Skip to main content
Log in

Endocardial endothelial cell hypertrophy takes place during the development of hereditary cardiomyopathy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Endocardial endothelial cells constitute a barrier between the circulating blood and ventricular cardiomyocytes. Although recently our group demonstrated the importance of this type of endothelial cells in excitation-secretion coupling, there is no information on whether this type of cells contributes to cardiac pathologies such as cardiac hypertrophy. Using the well-known model of human hypertrophy and heart failure, the UM-X7.1 hereditary cardiomyopathic hamster, our results showed that during the phase of necrosis and in the absence of cardiac hypertrophy, isolated endocardial endothelial cells underwent a significant increase in cell volume compared to cells isolated from age-matched normal hamsters. This increase of the volume of endocardial endothelial cells persisted during the development of cardiac hypertrophy in the hereditary cardiomyopathic hamster. These results demonstrate for the first time, that endocardial endothelial hypertrophy precedes the development of hypertrophy in hereditary cardiomyopathy and may, via its released factors, contribute to the development of cardiac hypertrophy. These results demonstrate the importance of endocardial endothelial cells in cardiac diseases such as hypertrophy. This type of cells constitutes a new target for understanding hypertrophy and heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Sun J, Deng H, Zhou Z, Xiong X, Gao L (2018) Endothelium as a potential target for treatment of abdominal aortic aneurysm. Oxid Med Cell Longev 2018: Article ID 6306542

  2. Gravina AG, Dallio M, Masarone M, Rosato V, Aglitti A, Persico M, Loguercio C, Federico A (2018) Vascular endothelial dysfunction in inflammatory bowel diseases: pharmacological and nonpharmacological targets. Oxid Med Cell Longev 2018: Article ID 2568569

  3. Knapp M, Tu X, Wu R (2018) Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy. Acta Pharmacol Sin. [Epub ahead of print]

  4. Ungvari Z, Tarantini S, Kiss T, Wren JD, Giles CB, Griffin CT, Murfee WL, Pacher P, Csiszar A (2018) Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat Rev Cardiol. [Epub ahead of print]

  5. D’Orléans-Juste P, Houde M, Rae GA, Bkaily G, Carrier E, Simard E (2008) Endothelin-1 (1–31): from chymase-dependent synthesis to cardiovascular pathologies. Vascul Pharmacol 49:51–62

    Article  CAS  PubMed  Google Scholar 

  6. Jacques D, D’Orléans-Juste P, Magder S, Bkaily G (2017) Neuropeptide Y and its receptors in ventricular endocardial endothelial cells. Can J Physiol Pharmacol 95:1224–1229

    Article  CAS  PubMed  Google Scholar 

  7. Jacques D, Abdel-Samad D (2007) Neuropeptide Y (NPY) and NPY receptors in the cardiovascular system: implication in the regulation of intracellular calcium. Can J Physiol Pharmacol 85:43–53

    Article  CAS  PubMed  Google Scholar 

  8. Jacques D, Sader S, Perreault C, Abdel-Samad D, Provost C (2006) Roles of nuclear NPY and NPY receptors in the regulation of the endocardial endothelium and heart function. Can J Physiol Pharmacol 84:695–705

    Article  CAS  PubMed  Google Scholar 

  9. Jacques D, Sader S, Perreault C, Abdel-Samad D, Jules F, Provost C (2006) NPY, ET-1, and Ang II nuclear receptors in human endocardial endothelial cells. Can J Physiol Pharmacol 84:299–307

    Article  CAS  PubMed  Google Scholar 

  10. Jacques D, Sader S, Perreault C, Abdel-Samad D (2006) NPY and NPY receptors: presence, distribution and roles in the regulation of the endocardial endothelium and cardiac function. EXS 95:77–87

    CAS  Google Scholar 

  11. Brutsaert DL (2003) Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 831:59–115

    Article  Google Scholar 

  12. Bkaily G, Jacques D (2017) Na+–H+ exchanger and proton channel in heart failure associated with Becker and Duchenne muscular dystrophies. Can J Physiol Pharmacol 95:1213–1223

    Article  CAS  PubMed  Google Scholar 

  13. Bkaily G, Chahine M, Al-Khoury J, Avedanian L, Beier N, Scholz W, Jacques D (2015) Na(+)-H(+) exchanger inhibitor prevents early death in hereditary cardiomyopathy. Can J Physiol Pharmacol 93:923–934

    Article  CAS  PubMed  Google Scholar 

  14. Chahine M, Bkaily G, Nader M, Al-Khoury J, Jacques D, Beier N, Scholz W (2005) NHE-1-dependent intracellular sodium overload in hypertrophic hereditary cardiomyopathy: prevention by NHE-1 inhibitor. J Mol Cell Cardiol 38:571–582

    Article  CAS  PubMed  Google Scholar 

  15. Jacques D, Abdel-Karim Abdel-Malak N, Abou Abdallah N, Al-Khoury J, Bkaily G (2017) Difference in the response to angiotensin II between left and right ventricular endocardial endothelial cells. Can J Physiol Pharmacol 95:1271–1282

    Article  CAS  PubMed  Google Scholar 

  16. Jacques D, Abdel Malak NA, Sader S, Perreault C (2003) Angiotensin II and its receptors in human endocardial endothelial cells: role in modulating intracellular calcium. Can J Physiol Pharmacol 81:259–266

    Article  CAS  PubMed  Google Scholar 

  17. Abdel-Samad D, Perreault C, Ahmarani L, Avedanian L, Bkaily G, Magder S, D’Orléans-Juste P, Jacques D (2012) Differences in neuropeptide Y-induced secretion of endothelin-1 in left and right human endocardial endothelial cells. Neuropeptides 46:373–382

    Article  CAS  PubMed  Google Scholar 

  18. Bkaily G, Al-Khoury J, Simon Y, Jacques D (2017) Intracellular free calcium measurement using confocal imaging. Methods Mol Biol 1527:177–187

    Article  CAS  PubMed  Google Scholar 

  19. Bkaily G, Pothier P, D’Orléans-Juste P, Simaan M, Jacques D, Jaalouk D, Belzile F, Hassan G, Boutin C, Haddad G, Neugebauer W (1997) The use of confocal microscopy in the investigation of cell structure and function in the heart, vascular endothelium and smooth muscle cells. Mol Cell Biochem 172:171–194

    Article  CAS  PubMed  Google Scholar 

  20. Bkaily G, Jacques D, Pothier P (1999) Use of confocal microscopy to investigate cell structure and function. Methods Enzymol 307:119–135

    Article  CAS  PubMed  Google Scholar 

  21. Smiljic S (2017) The clinical significance of endocardial endothelial dysfunction. Medicina (Kaunas) 53:295–302

    Article  Google Scholar 

  22. Gerdes AM, Liu Z, Zimmer HG (1994) Changes in nuclear size of cardiac myocytes during the development and progression of hypertrophy in rats. Cardioscience 5:203–208

    CAS  PubMed  Google Scholar 

  23. Koda M, Takemura G, Okada H, Kanoh M, Maruyama R, Esaki M, Li Y, Miyata S, Kanamori H, Li L, Ogino A, Kondo T, Minatoguchi S, Fujiwara T, Fujiwara H (2006) Nuclear hypertrophy reflects increased biosynthetic activities in myocytes of human hypertrophic hearts. Circ J 70:710–718

    Article  CAS  PubMed  Google Scholar 

  24. Schoner A, Tyrrell C, Wu M, Gelow JM, Hayes AA, Lindner JR, Thornburg KL, Hasan W (2015) Endocardial endothelial dysfunction progressively disrupts initially anti then pro-thrombotic pathways in heart failure mice. PLoS ONE 10:e0142940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Honoré JC, Carrier E, Fecteau MH, Tirapelli CR, Bkaily G, D’Orleans-Juste P (2008) Nonselective ETA/ETB-receptor blockade increases systemic blood pressure of Bio 14.6 cardiomyopathic hamsters. Can J Physiol Pharmacol 86:394–401

    Article  CAS  PubMed  Google Scholar 

  26. Nakamura F, Nagano M, Kobayashi R, Higaki J, Mikami H, Kawaguchi N, Onishi S, Ogihara T (1994) Chronic administration of angiotensin II receptor antagonist, TCV-116, in cardiomyopathic hamsters. Am J Physiol 267:H2297–H2304

    CAS  PubMed  Google Scholar 

  27. Ljubojevic S, Radulovic S, Leitinger G, Sedej S, Sacherer M, Holzer M, Winkler C, Pritz E, Mittler T, Schmidt A, Sereinigg M, Wakula P, Zissimopoulos S, Bisping E, Post H, Marsche G, Bossuyt J, Bers DM, Kockskämper J, Pieske B (2014) Early remodeling of perinuclear Ca2+ stores and nucleoplasmic Ca2+ signaling during the development of hypertrophy and heart failure. Circulation 130:244–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jacques D, Bkaily G, Jasmin G, Ménard D, Proschek L (1997) Early fetal like slow Na+ current in heart cells of cardiomyopathic hamster. Mol Cell Biochem 176:249–256

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from NSERC (Grant No. RGPIN-2017-05508) and the Canadian Institutes of Health Research (CIHR) (Grant No. MOP-119398).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Jacques.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacques, D., Bkaily, G. Endocardial endothelial cell hypertrophy takes place during the development of hereditary cardiomyopathy. Mol Cell Biochem 453, 157–161 (2019). https://doi.org/10.1007/s11010-018-3440-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-018-3440-7

Keywords

Navigation