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Abstract
The recent exposure of novel coronavirus strain, severe acute respiratory syndrome (SARS-CoV-2) has spread to different 
countries at an alarming rate. Faster transmission rate and genetic modifications have provoked scientists to search for an 
immediate solution. With an increasing death rate, it becomes important to throw some light on the life cycle of the virus 
and its associated pathogenesis in the form of lung inflammation through cytokine storm (CS) production. This paper high-
lights the different stages of viral-mediated inflammatory responses in the host respiratory system. Previously, known anti-
inflammatory drugs and therapeutic strategies that might show potential in controlling the CS of Coronavirus disease-2019 
(COVID-19) is also mentioned in this study. Our critical analysis provides insights into the inflammation cycle induced in 
the lungs by early virus replication, downregulation and shedding of angiotensin-converting enzyme 2 (ACE2), and in the CS 
production. Identification of suitable targets within the inflammatory pathways for devising the therapeutic strategies useful 
in controlling the prognosis of COVID-19 finds a special mention in this article. However, antibody-dependent enhancement 
is the key aspect to consider before testing any drug/compound for therapeutic purposes. Our in-depth analysis would provide 
similarities and differences between the inflammatory responses induced by SARS-CoV and SARS-CoV-2, providing an 
excellent avenue to further look at how earlier outbreaks of coronaviruses were controlled and where new steps are required?

Keywords SARS-CoV-2 · COVID-19 · Lung inflammation · Cytokine storm · Therapeutic strategies · And antibody-
dependent enhancement
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STAT   Signal transducer and activator of transcrip-
tion protein

ADCC  Antibody-mediated cell cytotoxicity
ADE  Antibody-dependent enhancement effect
FCR  Fc receptor
Nab  Neutralizing antibodies
TYK  Tyrosine protein kinase
CS  Cytokine storm
NCP  Novel coronary pneumonia
RA  Rheumatoid arthritis
TCZ  Tocilizumab
CXCR4  C-X-C-chemokine receptor type 4
PAMP  Pathogen-associated molecular patterns

Introduction

Multiple cases of pneumonia in patients were reported in 
December 2019 from Wuhan hospitals in China [1]. All the 
cases had a common history of exposure to the seafood mar-
ket of the Hubei Province of China [2]. The virus was later 
found to be the new and the seventh strain of the Coronavi-
ruses (CoVs) family causing acute respiratory illnesses in 
humans [2]. Later, many confirmed cases did not show any 
travel history to the seafood market confirming the trans-
mission of the virus that might have happened on a large 
scale [3].

CoVs belong to large families of enveloped viruses, hav-
ing a positive-sense single-stranded RNA genome [4]. Bats 
are considered as the natural reservoirs of different CoVs 
[5]. The likely transmission to human species might have 
occurred through coming in direct contact of bats; however, 
multiple sources are claiming the presence of intermediate 
hosts responsible for the viral transmission [6]. In the case 
of Severe Acute Respiratory Syndrome (SARS-CoV-2), the 
genomic similarity of the receptor-binding domain (RBD) in 
the spike gene of the virus is greater to the pangolins (97.4%) 
than bats (89.2%) [5]. Also, 5 amino acids are similar in the 
RBD region of pangolins and SARS-CoV-2 whereas only 
one amino acid similarity exists between bats and the RBD 
domain of the virus, indicating pangolins as intermediate 
hosts through which human transmission has occurred [7, 8]. 
Although, the fatality rate of SARS-CoV-2 is much less than 
the previous outbreaks of CoVs the higher transmission rate 
generates a huge concern in controlling the rapid spreading 
of the disease [9, 10]. The periodical reoccurrence of novel 
CoVs after every decade is attributed to their broad exist-
ence in nature, diversity in genomic structures supporting 
their more frequent recombination, and in an increase of the 
human to animal interfacing interactions [2].

SARS-CoV-2 enters into the host for completing its life 
cycle [11]. Macrophages identify the pathogen-associated 
molecular patterns (PAMP) and trigger innate immunity [12, 

13]. The severity of the disease is associated with the pro-
duction of a cytokine storm (CS) by the macrophages inside 
the host cell post-viral attack [14]. Increased secretion of 
cytokines such as IL-1 β, IP-10, MCP-1, IL-4, IL-10, and 
IFN-γ was similar as observed in SARS-CoV [15]. Also, 
patients at high risk of mortality show higher production of 
cytokines including IL-2, IL-10, GCSF, IP-10, MCP-1, IL-7, 
TNF-α, and MIP-1A [15].

Since, CS is an important concern in causing the virus 
associated lung inflammatory responses in the host, drugs 
targeting these pro-inflammatory cytokines may be an ideal 
strategy for overcoming the Coronavirus disease-2019 
(COVID-19) pandemic [16, 17]. Several diagnostic and ther-
apeutic approaches were undertaken to handle COVID-19 
[18–22]. Here, we have reviewed different stages of inflam-
matory response mediated by the entry of SARS-CoV-2 in 
the human lung cells. Different therapeutic drugs that might 
show potential in targeting CS production are also described 
in detail. Figure 1 illustrates the plan of review, the areas that 
have been covered, and the highlights.

The viral‑mediated inflammatory response 
in the host

The inflammatory response generated by SARS-CoV-2 
results in the formation of acute lung injuries, pneumonia, 
and death [23]. These pathological conditions are the result 
of CS generated through early virus entry and replication 
[24]. There are different stages in which inflammatory and 
immune responses are generated once the virus enters into 
the host body through interaction with the Angiotensin-con-
verting enzyme 2 (ACE2) receptors [25, 26]. (Fig. 2). An 
earlier study on SARS-CoV and its inflammatory pathways 
provide an important view of how the inflammation cycle 
might be happening in SARS-CoV-2 owning to their 80% 
genetic similarity.

Inflammation by early virus replication

The use of the same receptors ACE2 by SARS-CoV-2, as 
used by SARS-CoV, suggests the probability of targeting and 
infecting the same cells for initiating an infection [5, 27]. 
The replication of the virus is associated with apoptosis of 
epithelial and endothelial cells causing vascular leakage for 
the release of pro-inflammatory chemokines. Macrophages 
and lymphocytes may also undergo pyroptosis by this mech-
anism [28]. Pyroptosis occurs by the activation of virop-
orin 3a upon early viral replication which further activates 
NOD-like receptor protein 3 (NLRP3) [29]. This receptor 
causes increased synthesis of IL-1β in macrophages induc-
ing pyroptosis and the release of pro-inflammatory cytokines 
[30]. The presence of pulmonary infiltrates of lymphocytes 
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Fig. 1  Illustration of plans and highlights of the current study. Figure shows three major objectives of the study covered in this article and their 
associated key features summarizing the main findings

Fig. 2  Immunopathogenesis initiated by SARS-CoV-2 replication 
in promoting the respiratory infection. The binding of SARS-CoV/
SARS-CoV-2 on ACE2 of human lung cells causes increased viral 
uptake replication. This mediates apoptosis/pyroptosis of alveo-
lar macrophages leading to the production of pro-inflammatory 
cytokines such as IL-1 β and TNF-α. These cytokines further perform 
three actions: mediates ACE2 downregulation and shedding leading 
to loss of RAS, increased TH17 cell activation causing further secre-
tion of other pro-inflammatory cytokines and causing infiltration of 

innate immune cells. These immune cells can further cause produc-
tion of pro-inflammatory cytokines (IL-1 β, TNF-α and IL-6) mediat-
ing TH17 cell function and leading to vascular permeability and leak-
age as the final steps of lung inflammation in the host cells post-viral 
attack. Abbreviations- Interleukin 1β (IL-1 β), Tumor necrosis factor 
(TNF-α), Interleukin 17 (IL-17), Interleukin 21 (IL-21), Interleukin 
22 (IL-22), Granulocyte–Macrophage Colony-Stimulating Factor 
(GM-CSF), T helper cells (TH 17), Renin-angiotensin system (RAS)
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and cell bodies after apoptosis, has been found in 82.1% of 
the positive patients suggesting peripheral blood lymphope-
nia induced by SARS-CoV-2 [15, 31].

Inflammation by downregulation of ACE2 receptors

ACE2 receptors are present in the human lungs that lower 
the blood pressure by converting angiotensin II to angioten-
sin. SARS-CoV-2 uses this receptor for entry into the host 
cell and then downregulates its function [32, 33]. It also 
sheds the catalytic subunit of this receptor [34, 35]. The 
loss of the renin-angiotensin system (RAS) may enhance 
vascular permeability, accumulation of neutrophils, lung 
edema, inflammation, and acute lung injuries [36–38]. The 
enhancement in ACE2 shedding can be mediated by both 
SARS-CoV and SARS-CoV-2 infection and further release 
of inflammatory cytokines such as IL-1β and TNF-α by 
viral replication [39]. However, S protein-induced ACE2 
shedding is mainly seen in SARS-CoV induced infection. 
Although these receptors are known to be used by other 
CoVs such as HNL-63-CoV, their pathogenies are restricted 
in causing common cold as no ACE2 shedding has been 
associated with their infection cycle [39]. Thus, this reflects 
the likelihood of ACE2 shedding in inducing acute lung 
injury and dysfunction of the respiratory system. This also 

suggests the pathogenicity behind SARS-CoV infection and 
now the novel strain, SARS-CoV-2 [26].

Generation of cytokine storm

Damages to muscular organs like lungs, heart, and kidneys 
have been reported in the presence of CS in the serum levels 
of the patients suffering from SARS-CoV-2 infection [15, 
40]. Higher amounts of IL-1β, G-CSF, GM-CSF, MCP1, 
IFNγ, IP10, MIP1A, MIP1B, TNFα, IL-2, IL-7, IL-8, IL-9, 
IL-10, IL-17 is found in non-ICU patients; however, elevated 
levels of IP10, IL-2, IL-7, IL-10, G-CSF, MIP1A, MCP1, 
and TNFα have been reported in critical patients in ICU 
[15]. TH17 and TH1 cells are primarily involved in impart-
ing cytotoxicity (Fig. 3).

The two cytokines, IL-1β and TNFα promote the activ-
ity of TH17 cells inducing vascular permeability and leak-
age. This enables the secretion of other cytokines such as 
IL-17, IL-21, IL-22, and GM-CSF (also associated with 
TH1 cells in humans). All of these cytokines have profound 
roles in the induction of other pro-inflammatory cytokines 
mediating the inflammatory responses in the host cells. For 
example, IL-17 induces the synthesis of G-CSF required in 
the recruitment of neutrophils; in the synthesis of IL-1β, 
TNFα, and IL-6 producing symptoms such as fever; in 

Fig. 3  A mechanism of TH 17 cell-mediated cytokine storm forma-
tion and immune responses in COVID-19 infected host. Binding of 
SARS-CoV-2 to ACE2 receptors of lung cells causes their endocyto-
sis and further interaction with the alveolar macrophages triggering 
innate immunity. Apoptosis and pyroptosis of macrophages resulted 
in the production of IL-1β and TNF-α which activate TH17 cells for 
the production of pro-inflammatory cytokines, cytokine storm, and 

immune responses in the host system as described in the figure. The 
red arrow indicates the target area for the action of anti-inflammatory 
drugs (shown in orange boxes) that may be used in COVID-19 treat-
ment. Abbreviations- Interleukin 1β (IL-1β), Tumor necrosis factor 
(TNF-α), Interleukin 17 (IL-17), Interleukin 21 (IL-21), Interleukin 
22 (IL-22), Granulocyte–Macrophage Colony-Stimulating Factor 
(GM-CSF), T helper cells (TH 17)
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matrix metalloproteinases that are actively engaged in dam-
aging and remodeling of tissues; in chemokines KC, IL-8, 
MIP3A, IP10, and MIP2A that causes increased attraction 
and recruitment of immune infiltrates. IL-21 is required for 
the maintenance of TH17 cells and aids in the development 
of immune responses in the STAT-3 dependent manner from 
germinal centers. The upregulation of mucins, anti-apoptotic 
proteins, fibrinogens, LPS binding proteins, and serum amy-
loid A by IL-22 suggests its involvement in the formation of 
edema filled with mucins and fibers as observed in patients 
of SARS-CoV and SARS-CoV-2 [41, 42]. Higher numbers 
and expression of TH17 cells producing a CS was observed 
in critical patients of SARS-CoV-2 infection. However, the 
enhanced response of TH17 cells and IL-17 associated path-
ways are also detected in infections caused by SARS-CoV 
and MERS-CoV [43, 44]. Since TH17 cells have has been 
predominately involved in generating CS, causing pulmo-
nary edema and damage to the lungs, scientists have sug-
gested the use of inhibitors of TH17 cells as an appropriate 
way of controlling the infection [25].

The TH17 cell differentiation begins by elevated levels of 
IL-6 and IL-23 cytokines which activate JAK2. JAK2 fur-
ther activates a receptor which in turn activates a transcrip-
tion factor called STAT3 and mediates the differentiation 
and cellular response of TH17 cells (Fig. 4a) [45]. Studies 
support the use of JAK2 inhibitors in controlling the TH17 
cell function (Fig. 4b). STAT3 inhibitors may also be effec-
tive in inhibiting the TH17 cell responses (Fig. 4c) but their 
active role in the B cell activation pathway through IL-21 
signals (Fig. 4d) limits their use as a therapeutic strategy for 
CS production. In other terms, inhibition of STAT-3 may 
protect the patient from CS but it can also lead to B cell 
inactivation and therefore STAT inhibition is not preferred 
for COVID-19 patients. JAK2 does not disrupt these sig-
nals hence, targeting this would be an ideal strategy in drug 
preparation [25]. The drug for JAK2 inhibition has been dis-
cussed in the subsequent sections in detail.

Anti‑inflammatory drugs and strategies 
to COVID‑19 treatment

Different therapeutic strategies can be used in controlling the 
respiratory infection. These could involve either the use of 
JAK inhibitors that block TH17 cell activation and can fur-
ther stop the generation of CS [25]. The drugs that block the 
Fc receptors on macrophages so that no antibody-dependent 
enhancement (ADE) could occur may also be used in cases 
where ADE associated lung inflammation predominates 
during the drug delivery [26]. Moreover, anti-inflamma-
tory drugs that directly target the specific or non-specific 
cytokines produced by SARS-CoV-2 pathogenesis in the 

host system might also play a significant role in COVID-19 
treatment [46] (Table 1).

Some of the anti-inflammatory drugs that have previ-
ously been used in different diseases such as in rheumatoid 
arthritis (RA), cancers, and immunosuppressants during 
transplant might hold potential in controlling SARS-CoV-2 
infection as well [70]. Many ongoing trials are currently 
under study whose full potential in reducing the cytokine 
storm of COVID-19 patients should be tested.

Fedratinib

Fedratinib is a Food and Drug Administration (FDA) 
approved drug that is known to inhibit JAK2 (a mediator of 
TH17 cell differentiation for producing the CS). Research-
ers tested its efficacy in controlling myeloproliferative neo-
plasms on cytokine products of TH17 cells. It was found 
that Fedratinib decreased the CS produced by TH17 cells 
without inhibiting the activities of JAK1, JAK3, and TYK2 
required for antiviral immunity. Fedratinib along with IL23 
resulted in much better efficiency in controlling TH17 cell 
differentiation. Besides, JAK2 the drug also showed a sig-
nificant reduction in expression of IL-22 by TH17 cells and 
GF-CSF, a cytokine-dependent upon JAK2 for transducing 
its signals [71]. Therefore, a JAK2 inhibitor, Fedratinib plays 
an important role in reducing the cytokine load generated in 
the critical patients suffering from SARS-CoV-2 infection 
and may be used as an effective treatment for combating 
COVID-19 at the moment [25].

Tocilizumab

Tocilizumab (TCZ) is a recombinant monoclonal antibody 
designed to block both membrane-bound and soluble IL-6 
receptors and their associated signaling pathways [46]. 
This drug has been previously used for rheumatic diseases 
and in treating the severe cytokine release syndrome which 
is a life-threatening disorder caused by immunotherapy 
in cancer patients [72]. Various clinical trials have sup-
ported the efficacy of TCZ in the treatment of novel coro-
nary pneumonia (NCP). It has also shown a considerable 
antagonistic effect on the host reaction stimulated by acute 
respiratory distress syndrome (ARDS) associated with 
COVID-19 [51]. In a study of 20 patients, 400 mg of the 
dose was given intravenously. After a few days, fever and 
other symptoms of coronavirus were improved remark-
ably with better oxygenation capacity of the patient up 
to 75%. The lesions observed through CT scan were also 
improved in 90.5% patients and 52.6% of patients showed 
normal levels of peripheral lymphocytes. This study had 
raised a potential area for more such randomized trials in 
the treatment of COVID-19 (to be published). Another 
study performed on 21 critical cases of COVID-19 says 
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one or two doses of TCZ has promoted better recovery 
of the patients with reduced risk of death [47]. Since no 
toxicity has been observed with its usage, Chinese health 
authorities have included TCZ for managing pneumonia 
associated with COVID-19. The timing of administration 
of this drug needs to be monitored as in some cases earlier 
administration of this drug proved to be better in reducing 
the IL-6 signaling [48].

Emapalumab

Emapalumab is an IgG1 human monoclonal antibody that 
has a high affinity towards INF-γ [49]. This is an FDA 
approved drug for the treatment of multiple organ failure 
caused by hyper inflammation [50]. Blocking of this free 
and membrane-bound receptor could prevent the hyper-
reaction of the host against SARS-CoV-2 [70].
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Infliximab and Etanercept

Defense mechanisms of the host after exposure to an anti-
gen is often associated with the production of TNF-α, a 
pro-inflammatory cytokine produced by brain cells such as 
astrocytes and microglia, macrophages, endothelial cells, 
lymphoid cells, adipose tissue, and cardiac myocytes [66]. 
They have profound roles in producing fever, in arresting the 
growth of cancer cells, and in inhibiting the viral replica-
tion upon their interaction with the host [65]. Infliximab is a 
monoclonal antibody that targets TNF-α [69] and Etanercept 
is a protein that fuses with the TNF-α receptor causing its 
inactivation [67]. The role of these drugs in RA and other 
immune disorders suggests their role in combating the main 
initiator TNF-α of CS in COVID-19 patients [68].

Plerixafor

Plerixafor is an antagonist of  CXCR4, a receptor required 
for the chemotaxis of inflammatory cells such as mono-
cytes, lymphocytes, and neutrophils [52]. Plerixafor causes 

attenuation of TH17 cells and reduces the inflammatory cells 
to enter into the airway further reducing the levels of IL-4, 
IL-5, and IL-13 in the lungs preventing acute lung injuries 
[73].

Mycophenolate

Mycophenolate contains mycophenolic acids which are 
being used as an immunosuppressive agent for the patients 
of kidney transplants [53]. There are two ways through 
which this drug actions-in the first case it causes a reduction 
in the levels of guanosine and deoxyguanosine nucleotide by 
inhibiting an enzyme called inositol monophosphate dehy-
drogenase finally causing impairment in the activities of B 
and T lymphocytes [70]. The other action of mycophenolate 
lies within its ability to inhibit the mRNA expression of 
various pro-inflammatory cytokines such as IL-6, TNF-α, 
and IL-1β [55, 74]. Earlier this has proved to possess a non-
competitive inhibiting ability of Middle-east Respiratory 
Syndrome (MERS-CoV)- papain-like protease [56]. The 
side effects of this drug have also been described involving 
diarrhea, urinary infections, and leukopenia [54].

Anakinra

Anakinra is an antagonist of the IL-1 receptor previously 
known for its efficacy against RA. Monocyte macrophage 
cells synthesize two stimulatory cytokines IL-1β and IL-1α 
that act as initiators of the inflammatory signaling pathway 
therefore if any drug blocks their receptors it is hypothesized 
it will stop the production of CS [57, 75]. Some of the stud-
ies centralized towards the use of anakinra showed a better 
flow of oxygen, prevention against mechanical ventilation, 
and provided information about the markers of blood inflam-
mation without any signs of toxicity [58]. One of the limita-
tions associated with its use was its ability to generate an 
infection at the site of injection of the drug [59].

VR23

Certain proteasome inhibitors harbor anti-inflammatory 
properties that may be an ideal strategy to target the CS. 
VR23 is a proteasomal inhibitor that reduces IL-6 levels 
in RA patients, secretion of TNF-α, tissue inflammation 
and decreases the neutrophil migration improving the acute 
lung injury induced by LPS (lipopolysaccharide) in mouse 
models [60].

CYM‑5442 and RP‑002

Sphingosine-1-Phosphate (S1p) receptor is present in lym-
phocytes and endothelial cells in the lung tissues [61]. Ago-
nists of this receptor, CYM-5442, and RP-002 have shown 

Fig. 4  Effect of JAK-2 and STAT-3 inhibitions in the regulation of 
TH17 cell differentiation and their consequences. a Shows the signal-
ing of TH17 cells through the JAK-STAT pathway without the use of 
any inhibitors. Binding of IL-6 and IL-23 cytokines cause the dimeri-
zation of the receptor. This allows JAK-2 a receptor-bound enzyme 
to phosphorylate the tyrosine residues of the receptor for its activa-
tion. STAT-3 now interacts with the phosphorylated receptor with 
its SH2 domain and its dimerization occurs. The dimer travels to the 
nucleus and starts acting as a transcription factor. TH17 cell differ-
entiation occurs through this mechanism leading to the formation of 
cytokine storm in COVID-19 patients. b Describes the effect of the 
JAK2 inhibitor on TH17 cell signaling. No phosphorylation of the 
receptors would occur in the absence of an active JAK2 and hence no 
STAT activation for transcription. TH17 cell differentiation could not 
occur and the patient may be cured for COVID-19 without the pro-
duction of the cytokine storm. c Shows the effect of STAT-3 inhibi-
tors on signaling of TH17 cells mediated by IL-6 and IL-23 ligands in 
the JAK-STAT pathway. Binding of IL-6 and IL-23 cytokines cause 
the dimerization of the receptor. This allows JAK-2 a receptor-bound 
enzyme to phosphorylate the tyrosine residues of the receptor for its 
activation. STAT-3 now interacts with the phosphorylated receptor 
with its SH2 domain. The use of inhibitors for STAT-3 now prevents 
STAT dimerization for acting as a transcription factor, as a result, 
no TH17 cell differentiation occurs through this mechanism, and no 
formation of cytokine storm in COVID-19 patients. d Describes the 
effect of STAT-3 inhibitors on B cell activation required for the anti-
viral immunity by IL-21 ligand in the JAK-STAT pathway. Binding 
of IL-21 cytokine causes the dimerization of the receptor. This allows 
JAK-1/3 a receptor-bound enzyme to phosphorylate the tyrosine resi-
dues of the receptor for its activation. STAT-3 now interacts with the 
phosphorylated receptor with its SH2 domain. The use of inhibitors 
for STAT-3 now prevents STAT dimerization for acting as a transcrip-
tion factor, as a result, no B cell activation occurs through this mecha-
nism, and no formation of immunity against SARS-CoV-2 infection. 
The red arrow indicates the target area for the action of drugs known 
as Fedritanib. (Shown in the orange box). Abbreviation: IL Interleu-
kin, JAK Janus kinase, STAT  signal transducer and activator of tran-
scription, SH2 Src homology domain

◂
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a considerable effect against severe influenza infection in 
the past. During the influenza infections of 2009, these ago-
nists protected the mouse models from death by reducing 
cytokine production and by inhibiting the infiltration of 
innate immune cells [63]. The cytokines that were inhibited 
involved IL-1α, IL-1β, IL-6, IL-10, MCP-1, TNF-α, and 
GM-CSF. 80% protection to the mouse models was provided 
by these drugs; however, in combination with oseltamivir, 
mouse mortality reduced to 96% [64]. Interestingly, a patient 
of COVID-19 with pre-existing comorbidity of multiple 
sclerosis got successfully treated by this drug [62].

Consideration during drug testing

Antibody-dependent cell-mediated cytotoxicity (ADCC) or 
antibody-dependent cellular cytotoxicity is a phenomenon 
where Fc receptors of effector cells can bind, interact, and 
kill the target antigenic substances coated with the antibod-
ies. However, in some cases, ADE causes uptake of these 
antibody-bound antigen molecules into the effector cells 
promoting their enhanced replication and inflammation. 
Therefore, ADE should be an important aspect to be con-
sidered before proceeding for clinical trials of any drugs for 
therapeutic and vaccine development.

Inflammation by ADE effect

Liu et al. [76] have identified that the antiviral neutralizing 
antibodies targeted towards the spike protein of the virus 
instead of clearing the virus load have resulted in altered 
inflammatory responses resulting in severe lung injury. The 
mechanism behind the anti-Spike IgG antibodies (anti-S-
IgG) mechanism is partially understood but it is hypoth-
esized that the antibodies bind to Fc receptors present on 
alveolar macrophages leading to the production of pro-
inflammatory cytokines such as MCP-1 and IL-8 in the 
lungs. They may also activate the classical complement 
pathway for mediating cell cytotoxicity [76]. But the major 
question that comes up is why only certain people face the 
adverse effects of ADCC while others can show a cleared 
viral load. This is perhaps because of the ADE that instead 
of reducing the viral infection promotes its replication and 
lung inflammation in a few patients. ADE allows anti-S-
IgG antibodies bound to Fc receptors of macrophage cells to 
enter, replicate, and to produce pro-inflammatory cytokines 
[77–79]. Thus, this effect may support both viral replica-
tion and the inflammatory responses in the patient’s lungs. 
The other report says that they are two types of responses 
generated by the binding of anti-S-IgG antibodies to the 
Fc receptors. The primary response is less severe and the 
majority of people can combat it. This involves ACE2 shed-
ding upon early viral replication leading to higher cytokine 

production and cellular injury through apoptosis/pyroptosis. 
Secondary response leads to the generation of an adaptive 
immune response where neutralizing antibodies (NAb) plays 
an essential part. About 80% of SARS-CoV infected patients 
had reported respiratory diseases after anti-IgG exposure 
[80]. FcR mediated cytotoxicity can thus be controlled by 
blocking these receptors [81, 82]. Different approaches to 
obstructing their interaction with IgG antibodies have been 
discussed in the next section.

Strategies in preventing the ADE effect

Three different approaches can be used in obstructing the 
interaction of the viral-NAb complex with Fc receptors on 
macrophages to prevent the ADE effect. Firstly, the use 
of antibodies or small molecule inhibitors that blocks the 
IgG-binding domain of Fc receptors can solve the purpose; 
Secondly, FCγRIIB may be used for inhibition of FCR acti-
vation. Various antibodies are available that have profound 
roles as immune suppressors [83, 84]. Thirdly, neonatal Fc 
receptor (FcRn) can be also be targeted for inhibition of FCR 
activation. These receptors are required for extending the 
half-life of the IgG antibody. Preventing the interaction with 
IgG and FcRn may be achieved by the use of antibodies or 
small molecules that causes the required blockage and thus, 
there will be a decrease in the circulating levels of the IgG 
[85]. Also, saturation in the binding ability of FcRn to IgG 
can be achieved through the supply of intravenous immuno-
globulin (IVIG) [86]. We have mainly focused on blocking 
FCR for controlling ADCC, however, there is a possibility 
that cell uses the classical complement pathway for cellular 
damage. Thus, antibodies and molecules inhibiting c5 and 
c5a factors of the classical complement pathway can also be 
devised for reducing the severity of the infection and revers-
ing the effects of ADCC [87].

Conclusion

This article highlights the inflammatory response of the 
host initiated upon the subsequent interaction of SARS-
CoV-2 with human lung cells. The clinically approved 
anti-inflammatory drugs that might be useful in control-
ling the CS, provides new insights into what new strate-
gies could be employed for further research in this field. 
Despite enormous efforts in producing the antiviral thera-
pies, no specific clinical treatment exists so far and only 
partial information is known about the immunopatho-
genesis of SARS-CoV-2 infection suggesting the need to 
direct the future research in identifying the unexplored 
mechanisms. This study closes with a few research ques-
tions that need to be addressed for stepping closer towards 
achieving planetary health. Does our current knowledge 
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of immunopathogenesis and inflammatory responses are 
sufficient enough in controlling the SARS-CoV-2 pan-
demic? Does inhibiting the JAK-STAT pathway could 
eliminate CS production? Are there any other alternative 
strategies that the host adopts to produce the CS if the 
JAK-STAT pathway is inhibited for TH17 cell differentia-
tion? What is the true potential of anti-inflammatory drugs 
as a therapeutic intervention for targeting the pro-inflam-
matory cytokines and chemokines? Focusing research on 
these questions would shape our current understanding 
and knowledge on SARS-CoV-2 mediated inflammatory 
responses of the host and may provide suitable strategies 
in controlling the lung inflammation.

Future directions

The alarming rate of infection caused by COVID-19 in dif-
ferent countries of the world urges to look for immediate 
effective treatment and vaccine. Some poor and middle-
income countries are facing problems in the diagnosis of 
infected patients. Higher IL-6 and IL-10 cytokines are 
important in deciding the prognosis of COVID-19 and 
hence, can be used as a marker for the diagnosis of infec-
tion. The use of glucocorticoids during the SARS-CoV out-
break in 2003 had been a great immunomodulatory therapy 
in providing a better oxygenation environment to the patient 
and in relieving the symptoms such as fever and pneumonia 
associated with the CoV infections [88, 89]. However, their 
influence on the SARS-CoV-2 inflammatory response is not 
well-supported by clinical trials as of now [90]. Although 
their role is still unclear in clearing viral pneumonia and 
ARDS, certain studies claiming their ability to reduce CS 
manifestation suggests a probable area to be explored for 
future studies [15, 91, 92]. Some studies say that PARP 
inhibitors such as rucaparib can restore the activity of IFN-I 
in the Zika virus promoting the antiviral activity and this 
may be beneficial when comes to SARS-CoV-2 infection 
[93, 94]. Also, Pioglitazone is a PPARγ agonist that reduces 
the inflammatory factors in the plasma generating an anti-
inflammatory effect against fibrosis and lung inflammation 
[95, 96]. Since the tolerability of this drug is quite high, it 
has the potential to be explored for the amelioration of lung 
injuries in COVID-19. Many antiviral drugs are in a phase 
of rapid development but somehow the anti-inflammatory 
drugs and the immune response of the host as a result of 
SARS-CoV-2 infection have failed to be noticed. ARDS is 
majorly a result of CS and targeting this would be a reason-
able strategy that should be focused in the coming time. 
More clinical studies focusing upon the doses of administra-
tion, any side effects must be warranted.
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