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and mRNA expressions of nitric oxide synthase, AS, and 
ASL were observed in experimental rats. SAC (150 mg/kg 
b.w) showed its therapeutic effects similar to gliclazide in 
decreasing glucose, insulin resistance, lipid peroxidation, 
and increasing body weight; insulin, antioxidant enzymes, 
and mRNA levels of nitric oxide synthase, argininosucci-
nate synthase, and argininosuccinate lyase genes in STZ-
NA rats. Histopathologic studies also revealed the protec-
tive nature of SAC on aorta. In conclusion, garlic and its 
constituents mediate the anti-diabetic potential through 
mitigating hyperglycemic status, changing insulin resist-
ance by alleviating endothelial dysregulation in both 
plasma and tissues.
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Introduction

Diabetes mellitus (DM) is attaining a level of pandemic 
significance all over the world, and the circumstances in 
developing countries are worsening day by day [1]. DM is 
undoubtedly perceived as a noteworthy danger to human 
wellbeing, and the high predominance of mortality among 
diabetic patients is due to the cardiovascular complications 
that are involved in DM. The main prevalent form of dia-
betes is type 2 (T2DM), which accounts for about 90% of 
all cases of DM [2, 3]. Data depict that more than 75% of 
all hospitalizations in diabetic subjects are attributed to the 
cardiovascular complications [4] that affect many tissues, 
including microvasculature, macrovasculature, nerve, and 
the heart [5].
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Endothelial dysfunction, the first step in atherosclerosis, 
is interconnected with hypertension, diabetes, and chronic 
heart failure [6]. Vascular tone and homeostasis are regu-
lated by endothelium by generating a number of autacoids. 
Nitric oxide (NO) is one of the vasoactive autacoids, regu-
lating vascular tone and homeostasis, and it is originally 
identified as endothelium-derived relaxing factor [7]. In 
diabetic patients, endothelial dysfunction gives off an 
impression of being a predictable discovery; indeed, there 
is general accordance in the fact that hyperglycemia and 
diabetes lead to an obstruction in NO production and activ-
ity [8]. The inability of endothelial cells to release NO in 
response to physiological cues that promote vasodilatation 
is the hallmark of endothelial dysfunction [9]. Endothelial 
nitric oxide synthase (eNOS), arginino succinate synthase 
(AS), and argininosuccinate lyase (ASL) are core compo-
nents for endothelial NO production [10]. The conversion 
of citrulline to arginine is the principal role of AS and AL. 
AS is rate-limiting factor to the citrulline–NO cycle and as 
such is required to sustain endothelial function and viability 
[11].

There has been an increased interest in oxidative stress 
and its role in the development of complications of diabetes 
in the recent decade [12]. Overloaded superoxide can react 
with NO, forming the toxic peroxynitrite, which in turn 
uncouples nitric oxide synthase (eNOS) by oxidizing the 
essential NOS redox-sensitive cofactor tetrahydrobiopterin 
and causes eNOS to produce more superoxide anion [6]. 
Extenuating the highly prevalent plaque T2DM is of high 
precedence in both the developed and developing coun-
tries, and the scientific mission on agents ameliorating the 
cardio-metabolic risk is increasing in the recent past. Many 
synthetic drugs are available for the treatment of diabe-
tes. However, the use of conventional medicines results in 
side effects. Recently, many researchers are seeking natural 
products or dietary interventions to prevent or treat T2DM. 
Apart from the traditional anti-diabetic treatment, antioxi-
dant therapy may benefit in diabetes. It is understood that 
the positive role of antioxidant activity will achieve good 
outcomes in T2DM and its long-term complications [13].

The potent therapeutic limit of garlic and its compo-
nents has been reported by many researchers utilizing 
multiple in  vivo frameworks [14, 15]. S-Allylcysteine 
(SAC), a derivative of garlic, is a sulfur-containing amino 
acid [16]. Previously, it was reported that SAC exhibits 
insulin-like antihyperglycemic effect in the STZ-induced 
diabetic rats [17] and also reverses the changes in the lev-
els of glucose metabolism in liver [18]. Although the anti-
hyperglycemic and antioxidant activities of SAC have 
been widely studied, there are no reports pertaining to 
the hyperglycemia-induced oxidative stress and improv-
ing endothelial dysfunction in diabetic animals. Therefore, 
this study aims to evaluate the effect of SAC in narrowing 

hyperglycemia-induced ROS formation and improving 
endothelial dysfunction in aorta of streptozotocin (STZ)-
nicotinamide (NA)-induced diabetic rats.

Materials and methods

Animals

Male Wistar rats (Rattus norvegicus) weighing about 
150–180 g were used as experimental animals in the pre-
sent investigation. The animals were maintained in the 
central animal facility room, Muthayammal College of 
Arts and Science, Rasipuram, Tamilnadu, India and were 
fed a standard pellet diet (AMRUT, PUNE, INDIA) and 
water ad libitum. The protocol of this study was approved 
by the institutional ethical committee of College of Arts 
and Science, Rasipuram, Tamilnadu, India (1416/P0/a/11/
CPCSEA).

Chemicals

SAC (99%) was commercially available, and it was pur-
chased from LGC Prochem, Bangalore, India. Streptozo-
tocin was purchased from Himedia, Bangalore, India. All 
other reagents used in the experiments were of analytic 
grade and of the highest purity.

Induction of diabetes

The overnight-fasted rats were made diabetic by a single 
intraperitoneal injection of freshly prepared STZ (55 mg/kg 
body weight) in citrate buffer (0.1 M, pH 4.5) in a volume 
of 1 ml/kg 15 min after the intraperitoneal administration 
of nicotinamide (110 mg/kg b.w). Hyperglycemia was con-
firmed by the elevated glucose levels (Above 250 mg/dl) in 
blood, determined at 72 h and then on day 7 after injection.

Experimental design

After the successful induction of experimental diabetes, the 
rats were divided into four groups each comprising a mini-
mum of six rats.

Group 1: Control rats.
Group 2: Diabetic control rats.
Group 3: STZ-NA-treated rats were given SAC (150 mg/

kg body weight) in vehicle solution orally for 45 days using 
an intragastric tube [18].

Group 4: STZ-NA-treated rats were given gliclazide 
(5  mg/kg b.w/rat) in vehicle solution orally for 45 days 
using an intragastric tube [19].

Body weight and blood glucose level measurements 
were conducted periodically. At the end of the experiment, 
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blood was collected from overnight-fasted animals under 
inhalation of anesthesia by retro orbital puncture method. 
Blood samples were collected into tubes containing with 
or without anticoagulant. The samples were centrifuged at 
250×g for 5 min at 4 °C, and then the plasma was immedi-
ately removed and stored at −20 °C until further analysis. 
Serum NO level was assayed by the Griess method [20]. 
A plasma level of insulin was determined using kits from 
bio-Merieux, RCS, Lyon, France. Insulin resistance was 
calculated using the homeostasis model assessment. NO 
synthase activity was estimated using the Kit from Cal-
biochem, USA (Catalogue Number 482702). AS and ASL 
activities were estimated by the modified method of Levin 
(1971) as described by Swamy et al. [21].

Aorta tissues were quickly excised and placed in a petri 
dish, washed in ice-cold saline, and weighed. The tissues 
were homogenized in 0.25  M sucrose, 0.02  M triethan-
olamine hydrochloride buffer at pH 7.4, then centrifuged 
at 1000 g for 10 min, and finally, the supernatant was col-
lected. The supernatant was used for the estimation of thio-
barbutric acid-reactive substance (TBARS), hydroperoxide, 
GSH, SOD, CAT, and GPx. All these parameters were ana-
lyzed using commercially available kits (Sigma Aldrich, 
USA).

RT‑PCR analysis

Total RNA was isolated from the aorta tissue by using tri-
reagent (Sigma–Aldrich, USA) according to manufacturer’s 

protocol and reverse transcribed to obtain cDNA using 
DNA synthesis kit (Applied Bio systems, Foster City, 
USA). 20 ng of cDNA was used for semi-quantitative poly-
merase chain reaction (qPCR). The PCR amplification was 
performed for 38 cycles using the following cycling condi-
tions: 30  s of denaturation at 94 °C, 30  s of annealing at 
59 °C, and 1 min of extension at 72 °C, with the primers. 
The sequences of the primers are given in Table  1. The 
housekeeping gene β actin was used for normalization.

Histopathological studies

Harvested aortic tissues from the sacrificed animals were 
fixed in 10% neutral buffered formalin solution, dehydrated 
in ethanol, and embedded in paraffin. Sections of 5  µm 
thickness were prepared using a rotary microtome and 
stained with hematoxylin and eosin dye for microscopic 
observations.

Statistical analysis

All the results were expressed as the Mean ± S.D. for six 
animals in each group. All the grouped data were statisti-
cally evaluated using SPSS\10.0 software. Hypothesis 
testing methods included one way analysis of variance 
(ANOVA) followed by least significant difference test; sig-
nificance level at p < 0.05 was considered to indicate statis-
tical significance.

Results

Table 2 indicated the level of plasma glucose, plasma insu-
lin, insulin resistance, and body weight development in 
control and STZ-NA-induced experimental diabetic rats. 
Significant reductions in the levels of insulin and body-
weight and concomitant increases in the levels of plasma 
glucose and insulin resistance were observed in STZ-NA 
diabetic rats and these levels were normalized after treat-
ment with SAC and gliclazide.

Table 1   Primer sequences

Gene Primer sequence

AS F: 5′-TGG​AGG​ATG​CCC​GAG​TTT​TAC-3′
R: 5′-CAG​GAA​CGG​GTG​GAA​GGA​AAG-3′

ASL F: 5′-GCG​GAG​TGT​GAA​GTC​CTC​TTC-3′
R: 5″GTC​CTC​CAA​GTA​GCC​ACT​GGA-3′

eNOS F: 5″CTG​CAG​GTC​TTT​GAC​GCT​CGG-3′
R: 5′GTG​GAA​CAC​AGG​GGT​GAT​GCT-3′

β-actin F: 5′GGC​ACC​ACA​CTT​TCT​ACA​AT3′
R: 5′AGG​TCT​CAA​ACA​TGA​TCT​GG3′

Table 2   Effect of SAC on 
bodyweight, Plasma glucose, 
insulin and insulin resistance 
in normal and experimental 
diabetic rats

Values are mean ± SD, n = 6
Values are statistically significant at *p < 0.05
a Significantly different from control
b Significantly different from diabetic control

Groups Body weight (g) Glucose (mg dl−1) Insulin (µU ml−1) Insulin resistance

Control 320.8 ± 10.05 97.60 ± 15.3 16.20 ± 4.3 2.4 ± 1.1
Diabetic control 484.3 ± 14.83a,* 322.3 ± 76.5a,* 25.6 ± 4.8a,* 7.04 ± 2.3a,*
Diabetic + SAC (150 mg) 363.2 ± 14.99b,* 103.5 ± 12.79b,* 17.12 ± 2.0 b,* 2.7 ± 1.1b,*
Diabetic + Gliclazide 326.8 ± 27.92b,* 101.3 ± 11.68b,* 15.83 ± 2.1b,* 2.5 ± 1.3b,*
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Figure 1a–c shows activities of NO, AS, ASL, and the 
mRNA expressions of normal and experimental rats. There 
were significant declines in the activities of (p < 0.05) in 
NO, AS, and ASL. Oral treatment with SAC or gliclazide 
for 45 days to STZ-NA rats significantly increased the 
activities of NO, AS, and ASL. The effects of SAC treat-
ment on NO, AS, and ASL mRNA levels in the tissue were 
examined by RT-PCR. The levels of NO, AS, and ASL 

mRNA were found to decrease in the STZ-NA control rats. 
However, treatment with SAC or gliclazide resulted in sig-
nificant increases in NO, AS, and ASL mRNA levels.

Figures  2 and 3 reveal the levels of TBARS, GSH, 
SOD, CAT, and GPx in the aortas of control and STZ-
NA-induced experimental diabetic rats. Significant reduc-
tions in the levels of GSH, SOD, CAT, and GPx and a con-
comitant increase in the level of TBARS were observed in 
STZ - NA-induced experimental diabetic rats. Treatment 
with SAC or gliclazide showed significant increases in the 

Fig. 1   a Effect of SAC treatment on activities of NO, AS, and ASL 
of diabetic rats. Values are expressed as Mean ± SD for 6 animals 
in each group. Values are statistically significant at *p < 0.05. aSig-
nificantly different from control. bSignificantly different from dia-
betic control. b Effect of SAC treatment on aortic NO, AS, and ASL 
mRNA levels. L1—control rats; L2—diabetic control rats; L3—dia-
betic rats treated with SAC; L4—diabetic rats treated with gliclazide. 
c Fold changes in mRNA levels of aortic NO, AS, and ASL. Values 
are expressed as Mean ± SD for 6 animals in each group. Values are 
statistically significant at *p < 0.05. aSignificantly different from con-
trol bSignificantly different from diabetic control

Fig. 2   Effects of SAC on GSH, superoxide dismutase (SOD), cata-
lase (CAT), and glutathione peroxidase (GPx) in aortas of normal and 
experimental diabetic rats. Values are mean ± SD, n = 6. Values are 
statistically significant at *p < 0.05. aSignificantly different from nor-
mal control. bSignificantly different from diabetic control. U; 50% of 
inhibition of epinephrine auto oxidation per min for SOD; U; µmole 
of hydrogen peroxide decomposed per min per mg of protein for cata-
lase; U; µmole of glutathione oxidized per min per mg of protein for 
GPx

Fig. 3   Effect of SAC on TBARS in aortas of normal and experimen-
tal diabetic rats. Values are mean ± SD, n = 6 Values are statistically 
significant at *p < 0.05. aSignificantly different from normal control. 
bSignificantly different from diabetic control
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activities of SOD, CAT, and GPx and a decrease in the 
level of TBARS in aorta of treated animals.

The histopathological observations in control and STZ-
NA-induced experimental diabetic rats are depicted in 
Fig. 4. The aorta of control rats (Fig. 4a) showed a normal 
architecture with regular aortic morphology. There was a 
massive fibrillar thickening with extensive proliferation of 
smooth muscle cells and degeneration of tunica intima and 
appearance of foam cells in diabetic control rats (Fig. 4b). 
Treatment of SAC to diabetic rats showed slight intimal 
thickening characterized by proliferation of smooth mus-
cle cells (Fig. 4c). Treatment of gliclazide to diabetic rats 
showed a regular morphology of aortic intima (Fig. 4d).

Discussion

In order to better comprehend the pathogenesis, hereditary 
variables and biological complications involved in T2DM, 
and to better investigate the different remedial agents, 
appropriate experimental models are important. Some are 
additionally known to have pathological syndromes simi-
lar to T2DM [22]. Administration of both STZ and NA 
has been projected to provoke investigational DM in the 
rat. STZ is well recognized to root pancreatic β-cell dam-
age, while NA is administered to rats to incompletely guard 
insulin-secreting cells against STZ. STZ is transported into 
β-cells via the glucose transporter 2 and causes DNA dam-
age which leads to enhanced activity of poly (ADP-ribose) 
polymerase-1 to repair DNA. Conversely, overstated activ-
ity of this enzyme results in diminution of intracellular 

NAD (+) and ATP, and the insulin secreting cells undergo 
necrosis. The protecting action of NA is due to the inhibi-
tion of polymerase-1 activity. NA inhibits this enzyme and 
put off the reduction of NAD (+) and ATP in cells exposed 
to STZ. The cruelty of diabetes in experimental rats power-
fully depends on the doses of STZ and NA administered to 
these animals. Hence, in diabetic rats, blood glucose may 
be altered in a broad range from slight hyperglycemia to 
extensive hyperglycemia compared with control animals 
[23]. T2DM is the outcome of various deformities includ-
ing insulin resistance of peripheral tissues to the glucose 
utilizing effect of insulin and augmented hepatic glucose 
production [24]. The most particular enviable avenues and 
remnant mechanism for the prevention and management of 
T2DM and cardiovascular diseases is dietary control which 
may enhance the endogenous antioxidant system [25].

Diabetes is portrayed by a severe loss in body weight, 
which might be the result of protein wasting because of 
inaccessibility of sugar as a vitality source [26]. In the 
present study, significant elevation in blood glucose level, 
insulin resistance, and decreased body weight gain, insu-
lin was observed in experimental type-2 diabetic rats when 
compared to normal control rats. This is in contrast to 
diet-induced type-2 diabetic animals, in which increased 
blood glucose is accompanied by increased blood insulin 
and hyperglycemia results from insulin resistance [27]. In 
humans with type-2 diabetes, glucose challenge induces 
a rise in blood glucose which is markedly higher than in 
healthy people and is comparable with that observed in rats 
with STZ–NA-induced diabetes. However, in type-2 dia-
betic humans, hyperglycemia observed after glucose load 

Fig. 4   Effect of SAC in aorta 
of experimental rats a Normal 
control: normal control group 
was shown to have normal 
architecture with regular aortic 
morphology; H&E X40. b Dia-
betic control: diabetic control 
histopathology showed massive 
fibrillar thickening with exten-
sive proliferation of smooth 
muscle cells and degeneration 
of tunica intima and appearance 
of foam cells; H&E X40. c SAC 
administration showed slight 
intimal thickening character-
ized by proliferation of smooth 
muscle cells. d Gliclazide 
administration showed regular 
morphology of aortic intima; 
H&E X40
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usually results from both insulin resistance and impaired 
function of β–cells [28]. Hence, in addition to glycemic 
control, management of impaired function of β-cells is 
also essential for controlling insulin resistance and limit-
ing the complications of non-insulin-dependent diabetes 
mellitus (NIDDM). Hyperglycemia in type-2 diabetes is 
there to a limited extent because of the absence of conceal-
ment of hepatic glucose production in the absorptive state 
and unwarranted glucose production in the post absorptive 
state. Catalysts that direct hepatic glucose metabolism are 
potential focuses for controlling hepatic glucose balance 
and subsequently blood glucose levels in T2DM. During 
diabetes, diminished activities of hexokinase and elevated 
activities of glucose-6-phosphatase and fructose-6- phos-
phatase are found which is due to the total absence or insuf-
ficiency of insulin [29]. SAC up directs the activities of 
both these enzymes in hepatic tissues through insulin dis-
charge and thereby it enhances the utilization of glucose 
for cellular biosynthesis, which is marked by the significant 
decrease in plasma glucose levels. Earlier, we reported the 
insulin-like antihyperglycemic effect of SAC in the STZ-
induced diabetic rats [19] and also reversed the changes 
in the levels of glucose metabolism in liver by altering the 
metabolic key enzymes [22].

T2DM is associated with severe cardiovascular compli-
cations due to which diabetic vascular disease gets much 
attention. High concentrations of glucose have been asso-
ciated with endothelial dysfunction [30]. The decreased 
availability of arginine and impaired synthesis of NO is 
seen to be important in the development of endothelial 
dysfunction and also the decreased activity and/or expres-
sion of eNOS or increased degradation of NO secondary 
to enhanced superoxide production could be the mecha-
nism underlying this endothelial dysfunction. During dia-
betes, endothelial NO production is impaired and it plays a 
pivotal role in the pathogenesis of diabetes, compromising 
endothelial cell regulation of vascular function and homeo-
stasis [31]. Together, the present study confirms attenuation 
of hyperglycemia-induced oxidative stress and endothelial 
dysfunction by oral treatment of SAC by restoring the NO 
bioavailability. NO, a potent chemical mediator, is severely 
restricted not only by the downregulation of eNOS [32] 
but also by the availability of arginine provided by AS via 
the citrulline-NO cycle. Organized upregulation of eNOS 
expression has been identified previously in a number of 
systems [33]. In the present study, diminished levels of 
serum NO and expression of eNOS mRNA were observed 
in STZ-NA diabetic rats. This might be due to the lim-
ited availability of arginine which could lead to enzymatic 
uncoupling of eNOS with subsequent production of reac-
tive oxygen species [34]. SAC therapy to the diabetic rats 
resulted in an increased expression of eNOS which could 
produce a large amount of NO.

Endothelial AS and ASL, the rate-limiting enzymes in 
the recycling of citrulline to arginine, are critical in sus-
taining NO production in endothelial cells [35]. It is well 
known that the post-translational regulation of AS and ASL 
would play a significant role in maintaining NO homeosta-
sis [36]. It was reported that AS is prone to a regulatory 
mechanism by change in intracellular calcium level. Cal-
cium-dependent activation of insulin resulted in an increase 
in phosphorylation AS at Ser-328 for eNOS activation. Cal-
cium rich environment favors formation of soluble proinsu-
lin [37]. A diminished expression of AS and ASL mRNA 
observed in this study might be due to the decreased level 
of insulin signaling. Oral administration of SAC to the 
diabetic rats increased the expressions of AS and ASL 
that might be due to enhanced insulin signaling which is 
required to maintain a functional citrulline–NO cycle [38].

Oxidative stress-induced hyperglycemia plays an impor-
tant role in the development of diabetic complications [39] 
particularly vascular diseases involving both the macrovas-
culature and microvasculature. Aorta represents state of 
tissue macrovasculature in diabetic complications. Over-
productions of oxidative free radicals or reactive oxygen 
species (ROS) are attributed to oxidative stress resulting 
in lipid peroxidation and subsequently increased malon-
dialdehyde levels and other TBARS levels. In the present 
study, the TBARS and hydroperoxides levels in the STZ-
NA control animals were higher than those for normal con-
trol animals. Increased levels of TBARS and hydroperox-
ides in STZ-NA control animals indicated enhanced lipid 
peroxidation leading to tissue damage and failure of the 
endogenous antioxidant defense mechanisms that prevent 
the overproduction of ROS. Oral treatment with SAC sig-
nificantly reduced the levels of lipid peroxidation markers, 
which could be a result of improved glycemic control and 
antioxidants status. A previous study has provided the sup-
port that, due to the antioxidant function, SAC can reduce 
lipid peroxidation in cardiac membranes [40].

Glutathione (GSH), a metabolic regulator and putative 
indicator of health, is involved in the protection of normal 
cell structure and function, by maintaining the redox home-
ostasis, quenching of free radicals, and participating in 
detoxification reactions [41]. It is a direct scavenger of free 
radicals as well as a co-substrate for peroxide detoxifica-
tion by glutathione peroxidases [42]. Depleted glutathione 
content was reported in experimental-induced diabetes 
[39]. The reduced GSH may be due to reduction in its syn-
thesis or to its degradation by oxidative stress in diabetic 
animals [42]. SOD and CAT are involved in the clearance 
of superoxide and hydrogen peroxide radicals, respectively. 
GPx has been shown to be an important adaptive response 
to condition of increased peroxidative stress. In the pre-
sent study, decreased aortic SOD, CAT, and GPx activities 
were found in STZ-NA control animals. During diabetes, 
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excessive production of hydrogen peroxide due to the auto-
oxidation of glucose, protein glycation, and lipid oxidation 
led to a marked decline in the enzymatic antioxidants. SAC 
treatment significantly increased the aortic glutathione 
content; and SOD, CAT, and GPx activities in experi-
mental diabetic animals. Administration of SAC increased 
GSH level, and it may in turn activate the GSH-dependent 
enzymes such as glutathione peroxidase and glutathione-S-
transferase. This might be due to the presence of hydroxyl 
group in SAC which could exert antioxidant and free radi-
cal properties [39].

In conclusion, the present study investigated the effects 
of SAC in narrowing hyperglycemia-induced ROS forma-
tion and improving endothelial dysfunction. It was con-
cluded that oral treatment with SAC was able to modulate 
the vascular endothelial dysfunction by altering AS and 
ASL protein expressions and aortic antioxidant enzymes 
indicating that this compound can mitigate the hydroxyl-
radical accumulation and consequently improve antioxidant 
defense system.

This research topic addressed the effect of SAC on 
type-2 diabetes and also stressed the need for the better 
treatment for type-2 diabetes. These results may contribute 
to better understanding of the anti-hyperglycemic role of 
SAC, emphasizing the influence of this antioxidant in the 
diet for human health, possibly by preventing cardiovascu-
lar disorders associated with diabetes mellitus.

This study adds that the consumption of vegetables 
and fruits is a major focus of dietary strategies for disease 
prevention. It can, therefore, be concluded that the SAC 
showed an astonishing anti-diabetic effect on rats. It is most 
likely because of high antioxidant nature of SAC which 
may exert these preventing effects. This study shall give the 
idea of having suitable herbal bioformulation having SAC 
as its one of the constituents.
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