Skip to main content
Log in

Proteomics analysis of plasma membrane from liver sinusoidal endothelial cells after partial hepatectomy by an improved two-dimensional electrophoresis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Liver regeneration is an angiogenesis-associated phenomenon. To identify key plasma membrane (PM) proteins of endothelial cells involved in the initiation of angiogenesis during liver regeneration, the PM of liver sinusoidal endothelial cells (LSEC) at 72 h after partial hepatectomy was enriched by an established in vivo membrane density perturbation method. The differentially expressed membrane proteins compared to those from sham operation were quantified using an improved two-dimensional 16-BAC/SDS-PAGE and identified by LC-MS/MS. Several proteins were further confirmed by cICAT labeling quantitative strategy. A total of 47 proteins were identified including known and novel proteins involved in angiogenesis or liver regeneration, such as inducible nitric oxide synthase, type IV collagen, and integrin beta3. Our results indicated that the combination of the membrane density perturbation strategy and the improved two-dimensional electrophoresis (2-DE) method are useful for investigating the endothelial dysfunctions in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  CAS  PubMed  Google Scholar 

  2. Drixler TA, Vogten MJ, Ritchie ED, van Vroonhoven TJ, Gebbink MF, Voest EE, Borel Rinkes IH (2002) Liver regeneration is an angiogenesis-associated phenomenon. Ann Surg 236:703–711 (discussion 711–712)

    Article  PubMed  Google Scholar 

  3. Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276:60–66

    Article  CAS  PubMed  Google Scholar 

  4. Martinez-Hernandez A, Amenta PS (1995) The extracellular matrix in hepatic regeneration. FASEB J 9:1401–1410

    CAS  PubMed  Google Scholar 

  5. Ross MA, Sander CM, Kleeb TB, Watkins SC, Stolz DB (2001) Spatiotemporal expression of angiogenesis growth factor receptors during the revascularization of regenerating rat liver. Hepatology 34:1135–1148

    Article  CAS  PubMed  Google Scholar 

  6. Stolz DB, Ross MA, Salem HM, Mars WM, Michalopoulos GK, Enomoto K (1999) Cationic colloidal silica membrane perturbation as a means of examining changes at the sinusoidal surface during liver regeneration. Am J Pathol 155:1487–1498

    CAS  PubMed  Google Scholar 

  7. Seaman S, Stevens J, Yang MY, Logsdon D, Graff-Cherry C, St Croix B (2007) Genes that distinguish physiological and pathological angiogenesis. Cancer Cell 11:539–554

    Article  CAS  PubMed  Google Scholar 

  8. Mittal V, Nolan DJ (2007) Genomics and proteomics approaches in understanding tumor angiogenesis. Expert Rev Mol Diagn 7:133–147

    Article  CAS  PubMed  Google Scholar 

  9. Strey CW, Winters MS, Markiewski MM, Lambris JD (2005) Partial hepatectomy induced liver proteome changes in mice. Proteomics 5:318–325

    Article  CAS  PubMed  Google Scholar 

  10. Sun Y, Deng X, Li W, Yan Y, Wei H, Jiang Y, He F (2007) Liver proteome analysis of adaptive response in rat immediately after partial hepatectomy. Proteomics 7:4398–4407

    Article  CAS  PubMed  Google Scholar 

  11. McCann LA, Haywood MC, Ren BH, Simpson AM, Guilhaus M, Wasinger VC, Raftery MJ, Davey RA (2007) Identification of vascular surface proteins by in vivo biotinylation: a method sufficiently sensitive to detect changes in rat liver 2 weeks after partial hepatectomy. J Proteome Res 6:3108–3113

    Article  CAS  PubMed  Google Scholar 

  12. Roesli C, Mumprecht V, Neri D, Detmar M (2008) Identification of the surface-accessible, lineage-specific vascular proteome by two-dimensional peptide mapping. FASEB J 22:1933–1944

    Article  CAS  PubMed  Google Scholar 

  13. Hsieh HC, Chen YT, Li JM, Chou TY, Chang MF, Huang SC, Tseng TL, Liu CC, Chen SF (2009) Protein profilings in mouse liver regeneration after partial hepatectomy using iTRAQ technology. J Proteome Res 8:1004–1013

    Article  CAS  PubMed  Google Scholar 

  14. Fernandez MA, Albor C, Ingelmo-Torres M, Nixon SJ, Ferguson C, Kurzchalia T, Tebar F, Enrich C, Parton RG, Pol A (2006) Caveolin-1 is essential for liver regeneration. Science 313:1628–1632

    Article  CAS  PubMed  Google Scholar 

  15. Rybak JN, Ettorre A, Kaissling B, Giavazzi R, Neri D, Elia G (2005) In vivo protein biotinylation for identification of organ-specific antigens accessible from the vasculature. Nat Methods 2:291–298

    Article  CAS  PubMed  Google Scholar 

  16. Simonson AB, Schnitzer JE (2007) Vascular proteomic mapping in vivo. J Thromb Haemost 5(Suppl 1):183–187

    Article  PubMed  Google Scholar 

  17. Li X, Jin Q, Cao J, Xie C, Cao R, Liu Z, Xiong J, Li J, Yang X, Chen P, Liang S (2009) Evaluation of two cell surface modification methods for proteomic analysis of plasma membrane from isolated mouse hepatocytes. Biochim Biophys Acta 1794:32–41

    CAS  PubMed  Google Scholar 

  18. Jacobson BS, Stolz DB, Schnitzer JE (1996) Identification of endothelial cell-surface proteins as targets for diagnosis and treatment of disease. Nat Med 2:482–484

    Article  CAS  PubMed  Google Scholar 

  19. Oh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA, Testa JE, Schnitzer JE (2004) Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429:629–635

    Article  CAS  PubMed  Google Scholar 

  20. Li X, Xie C, Cao J, He Q, Cao R, Lin Y, Jin Q, Chen P, Wang X, Liang S (2009) An in vivo membrane density perturbation strategy for identification of liver sinusoidal surface proteome accessible from the vasculature. J Proteome Res 8:123–132

    Article  CAS  PubMed  Google Scholar 

  21. Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1:252–262

    Article  CAS  PubMed  Google Scholar 

  22. Wu CC, Yates JR 3rd (2003) The application of mass spectrometry to membrane proteomics. Nat Biotechnol 21:262–267

    Article  CAS  PubMed  Google Scholar 

  23. Lu X, Zhu H (2005) Tube-gel digestion: a novel proteomic approach for high throughput analysis of membrane proteins. Mol Cell Proteomics 4:1948–1958

    Article  CAS  PubMed  Google Scholar 

  24. Cao R, He Q, Zhou J, He Q, Liu Z, Wang X, Chen P, Xie J, Liang S (2008) High-throughput analysis of rat liver plasma membrane proteome by a nonelectrophoretic in-gel tryptic digestion coupled with mass spectrometry identification. J Proteome Res 7:535–545

    Article  CAS  PubMed  Google Scholar 

  25. Braun RJ, Kinkl N, Beer M, Ueffing M (2007) Two-dimensional electrophoresis of membrane proteins. Anal Bioanal Chem 389:1033–1045

    Article  CAS  PubMed  Google Scholar 

  26. Higgins GM, Anderson RM (1931) Experimental pathology of the liver I. Restoration of the liver of the white rat following partial surgical removal. Arch Pathol 12:186–202

    Google Scholar 

  27. Li X, Cao J, Jin Q, Xie C, He Q, Cao R, Xiong J, Chen P, Wang X, Liang S (2008) A proteomic study reveals the diversified distribution of plasma membrane-associated proteins in rat hepatocytes. J Cell Biochem 104:965–984

    Article  CAS  PubMed  Google Scholar 

  28. Chen P, Li X, Sun Y, Liu Z, Cao R, He Q, Wang M, Xiong J, Xie J, Wang X, Liang S (2006) Proteomic analysis of rat hippocampal plasma membrane: characterization of potential neuronal-specific plasma membrane proteins. J Neurochem 98:1126–1140

    Article  CAS  PubMed  Google Scholar 

  29. Yuan Q, An J, Liu DG, Sun L, Ge YZ, Huang YL, Xu GJ, Zhao FK (2004) Proteomic analysis of differential protein expression in a human hepatoma revertant cell line by using an improved two-dimensional electrophoresis procedure combined with matrix assisted laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 25:1160–1168

    Article  CAS  PubMed  Google Scholar 

  30. Wang YY, Cheung PY, Wong MS, Lo SC (2003) “Two-in-one” gel for spot matching after two-dimensional electrophoresis. Proteomics 3:580–583

    Article  CAS  PubMed  Google Scholar 

  31. Li J, Steen H, Gygi SP (2003) Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents: the yeast salinity stress response. Mol Cell Proteomics 2:1198–1204

    Article  CAS  PubMed  Google Scholar 

  32. Josic D, Clifton JG (2007) Mammalian plasma membrane proteomics. Proteomics 7:3010–3029

    Article  CAS  PubMed  Google Scholar 

  33. Speers AE, Wu CC (2007) Proteomics of integral membrane proteins—theory and application. Chem Rev 107:3687–3714

    Article  CAS  PubMed  Google Scholar 

  34. Burre J, Beckhaus T, Corvey C, Karas M, Zimmermann H, Volknandt W (2006) Synaptic vesicle proteins under conditions of rest and activation: analysis by 2-D difference gel electrophoresis. Electrophoresis 27:3488–3496

    Article  CAS  PubMed  Google Scholar 

  35. Bisle B, Schmidt A, Scheibe B, Klein C, Tebbe A, Kellermann J, Siedler F, Pfeiffer F, Lottspeich F, Oesterhelt D (2006) Quantitative profiling of the membrane proteome in a halophilic archaeon. Mol Cell Proteomics 5:1543–1558

    Article  CAS  PubMed  Google Scholar 

  36. Thijssen VL, Hulsmans S, Griffioen AW (2008) The galectin profile of the endothelium: altered expression and localization in activated and tumor endothelial cells. Am J Pathol 172:545–553

    Article  CAS  PubMed  Google Scholar 

  37. Ambs S, Merriam WG, Bennett WP, Felley-Bosco E, Ogunfusika MO, Oser SM, Klein S, Shields PG, Billiar TR, Harris CC (1998) Frequent nitric oxide synthase-2 expression in human colon adenomas: implication for tumor angiogenesis and colon cancer progression. Cancer Res 58:334–341

    CAS  PubMed  Google Scholar 

  38. Chen CN, Hsieh FJ, Cheng YM, Chang KJ, Lee PH (2006) Expression of inducible nitric oxide synthase and cyclooxygenase-2 in angiogenesis and clinical outcome of human gastric cancer. J Surg Oncol 94:226–233

    Article  CAS  PubMed  Google Scholar 

  39. Mousa SA (2008) Cell adhesion molecules: potential therapeutic and diagnostic implications. Mol Biotechnol 38:33–40

    Article  CAS  PubMed  Google Scholar 

  40. Medina J, Arroyo AG, Sanchez-Madrid F, Moreno-Otero R (2004) Angiogenesis in chronic inflammatory liver disease. Hepatology 39:1185–1195

    Article  CAS  PubMed  Google Scholar 

  41. Li S, Huang NF, Hsu S (2005) Mechanotransduction in endothelial cell migration. J Cell Biochem 96:1110–1126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Wang Ying for critical comments on the manuscript; we also appreciated Kannan Rangiah and Emer Lucey for their kindly language revision. This work was supported by National Basic Research Program of China (2007CB516809, 2007CB914203) and National Natural Science Foundation of China (30770437).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Chen or Songping Liang.

Additional information

Xuanwen Li and Li Xiong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Xiong, L., Xie, C. et al. Proteomics analysis of plasma membrane from liver sinusoidal endothelial cells after partial hepatectomy by an improved two-dimensional electrophoresis. Mol Cell Biochem 344, 137–150 (2010). https://doi.org/10.1007/s11010-010-0537-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0537-z

Keywords

Navigation