Skip to main content
Log in

Dietary flavones counteract phorbol 12-myristate 13-acetate-induced SREBP-2 processing in hepatic cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Consumption of fruits and vegetables is generally regarded as beneficial to plasma lipid profile. The mechanism by which the plant foods induce desirable lipid changes remains unclear. SREBP-2 is crucial in cholesterol metabolism, and it is a major regulator of the cholesterol biosynthesis enzyme HMGCR. Our lab has previously illustrated that apigenin and luteolin could attenuate the nuclear translocation of SREBP-2 through an AMPK-dependent pathway. In the present study, these two flavones were studied for their ability to deter the same in an AMPK-independent signaling route. The processing of SREBP-2 protein was promoted by phorbol 12-myristate 13-acetate (PMA) in the hepatic cells WRL and HepG2, and the increased processing was reversed by apigenin or luteolin co-administration. EMSA results demonstrated that the PMA-induced DNA-binding activity was weakened by the flavones. The increased amount of nuclear SREBP-2 in cells was attenuated by the flavonoid as shown by immunocytochemical imaging. Quantitative reverse transcriptase-polymerase chain reaction assay demonstrated that the transcription of HMGCR under both flavone treatments was reduced. However, apigenin appeared to be stronger than luteolin in restraining PMA-induced HMGCR mRNA expression. Since PMA is a diacylglycerol analog, these findings might have some physiological implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CVD:

Cardiovascular disease

RT-PCR:

Reverse transcriptase-polymerase chain reaction

EMSA:

Electromobility shift assay

SRE:

Sterol responsive element

SREBP:

Sterol regulatory element-binding proteins

References

  1. Anum EA, Adera T (2004) Hypercholesterolemia and coronary heart disease in the elderly: a meta-analysis. Ann Epidemiol 14(9):705–721. doi:10.1016/j.annepidem.2003.10.009

    Article  PubMed  Google Scholar 

  2. Graham DJ, Staffa JA, Shatin D (2004) Incidence of hospitalized rhabdomyolysis in patients treated with lipid-lowering drugs. J Am Med Assoc 292(21):2585–2590

    Article  CAS  Google Scholar 

  3. Sakakura Y, Shimano H, Sone H, Takahashi A, Inoue N, Toyoshima H, Suzuki S, Yamada N (2001) Sterol regulatory element-binding proteins induce an entire pathway of cholesterol synthesis. Biochem Biophys Res Commun 286(1):176–183. doi:10.1006/bbrc.2001.5375

    Article  CAS  PubMed  Google Scholar 

  4. Du X, Kristiana I, Wong J, Brown AJ (2006) Involvement of Akt in ER-to-Golgi transport of SCAP/SREBP: a link between a key cell proliferative pathway and membrane synthesis. Mol Biol Cell 17(6):2735–2745. doi:10.1091/mbc.E05-11-1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kotzka J, Lehr S, Roth G, Avci H, Knebel B, Muller-Wieland D (2004) Insulin-activated Erk-mitogen-activated protein kinases phosphorylate sterol regulatory element-binding Protein-2 at serine residues 432 and 455 in vivo. J Biol Chem 279(21):22404–22411. doi:10.1074/jbc.M401198200

    Article  CAS  PubMed  Google Scholar 

  6. Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M (2011) AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 13(4):376–388. doi:10.1016/j.cmet.2011.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N (2000) Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 130(9):2243–2250

    CAS  PubMed  Google Scholar 

  8. Anderson JW, Johnstone BM, Cook-Newell ME (1995) Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med 333(5):276–282. doi:10.1056/NEJM199508033330502

    Article  CAS  PubMed  Google Scholar 

  9. Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, Giampaoli S, Jansen A, Menotti A, Nedeljkovic S et al (1995) Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med 155(4):381–386

    Article  CAS  PubMed  Google Scholar 

  10. Zhan S, Ho SC (2005) Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am J Clin Nutr 81(2):397–408

    CAS  PubMed  Google Scholar 

  11. Janssen K, Mensink RP, Cox FJ, Harryvan JL, Hovenier R, Hollman PC, Katan MB (1998) Effects of the flavonoids quercetin and apigenin on hemostasis in healthy volunteers: results from an in vitro and a dietary supplement study. Am J Clin Nutr 67(2):255–262

    CAS  PubMed  Google Scholar 

  12. Jeong HJ, Shin YG, Kim IH, Pezzuto JM (1999) Inhibition of aromatase activity by flavonoids. Arch Pharmacal Res 22(3):309–312

    Article  CAS  Google Scholar 

  13. van Meeuwen JA, Nijmeijer S, Mutarapat T, Ruchirawat S, de Jong PC, Piersma AH, van den Berg M (2008) Aromatase inhibition by synthetic lactones and flavonoids in human placental microsomes and breast fibroblasts—a comparative study. Toxicol Appl Pharmacol 228(3):269–276. doi:10.1016/j.taap.2007.12.007

    Article  PubMed  Google Scholar 

  14. Li F, Ye L, Lin SM, Leung LK (2011) Dietary flavones and flavonones display differential effects on aromatase (CYP19) transcription in the breast cancer cells MCF-7. Mol Cell Endocrinol 344(1–2):51–58. doi:10.1016/j.mce.2011.06.024

    Article  CAS  PubMed  Google Scholar 

  15. Li F, Wong TY, Lin SM, Chow S, Cheung WH, Chan FL, Chen S, Leung LK (2014) Coadministrating luteolin minimizes the side effects of the aromatase inhibitor letrozole. J Pharmacol Exp Ther 351(2):270–277. doi:10.1124/jpet.114.216754

    Article  PubMed  Google Scholar 

  16. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3(10):768–780. doi:10.1038/nrc1189

    Article  CAS  PubMed  Google Scholar 

  17. Nielsen SE, Young JF, Daneshvar B, Lauridsen ST, Knuthsen P, Sandstrom B, Dragsted LO (1999) Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr 81(6):447–455

    Article  CAS  PubMed  Google Scholar 

  18. Yang CS, Landau JM, Huang MT, Newmark HL (2001) Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr 21:381–406. doi:10.1146/annurev.nutr.21.1.381

    Article  CAS  PubMed  Google Scholar 

  19. Thiery-Vuillemin A, Nguyen T, Pivot X, Spano JP, Dufresnne A, Soria JC (2005) Molecularly targeted agents: their promise as cancer chemopreventive interventions. Eur J Cancer 41(13):2003–2015. doi:10.1016/j.ejca.2005.06.005

    Article  CAS  PubMed  Google Scholar 

  20. Al-Jubouri HHF, A-J BH, Farid I, Jasim F, Wehbi S (1990) The effect of chamomile on hyperlipidemias in rats. J Fac Medicine (Baghdad) 32(1):7

    Google Scholar 

  21. Jornayvaz FR, Shulman GI (2012) Diacylglycerol activation of protein kinase Cepsilon and hepatic insulin resistance. Cell Metab 15(5):574–584. doi:10.1016/j.cmet.2012.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wong TY, Lin SM, Leung LK (2015) The flavone apigenin blocks nuclear translocation of sterol regulatory element-binding protein-2 in the hepatic cells WRL-68. Br J Nutr 113(12):1844–1852. doi:10.1017/S0007114515001312

    Article  CAS  PubMed  Google Scholar 

  23. Wong TY, Lin SM, Leung LK (2015) The flavone luteolin suppresses SREBP-2 expression and post-translational activation in hepatic cells. PLoS ONE 10(8):e0135637. doi:10.1371/journal.pone.0135637

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wong T, Tan YQ, Lin S-M, Leung LK (2016) Phorbol 12-myristate 13-acetate promotes nuclear translocation of hepatic steroid response element binding protein-2. Int J Biochem Cell Biol 75:1–10

    Article  CAS  PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  26. Keller L, Murphy C, Wang HX, Fratiglioni L, Olin M, Gafvels M, Bjorkhem I, Graff C, Meaney S (2010) A functional polymorphism in the HMGCR promoter affects transcriptional activity but not the risk for Alzheimer disease in Swedish populations. Brain Res 1344:185–191. doi:10.1016/j.brainres.2010.04.073

    Article  CAS  PubMed  Google Scholar 

  27. Ruiz R, Jideonwo V, Ahn M, Surendran S, Tagliabracci VS, Hou Y, Gamble A, Kerner J, Irimia-Dominguez JM, Puchowicz MA, DePaoli-Roach A, Hoppel C, Roach P, Morral N (2014) Sterol regulatory element-binding protein-1 (SREBP-1) is required to regulate glycogen synthesis and gluconeogenic gene expression in mouse liver. J Biol Chem 289(9):5510–5517. doi:10.1074/jbc.M113.541110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Knebel B, Lehr S, Hartwig S, Haas J, Kaber G, Dicken HD, Susanto F, Bohne L, Jacob S, Nitzgen U, Passlack W, Muller-Wieland D, Kotzka J (2014) Phosphorylation of sterol regulatory element-binding protein (SREBP)-1c by p38 kinases, ERK and JNK influences lipid metabolism and the secretome of human liver cell line HepG2. Arch Physiol Biochem 120(5):216–227. doi:10.3109/13813455.2014.973418

    Article  CAS  PubMed  Google Scholar 

  29. Kang OH, Choi JG, Lee JH, Kwon DY (2010) Luteolin isolated from the flowers of Lonicera japonica suppresses inflammatory mediator release by blocking NF-kappaB and MAPKs activation pathways in HMC-1 cells. Molecules 15(1):385–398. doi:10.3390/molecules15010385

    Article  CAS  PubMed  Google Scholar 

  30. Noh HJ, Sung EG, Kim JY, Lee TJ, Song IH (2010) Suppression of phorbol-12-myristate-13-acetate-induced tumor cell invasion by apigenin via the inhibition of p38 mitogen-activated protein kinase-dependent matrix metalloproteinase-9 expression. Oncol Rep 24(1):277–283

    CAS  PubMed  Google Scholar 

  31. Garige M, Gong M, Varatharajalu R, Lakshman MR (2010) Quercetin up-regulates paraoxonase 1 gene expression via sterol regulatory element binding protein 2 that translocates from the endoplasmic reticulum to the nucleus where it specifically interacts with sterol responsive element-like sequence in paraoxonase 1 promoter in HuH7 liver cells. Metabolism 59(9):1372–1378. doi:10.1016/j.metabol.2009.12.025

    Article  CAS  PubMed  Google Scholar 

  32. Moon J, Lee SM, Do HJ, Cho Y, Chung JH, Shin MJ (2012) Quercetin up-regulates LDL receptor expression in HepG2 cells. Phytother Res 26(11):1688–1694. doi:10.1002/ptr.4646

    Article  CAS  PubMed  Google Scholar 

  33. Mehta NK (1841) Mehta KD (2014) Protein kinase C-beta: an emerging connection between nutrient excess and obesity. Biochim Biophys Acta 10:1491–1497. doi:10.1016/j.bbalip.2014.07.011

    Google Scholar 

  34. Harja E, Chang JS, Lu Y, Leitges M, Zou YS, Schmidt AM, Yan SF (2009) Mice deficient in PKCbeta and apolipoprotein E display decreased atherosclerosis. FASEB J 23(4):1081–1091. doi:10.1096/fj.08-120345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu N, Sarna LK, Hwang SY, Zhu Q, Wang P, Siow YL, O K (2013) Activation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase during high fat diet feeding. Biochim Biophys Acta 1832(10):1560–1568. doi:10.1016/j.bbadis.2013.04.024

    Article  CAS  PubMed  Google Scholar 

  36. Huang W, Bansode RR, Bal NC, Mehta M, Mehta KD (2012) Protein kinase Cbeta deficiency attenuates obesity syndrome of ob/ob mice by promoting white adipose tissue remodeling. J Lipid Res 53(3):368–378. doi:10.1194/jlr.M019687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singh DK, Banerjee S, Porter TD (2009) Green and black tea extracts inhibit HMG-CoA reductase and activate AMP kinase to decrease cholesterol synthesis in hepatoma cells. J Nutr Biochem 20(10):816–822. doi:10.1016/j.jnutbio.2008.07.011

    Article  CAS  PubMed  Google Scholar 

  38. Singh DK, Li L, Porter TD (2006) Policosanol inhibits cholesterol synthesis in hepatoma cells by activation of AMP-kinase. J Pharmacol Exp Ther 318(3):1020–1026. doi:10.1124/jpet.106.107144

    Article  CAS  PubMed  Google Scholar 

  39. Shih CC, Lin CH, Lin YJ, Wu JB (2013) Validation of the antidiabetic and hypolipidemic effects of hawthorn by assessment of gluconeogenesis and lipogenesis related genes and AMP-activated protein kinase phosphorylation. Evid Based Complement Altern Med 2013:597067. doi:10.1155/2013/597067

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Chinese University of Hong Kong Direct Grant Project (Grant # 4053047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai K. Leung.

Ethics declarations

Conflict of Interest

The authors do not have conflicts of interest to declare in this study.

Additional information

Yan Qin Tan and Tsz Yan Wong have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Y.Q., Wong, T.Y., Lin, Sm. et al. Dietary flavones counteract phorbol 12-myristate 13-acetate-induced SREBP-2 processing in hepatic cells. Mol Cell Biochem 424, 163–172 (2017). https://doi.org/10.1007/s11010-016-2851-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2851-6

Keywords

Navigation