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Abstract In the adrenal cortex, corticotropin induces the

expression of several genes encoding proteins involved in

the synthesis and intracellular transport of steroid hor-

mones via the protein kinase A (PKA) signalling pathway,

and this process is mediated by steroidogenic factor-1 (SF-

1). This study was designed to elucidate the influence of

the PKA and PKC pathways on the expression of the SF-1

gene in mouse adrenocortical cells, line Y-1. It has also

been attempted to answer the question whether or not SF-1

plays a role in the PKA-induced expression of LIPE gene

encoding hormone-sensitive lipase/cholesteryl esterase,

which supplies cholesterol for steroid hormone synthesis.

In this study, we found that stimulation of the PKA path-

way caused a significant increase in SF-1 expression, and

that this effect was abolished by the PKA inhibitor, H89.

Decreased SF-1 gene transcript levels were seen with the

simultaneous activation of PKA and PKC, suggesting a

possible interaction between the PKA and PKC pathways.

It was also observed that SF-1 increased the transcriptional

activity of the LIPE gene by interacting with the SF-1

response element located in promoter A. Moreover, tran-

sient silencing of SF-1 expression with specific siRNAs

abolished PKA-stimulated transcription of the LIPE gene,

indicating that SF-1 is an important regulator of LIPE

expression in Y-1 cells and thus could play a role in the

regulation of the cholesterol supply for adrenal

steroidogenesis.
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Introduction

The synthesis and secretion of steroid hormones in the

adrenal cortex is regulated by corticotropin (ACTH),

secreted by the anterior pituitary. Upon binding to a

specific receptor (melanocortin type 2 receptor) via the Gs

protein, ACTH activates the membrane-bound adenylyl

cyclase, causing an increase in the intracellular concen-

tration of cAMP, an activator of the PKA. Increased con-

centration of cAMP, and thereby increased activity of the

PKA, can be achieved in vitro by treatment of the cells

with forskolin, which directly activates adenylyl cyclase.

In the adrenal cortex, ACTH acts via the PKA pathway

to induce the expression of genes encoding proteins

involved in the synthesis and intracellular transport of

steroid hormones [1–3] as well as the supply of substrate,

cholesterol, stored in lipid droplets. These actions are

mediated by steroidogenic factor-1 (SF-1), which induces

the expression of genes encoding members of the cyto-

chrome P450 (CYP) superfamily, as well as the genes

encoding ACTH receptor, and transporting proteins

including steroidogenic acute regulator (StAR) [4–6].

In the adrenal cortex, hormone-sensitive lipase/c-

holesteryl esterase (HSL) catalyses the hydrolysis of fatty

acyl esters of cholesterol and acts as a supplier of choles-

terol for steroid hormone synthesis. Numerous investiga-

tions have shown that HSL is activated by the covalent

phosphorylation of Ser563 and Ser660 residues in its regu-

latory domain. These reactions are catalysed by a cAMP-
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dependent PKA whose activity is increased by ACTH at a

posttranslational level [7]. HSL is encoded by the LIPE

gene (a member of the LIP gene family) and is located on

chromosome 19q13.3. This gene is composed of nine exons

plus additional six, which are transcribed in a tissue-de-

pendent fashion by tissue-specific promoters. In the adrenal

cortex, the transcription is regulated by promoter A [8, 9]

and the principal regulator of LIPE expression is ACTH

[10].

Based on our understanding of the mechanisms that

regulate the synthesis of steroidogenic enzymes, it can be

assumed that HSL is controlled not only by switching on

and off the catalytic activity of the enzyme, which con-

stitutes a short-term regulation, but also by the activation of

LIPE gene expression, encoding HSL, which represents a

long-term effect. Moreover, by drawing an analogy to

proteins encoded by the other genes associated with

steroidogenesis, it is possible that transcription factor SF-1

affects the transcriptional activity of the LIPE gene in

response to stimulation by ACTH.

It has been reported that SF-1 expression is essential for

survival and that SF-1(-/-) mice normally die at E8 due

to the lack of corticosteroids, unless they are rescued by the

administration of synthetic hormones [11]. SF-1 regulates

the expression of genes involved in differentiation of

gonads, sex determination [12] and steroidogenesis. The

role of SF-1 in activating of steroidogenic enzyme pro-

moters has been defined for CYP11A1, CYP11B1,

CYP11B2, CYP17, CYP19, CYP21 and DAX-1 [4, 13–15].

SF-1 activates the basic expression of these genes and

additionally controls the entry of cholesterol into the cells

by controlling the expression of ACTH, LDL and HDL

receptors, intracellular cholesterol transporters (sterol car-

rier protein 2, and SCP-2) [16, 17] and the StAR protein

(steroidogenic acute regulatory protein), which transports

cholesterol from the outer to the inner mitochondrial

membrane [18]. In addition, SF-1 also participates in the

regulation of the expression of genes encoding enzymes

involved in the de novo synthesis of cholesterol in

steroidogenic tissues [19]. It is known that ACTH regulates

the expression of steroidogenic genes via the PKA sig-

nalling pathway. However, it has not been established

whether ACTH regulates the expression of SF-1. Our

studies in the human adrenocortical cell line H295R pro-

vided evidence that the activators of the PKA pathway

induce the expression of LIPE via SF-1 [20]. Activators of

the PKC signalling pathway, such as phorbol esters and

angiotensin II, cause an increase in the expression of HDL

receptor (SR-B1) and slightly increase the transcriptional

activity of the gene encoding the LDL receptor [21]. It is

also possible that the activators of PKC affect the expres-

sion of SF-1 and the genes encoding enzymes of the

steroidogenic pathway, including HSL. Although the

mechanism of interaction of PKA with PKC has not been

elucidated, it is known that TPA is capable of reducing the

activity of the PKA pathway through activation of PKC

[21].

The aim of this study was to examine whether or not SF-

1 expression is regulated by PKA and to clarify the putative

role of SF-1in the PKA-induced expression of LIPE.

Experimental procedure

Cell culture

Mouse adrenocortical cells (line Y-1), obtained from the

American Type Culture Collection (Manassas, VA, USA),

were cultured in Ham’s F-12/DMEM 1:1 (v/v) containing

2.5 mM glutamine and supplemented with 10 % foetal

bovine serum (FBS), and antibiotic/antimycotic (ABAM)

containing 100 U/ml penicillin, 1 mg/ml streptomycin and

100 U/ml nystatin, all from Sigma-Aldrich (USA).

Incubation of Y-1 cells with test substances

After confluence was reached, the cells were given fresh

medium (as above) without FBS. After 24-h incubation, the

following substances were added: 25 lM forskolin (acti-

vator of adenylyl cyclase), 20 lM H-89 (inhibitor of pro-

tein kinase A) and 10 lM tetradecanoyl phorbol acetate

(TPA; activator of protein kinase C), and the incubation

was conducted for 24 h. After incubation, the cells were

washed with PBS and subjected to further analyses.

Isolation of RNA, reverse transcription

and amplification of cDNA

RNA was isolated according to the phenol–chloroform

method [22] using TRItidy reagent (Applichem, Germany).

One lg of RNA was then reverse transcribed with the use

of MMLV transcriptase and random hexamers (Novazym,

Poznan, Poland), and the concentrations of the SF1 and the

LIPE transcripts were estimated by RT-qPCR with the use

of the LightCycler 1.0 System (Roche Diagnostics, Ger-

many) and the designed primers (Table 1). The results of

RT-qPCR analysis were normalized to MRPL19 transcript

(from the mitochondrial ribosomal protein L19).

Estimation of LIPE promoter activity using dual

luciferase system

Using FuGene HD reagent (Roche Diagnostics, Germany),

cells were transfected with the expression vector pCMV-

SF1 containing the SF-1 gene and co-transfected with two
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other constructs: the reporter vector pGL3 harbouring

Firefly luciferase gene under the control of -343, or

-2150 bp fragment of LIPE promoter A, and the pRL-TK

vector, containing Renilla luciferase gene and used to

correct for transfection efficiency. After transfection, the

cells were incubated for 24 h, harvested and lysed, and the

luciferase activity was determined using the Dual Luci-

ferase System (Promega, USA) and a 20/20n Luminometer

(Turner Biosystems, USA).

Preparation of the nuclear extract

and electrophoretic mobility shift assay (EMSA)

Nuclear extract was prepared by lysing Y-1 cells in low-

salt buffer [100 mM HEPES pH 7.9, 15 mM MgCl2,

100 mM KCl, 0.1 M dithiothreitol (DTT)] and the protease

inhibitor (PMSF). After separation of the cytosol by cen-

trifugation, the nuclear fraction was extracted with high-

salt buffer (20 mM HEPES pH 7.9, 1.5 mM MgCl2,

0.42 M NaCl, 0.2 mM EDTA, 20 % glycerol, 0.1 M DTT)

and PMSF, mixed and centrifuged at 13,0009g for 5 min

and the supernatant was used for the assay.

The double-stranded oligonucleotide:

50-GCCGCCAAGGTCTCAGGCAAGGTCAGGGAC-

30, covering the SF-1 binding sites (underlined) within the

LIPE promoter A, was labelled with Cy5. The binding reac-

tion contained 10 lg of protein in 59 binding buffer (60 mM

HEPES, 20 mM Tris–HCl pH 8.0, 300 mM KCl, 5 mM

EDTA, 5 mM EGTA, 60 % glycerol, 1 lg poly(dC); 1 %

BSA and 25 mM DTT). The reaction mixture was incubated

for 20 min at 4 �C and, after adding the labelled probe

(1 pmol/ll), for another 30 minunder the same conditions. To

verify the specificity of oligonucleotide binding to SF-1, the

control reactions contained a 1:1 v/v mixture of labelled and

unlabelled probes. Protein–DNA complexes were subjected

to electrophoresis on non-denaturing 4 % polyacrylamide gel

for 2.5 h at 75 V, and the labelled bands were visualized in a

laser scanner FLA-5100 (FUJIFILM, Japan). Immediately

after electrophoresis the gel was subjected to Western blot

analysis using antibody directed against SF-1, followed by a

HRP-conjugated secondary antibody (Santa Cruz Biotech-

nology, USA) and determination of peroxidase activity.

SF-1 silencing and determination of LIPE

expression

Silencing of SF-1 expression was achieved by 24-h incu-

bation of the cells transfected with a mixture of three

siRNAs (Santa Cruz Biotechnology, USA) complementary

to the SF-1 transcript. The effectiveness of silencing on the

LIPE transcript level was determined by RT-qPCR, while

on the SF-1 protein level the determination was made via

Western blotting employing anti-SF-1 antibody and horse

radish peroxidase-conjugated anti-c-globulin (Santa Cruz

Biotechnology, USA) for detection.

Statistical analysis

The results were analysed with the aid of GraphPad InStat

v.3.05 (La Jolla, CA, USA) and Microsoft Excel 2007. The

results are the mean ± SEM of three independent experi-

ments. To estimate the influence of test substances on the

level of transcripts, one-way ANOVA or two-way ANOVA

tests were applied. Significance of the differences between

individual samples was tested at the level of *P\ 0.05,

**P\ 0.01 or ***P\ 0.001.

Results and discussion

The PKA but not the PKC pathway regulates

transcription of SF-1

To investigate the effect of the PKA signalling pathway on

the expression of SF-1, ACTH was replaced by forskolin,

an activator of adenylate cyclase, whose effect on Y-1 cells

was earlier established [23, 24]. Y-1 cells were incubated

with forskolin, and after 24-h incubation, a three-fold

Table 1 Oligonucleotide

primers used for RT-qPCR
Primer name Primer sequence Amplicon length (bp)

mSF-1 F 50-TACTGGACAGGAGGTGGA-30 142

mSF-1 R 50-GAACTTGAGACAGACGAAC-30

mLIPE F 50-TCCAAGCAGGGCAAAGAAG-30 109

mLIPE R 50-GTGTCATCGTGCGTAAATCC-30

mMRPL19 F 50-AAGACGAGAGAAGGTTCCTG-30 170

mMRPL19 R 50-TAGGGGTCGGCTGTGGTG-30

Primers were designed using Oligo v.6.71 software, and DNA sequences were obtained from GenBank

(http://www.ncbi.nlm.nih.gov/nuccore/)

F forward, R reverse
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increase in the level of SF-1 transcript was observed. This

was accompanied by a substantial increase in the protein

product of the gene (not shown). This effect was abolished

when the cells were incubated with a selective inhibitor of

the PKA, H-89 (Fig. 1). Although the regulation of SF-1

transcription by ACTH or cAMP in adrenocortical cells

was previously investigated [25–28], the results from dif-

ferent studies were contradictory. In the mid-1990s, it was

shown that in response to stimulation by forskolin or

overexpression of the PKA catalytic subunit in Y-1 cells,

the level of SF-1 protein increases, while the SF-1 tran-

script level remains the same [25]. However, SF-1 tran-

script levels were elevated in bovine adrenal cortex cells

under identical conditions [26, 27]. The findings reported

here are similar to those obtained in mouse and in bovine

adrenocortical cells [28], but they are contradictory to the

results reported by other laboratories investigating Y-1

cells, e.g. [29]. Such discrepancies may be due to high

heterogeneity of Y-1 cell lines, especially their response to

stimulation of the PKA signalling pathway [30].

It was previously established that the protein kinase C

(PKC) pathway regulates the expression of some genes

involved in steroidogenesis. Activators of the PKC path-

way, such as phorbol esters and angiotensin II, enhance the

expression of SR-B1 and slightly increase the transcrip-

tional activity of the gene encoding LDL receptor [21]. We

therefore propose that, as in the case of other genes

involved in steroidogenesis, PKC might affect SF-1

expression. Moreover, we hypothesize that there is an

interaction between the PKA and the PKC pathways. In

order to answer these questions, Y-1 cells were incubated

with forskolin, TPA and with the activators of both kinases.

Activation of PKC did not change the level of SF-1 tran-

script (Fig. 1) indicating that the PKC pathway had no

effect on the transcriptional activity of SF-1. Interestingly,

simultaneous activation of PKA and PKC resulted in a

lower level of SF-1 transcript, suggesting an interaction

between both pathways. It is known that PKC induces the

expression of the gene encoding phosphodiesterase, which

hydrolyses cAMP [21]. Therefore, PKA-stimulated SF-1

transcription is probably inhibited through decreasing

cAMP level.

SF-1 stimulates transcriptional activity of LIPE

promoter A via the PKA pathway

Since SF-1 is a principal transcription factor involved in

the regulation of expression of numerous steroidogenic

genes [2], we presumed that it may also regulate the

expression of LIPE. In order to investigate SF-1-dependent

regulation of LIPE transcriptional activity, the cells were

transfected with the vector containing Firefly luciferase

gene under the control of the -343 or -2150 fragments of

LIPE promoter A and co-transfected with the vector

expressing SF-1. After 24-h incubation, the luciferase

activity was determined and normalized to the transfection

efficiency measured by the Renilla luciferase activity. SF-1

overexpression resulted in an almost three-fold increase in

the transcriptional activity of the -2150 fragment of LIPE

promoter A, while there was no significant effect of SF-1

on the transcriptional activity of the -343 fragment

(Fig. 2a). These results strengthen our observation,

obtained from the computer analysis of the DNA sequence

of LIPE promoter A, that within the region ranging from

the -343 to -2150 bp, there are two SF-1-binding sites

located within the -1400 to -1420 bp region which sig-

nificantly affect LIPE activity.

Based on these results, we utilized EMSA to examine

whether SF-1 binds directly to the LIPE promoter. For

this purpose, we used the Cy5-labelled oligonucleotide

corresponding to the SF-1 binding sites within the pro-

moter fragment. The 50-end-labelled oligonucleotide was

incubated with 10 lg of the nuclear extract from the Y-1

cells either alone or with the mixture of 1:1 labelled and

unlabelled oligonucleotide. As a negative control, the

probe was also incubated without the nuclear extract.

Formation of DNA–protein complexes was then moni-

tored by electrophoresis on non-denaturing polyacry-

lamide gels. The formation of DNA–protein complexes

was greatly reduced by the addition of unlabelled

Fig. 1 Effects of protein kinase A (PKA) and protein kinase C (PKC)

stimulation on the expression of SF-1 in Y-1 cells. Y-1 cells were

incubated for 12 h with or without (control) forskolin (an activator of

the PKA pathway), or with or without (control) tetradecanoyl phorbol

acetate (TPA; an activator of PKC pathway). The incubation was

followed by RNA extraction and estimation of the SF1 transcript

concentration by RT-qPCR. C no additions (control), F forskolin, H-

89 PKA inhibitor, TPA tetradecanoyl phorbol acetate. The results are

the mean of three independent experiments ± SEM. The effect of

forskolin on the concentration of SF-1, estimated by Western blotting,

is shown in the inset
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oligonucleotide of the same sequence (Fig. 2b). In order

to confirm the presence of SF-1 in the DNA–protein

complexes, Western blot analysis using antibody directed

against SF-1 was conducted (Fig. 2c) and confirmed the

direct binding of SF-1 to the response element within the

LIPE promoter A.

The results of our experiments clearly indicate that

SF-1 is involved in the regulation of LIPE expression.

However, the significance of SF-1 in PKA-dependent

regulation has not been established. In order to demon-

strate the significance of SF-1 in PKA-dependent LIPE

expression, Y-1 cells were transfected with siRNA

complementary to the SF-1 transcript resulting in a sig-

nificant decrease in the SF-1 protein 24 h after the

transfection. In order to evaluate whether or not the

deficiency of SF-1 affects the PKA-dependent expression

of LIPE, control cells and the SF-1-silenced Y-1 cells

were incubated for 6 h with forskolin resulting in a two-

fold increase in LIPE expression in the control cells

(Fig. 3). The silencing of SF-1 caused a significant

inhibition of PKA-dependent LIPE expression in our

experiments, suggesting that SF-1 contributes to the

regulation of LIPE expression via the PKA pathway. We

have shown that the activation of PKA is a crucial step

in the stimulation of LIPE expression by SF-1 and that it

is a major determinant in regulating cholesterol esterase/

lipase expression in adrenocortical cells. However, the

nature of the PKA and PKC interactions in regulating

SF-1 expression in Y-1 cells still remains unknown and

requires further investigation.

Fig. 2 The influence of SF-1 overexpression on the transcriptional

activity of LIPE promoter (a) and the detection of SF-1 binding to

LIPE promoter (b, c). Y-1 cells were transfected with SF-1 expression
vector and co-transfected with the pGL3 vector harbouring either

-2150 or -340 fragment of LIPE promoter A, directing Firefly

luciferase expression. Following 12-h incubation with (black bars) or

without (white bars) the SF-1 expression vector, protein was extracted

and the luciferase (Luc) activity was determined by luminometry. The

results were corrected for efficiency of transfection with the Luc

reporter, by measuring the activity of co-transfected Renilla

luciferase. The results are the mean of three independent experi-

ments ± SEM. Nuclear extract (NE) from Y-1 cells was incubated

with a Cy5-labelled DNA probe covering SF-1 binding sites within

the LIPE promoter. The incubation was followed by the electrophore-

sis in polyacrylamide gel and visualization of the probe by

fluorescence (EMSA). c incubation without the probe (control). The

labelled protein–probe complexes were excised from the gel (b), and
the protein was subjected to electrophoresis, blotted onto a PVDF

membrane and reacted with an antibody directed against SF-1
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