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Abstract
We consider coherent systems subject to random shocks that can damage a random number
of components of a system. Based on the distribution of the number of failed components, we
discuss three models, namely, (i) a shock can damage any number of components (including
zero) with the same probability, (i i) each shock damages, at least, one component, and
(i i i) a shock can damage, at most, one component. Shocks arrival times are modeled using
three important counting processes, namely, the Poisson generalized gamma process, the
Poisson phase-type process and the renewal process with matrix Mittag-Leffler distributed
inter-arrival times. For the defined shock models, we discuss relevant reliability properties
of coherent systems. An optimal replacement policy for repairable systems is considered as
an application of the proposed modeling.

Keywords Coherent system · Shock models · Poisson generalized gamma process · Poisson
phase-type process · Renewal process of the matrix Mittag-Leffler type

Mathematics Subject Classification 60E15 · 60K10

1 Introduction

Most of the real-world systems operate in random environments and hence, are often subject
to random external shocks. In a broad sense, the term “shock” is used to represent a potentially
harmful event of a relatively short duration (e.g., voltage surges in power generation systems,
wind gusts for wind turbines, earthquakes for various structures (for example, bridges), fail-
ures of cooling systems that result in a sharp rise of temperature of the main system, etc.). In
the literature, various shock models have been introduced based on different failure mecha-
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nisms in systems (see, e.g., Gut and Hüsler 1999; Cha and Finkelstein 2016; Gut 1990; Gong
et al. 2018, 2020; Eryilmaz 2017; Goyal et al. 2022a; Mallor and Omey 2001 to name a few).

Shock models were studied not only for single unit systems but also for multi-component
systems, namely, k-out-of-n systems, series–parallel system, parallel-series system and gen-
eral coherent systems (see Barlow and Proschan 1975 for the definitions). Some follow-up
articles review a few of these studies. For instance, Sheu and Liou (1992) have considered
the optimal replacement policy for a k-out-of-n system subject to random shocks occurred
according to the non-homogeneous Poisson process (NHPP). Skoulakis (2000) have dis-
cussed reliability characteristics of systems subject to randomshocks describedby the renewal
process. Sheu and Chang (2001) have studied the optimal replacement policy for a k-out-of-n
systembasedon theNHPP.Levitin andFinkelstein (2017a) have studied the optimal backup in
non-repairable 1-out-of-N heterogeneouswarm standby systems by considering twodifferent
causes of failures of components, namely, internal failures and external shocks. Levitin and
Finkelstein (2017b) developed a new general approach to obtain the performance characteris-
tics of complex non-repairable systems in the presence of shocks affecting individual element
as well as groups of elements. Eryilmaz and Devrim (2019) have considered reliability of a
k-out-of-n system subject to random shocks that occur at random times and cause the failure
of random number of components.Moreover, it was assumed in their model that shocks occur
according to the phase-type (PH) renewal process. Huang et al. (2019) have performed the
reliability analysis of coherent systems subject to internal failures and external shocks. Bian
et al. (2021) have studied multi-component systems subject to dependent competing failure
processes under the extreme and the cumulative shock models. Wang et al. (2022) have intro-
duced a novelmixed shockmodel for amulti-stateweighted k-out-of-n systemby considering
system’s resistance against shocks. Lorvand and Kelkinnama (2023) have studied some reli-
ability properties of k-out-of-n systems subject to random shocks under the δ-shock model.

A brief literature review of multi-component systems subject to random shocks shows that
theNHPP and the renewal processes aremostly used tomodel the process of shocks that affect
these systems. However, the NHPP has some basic limitations, e.g., the independent incre-
ment property which is a very restrictive in many real-life applications. For example, if there
is a larger number of shocks in the past, wemay expect the same in the future (positive depen-
dence). There are many more general counting processes that a free from this limitation. For
instance, the Poisson generalized gamma process (PGGP) and the Poisson phase-type pro-
cess (PPHP) are two rather general counting processes that possess the dependent increment
property. The PGGP was introduced and studied by Cha and Mercier (2021). This process
is mathematically tractable and contains many well-known processes (namely, the HPP), the
NHPP, the Pólya process, and the generalized Pólya process (GPP)) as the particular cases.
The PPHP was defined and studied by Goyal et al. (2022b). Due to the denseness property of
the mixing distribution (namely, the PH distribution), the PPHP can be used to approximate
any mixed Poisson process. Moreover, this process is also mathematically tractable due to its
matrix-based expressions. Both the PGGP and the PPHP are mixed Poisson processes and
hence, have the positive dependence property (see Theorem 4 in Cha and Mercier 2021).

It should be noted that the renewal processes, considered so far in the literature, are not
tailored to describe the heavy tail property for inter-arrival times. However, there are many
real-life scenarios (e.g., shocks generated by earthquakes, etc.) where the inter-arrival time
between two shocksmay have the heavy-tailed behavior. These cases can bemodeled by using
the well-known heavy-tailed distributions (e.g.„ Pareto, log-normal, heavy-tailed Weibull
distribution, etc.). In this paper, we propose to use the renewal process of the matrix-Mittag
Leffler type (RPMML) as a more general model. Inter-arrival times of the RPMML follow
the matrix Mittag-Leffler (MML) distribution which has a heavy-tailed behavior. Moreover,
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the MML distribution contains many popular distributions (with heavy-tailed behavior) as
the particular cases, namely, Mittag-Leffler distribution, fractional Erlang distribution, etc.
Moreover, the set of MML distributions is dense in the set of all distributions with non-
negative support. It is important to note that the fractional homogeneous Poisson process
(FHPP), one of the popular counting processes, is a ’very’ special case of the RPMML. The
contribution of our paper can be summarized as follows:

We suggest and describe three new models for the effect of shocks on performance of
coherent systems. Specifically,

(i) A shock can damage any number of components (including zero) with the same prob-
ability;

(ii) Each shock damages at least one component;
(iii) A shock can damage at most one component.

For the defined models, we obtain survival probabilities for coherent systems. These
results hold for any counting process. Furthermore, we discuss in detail some special cases
by considering three important counting processes, namely, the PPHP, the PGGP and the
RPMML. The specific case of the k-out-of-n system is also considered. Our results are
presented in the closed form that allow for straightforward computations.

The rest of the paper is organized as follows. In Section2, we present some preliminaries
that include definitions, notation, acronyms and descriptions of some important counting
processes. In Section3, we formulate our model. In Section4, we discuss some general
results for the defined models. In Section5, we derive some results for the defined models
for three specific counting processes, namely, the PGGP, the PPHP and the RPMML. In
Section6, as an application, we discuss the optimal replacement policy. Lastly, concluding
remarks are given in Section7.

To enhance the readability of the paper, all proofs of theorems, lemmas, and corollaries,
wherever given, are deferred to Appendix A. Further, a more general model is discussed in
Appendix B.

2 Preliminaries

For any random variable U , we denote the cumulative distribution function (cdf) by FU (·),
the survival/reliability function by F̄U (·), and the probability density function (pdf) by fU (·);
here F̄U (·) ≡ 1 − FU (·). Further, we denote the set of natural numbers by N, and the set of
real numbers byR. For any set A, |A| represents the cardinality of A.We define

∑0
i=1(·) ≡ 0.

Further, we denote the identity matrix by I . In what follows, we give a list of acronyms to
be used throughout the paper:

Acronyms:
PH: phase-type
pdf: probability density function
pmf: probablity mass function
cdf: cumulative distribution function
i.i.d.: independent and identically distributed
HPP: homogeneous Poisson process
MML: matrix Mittag-Leffler
NHPP: non-homogeneous Poisson process
PGGP: Poisson generalized gamma process
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PPHP: Poisson phase-type process
FHPP: fractional homogeneous Poisson process
RPMML: renewal process of matrix Mittag-Leffler type

Next, we briefly discuss some important counting processes.

2.1 PGGP

The PGGP is amixed Poisson processwith the generalized gammamixing distribution. It was
introduced by Cha and Mercier (2021). This process could be viewed as a Poisson process
having a random intensity function which is a product of a deterministic intensity function
and a random variable. Below we give the formal definition of the PGGP. First, we recall the
definition of the generalized gamma distribution (see Agarwal and Kalla 1996).

Definition 2.1 A random variable Q is said to have a generalized gamma distribution (GGD)
with the set of parameters {ν, μ, α, l}, ν ≥ 0, μ, α, l > 0, denoted by Q ∼ GG(ν, μ, α, l),
if its pdf is given by

fQ(q) = αμ−ν

�ν(μ, αl)

qμ−1 exp{−αq}
(q + l)ν

, q > 0,

where

�ν(μ, αl) =
∫ ∞

0

αμ−ν yμ−1 exp{−αy}
(y + l)ν

dy. (2.1)

Definition 2.2 A counting process {N (t), t ≥ 0} is said to be the PGGP with the set of
parameters {λ(t), ν, μ, α, l}, λ(t) > 0, for all t ≥ 0, ν ≥ 0, μ, α, l > 0, denoted by
PGGP(λ(t), ν, μ, α, l), if

(a) {N (t), t ≥ 0|Q = q} ∼ NH PP(qλ(t));
(b) Q ∼ GG(ν, μ, α, l). ��
Remark 2.1 The following statements are true (see Goyal et al. 2022a).

(a) The PGGP(λ(t), ν, μ, α, l), where λ(t) = λ (> 0), ν = 0, α = μ and μ → ∞, is the
HPP with the intensity λ, regardless of l;

(b) The PGGP(λ(t), ν, μ, α, l), where ν = 0, α = μ and μ → ∞, is the NHPP with the
intensity function λ(·), regardless of l;

(c) The PGGP(λ(t), ν, μ, α, l), where λ(t) = 1/b (> 0), ν = 0, μ = β, α = 1, is the
Pólya process with the set of parameters {β, b}, regardless of l;

(d) The PGGP(λ(t), ν, μ, α, l), where ν = 0, μ = τ/ζ, α = 1/ζ and λ(t) = η(t) exp
{ζ ∫ t

0 η(x)dx}, is the GPP with the set of parameters (η(t), ζ, τ ), regardless of l.

2.2 PPHP

The PPHP, introduced by Goyal et al. (2022b), is the mixed NHPP with the continuous phase
type (PH)mixing distribution. It is well known that “The set of PH distributions is dense in the
set of probability distributions on the non-negative real half-line”. Thus, the PH distribution
can be used to approximate any lifetime distribution and consequently, any mixed Poisson
process can also be approximated by the PPHP. This important property of the PPHP makes
it distinct from other counting processes. Below, we first define the PH distribution and then
give the definition of the PPHP.

123

6 Page 4 of 29



Methodology and Computing in Applied Probability (2024) 26:6

Definition 2.3 A non-negative random variable X is said to have a PH distribution, denoted
by X ∼ PH(π , T ), if

FX (x) = 1 − π exp{T x}e = 1 − π

( ∞∑

n=0

xn

n! T
n

)

e, x ≥ 0,

where

(i) e is the column vector with all elements being one;
(ii) π is a substochastic vector of order m, i.e., π is a row vector, all elements of π are

nonnegative, and πe ≤ 1, where m is a positive integer; and
(iii) T is a subgenerator of order m, i.e., T is an m × m matrix such that: (a) all diagonal

elements are negative; (b) all off-diagonal elements are nonnegative; (c) all row sums
are non-positive; and (d) T is invertible. ��

The pair (π , T ) is called a PH representation of X . Without loss of generality, we assume
πe = 1 throughout the paper.

Definition 2.4 A counting process {N (t) : t ≥ 0} is said to be the PPHP with the set of
parameters {λ(t),π , T }, denoted by PPH P(λ(t),π, T ), if

(i) {N (t) : t ≥ 0}|(X = x) ∼ NHPP (xλ(t));
(ii) X ∼ PH(π , T ),

where λ(t) > 0 and (π , T ) is a PH representation of X . ��
In the following lemma we give the pmf of the random variable N (t) following the PPHP

(see Goyal et al. 2022b).

Lemma 2.1 Let {N (t) : t ≥ 0} be the P PH P(λ(t),π, T ). Then pmf of N (t) is given by

P(N (t) = n) = (�(t))nπ(�(t)I − T )−(n+1)T0, t > 0, n ∈ N ∪ {0}.

2.3 RPMML

The class of MML distributions was defined and studied by Albrecher et al. (2020). These
distributions have heavier tails. Below we give the definition of a MML distribution (see
Albrecher et al. 2020).

Definition 2.5 Let (π , T ) be a PH reperesentation and 0 < γ ≤ 1. A random variable X is
said to have aMML distribution with the set of parameters {γ,π , T }, if its Laplace transform
is given by

LX (u) = π(uγ I − T )−1T0,

where T0 = −T e. ��
We write X ∼ MML(γ,π , T ) to indicate that X has a MML distribution with the set of

parameters {γ,π , T }. Further, the the cdf of X is given by

FX (x) = 1 − πEγ,1(T x
γ )e, (2.2)

where

Eγ,1(T x
γ ) =

∞∑

j=0

T j xγ j

�(γ j + 1)
.
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Clearly, when γ = 1, X ∼ PH(π, T ). Further, if π = 1 and T = −λ, then X has a
Mittag-Leffler distribution with parameters γ and λ (see Kataria and Vellaisamy 2019).

Next, we define the RPMML. Before that we give the definition of the FHPP.

Definition 2.6 The FHPP with the set of parameters {γ, λ}, denoted by FHPP(γ, λ), is a
renewal process with inter-arrival times following theMittag-Leffler distribution with param-
eters γ and λ.

Definition 2.7 A renewal process with inter-arrival times following the MML distribu-
tion with the set of parameters {γ,π , T } is called the RPMML with the set of parameters
{γ,π , T }. ��

For convenience, we denote the RPMML with the set of parameters {γ,π , T } by
RPMML(γ,π , T ).

Remark 2.2 The following observations can be made:

(i) The RPMML(1,π , T ) is the PH renewal process;
(ii) The RPMML(γ, 1,−λ) is the FHPP (γ, λ). ��

In the following lemma we give the pmf of the random variable N (t) following
RPMML(γ,π , T ).

Lemma 2.2 Let {N (t) : t ≥ 0} be the RPMML(γ,π , T ). Then the pmf of N (t) is given by

P(N (t) = n) = πn+1Eγ,1(Tn+1t
γ )e − πnEγ,1(Tnt

γ )e, t > 0, n = 0, 1, 2, . . . ,

where πn = (π , 0, . . . , 0) and

Tn =
(
T −T eπn−1
0 Tn−1

)

,

for n ≥ 2, with π1 = π , T1 = T and π0 = T0 = 0.

3 Model Description

Let L be a random variable representing the lifetime of a coherent systemwith n i.i.d. compo-
nents that started operating time t = 0. Assume that the system is subject to external shocks
that arrive at random times being the only cause of system’s failure. Let {N (t) : t ≥ 0} be an
orderly counting process where N (t) represents the number of shocks arrived by the time t .
Assume that each shock can affect a random number of components. Let Zi be the random
variable representing the number of components failed due to the i-th shock, i ∈ N. In what
follows, we give a list of model assumptions.

Assumptions:

• Each shock is harmless with probability p0 and harmful with probability 1 − p0, i.e.,
P(Zi = 0) = p0 and P(Zi �= 0) = 1 − p0, for i ∈ N.

• If the i-th shock is harmful then it can damage j components with probability p j , i.e.,
P(Zi = j) = p j , for all j = 1, 2, . . . , n, i ∈ N. Clearly, p1 + p2 + · · · + pn = 1− p0.

• {Zi : i ∈ N} is a sequence of i.i.d. random variables. This assumption is made for
mathematical convenience. Appendix B contains a more general setup where Zi ’s are
dependent with a specific dependency structure.

• The shock process {N (t) : t ≥ 0} and {Zi : i ∈ N} are independent.
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In what follows in this paper, we consider three special cases (with respect to distribution
of Zi ):

M1: P(Zi = j) = 1/(n + 1), j = 0, 1, 2, . . . , n, i.e., Zi follows the uniform distribution
over {0, 1, 2, . . . , n}. In other words, a shock can damage any number of components
(including zero) with the same probability. This model may be appropriate to use in a
situation where the distribution of Zi ’s is in question.

M2: Each shock is assumed to be harmful, and at least one component is affected by the
shock i.e., p0 = 0. Consequently, the range of Zi is given by {1, 2, . . . , n}, for all
i ∈ N.

M3: Each shock can harm at most one component i.e., p2 = p3 = · · · = pn = 0. Conse-
quently, the range of Zi is given by {0, 1}, for all i ∈ N.

Some real-world settings that comply with the described models are given below:

• Consider an apartment lighting system where n lamps are used to illuminate the apart-
ment. The apartment’s lighting is suitable if at least k (1 ≤ k ≤ n) lamps are on. If the
magnitude of electricity is above a fixed threshold, then some of these lamps may be
damaged. Consequently, the brightness of the apartment will be reduced. If each lamp
is considered a component and electric impulses with high magnitudes are considered
as shocks, then one can associate this problem with the model introduced in this paper.
This example is borrowed from Lorvand and Kelkinnama (2023).

• The Proton Exchange Membrane Fuel Cells power systems, described in detail in
Eryilmaz and Devrim (2019), is another example of the proposed model.

• In a cricket match, the batting team can be considered as a 2-out-of-11 system. Each
ball to the batsman can be considered a shock for the team (system). This setting can be
described by the M3 model.

4 General Model

In this section, we obtain some general results. We derive the expression for the survival
function of a coherent system for the defined model that is valid for an arbitrary orderly
counting process {N (t) : t ≥ 0}.Wefirst consider the k-out-of-n systems, and then generalize
the result to coherent systems.

Let M(t) be a random variable representing the number of failed components of a system
by time t . Then

M(t) =
N (t)∑

i=1

Zi . (4.1)

Further, let Lk:n be a random variable representing the lifetime of a k-out-of-n system with
n i.i.d. components. Note that this system functions until the (n − k + 1)-th component
fails. Then

F̄Lk:n (t) = P(M(t) < n − k + 1) =
n−k∑

i=0

P(M(t) = i). (4.2)

Further, let L be a random variable representing the lifetime of a coherent system with n
i.i.d. components, described by the system’s signature vector (s1, s2, . . . , sn) (see Samaniego
2007). Then
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F̄L(t) =
n∑

k=1

P(L > t |L = Lk:n)P(L = Lk:n) =
n∑

k=1

sk F̄Lk:n (t), (4.3)

where sk = P(L = Lk:n), for k = 1, 2, . . . , n.
To obtain the survival functions of L and Lk:n , we first need to find the probabili-

ties P(M(t) = i), for i = 0, 1, 2, . . . , n − k. In the following lemma, we derive these
probabilities.

Lemma 4.1 Let P(Zi = j) = p j , for all j = 0, 1, 2, . . . , n, i ∈ N, and {N (t) : t ≥ 0} be a
counting process. Then

P(M(t) = 0) =
∞∑

j=0

p j
0 P(N (t) = j)

and

P(M(t) = i) =
i∑

m=1

∞∑

j=m

(
j

m

)
⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ p j−m
0 P(N (t) = j), i = 1, 2, . . . , n − 1,

where m,i = {z = (z1, z2, . . . , zm)|z1 + z2 + · · · + zm = i, 1 ≤ zl ≤ n, 1 ≤ l ≤ m} and
1 ≤ m ≤ i < n. ��

The next theorem immediately follows from Lemma 4.1 and (4.2).

Theorem 4.1 Let P(Zi = j) = p j , for all j = 0, 1, 2, . . . , n, i ∈ N. Assume that shocks
occur according to a counting process {N (t) : t ≥ 0}. Then

F̄Lk:n (t) =
∞∑

j=0

p j
0 P(N (t) = j) +

n−k∑

i=1

i∑

m=1

∞∑

j=m

(
j

m

)
⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ p j−m
0 P(N (t) = j),

where m,i = {z = (z1, z2, . . . , zm)|z1 + z2 + · · · + zm = i, 1 ≤ zl ≤ n, 1 ≤ l ≤ m} and
1 ≤ m ≤ i ≤ n − k. ��

The succeeding corollary follows from Theorem 4.1.

Corollary 4.1 The following results hold true.

(i) For model M1:

F̄Lk:n (t) =
∞∑

j=0

(
1

n + 1

) j

P(N (t) = j)

+
n−k∑

i=1

i∑

m=1

∞∑

j=m

(
j

m

)(
i − 1

m − 1

) (
1

n + 1

) j

P(N (t) = j);

(ii) For model M2:

F̄Lk:n (t) = P(N (t) = 0) +
n−k∑

i=1

i∑

m=1

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ P(N (t) = m);
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(iii) For model M3:

F̄Lk:n (t) =
∞∑

j=0

p j
0 P(N (t) = j) +

n−k∑

i=1

∞∑

j=i

(
j

i

)

pi1 p
j−i
0 P(N (t) = j).

��
In the next theorem we derive the survival function of a coherent system for the defined

model. The proof is straightforward by using (4.3) and Theortem 4.1.

Theorem 4.2 Let P(Zi = j) = p j , for all j = 0, 1, 2, . . . , n, i ∈ N. Assume that shocks
occur according to a counting process {N (t) : t ≥ 0}. Then

F̄L(t) =
∞∑

j=0

p j
0 P(N (t) = j)

+
n−1∑

k=1

n−k∑

i=1

i∑

m=1

∞∑

j=m

sk

(
j

m

)
⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ p j−m
0 P(N (t) = j),

where m,i = {z = (z1, z2, . . . , zm)|z1 + z2 + · · · + zm = i, 1 ≤ zl ≤ n, 1 ≤ l ≤ m},
sk = P(L = Lk:n), 1 ≤ k ≤ n − 1 and 1 ≤ m ≤ i ≤ n − k.

Remark 4.1 By proceeding in the same line as in Corollary 4.1, the survival function of a
coherent system for models M1, M2 and M3 can be obtained.

5 Some Special Cases

In this section, we derive survival functions for the defined model for some specific shock
processes, namely, the PGGP, the PPHP and the RPMML. As these processes are quite
‘sophisticated’, each case needs specific technique and reasoning.

5.1 PGGP

Theorem 5.1 Let P(Zi = j) = p j , for all j = 0, 1, 2, . . . , n, i ∈ N. Assume that shocks
occur according to the PGGP(λ(t), ν, μ, α, l). Then

F̄Lk:n (t) =
(

α

α + (1 − p0)�(t)

)μ−ν [
�ν(μ, (α + (1 − p0)�(t))l)

�ν(μ, αl)

+
n−k∑

i=1

i∑

m=1

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠
(

�(t)

α + (1 − p0)�(t)

)m

�ν(m + μ, (α + (1 − p0)�(t))l)

m!�ν(μ, αl)

]

,

where m,i = {z = (z1, z2, . . . , zm)|z1 + z2 + · · · + zm = i, 1 ≤ zl ≤ n, 1 ≤ l ≤ m} and
1 ≤ m ≤ i ≤ n − k. ��

The next corollary immediately follows from Theorem 5.1. Here, we obtain the survival
function of the k-out-of-n system for models M1, M2 and M3.
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Corollary 5.1 The following results hold true.

(i) For model M1:

F̄Lk:n (t) =
(

α

α + (n/(n + 1))�(t)

)μ−ν [
�ν(μ, (α + (n/(n + 1))�(t))l)

�ν(μ, αl)

+
n−k∑

i=1

i∑

m=1

(
i − 1

m − 1

)

×
(

1

n + 1

)m (
�(t)

α + (n/(n + 1))�(t)

)m

�ν(m + μ, (α + (n/(n + 1))�(t))l)

m!�ν(μ, αl)

]

;

(ii) For model M2:

F̄Lk:n (t) =
(

α

α + �(t)

)μ−ν [
�ν(μ, (α + �(t))l)

�ν(μ, αl)

+
n−k∑

i=1

i∑

m=1

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠
(

�(t)

α + �(t)

)m

�ν(m + μ, (α + �(t))l)

m!�ν(μ, αl)

]

;

(iii) For model M3:

F̄Lk:n (t) =
(

α

α + p1�(t)

)μ−ν [
�ν(μ, (α + p1�(t))l)

�ν(μ, αl)

+
n−k∑

i=1

(
p1�(t)

α + p1�(t)

)i
�ν(i + μ, (α + p1�(t))l)

i !�ν(μ, αl)

]

.

��
The next corollary immediately follows from Theorem 5.1, and Remark 2.1 (b) and (c).

Corollary 5.2 For the general model, the following results hold true for the k-out-of-n system.

(i) Assume that shocks occur according to the NHPP with intensity λ(t). Then

F̄Lk:n (t) = exp{−(1 − p0)�(t)}
[

1 +
n−k∑

i=1

i∑

m=1

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ �(t)m

m!
]

.

(ii) Assume that shocks occur according to the Pólya with the set of parameters {β, b}. Then

F̄Lk:n (t) =
(

b

(1 − p0)t + b

)β [

1 +
n−k∑

i=1

i∑

m=1

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠

�(β + m)

�(β)m!
(

t

(1 − p0)t + b

)m ]

.

Remark 5.1 From the above corollary, one can obtain the survival functions of the system
for models M1, M2 and M3 for the NHPP and the Pólya shock processes. ��
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In the succeeding theorem, we derive the survival function of a coherent system for the
defined model. The proof follows from (4.3) and Theorem 5.1.

Theorem 5.2 Let P(Zi = j) = p j , for all j = 0, 1, 2, . . . , n, i ∈ N. Assume that shocks
occur according to the PGGP(λ(t), ν, μ, α, l). Then

F̄L(t) =
(

α

α + (1 − p0)�(t)

)μ−ν [
�ν(μ, (α + (1 − p0)�(t))l)

�ν(μ, αl)

+
n−1∑

k=1

n−k∑

i=1

i∑

m=1

sk

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ ×
(

�(t)

α + (1 − p0)�(t)

)m

�ν(m + μ, (α + (1 − p0)�(t))l)

m!�ν(μ, αl)

]

,

where m,i = {z = (z1, z2, . . . , zm)|z1 + z2 + · · · + zm = i, 1 ≤ zl ≤ n, 1 ≤ l ≤ m},
sk = P(L = Lk:n), and 1 ≤ m ≤ i ≤ n − k. ��

The next corollary follows from Theorem 5.2, and Remark 2.1 (b) and (c).

Corollary 5.3 For the general model, the following results hold true.

(i) Assume that shocks occur according to the NHPP with intensity λ(t). Then

F̄L(t) = exp{−(1 − p0)�(t)}
[

1 +
n−1∑

k=1

n−k∑

i=1

i∑

m=1

sk

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ �(t)m

m!
]

.

(ii) Assume that shocks occur according to the Pólya process with the set of parameters
{β, b}. Then

F̄L(t) =
(

b

(1 − p0)t + b

)β [

1 +
n−1∑

k=1

n−k∑

i=1

i∑

m=1

sk

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠

�(β + m)

�(β)m!
(

t

(1 − p0)t + b

)m ]

.

��
In the succeeding example, we illustrate the result given in Corollary 5.2 (i i).

Example 5.1 Consider a 3-out-of-4 system, i.e., k = 3 and n = 4. Assume that shocks occur
according to the Pólya process with the set of parameters {β, b}. Then, from Corollary 5.2
(i i), we get

F̄L3:4(t) =
(

b

(1 − p0)t + b

)β [

1 + β p1

(
t

(1 − p0)t + b

)]

.

Let β = 4 and b = 2. In Fig. 1a, we plot the above survival function against t ∈ [0, 15], for
different values of p0 and for fixed p1 = 0.2. This figure shows that the system’s survival pro-
bability increases as p0 increases. In Fig. 1b,we plot the system’s survival function against t ∈
[0, 15], for modelM1, with p0 = 1/5 and p2 = 1/5. In Fig. 1c, the system’s survival function
against t ∈ [0, 10], for different values of p1, is plotted for model M2. From this figure, we
conclude that an increment in p1 increases the system’s survivability. In Fig. 1d, we plot the
system’s survival function against t ∈ [0, 30], for different values of p1, for model M3. This
figure shows that an increment in p1 decreases the system’s survivability. ��
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Fig. 1 Plot of the survival function of a 3-out-of-4 system against time

In the next example, we illustrate the result given in Corollary 5.3 (i i).

Example 5.2 Consider a coherent system with the structure function (see Barlow and
Proschan 1975) given by

φ(x1, x2, x3) = min(x1,max(x2, x3)).

Now, it can easily be shown that (s1, s2, s3) = (1/3, 2/3, 0). Then, from Corollary 5.3 (i i),
we get

F̄L(t) =
(

b

(1 − p0)t + b

)β [

1 + p1

(
βt

(1 − p0)t + b

)

+ 1

3
p2

(
βt

(1 − p0)t + b

)

+ 1

3

(
β(β + 1)

2

) (
p1t

(1 − p0)t + b

)2 ]

.

For fixed b = 2 and β = 4, we plot the survival function of the above coherent system
for different failure probability vectors (p0, p1, p2, p3) in Fig. 2.

In the succeeding theorem, the mean lifetime of a k-out-of-n system is derived under the
assumption that shocks occur according to the Pólya process or the HPP.
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Fig. 2 Plot of the survival
function of a coherent system
with the signature vector
(s1, s2, s3) = (1/3, 2/3, 0)
against time

Theorem 5.3 Let P(Zi = j) = p j , for all j = 0, 1, 2, . . . , n, and i ∈ N.

(i) Assume that shocks occur according to the Pólya process with the set of parameters
{β, b}, β > 1. Then the mean lifetime of the k-out-of-n system is given by

E(Lk:n) =
(

b

β − 1

) (
1

1 − p0

) [

1 +
n−k∑

i=1

i∑

m=1

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠
(

1

1 − p0

)m ]

;

(ii) Assume that shocks occur according to the HPP with the intensity λ. Then the mean
lifetime of the k-out-of-n system is given by

E(Lk:n) = 1

λ

(
1

1 − p0

) [

1 +
n−k∑

i=1

i∑

m=1

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠
(

1

1 − p0

)m ]

;

here m,i = {z = (z1, z2, . . . , zm)|z1 + z2 + · · · + zm = i, 1 ≤ zl ≤ n, 1 ≤ l ≤ m} and
1 ≤ m ≤ i ≤ n − k.

The next corollary immediately follows from the above theorem. Here we discuss the
results for models M1, M2 and M3.

Corollary 5.4 The following results hold true.

(i) For model M1: If the shocks occur according to the Pólya process with the set of para-
meters {β, b}, β > 1, then

E(Lk:n) =
(

b

β − 1

) (

1 + 1

n

)n−k+1

,

and if shocks occur according to the HPP with the intensity λ, then

E(Lk:n) = 1

λ

(

1 + 1

n

)n−k+1

.

(ii) For model M2: If shocks occur according to the Pólya process with the set of parameters
{β, b}, β > 1, then

E(Lk:n) =
(

b

β − 1

) [

1 +
n−k∑

i=1

i∑

m=1

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠
]

,
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and if shocks occur according to the HPP with the intensity λ, then

E(Lk:n) = 1

λ

[

1 +
n−k∑

i=1

i∑

m=1

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠
]

.

(iii) For model M3: If shocks occur according to the Pólya process with the set of parameters
{β, b}, β > 1, then

E(Lk:n) =
(

b

β − 1

)(
1 + n − k

p1

)

,

and if shocks occur according to the HPP with the intensity λ, then

E(Lk:n) = 1

λ

(
1 + n − k

p1

)

.

��
The following example illustrates the results given in Theorem 5.3 (i i) and Corollary 5.4.

Example 5.3 Consider a 3-out-of-4 system. Assume that shocks occur according to the HPP
with the intensity λ. In Table 1, we calculate the mean lifetime of the system for different
models and different intensity λ of the HPP. Table 1 shows that an increment in parameter λ

decreases the system’s mean lifetime for each model.

In the following theorem we derive the mean lifetime of a coherent system for the general
model.

Theorem 5.4 Let P(Zi = j) = p j , for all j = 0, 1, 2, . . . , n, and i ∈ N.

(i) Assume that shocks occur according to the Pólya process with the set of parameters
{β, b}, β > 1. Then the mean lifetime of the coherent system is given by

E(L) =
(

b

β − 1

)(
1

1 − p0

) [

1 +
n−1∑

k=1

n−k∑

i=1

i∑

m=1

sk

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠
(

1

1 − p0

)k ]

;

Table 1 The mean lifetime of the system for HPP with the intensity λ

Models (p0, p1, p2, p3) Intensity (λ) Mean lifetime (E(L3:4))

General Model (p0, p1, p2, p3) = λ = 1 2.50

(0.4,0.3,0.2,0.1) λ = 2 1.25

λ = 3 0.83

M1 (p0, p1, p2, p3) = λ = 1 1.56

(0.4,0.3,0.2,0.1) λ = 2 0.78

λ = 3 0.52

M2 (p0, p1, p2, p3) = λ = 1 1.30

(0.4,0.3,0.2,0.1) λ = 2 0.65

λ = 3 0.43

M3 (p0, p1, p2, p3) = λ = 1 6.67

(0.7,0.3,0,0) λ = 2 3.33

λ = 3 2.22
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(ii) Assume that shocks occur according to the HPP with the intensity λ. Then the mean
lifetime of the coherent system is given by

E(L) =
(
1

λ

) (
1

1 − p0

) [

1 +
n−1∑

k=1

n−k∑

i=1

i∑

m=1

sk

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠
(

1

1 − p0

)k ]

;

here m,i = {z = (z1, z2, . . . , zm)|z1 + z2 + · · · + zm = i, 1 ≤ zl ≤ n, 1 ≤ l ≤ m},
sk = P(L = Lk:n), 1 ≤ k ≤ n − 1 and 1 ≤ m ≤ i ≤ n − k. ��

The following example illustrates the results given in Theorem 5.4 (i i).

Example 5.4 Consider the coherent system mentioned in Example 5.2. Assume that shocks
occur according to the HPP with the intensity λ. Then, from Theorem 5.4 (i i), we have

E(L) =
(
1

λ

) (
1

1 − p0

) [

1 +
(
1

3

) (
p1 + p2 + p21

1 − p0

)

+
(
2p1
3

)(
1

1 − p0

)2
]

.

In Table 2, we calculate the mean lifetime of the system for different intensity λ of the HPP
by considering parameters p0 = 0.4, p1 = 0.3, p2 = 0.2 and p3 = 0.1. This table shows
that an increment in intensity (λ) of the shock process (HPP) decreases the system lifetime.

5.2 PPHP

Theorem 5.5 Let P(Zi = j) = p j , for all j = 0, 1, 2, . . . , n, and i ∈ N. Assume that shocks
occur according to the P PH P(λ(t),π, T ). Then

F̄Lk:n (t) =π(�(t)(1 − p0)I − T )−1T0

+
n−k∑

i=1

i∑

m=1

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ �(t)mπ(�(t)(1 − p0)I − T )−(m+1)T0,

where m,i = {z = (z1, z2, . . . , zm)|z1 + z2 + · · · + zm = i, 1 ≤ zl ≤ n, 1 ≤ l ≤ m} and
1 ≤ m ≤ i ≤ n − k. ��

The following corollary immediately follows from Theorem 5.5. Here we discuss the
results for specific models M1, M2 and M3.

Corollary 5.5 The following results hold true.

(i) For model M1:

F̄Lk:n (t) = π

(

�(t)

(
n

n + 1

)

I − T

)−1

T0

+
n−k∑

i=1

i∑

m=1

(
i − 1

m − 1

) (
�(t)

n + 1

)m

π

(

�(t)

(
n

n + 1

)

I − T

)−(m+1)

T0;

Table 2 The mean lifetime of a
coherent system for HPP with the
intensity λ

Intensity (λ) Mean lifetime (E(L))

λ = 1 3.13

λ = 2 1.57

λ = 3 1.04
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(ii) For model M2:

F̄Lk:n (t) = π(�(t)I − T )−1T0

+
n−k∑

i=1

i∑

m=1

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠�(t)mπ(�(t)I − T )−(m+1)T0;

(iii) For model M3:

F̄Lk:n (t) = π(�(t)p1 I − T )−1T0 +
n−k∑

i=1

pi1�(t)iπ(�(t)p1 I − T )−(i+1)T0.

In the next theorem, we derive the survival function of a coherent system for the general
model.

Theorem 5.6 Let P(Zi = j) = p j , for all j = 0, 1, 2, . . . , n, and i ∈ N. Assume that shocks
occur according to the P PH P(λ(t),π, T ). Then

F̄L(t) = π(�(t)(1 − p0)I − T )−1T0

+
n−1∑

k=1

n−k∑

i=1

i∑

m=1

sk

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ �(t)mπ(�(t)(1 − p0)I − T )−(m+1)T0,

where m,i = {z = (z1, z2, . . . , zm)|z1 + z2 + · · · + zm = i, 1 ≤ zl ≤ n, 1 ≤ l ≤ m},
sk = P(L = Lk:n), 1 ≤ k ≤ n − 1 and 1 ≤ m ≤ i ≤ n − k. ��

The results given in above theorems and corollary are illustrated by the following two
examples.

Example 5.5 Consider a 3-out-of-4 system. Then, from Theorem 5.5, we have

F̄L3:4(t) = π(�(t)(1 − p0)I − T )−1T0 + p1�(t)π(�(t)(1 − p0)I − T )−2T0.

Let the parameters be

π = (0.2, 0.8), T =
(−2 1
0.5 −10

)

and λ = 2.

In Fig. 3a, we plot the survival function of the system (given in Theorem 5.5) against t
∈ [0, 250], for different values of p0 and for fixed p1 = 0.2. In Fig. 3b, we plot the system’s
survival function (given in Corollary 5.5 (i)) against t ∈ [0, 250], for fixed p0 = 1/5 and
p2 = 1/5. In Fig. 3c, we plot the system’s survival function (given in Corollary 5.5 (i i))
against t ∈ [0, 250], for different values of p1. Lastly, in Fig. 3d, we plot the system’s
survival function (given in Corollary 5.5 (i i i)) against t ∈ [0, 500], for different values of
p1. From all these figures, we can make the same observations as in Example 5.1.

Example 5.6 Consider the coherent system mentioned in Example 5.2. Then, from Theo-
rem 5.6, we have

F̄L(t) = π(�(t)(1 − p0)I − T )−1T0

+ p1�(t)π(�(t)(1 − p0)I − T )−2T0

+ s1 p2�(t)π(�(t)(1 − p0)I − T )−2T0

+ s1 p
2
1�(t)2π(�(t)(1 − p0)I − T )−3T0.
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Fig. 3 Plot of the survival function of a 3-out-of-4 system against time, for different models

In Fig. 4, we plot this against t ∈ [0, 1000], for different failure probability vectors (p0, p1,
p2, p3) and for fixed parameters values given by

π = (0.2, 0.8), T =
(−2 1
0.5 −10

)

, λ = 1.

Fig. 4 Plot of F̄L (t) against
t ∈ [0, 1000]

123

Page 17 of 29 6



Methodology and Computing in Applied Probability (2024) 26:6

5.3 RPMML

In the following theoremwe derive the survival function of a k-out-of-n system for the defined
model by assuming the shock process as the RPMML. The proof immediately follows from
Theorem 4.1 and Lemma 2.2 and hence, omitted.

Theorem 5.7 Let P(Zi = j) = p j , for all j = 0, 1, 2, . . . , n, and i ∈ N. Assume that shocks
occur according to the RPMML(γ,π , T ). Then

F̄Lk:n (t) = πEγ,1(T t
γ )e +

∞∑

j=1

p j
0 (π j+1Eγ,1(Tj+1t

γ )e − π j Eγ,1(Tj t
γ )e)

+
n−k∑

i=1

i∑

m=1

∞∑

j=m

(
j

m

)
⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ p j−m
0 (π j+1Eγ,1(Tj+1t

γ )e

− π j Eγ,1(Tj t
γ )e),

where m,i = {z = (z1, z2, . . . , zm)|z1 + z2 + · · · + zm = i, 1 ≤ zl ≤ n, 1 ≤ l ≤ m},
1 ≤ m ≤ i ≤ n − k, and π j ’s and Tj ’s are the same as in Lemma 2.2. ��

The next corollary immediately follows from Theorem 5.7.

Corollary 5.6 The following results hold true.

(i) For model M1:

F̄Lk:n (t) =
∞∑

j=0

(1/(n + 1)) j (π j+1Eγ,1(Tj+1t
γ )e − π j Eγ,1(Tj t

γ )e)

+
n−k∑

i=1

i∑

m=1

∞∑

j=m

(
j

m

)(
i − 1

m − 1

)

(1/(n + 1)) j

(π j+1Eγ,1(Tj+1t
γ )e − π j Eγ,1(Tj t

γ )e);
(ii) For model M2:

F̄Lk:n (t) = πEγ,1(T t
γ )e

+
n−k∑

i=1

i∑

m=1

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ (πm+1Eγ,1(Tm+1t
γ )e

− πmEγ,1(Tmt
γ )e);

(iii) For model M3:

F̄Lk:n (t) =
∞∑

j=0

p j
0 (π j+1Eγ,1(Tj+1t

γ )e − π j Eγ,1(Tj t
γ )e)

+
n−k∑

i=1

∞∑

j=i

(
j

i

)

pi1 p
j−i
0 (π j+1Eγ,1(Tj+1t

γ )e − π j Eγ,1(Tj t
γ )e).

The survival function of a coherent system for the defined model is given in the following
theorem. The proof is obvious and hence, omitted.
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Theorem 5.8 Let P(Zi = j) = p j , for all j = 0, 1, 2, . . . , n, and i ∈ N. Assume that shocks
occur according to the RPMML(γ,π , T ). Then

F̄L(t) = πEγ,1(T t
γ )e +

∞∑

j=1

p j
0 (π j+1Eγ,1(Tj+1t

γ )e − π j Eγ,1(Tj t
γ )e)

+
n−1∑

k=1

n−k∑

i=1

i∑

m=1

∞∑

j=m

sk

(
j

m

)
⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ p j−m
0

(π j+1Eγ,1(Tj+1t
γ )e − π j Eγ,1(Tj t

γ )e),

where m,i = {z = (z1, z2, . . . , zm)|z1 + z2 + · · · + zm = i, 1 ≤ zl ≤ n, 1 ≤ l ≤ m},
sk = P(L = Lk:n), 1 ≤ k ≤ n − 1, 1 ≤ m ≤ i ≤ n − k, and π j ’s and Tj ’s are the same as
in Lemma 2.2. ��

Remark 5.2 Since
∫ ∞
0 πEγ,1(T tγ )edt = ∞ for γ < 1, one can conclude from Theorem 5.8

that E(L) = ∞, for 0 < γ < 1.

In the next two examples, we illustrate the foregoing results.

Example 5.7 Consider a 3-out-of-4 system. Then, from Theorem 5.7, we have

F̄L3:4(t) = πEγ,1(T t
γ )e +

∞∑

j=1

(p j
0 + j p j−1

0 p1)(π j+1Eγ,1(Tj+1t
γ )e − π j Eγ,1(Tj t

γ )e).

Let the parameters be π1 = 1, T = −λ and λ = 2, i.e., the shock process be the FHPP
with the set of parameters {γ, 2}. In Fig. 5a, we plot the survival function of the system
(given in Theorem 5.7) against t ∈ [0, 10], for different values of p0, and for fixed γ = 0.9
and p1 = 0.2. This figure show that the system survivability increases as p0 increases. In
Fig. 5b, we plot the survival function of the system against t ∈ [0, 10] for the same model,
for different values of γ , and for fixed p0 = 0.5 and p1 = 0.1.

Fig. 5 Plot of the survival function of a 3-out-of-4 system against time
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Example 5.8 Consider the coherent system given in Example 5.2. Then, from Theorem 5.8,
we have

F̄L(t) = πEγ,1(T t
γ )e +

∞∑

j=1

(p1 + s1 p2) j p
j−1
0 (π j+1Eγ,1(Tj+1t

γ )e − π j Eγ,1(Tj t
γ )e)

+s1

∞∑

j=2

p21

(
j

2

)

p j−2
0 (π j+1Eγ,1(Tj+1t

γ )e − π j Eγ,1(Tj t
γ )e).

Let the shock process be the FHPP with the set of parameters {γ, λ}, where γ = 0.9 and
λ = 2. In Fig. 6, we plot F̄L(t) against t ∈ [0, 10], for different failure probability vectors
(p0, p1, p2, p3).

6 Application: Optimal Replacement Time

The study of the optimal replacement policies is one of the important applications of reliability
theory. In this section, we consider the problem of finding the optimal replacement time for
a coherent system that minimizes the long-run average cost per unit time. According to the
classical age replacement policy, a system should be replaced upon failure or reaching the
predetermined age t, whichever occurs first.

Below we give a list of assumptions which are similar to those given in Eryilmaz and
Devrim (2019).

Assumptions:

(a) A new coherent systemwith the lifetime L described by the defined shockmodel is incep-
ted into operation at time zero.

(b) The external shocks are the only reason for the system’s failure, and occur according to
the RPMML(γ,π , T )

(c) The system is replaced by a new one either upon failure or after reaching the predeter-
mined age t , whichever occurs first.

Fig. 6 Plot of F̄L (t) against
t ∈ [0, 10]
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(d) Let c1 and c2 denote the cost of replacement of the system before failure and the cost of
replacement of the system after failure, respectively.

(e) If the system is replaced before failure, then all failed components are replaced by new
components and all non-failed components are repaired.

(f) A component is as good as new after repair and hence, the system after replacement
becomes new.

(g) Let ca denote the acquisition cost of one component and cr be the repair cost for a non-
failed component. Further, let c f denote the additional cost of the system failure.

Note that the expected number of components to be replaced before failure is equal to
E(M(t)|L > t), and the expected number of components to be repaired before failure is
equal to E(n − M(t)|L > t). Then

c1 = ca E(M(t)|L > t) + cr E(n − M(t)|L > t) = ncr + (ca − cr )E(M(t)|L > t).

On the other hand, the cost of replacement of the systemafter failure is given by c2 = nca+c f .
Consequently, the total long-run average cost per unit time is given by

CL(t) = [ncr + (ca − cr )E(M(t)|L > t)]F̄L(t) + (nca + c f )FL(t)

E(min(L, t))

= nca + c f + [ncr + (ca − cr )E(M(t)|L > t) − nca − c f ]F̄L(t)
∫ t
0 F̄L(u)du

. (6.1)

Note that the denominator of the above equation tends to ∞ as t → ∞ (see Remark 5.2)
and hence, the finite optimal replacement time cannot be determined on the infinite horizon.
In real life, due to specifications and internal degradation process, an item might be replaced
at some large time tu (say) even if it is not an optimal decision. Thus, we study the optimal
replacement policy under the updated Assumption (c) as given below.

Updated Assumption (c): The system is replaced by a new one either upon its failure or
after reaching its age to a predetermined threshold value t ≤ tu , whichever occurs first.

Consequently, our goal is to find the optimal t∗ (≤ tu) such that CL(t∗) < CL(tu) and
CL(t∗) = mint∈(0,tu ]CL(t). Now, to evaluate CL(t), we need the expressions of E(M(t)|L
> t) and F̄L(t). The first expression is given by

E(M(t)|L > t) = 1

F̄L(t)

n−1∑

k=1

sk

n−k∑

i=1

i P(M(t) = i),

where the pmf of M(t) is the same as in Lemma 4.1. Further, the expression of F̄L(t) is
obtained from Theorem 5.8.

Due to mathematical complexity, the aforementioned problem cannot be analytically
solved. Thus, we consider a numerical example as given below.

Example 6.1 Consider the coherent system mentioned in Example 5.2. Assume that shocks
occur according to the RPMML with the parameter set {γ,π , T }, where π = (1, 0), T

=
(−λ λ

0 −λ

)

and λ = 1.2. Then

E(M(t)|L > t) = 1

F̄L(t)
(P(M(t) = 1) + 2s1P(M(t) = 2)), (6.2)
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Fig. 7 Plot of CL (t) against time

where P(M(t) = 1) and P(M(t) = 2) are the same as in Lemma 4.1, and

F̄L(t) = πEγ,1(T t
γ )e +

∞∑

j=1

(p1 + s1 p2) j p
j−1
0 (π j+1Eγ,1(Tj+1t

γ )e − π j Eγ,1(Tj t
γ )e)

+s1

∞∑

j=2

p21

(
j

2

)

p j−2
0 (π j+1Eγ,1(Tj+1t

γ )e − π j Eγ,1(Tj t
γ )e). (6.3)

Note that
∫ t
0 πEγ,1(Tuγ )edu = tπEγ,2(T tγ )e. Consequently,

∫ t

0
F̄L(u)du = t

[

πEγ,2(T t
γ )e +

∞∑

j=1

(p1 + s1 p2) j p
j−1
0 (π j+1Eγ,2(Tj+1t

γ )e

− π j Eγ,2(Tj t
γ )e) + s1

∞∑

j=2

p21

(
j

2

)

p j−2
0 (π j+1Eγ,2(Tj+1t

γ )e

− π j Eγ,2(Tj t
γ )e)

]

.

(6.4)

By using (6.2), (6.3), and (6.4) in (6.1), we get the expression ofCL(t). Now, in Fig. 7, we plot
thisCL(t) against t ∈ [0, 10], for different values of γ , and for fixed ca = 3, c f = 10, cr = 1,
p0 = 0, p1 = 0.2 and p2 = 0.1. From this figure, we see that the the cost function CL(t)
is in U -shaped in initial time period. Let tu = 10. Then, for γ = 1, t∗ = 1.3 and CL(t∗) =
9.9075; for γ = 0.99, t∗ = 1.4 and CL(t∗) = 9.9243, and, for γ = 0.98, t∗ = 1.5 and
CL(t∗) = 9.9308. Moreover, CL(t) tends to 0 when t → ∞ because E(L) = ∞ for γ < 1.

7 Concluding remarks

The study of shock models for multi-component systems is an important area in modern
reliability theory. In this paper, we consider three rather general counting processes for
modeling shock occurrences, namely, the PGGP, the PPHP and the RPMML. All these
processes are mathematically tractable.
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It is important to note that the PPHP can be used to approximate any mixed Poisson
process. On the other hand, the RPMML is very useful in modeling the arrivals of shocks
with heavy-tailed inter-arrival times.All considered processes have not been used inmodeling
lifetimes of multi-component systems subject to external shocks. Therefore, our paper is the
first to obtain relationships for the survival functions and expected lifetimes for different
specific models of the effect of shocks on the components of a coherent system.

We expect that the obtained in this paper innovative results can be used in various applica-
tions. As an example, the optimal replacement policy under the RPMML process of shocks
was considered.

The δ-shock model is one of the popular shock models used in many applications. The
study of the δ-shockmodel for amulti-component systembased on thePGGP/PPHP/RPMML
can be considered as a potential problem yet to be explored. Further, in this paper, we mostly
derive the results for coherent systems with i.i.d. or exchangeable components. The study of
coherent systems with dependent components can be considered in future as well.

Appendix A

Proof of Lemma 2.2 Let S1, S2, . . . be a sequence of arrival times. Then

P(N (t) = n) = P(Sn+1 > t) − P(Sn > t). (A1)

Note that Sn = X1 + X2 + · · · + Xn ∼ MML(γ,πn, Tn), where Xi ’s are inter-arrival time.
Then, from (2.2), we have P(Sn > t) = πnEγ,1(Tntγ )e. Consequently, the result follows
from (A1). ��

Proof of Lemma 4.1 Note that the event “M(t) = 0” happens if and only if each shock,
occurred till time t , is harmless for the system. Then,

P(M(t) = 0) = P(N (t) = 0) +
∞∑

j=1

P(N (t) = j, Z1 = 0, Z2 = 0, Z3 = 0, . . . , Z j = 0)

=
∞∑

j=0

p j
0 P(N (t) = j).

Now, for 1 ≤ i < n, the event “M(t) = i” means that exactly i components of the system
failed till time t . Thus, if N (t) = j , then there are exactly m harmful shocks out of j shocks,
where j ≥ m, 1 ≤ m ≤ i . Consequently, we can write

P(M(t) = i) =
i∑

m=1

∞∑

j=m

P(i components fail due to exactly m harmful shocks when N (t) = j)

=
i∑

m=1

∞∑

j=m

(
j

m

) ∑

z∈m,i

P(N (t) = j, Z1 = z1, . . . , Zm = zm , Zm+1 = 0, . . . , Z j = 0)

=
i∑

m=1

∞∑

j=m

(
j

m

)
⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ p j−m
0 P(N (t) = j),

where the last equality holds because Zi ’s are i.i.d, and the process {N (t) : t ≥ 0} and
{Zi : i ∈ N} are independent. Hence the result is proved. ��
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Proof of Corollary 4.1
Proof (i): If p j = 1/(n + 1), for all j = 1, 2, . . . , n, then

∑

z∈m,i

m∏

r=1

Pzr =
(

1

n + 1

)m ∑

z∈m,i

1 =
(

1

n + 1

)m

|m,i |.

By using Bose-Einstien value, one can show that |m,i | = ( i−1
m−1

)
. Thus

∑

z∈m,i

m∏

r=1

Pzr =
(

1

n + 1

)m (
i − 1

m − 1

)

.

By using the above equality in Theorem 4.1, we get the required result.
Proof (i i): The result immediately follows from Theorem 4.1 by substituting p0 = 0.
Proof (i i i): Note that

∑

z∈m,i

m∏

r=1

Pzr =
{
0 i f m < i

pm1 i f m = i .

By using the above equality in Theorem 4.1, we get the required result. ��

Proof of Theorem 5.1 From Theorem 4.1, we have

F̄Lk:n (t) =
∞∑

j=0

p j
0 P(N (t) = j)

+
n−k∑

i=1

i∑

m=1

∞∑

j=m

(
j

m

)
⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ p j−m
0 P(N (t) = j).

(A2)

Let Q be the mixing distribution of the PGGP. Then, for m ≥ 0, we have

∞∑

j=m

(
j

m

)

p j−m
0 P(N (t) = j) =

∞∑

j=m

(
j

m

)

p j−m
0

∫ ∞

0
exp{−q�(t)} (q�(t)) j

j ! dFQ(q)dq

=
∫ ∞

0
exp{−q�(t)} (q�(t))m

m!

⎛

⎝
∞∑

j=m

(qp0�(t)) j−m

( j − m)!

⎞

⎠ dFQ(q)

=
∫ ∞

0
exp{−q(1 − p0)�(t)} (q�(t))m

m! dFQ(q)

=
(

α

α + (1 − p0)�(t)

)μ−ν (
�(t)

α + (1 − p0)�(t)

)m

× �ν(m + μ, (α + (1 − p0)�(t))l)

m!�ν(μ, αl)
, (A3)

where the first equality follows fromDefinition 2.2; the second equality holds due to theDom-
inated Convergence Theorem, and the last equality follows from (2.1). Now, by using (A3)
in (A2), we get the required result. ��
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Proof of Theorem 5.3 We only prove part (i). Part (i i) can be proved in the same line. Now,
from Corollary 5.2 (i i), we have

E(Lk:n) =
∫ ∞

0
F̄Lk:n (t)dt

=
∫ ∞

0

(
b

(1 − p0)t + b

)β

dt +
n−k∑

i=1

i∑

m=1

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ �(β + m)

�(β)m!

×
∫ ∞

0

(
b

(1 − p0)t + b

)β (
t

(1 − p0)t + b

)m

dt

=
(

b

β − 1

)(
1

1 − p0

)

+
n−k∑

i=1

i∑

m=1

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ �(β + m)

�(β)m!

×
(

1

1 − p0

)m+1 ∫ ∞

0

(
b

z + b

)β (
z

z + b

)m

dz. (A4)

Again, we have

∫ ∞

0

(
b

z + b

)β (
z

z + b

)m

= b�(m + 1)�(β − 1)

�(m + β)
.

By using the above equality in (A4), we get the required result. ��

Proof of Corollary 5.4 We only prove part (i). Other parts can be proved in same line. Now,
from Theorem 5.3 (i), we have, for model M1,

E(Lk:n) =
(

b

β − 1

) (
n + 1

n

) [

1 +
n−k∑

i=1

i∑

m=1

(
i − 1

m − 1

) (
1

n

)m ]

=
(

b

β − 1

) (
n + 1

n

) [

1 +
(
1

n

) n−k∑

i=1

(

1 + 1

n

)i−1 ]

=
(

b

β − 1

) (
n + 1

n

) (

1 + 1

n

)n−k

=
(

b

β − 1

) (

1 + 1

n

)n−k+1

.

Hence part (i) is proved. ��

Proof of Theorem 5.4 We have P(L > t) = ∑n
i=1 si P(Li :n > t), which implies E(L)

= ∑n
i=1 si E(Li :n). Consequently, the result follows from Theorem 5.3. ��

Proof of Theorem 5.5 From Theorem 4.1 and Lemma 2.1, we get

F̄Lk:n (t) =
∞∑

j=0

p j
0�(t) jπ(�(t)I − T )−( j+1)T0

+
n−k∑

i=1

i∑

m=1

∞∑

j=m

(
j

m

)
⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ p j−m
0 �(t) jπ(�(t)I − T )−( j+1)T0.

(A5)
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Further, we can write

�(t) jπ(�(t)I − T )−( j+1)T0 = �(t)−1π(I − �(t)−1T )−( j+1)T0, j ∈ N ∪ {0}. (A6)
Now, for m ≥ 0, we have

∞∑

j=m

(
j

m

)

p j−m
0 �(t) jπ(�(t)I − T )−( j+1)T0

= �(t)−1
∞∑

j=m

(
j

m

)

p j−m
0 π(I − �(t)−1T )−( j+1)T0

= �(t)−1π

⎛

⎝
∞∑

j=m

(
j

m

)

p j−m
0 (I − �(t)−1T )−( j+1)

⎞

⎠ T0

= �(t)−1π(I − �(t)−1T )−(m+1)

⎛

⎝
∞∑

j=m

(
j

m

)

p j−m
0 (I − �(t)−1T )−( j−m)

⎞

⎠ T0

= �(t)−1π(I − �(t)−1T )−(m+1)

( ∞∑

l=0

(
m + l

m

)

pl0(I − �(t)−1T )−l

)

T0

= �(t)−1π(I − �(t)−1T )−(m+1)

( ∞∑

l=0

(
m + l

l

)

pl0(I − �(t)−1T )−l

)

T0

= �(t)−1π(I − �(t)−1T )−(m+1)(I − p0(I − �(t)−1T )−1)−(m+1)T0

= �(t)−1π((1 − p0)I − �(t)−1T )−(m+1)T0

= �(t)mπ((1 − p0)�(t)I − T )−(m+1)T0, (A7)

where the first equality follows from (A6); the fifth equality holds because
(m+l

m

) = (m+l
l

)
,

and the sixth equality holds because
∑∞

l=0

(m+l
l

)
T l = (I − T )−(m+1). Now, by using (A7),

we can write

n−k∑

i=1

i∑

m=1

∞∑

j=m

(
j

m

)
⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ p j−m
0 �(t) jπ(�(t)I − T )−( j+1)T0

=
n−k∑

i=1

i∑

m=1

⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ �(t)mπ((1 − p0)�(t)I − T )−(m+1)T0. (A8)

Finally, by using (A8) in (A5), we get the required result. ��

Appendix B

Here we discuss the case: Zi ’s are dependant random variables with a specific dependency
structure. We consider the following assumptions:

Assumptions:

• Each shock is harmless with probability p0 and harmful with probability 1 − p0, i.e.,
P(Zi = 0) = p0 and P(Zi �= 0) = 1 − p0, for i ∈ N.
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• If the first shock is harmful then it can damage j components with probability p j , i.e.,
P(Z1 = j) = p j for all j = 1, 2, . . . , n. Clearly, p1 + p2 + · · · + pn = 1 − p0.

• The random variables Z1, Z2, . . . , Zm, Zm+1 are dependent with the dependancy struc-
ture given by

P(Zm+1 = zm+1|Z1 = z1, . . . , Zm = zm)

=
{
pzm+1 , if zm+1 < n − z1 − z2 − · · · − zm
pzm+1 + · · · + pn, if zm+1 = n − z1 − z2 − · · · − zm,

where z1 + z2 + · · · + zm < n and m ≥ 1.
• The random variables Z1, Z2, Z3, . . . are exchangeable.
• {N (t) : t ≥ 0} and {Zi : i ∈ N} are independent.
Based on the above assumptions, we derive the expression for P(M(t) = i), for i = 0, 1,

2, . . . , n − 1, in the following lemma.

Lemma 7.1 Let P(Zi = j) = p j , for all j = 0, 1, 2, . . . , n, i ∈ N, and let {N (t) : t ≥ 0}
be a counting process. Then

P(M(t) = 0) =
∞∑

j=0

p j
0 P(N (t) = j)

and

P(M(t) = i) =
i∑

m=1

∞∑

j=m

(
j

m

)
⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ p j−m
0 P(N (t) = j),

where m,i = {z = (z1, z2, . . . , zm)|z1 + z2 + · · · + zm = i, 1 ≤ zl ≤ n, 1 ≤ l ≤ m} and
1 ≤ m ≤ i < n − 1.

Proof: By proceeding in the same line as in the proof of Lemma 4.1, we get

P(M(t) = 0) = P(N (t) = 0) +
∞∑

j=1

P(N (t) = j, Z1 = 0, Z2 = 0, Z3 = 0, . . . , Z j = 0)

=
∞∑

j=0

p j
0 P(N (t) = j),

and, for 1 ≤ i ≤ n − 1,

P(M(t) = i) =
i∑

m=1

∞∑

j=m

(
j

m

) ∑

z∈m,i

P(N (t) = j, Z1 = z1, . . . , Zm = zm,

Zm+1 = 0, . . . , Z j = 0)

=
i∑

m=1

∞∑

j=m

(
j

m

) ∑

z∈m,i

P(N (t) = j)P(Z1 = z1, . . . , Zm = zm,

Zm+1 = 0, . . . , Z j = 0),

(B1)
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where the last equality holds because {N (t) : t ≥ 0} and {Zi : i ∈ N} are independent.
Now, consider

P(Z1 = z1, . . . , Zm = zm, Zm+1 = 0, . . . , Z j = 0)

= P(Z j = 0|Z1 = z1, . . . , Zm = zm, Zm+1 = 0, . . . , Z j−1 = 0)

× P(Z1 = z1, . . . , Zm = zm, Zm+1 = 0, . . . , Z j−1 = 0)

= p0P(Z1 = z1, . . . , Zm = zm, Zm+1 = 0, . . . , Z j−1 = 0).

By using the above equality recursively, we get

P(Z1 = z1, . . . , Zm = zm, Zm+1 = 0, . . . , Z j = 0) = p j−m
0 P(Z1 = z1, . . . , Zm = zm).

Since z1 + z2 + · · · + zm = i < n, we get

P(Z1 = z1, . . . , Zm = zm) P(Zm = zm |Z1 = z1, . . . , Zm−1 = zm−1)

P(Z1 = z1, . . . , Zm−1 = zm−1)

= pzm P(Z1 = z1, . . . , Zm−1 = zm−1)

= pzm pzm−1 P(Z1 = z1, . . . , Zm−1 = zm−2)

=
m∏

r=1

pzr .

Consequently,

P(Z1 = z1, . . . , Zm = zm, Zm+1 = 0, . . . , Z j = 0) = p j−m
0

m∏

r=1

pzr .

By using above equality in (B1), we get

P(M(t) = i) =
i∑

m=1

∞∑

j=m

(
j

m

)
⎛

⎝
∑

z∈m,i

m∏

r=1

pzr

⎞

⎠ p j−m
0 P(N (t) = j)

and hence, the required result is proved. ��
One may note that, even if a specific dependency structure between Zi ’s is assumed in

Lemma 7.1, the results given in Lemmas 7.1 and 4.1 are the same. Thus, all results developed
for the case of independent Zi ’s also hold for the aforementioned dependant Zi ’s setup.
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