretion. Diabetes 57:1618–1628. https://doi.org/10.2337/db07-0991

    Article  CAS  PubMed  Google Scholar 

  78. Voisin T, Bourinet E, Lory P (2016) Genetic alteration of the metal/redox modulation of Cav3.2 T-type calcium channel reveals its role in neuronal excitability. J Physiol 594:3561–3574. https://doi.org/10.1113/JP271925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. García-Delgado N, Velasco M, Sánchez-Soto C et al (2018) Calcium channels in postnatal development of rat pancreatic beta cells and their role in insulin secretion. Front Endocrinol (Lausanne) 9:40. https://doi.org/10.3389/fendo.2018.00040

    Article  Google Scholar 

  80. Neumaier F, Schneider T, Albanna W (2020) Cav2.3 channel function and Zn2+-induced modulation: potential mechanisms and (patho)physiological relevance. Channels 14:362–379

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kang HW, Vitko I, Lee SS et al (2010) Structural determinants of the high affinity extracellular zinc binding site on Cav3.2 T-type calcium channels. J Biol Chem 285:3271–3281. https://doi.org/10.1074/jbc.M109.067660

    Article  CAS  PubMed  Google Scholar 

  82. Bloc A, Cens T, Cruz H, Dunant Y (2000) Zinc-induced changes in ionic currents of clonal rat pancreatic β-cells: activation of ATP-sensitive K+ channels. J Physiol 529:723–734. https://doi.org/10.1111/j.1469-7793.2000.00723.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Baram M, Gilead S, Gazit E, Miller Y (2018) Mechanistic perspective and functional activity of insulin in amylin aggregation. Chem Sci 9:4244–4252. https://doi.org/10.1039/c8sc00481a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kiriyama Y, Nochi H (2018) Role and cytotoxicity of amylin and protection of pancreatic islet β-cells from amylin cytotoxicity. Cells 7:95. https://doi.org/10.3390/cells7080095

    Article  CAS  PubMed Central  Google Scholar 

  85. Nedumpully-Govindan P, Yang Y, Andorfer R et al (2015) Promotion or inhibition of islet amyloid polypeptide aggregation by zinc coordination depends on its relative concentration. Biochemistry 54:7335–7344. https://doi.org/10.1021/acs.biochem.5b00891

    Article  CAS  PubMed  Google Scholar 

  86. Li L, Bai S, Sheline CT (2017) HZnT8 (Slc30a8) transgenic mice that overexpress the R325W polymorph have reduced islet Zn2+ and proinsulin levels, increased glucose tolerance after a high-fat diet, and altered levels of pancreatic zinc binding proteins. Diabetes 66:551–559. https://doi.org/10.2337/db16-0323

    Article  CAS  PubMed  Google Scholar 

  87. Maruthur NM, Clark JM, Fu M et al (2015) Effect of zinc supplementation on insulin secretion: interaction between zinc and SLC30A8 genotype in Old Order Amish. Diabetologia 58:295–303. https://doi.org/10.1007/s00125-014-3419-1

    Article  CAS  PubMed  Google Scholar 

  88. Tamaki M, Fujitani Y, Hara A et al (2013) The diabetes-susceptible gene SLC30A8/ZnT8 regulates hepatic insulin clearance. J Clin Invest 123:4513–4524. https://doi.org/10.1172/JCI68807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kirchhoff K, Machicao F, Haupt A et al (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51:597–601. https://doi.org/10.1007/s00125-008-0926-y

    Article  CAS  PubMed  Google Scholar 

  90. Fu Y, Tian W, Pratt EB et al (2009) Down-regulation of ZnT8 expression in INS-1 rat pancreatic beta cells reduces insulin content and glucose-inducible insulin secretion. PLoS ONE. https://doi.org/10.1371/journal.pone.0005679

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ingelsson E, Langenberg C, Hivert MF et al (2010) Detailed physiologic characterization reveals diverse mechanisms for novel genetic loci regulating glucose and insulin metabolism in humans. Diabetes 59:1266–1275. https://doi.org/10.2337/db09-1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Carvalho S, Molina-López J, Parsons D et al (2017) Differential cytolocation and functional assays of the two major human SLC30A8 (ZnT8) isoforms. J Trace Elem Med Biol 44:116–124. https://doi.org/10.1016/j.jtemb.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  93. Mao Z, Lin H, Su W et al (2019) Deficiency of ZnT8 promotes adiposity and metabolic dysfunction by increasing peripheral serotonin production. Diabetes 68:1197–1209. https://doi.org/10.2337/db18-1321

    Article  CAS  PubMed  Google Scholar 

  94. Gu H (2017) Genetic, epigenetic and biological effects of zinc transporter (SLC30A8) in type 1 and type 2 diabetes. Curr Diabetes Rev 13:132–140. https://doi.org/10.2174/1573399812666151123104540

    Article  CAS  PubMed  Google Scholar 

  95. Chabosseau P, Rutter GA (2016) Zinc and diabetes. Arch Biochem Biophys 611:79–85. https://doi.org/10.1016/j.abb.2016.05.022

    Article  CAS  PubMed  Google Scholar 

  96. Ishihara H, Wollheim CB (2016) Is zinc an intra-islet regulator of glucagon secretion? Diabetol. Int. 7:106–110

    Article  PubMed  PubMed Central  Google Scholar 

  97. Syring KE, Bosma KJ, Goleva SB et al (2020) Potential positive and negative consequences of ZnT8 inhibition. J Endocrinol 246:189–205. https://doi.org/10.1530/JOE-20-0138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pound LD, Hang Y, Sarkar SA et al (2011) The pancreatic islet β-cell-enriched transcription factor Pdx-1 regulates Slc30a8 gene transcription through an intronic enhancer. Biochem J 433:95–105. https://doi.org/10.1042/BJ20101488

    Article  CAS  PubMed  Google Scholar 

  99. Lemaire K, Ravier MA, Schraenen A et al (2009) Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. Proc Natl Acad Sci USA 106:14872–14877. https://doi.org/10.1073/pnas.0906587106

    Article  PubMed  PubMed Central  Google Scholar 

  100. Merriman C, Huang Q, Rutter GA, Fu D (2016) Lipid-tuned zinc transport activity of human ZnT8 protein correlates with risk for type-2 diabetes. J Biol Chem 291:26950–26957. https://doi.org/10.1074/jbc.M116.764605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wong WP, Allen NB, Meyers MS et al (2017) Exploring the association between demographics, SLC30A8 genotype, and human islet content of zinc, cadmium, copper, iron, manganese and nickel. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-00394-3

    Article  CAS  Google Scholar 

  102. Lawson R, Maret W, Hogstrand C (2019) ZnT8 haploinsufficiency impacts MIN6 cell zinc content and β-cell phenotype via ZIP-ZnT8 coregulation. Int J Mol Sci. https://doi.org/10.3390/ijms20215485

    Article  PubMed  PubMed Central  Google Scholar 

  103. Giacconi R, Malavolta M, Chiodi L et al (2018) ZnT8 Arg325Trp polymorphism influences zinc transporter expression and cytokine production in PBMCs from patients with diabetes. Diabetes Res Clin Pract 144:102–110. https://doi.org/10.1016/j.diabres.2018.08.001

    Article  CAS  PubMed  Google Scholar 

  104. Moede T, Leibiger B, Vaca Sanchez P et al (2020) Glucokinase intrinsically regulates glucose sensing and glucagon secretion in pancreatic alpha cells. Sci Rep. https://doi.org/10.1038/s41598-020-76863-z

    Article  PubMed  PubMed Central  Google Scholar 

  105. Solomou A, Meur G, Bellomo E et al (2015) The zinc transporter Slc30a8/ZnT8 is required in a subpopulation of pancreatic α;-cells for hypoglycemia-induced glucagon secretion. J Biol Chem 290:21432–21442. https://doi.org/10.1074/jbc.M115.645291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Solomou A, Philippe E, Chabosseau P et al (2016) Over-expression of Slc30a8/ZnT8 selectively in the mouse α cell impairs glucagon release and responses to hypoglycemia. Nutr Metab 13:46. https://doi.org/10.1186/s12986-016-0104-z

    Article  CAS  Google Scholar 

  107. Ravier MA, Rutter GA (2005) Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic α-cells. Diabetes 54:1789–1797. https://doi.org/10.2337/diabetes.54.6.1789

    Article  CAS  PubMed  Google Scholar 

  108. Rorsman P, Huising MO (2018) The somatostatin-secreting pancreatic δ-cell in health and disease. Nat Rev Endocrinol 14:404–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Watada H, Tamura Y (2017) Impaired insulin clearance as a cause rather than a consequence of insulin resistance. J Diabetes Investig 8:723–725

    Article  PubMed  PubMed Central  Google Scholar 

  110. Foley KP, Zlitni S, Duggan BM et al (2020) Gut microbiota impairs insulin clearance in obese mice. Mol Metab. https://doi.org/10.1016/j.molmet.2020.101067

    Article  PubMed  PubMed Central  Google Scholar 

  111. Marini MA, Frontoni S, Succurro E et al (2014) Differences in insulin clearance between metabolically healthy and unhealthy obese subjects. Acta Diabetol 51:257–261. https://doi.org/10.1007/s00592-013-0511-9

    Article  CAS  PubMed  Google Scholar 

  112. Ohashi K, Fujii M, Uda S et al (2018) Increase in hepatic and decrease in peripheral insulin clearance characterize abnormal temporal patterns of serum insulin in diabetic subjects. npj Syst Biol Appl 4:14. https://doi.org/10.1038/s41540-018-0051-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Mandić AD, Woting A, Jaenicke T et al (2019) Clostridium ramosum regulates enterochromaffin cell development and serotonin release. Sci Rep 9:1–15. https://doi.org/10.1038/s41598-018-38018-z

    Article  CAS  Google Scholar 

  114. Oh CM, Park S, Kim H (2016) Serotonin as a new therapeutic target for diabetes mellitus and obesity. Diabetes Metab J 40:89–98

    Article  PubMed  PubMed Central  Google Scholar 

  115. Xu G, Kang D, Zhang C et al (2015) Erythropoietin protects retinal cells in diabetic rats through upregulating ZnT8 via activating ERK pathway and inhibiting HIF-1α expression. Investig Ophthalmol Vis Sci 56:8166–8178. https://doi.org/10.1167/iovs.15-18093

    Article  CAS  Google Scholar 

  116. DeNiro M, Al-Mohanna FA (2012) Zinc transporter 8 (ZnT8) expression is reduced by ischemic insults: a potential therapeutic target to prevent ischemic retinopathy. PLoS One 7:e50360. https://doi.org/10.1371/journal.pone.0050360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Overbeck S, Uciechowski P, Ackland ML et al (2008) Intracellular zinc homeostasis in leukocyte subsets is regulated by different expression of zinc exporters ZnT-1 to ZnT-9. J Leukoc Biol 83:368–380. https://doi.org/10.1189/jlb.0307148

    Article  CAS  PubMed  Google Scholar 

  118. Bosma KJ, Syring KE, Oeser JK et al (2019) Evidence that evolution of the diabetes susceptibility gene SLC30A8 that Encodes the Zinc transporter ZnT8 drives variations in pancreatic islet zinc content in multiple species. J Mol Evol 87:147–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mohanasundaram D, Drogemuller C, Brealey J et al (2011) Ultrastructural analysis, zinc transporters, glucose transporters and hormones expression in new world primate (Callithrix jacchus) and human pancreatic islets. Gen Comp Endocrinol 174:71–79. https://doi.org/10.1016/j.ygcen.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  120. Syring KE, Bosma KJ, Oeser JK et al (2018) The diabetes susceptibility gene SLC30A8 that encodes the zinc transporter ZnT8 is a pseudogene in guinea pigs potentially contributing to low guinea pig islet zinc content. J Mol Evol. https://doi.org/10.1007/s00239-018-9873-5

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bellomo EA, Meur G, Rutter GA (2011) Glucose regulates free cytosolic Zn 2+ concentration, Slc39 (ZiP), and metallothionein gene expression in primary pancreatic islet β-cells. J Biol Chem 286:25778–25789. https://doi.org/10.1074/jbc.M111.246082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhong ML, Chi ZH, Shan ZY et al (2012) Widespread expression of zinc transporter ZnT (SLC30) family members in mouse endocrine cells. Histochem Cell Biol 138:605–616. https://doi.org/10.1007/s00418-012-0979-3

    Article  CAS  PubMed  Google Scholar 

  123. Smidt K, Jessen N, Petersen AB et al (2009) SLC30A3 responds to glucose- and zinc variations in β-cells and is critical for insulin production and in vivo glucose-metabolism during β-cell stress. PLoS ONE 4:e5684. https://doi.org/10.1371/journal.pone.0005684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Elsner M, Tiedge M, Lenzen S (2003) Mechanism underlying resistance of human pancreatic beta cells against toxicity of streptozotocin and alloxan [5]. Diabetologia 46:1713–1714

    Article  CAS  PubMed  Google Scholar 

  125. Petersen AB, Smidt K, Magnusson NE et al (2011) siRNA-mediated knock-down of ZnT3 and ZnT8 affects production and secretion of insulin and apoptosis in INS-1E cells. APMIS 119:93–102. https://doi.org/10.1111/j.1600-0463.2010.02698.x

    Article  CAS  PubMed  Google Scholar 

  126. Huang L, Yan M, Kirschke CP (2010) Over-expression of ZnT7 increases insulin synthesis and secretion in pancreatic β-cells by promoting insulin gene transcription. Exp Cell Res 316:2630–2643. https://doi.org/10.1016/j.yexcr.2010.06.017

    Article  CAS  PubMed  Google Scholar 

  127. Kambe T, Narita H, Yamaguchi-Iwai Y et al (2002) Cloning and characterization of a novel mammalian zinc transporter, zinc transporter 5, abundantly expressed in pancreatic β cells. J Biol Chem 277:19049–19055. https://doi.org/10.1074/jbc.M200910200

    Article  CAS  PubMed  Google Scholar 

  128. Kambe T, Matsunaga M, Takeda TA (2017) Understanding the contribution of zinc transporters in the function of the early secretory pathway. Int. J. Mol, Sci, p 18

    Google Scholar 

  129. Tan SY, Mei Wong JL, Sim YJ et al (2019) Type 1 and 2 diabetes mellitus: a review on current treatment approach and gene therapy as potential intervention. Diabetes Metab Syndr Clin Res Rev 13:364–372

    Article  Google Scholar 

  130. Henry RR, Pettus J, Wilensky J et al (2018) Initial clinical evaluation of VC-01TM combination product—a stem cell-derived islet replacement for type 1 diabetes (T1D). Diabetes 67:138. https://doi.org/10.2337/db18-138-or

    Article  Google Scholar 

  131. Bandeiras C, Hwa AJ, Cabral JMS et al (2019) Economics of beta-cell replacement therapy. Curr Diab Rep 19:1–8

    Article  Google Scholar 

  132. Sun H, Li C, Li S et al (2018) Gene silencing of ZnT8 attenuates inflammation and protects pancreatic tissue injury in T1D. Immunol Lett 198:1–6. https://doi.org/10.1016/j.imlet.2018.03.013

    Article  CAS  PubMed  Google Scholar 

  133. McKenna A, Findlay GM, Gagnon JA et al (2016) Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science. https://doi.org/10.1126/science.aaf7907

    Article  PubMed  PubMed Central  Google Scholar 

  134. Spanjaard B, Hu B, Mitic N et al (2018) Simultaneous lineage tracing and cell-type identification using CrIsPr-Cas9-induced genetic scars. Nat Biotechnol 36:469–473. https://doi.org/10.1038/nbt.4124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gabriela Sagastegui and Michele Brennan for their advice in the academic writing.

Funding

The authors acknowledge support by Grants from the Research by funds from CONACyT (300638) and COECYTJAL (8084-2019; 7597).

Author information

Authors and Affiliations

Authors

Contributions

All authors have seen and approved the manuscript and have contributed significantly to the paper. The idea for article, draft preparation, literature searching, and data analysis [CPBÁ]; draft preparation and critical revision [EPC]; draft preparation and critical revision [NFD]; draft preparation and literature searching [AC-C]; literature searching and data analysis [CHJ]; literature searching and data analysis [CCBR]; supervision, critical revision, approval of the version to be published, and submission [EDM].

Corresponding author

Correspondence to Nestor E. Díaz-Martínez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barragán-Álvarez, C.P., Padilla-Camberos, E., Díaz, N.F. et al. Loss of Znt8 function in diabetes mellitus: risk or benefit?. Mol Cell Biochem 476, 2703–2718 (2021). https://doi.org/10.1007/s11010-021-04114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04114-4

Keywords

Navigation