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Abstract
There are three contributions to the literature in this note. Firstly, we point out that under 
some weak conditions the result in Swensen (1986) on the remaining loads in a GI/M/c 
queue with impatient customers, derived under the assumption that the distribution of inter-
arrival times is Coxian, is also valid for the more general phase type distribution. From this 
result the distributions of the virtual and the actual waiting time can easily be obtained. 
Secondly, the relation to an alternative expression for the distribution of the virtual waiting 
time derived by Kawanishi and Takine (2015) is also clarified. Finally, we explain how the 
results on the remaining loads can be used to find distributions describing particular fixed 
servers and provide a couple of numerical examples of how this can be done.

Keywords Queuing · GI/M/c queue · Impatient customers · Bounded waiting times · Phase 
type distributions

AMS Classification Primary 60K25 · Secondary 68M20

1 Introduction

A queue where the customers that cannot be served within a fixed time leave the system is 
usually referred to as a queue with impatient customers or a queue with bounded waiting 
time. To describe such systems balking and reneging have also been used as denomina-
tions, see Ancker and Gafarian (1963).

The motivation for studying such queues has often been problems in telecommunication 
where the main challenge is to dimension the system so that on the one hand not too many 
calls are lost and on the other hand not having too many servers, which means that more 
equipment than necessary is used. An early contribution with the possibility that the cus-
tomers hang up and leave the system is Palm (1957). Also notice that bounding the waiting 
time can act as a simple load control.
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Another field where models allowing impatient customers arise is perishable inventory 
theory. In blood banks the supply of blood portions is random and shelf time is limited, see 
Perry and Stadje (2022) for some discussion and also the monographs of Nahmias (2012) 
and Karaesmen et al. (2011). In contrast to the previous situation the impatience time is 
usually less manageable and must often be considered as fixed.

The operation of call centers is a third area where impatience has to be taken into account. 
This is stressed in several papers by Mandelbaum and coauthors, see e.g. Mandelbaum and 
Zeltyn (2009). The crucial question here is to avoid that the center is understaffed, rejecting 
too many customers, or overstaffed such that the proportion of time the servers are unoccu-
pied is larger than necessary.

In all areas of application mentioned above there is a trade-off between loosing too 
many customers and having too many idle servers. Knowledge of the distribution of the 
waiting times and loads is helpful for choosing an appropriate impatience time, when that 
is possible. For managerial decisions and design of this kind of systems, especially decid-
ing on the number of servers, such insight is crucial.

In this note we will consider a first-come first-served queue with c servers where the 
service times are independent exponential random variables with expectation 1∕� . The 
arrivals of new customers follow a renewal process where the distribution of the inter-
arrival times is of the phase type. Customers whose waiting time exceeds the fixed non-
random impatience time � leave the system. This system is often denoted as PH/M/c+D.

The main contribution of the present note is that in a PH/M/c queue with impatient 
customers where the impatient time is deterministic, explicit solutions, up to some matrix 
inversions, exist for the stationary asymptotic distribution of the remaining loads and conse-
quently for the virtual and the actual waiting time. It turns out that the procedure proposed 
by Swensen (1986) with a Coxian distribution describing the renewal input process, can be 
extended, with some adjustments, to the more general case where a phase type distribution 
is used. The key result for the generalization can be found in Lemma 2 in Appendix B.

Relevant papers dealing with impatient customers are Choi et al. (2004) and Kawanishi 
and Takine (2016) who considered the more general Markovian arrival process, MAP/M/c 
queue with bounded waiting or impatience time. He and Wu (2020) treated the situation 
where the impatience time is not constant. Kawanishi and Takine (2015) derived the sta-
tionary distribution for the virtual waiting time in a PH/M/c queues with impatient custom-
ers. It is worth noticing that the results in Choi et  al. (2004) and Kawanishi and Takine 
(2015,  2016)  are complementary to the results in the present paper. The distribution of 
the virtual waiting time in those papers is derived directly by solving a second order dif-
ferential equation. The distributions of the waiting times, virtual and actual, in Swensen 
(1986) are derived as an implication of the distribution of the loads of the servers. Thus, 
the results and methods of proof are different and a natural question is how they are related. 
We will discuss this issue. In particular we compare the density for the virtual waiting time 
derived by Kawanishi and Takine (2015) with the expression of the present note.

Although the distribution of the virtual waiting time is important, knowledge of the simul-
taneous distribution of the remaining loads of the servers represents an additional value. For 
example, one can focus on the simultaneous remaining loads of a particular group of servers, 
cf. the famous Palm-Jacobæus formula in the telecommunication literature.

It is also worth remarking that the methods for the numerical computations of the distri-
butions in the two cases are quite different. In papers by Choi et al. (2004) and Kawanishi 
and Takine (2015, 2016) the expressions that are used involve matrix exponentials. On the 
other hand, the formula for the probability density of the remaining loads in the present 
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paper is quite easy to evaluate when a procedure for computing matrix eigenvalues and 
eigenvectors is available.

The note is organized as follows. The distribution of the remaining loads for phase type 
distributed arrival times is derived in the next section. In section 3 the relation between the 
implied distribution of the virtual waiting time relying on the distribution of the remaining 
load and the more direct version in Kawanishi and Takine (2015) is discussed. In section 4 
the solution of a linear equation which is important for finding the asymptotic distribution 
of the remaining loads is considered. In section 5 we discuss how the results on the distri-
bution of the remaining loads can be used to find distributions for fixed particular serv-
ers and carry out the actual computations in an exampel. In the Appendices the necessary 
modifications of the Kolmogorov forward equations for the remaining loads for phase type 
distributed inter-arrival times are explained. The stationary solution to these equations is 
found and some lemmas crucial for the derivation are proved.

We use the following notation, as in Swensen (1986): a phase type distribution is 
described by the pair (�, T) where � = (�1,… , �m) is a probability vector, i.e. �1,… , �m ≥ 0 , ∑m

i=1
= 1 , and T is a non-singular m × m matrix with negative diagonal elements and non-

negative off-diagonal elements. The Coxian distributions define the subclass of the phase 
type distributions where � = (1, 0,… , 0) and the only nonnegative elements of the matrix 
T = {tij} are the elements ti(i+1), i = 1,… ,m − 1.

To a large extent the arguments used in the treatment of the Coxian case carry over to 
the phase type case. Therefore there will be some overlap with Swensen (1986) when the 
arguments are verified in the phase type setup.

In the following we consider the scalar field of complex numbers and matrices whose 
elements also are complex numbers.

2  Distribution of Remaining Loads

Consider the process (Y(t),V1(t),… ,Vc(t)) where Vi(t) is the unfinished work, i.e. the 
remaining load, for sever i = 1,… , c and Y(t) is the phase of the arrival process. Under the 
assumptions that the service times are independent, exponentially distributed and that the 
arrival process is a renewal process where the distribution of the inter-arrival times is of 
the phase type, the process is Markovian.

The phase type distribution of the inter-arrival times satisfies

Assumption 1 

 (i) The m solutions {�1,… , �m} of det[c�e ⋅ � + T − c�Im] = 0 are distinct and are not 
equal to any of the eigenvalues of T/c.

 (ii) The matrix T + T ⋅ � where T = −Te, e = (1,⋯ , 1)� , is irreducible and has distinct 
eigenvalues.

Remark 1. The claim in Assumption 1 that there are no equal eigenvalues of �e ⋅ � + T∕c 
and no equal eigenvalues of T + T ⋅ � simplifies the derivations since there is only one 
eigenvector associated with each eigenvalue. We therefore exclude the situation where the 
dimension of the eigenspace of an eigenvalue is strictly less than the algebraic multiplicity 
of the eigenvalue, i.e. where the geometric multiplicity is less than the algebraic multiplic-
ity, see Horn and Johnson (2013).
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The m solutions {�1,… , �m} are sorted in decreasing order according to size of the 
moduli. For a conjugate pair the number with positive imaginary part is counted first. 
Also, define B as the matrix where the rows are the left normalized eigenvectors of 
T + T ⋅ � . Let D be the diagonal matrix with diagonal elements (c� − �

�
)−1, � = 1,… ,m 

where �
�
, � = 1,… ,m are the eigenvalues of T + T ⋅ � and where one, �1 say, is equal to 

0. Let E be the diagonal matrix with diagonal elements exp(−�c�
�
), � = 1,… ,m.

The following theorem is a description of the density of the asymptotic distribution 
of the remaining loads.

Theorem 1 Consider a first-come first-served GI/M/c queuing model with waiting time bounded 
by � , service rate � and inter-arrival distribution of the phase type (�, T) . Under Assumption 1 
the stationary asymptotic distribution of the remaining loads V1,… ,Vc has density

for minVi > 0 where � = (�1,… , �m) is the solution of

and

The matrix Yc−1 has rows y1
c−1

,… , ym
c−1

 where yk
c−1

 is the solution of the homogenous lin-
ear equation

with yk
c−11

= 1 and the m × m matrix Rk = T ⋅ �[c�kIm − T]−1, k = 1,… ,m.

Furthermore, when c = 1 , yk
1
= c�yk

0
Rk . When c > 1 , yk

c
= c�yk

c−1
Rk and yk

0
,… , yk

c−2
, 

k = 1,… ,m are defined by the recursion

Remark 2. From Lemma 3 it follows that the matrices [(c − 1)�I
m
− (c − 1)�e ⋅ �−

T − c�R
k
] have rank m-1 such that yk

c−1
, k = 1,… ,m are determined up to a normalizing 

constant. Also it follows frem Lemma 1 in Neuts (1982) that when c > 1 , the matrices 
(i�Im − i�e ⋅ � − T), i = 1,… , c − 2 are nonsingular.

The proof of the theorem is an elaboration of Swensen (1986) for the case where the 
inter-arrival distribution is Coxian. In the first step to prove the main result we show, in 
Appendix A, that when t → ∞ the functions

(1)�c−1 exp(−�(v1 +⋯ + vc) + c�(� ∧min vi))

m∑
k=1

�ky
k

c
e exp(−c�k(� ∧min vi))

(2)�EYc−1[c�T ⋅ �B−1DB − (c − 1)�Im + (c − 1)�e ⋅ � + T] = 0

(3)
m∑
k=1

�k{

c−1∑
i=0

(
c

i

)
yk
i
e + yk

c
e[(

1

�
−

1

�k
) exp (−c�k�) +

1

�k
]} = 1.

yk
c−1

[(c − 1)�Im − (c − 1)�e ⋅ � − T − c�Rk] = 0

yk
i
= (c − i)�yk

i+1
(i�Im − i�e ⋅ � − T)−1, i = c − 2,… , 1

yk
0
= −c�yk

1
T−1.

(4)qk0j =y
k
0j
, j = 1,… ,m,
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for k = 1,… ,m , satisfy the differential equation defined by the Kolmogorov forward equa-
tions in the region v(1) = min vi ≤ � . Since �1,… , �m are distinct the solutions are inde-
pendent and the general solution in this region therefore has the form Q =

∑m

k=1
�kQk.

As a second step, the function Q is inserted in the Kolmogorov forward equation to 
obtain a differential equation for values in the region min vi > 𝜏 . In Appendix A it is shown 
that the solution has the form

where K =
∑m

k=1
�kc�

cyk
c−1

T exp(c(� − �k)�).
Finally, in the third step the distribution of the remaining loads is determined by requir-

ing that the solutions for min vi ≤ � and min vi > 𝜏 are continuous at min vi = �.

3  Distribution of the Virtual Waiting Time

Building on the results in Choi et al. (2004) and Kawanishi and Takine (2015) found an 
explicit expression for the stationary joint distribution of the phase of the arrival process 
and the virtual waiting time. The density of the stationary virtual waiting time has the form

where v̂ = (v̂1,… , v̂m) = �(c𝜇I − T)−1∕�(c𝜇I − T)−1e , and p is the normalizing constant 
given in Kawanishi and Takine (2015).

However, an expression for the density of the stationary virtual waiting time can also 
be obtained from the density of the remaining loads. Differentiating the expression for the 
complimentary distribution function in Swensen (1986) one gets the probability density of 
virtual waiting time when Assumption 1 is satisfied

where � = (�1,… , �m) is defined in Theorem 1. By the same arguments as in the next sec-
tion it follows that the expression (8) has an imaginary part equal to zero.

The following proposition summarizes the relation between the two expressions of the 
density.

Proposition 1 If Assumption 1 holds the coefficients of (8) are given by

where c�1,… , c�m are the eigenvalues of c�e ⋅ � + T  , F = { fj�}
m
j,�=1

 is the matrix where the 
columns are the right eigenvectors of the matrix c�e ⋅ � + T  and F−1 = { f j�}m

j,�=1
.

(5)qkij(v1,… , vi) =�
iyk
ij
exp(−�(v1 +⋯ + vi)), i = 1,… , c − 1, j = 1,… ,m,

(6)qkcj(v1,… , vc) =�
c−1yk

cj
exp(−�(v1 +⋯ + vc) + c(� − �k)v(1)), j = 1,… ,m,

K exp(−�(v1 +⋯ + vc))�B
−1DB

(7)v(v)e = (v1(v),… , vm(v))e = pv̂ exp[(c𝜇e ⋅ � + T)(𝜏 − v)]e, 0 < v < 𝜏

(8)f (v) =

m∑
k=1

𝛿k(y
k
c
e) c exp (−c𝜂kv), 0 < v < 𝜏

(9)𝛿k(y
k
c
e) = p exp(c𝜂k𝜏)

m∑
j,�=1

v̂jfj,k f
k�∕c, k = 1,… ,m

Page 5 of 15 25



Methodology and Computing in Applied Probability (2023) 25:25

1 3

Also

Proof. Assumption 1 i) implies that c�e ⋅ � + T  is diagonalizable, that is c�e ⋅ � + T =

F diag (c�1,… , c�
m
)F−1 where the m eigenvalues {c�1,… , c�m} are sorted in decreasing 

order according to the size of the moduli. From elementary properties of the exponential 
matrix it follows that

Hence by comparing the coefficients of exp(−c�1),… , exp(−c�m),

which is (9). This shows how the density (8) for the virtual waiting time can be expressed 
using the results (7) from Kawanishi and Takine (2015).

Furthermore, summing over k, since 
∑m

k=1
fj,k f

k� = 1 if j = � and 0 if j ≠ �,

which is (10). ▪
Remark 3. For numerical computations the representation in (8) yields an alternative to 

the approach using matrix exponentials suggested by Kawanishi and Takine (2015). With a 
procedure computing eigenvalues and eigenvectors the quantities �1,… , �m can be found as 
described in Theorem 1.

4  Solution of the Linear Equations (2) and (3)

The linear equations (2) and (3) can be solved directly by writing them on the form 
A�� = em+1 where A is a (m + 1) × m matrix and em+1 is a (m + 1)-dimensional vector with 
all elements equal to 0 except the last which equals 1. Then, using a QR factorization, as 
described in Theorem 2.1.14 in Horn and Johnson (2013), there exist a (m + 1) × m matrix 
Q with orthonormal columns and an upper triangular m × m matrix R such that the linear 
equations may be expressed as QR�� = em+1 from which � is easily found.

But there is an alternative way to obtain a solution starting with solving

(10)p = c

m∑
k=1

�k(y
k
c
e) exp(−c�k�).

pv̂ exp [(c𝜇e ⋅ � + T)(𝜏 − v)]e

= pv̂F exp[ diag (c𝜂1(𝜏 − v),… , c𝜂m(𝜏 − v))]F−1e

= pv̂F diag (exp(c𝜂1(𝜏 − v)),… , exp(c𝜂m(𝜏 − v)))F−1e

= p

m∑
k=1

[exp(c𝜏𝜂k)

m∑
j,𝓁=1

v̂jfj,k f
k𝓁] exp(−c𝜂kv), 0 < v < 𝜏.

𝛿k(y
k
c
e) = p exp(c𝜏𝜂k)

m∑
j,�=1

v̂jfj,k f
k�∕c, k = 1,… ,m

m∑
k=1

𝛿k(y
k
c
e) exp(−c𝜏𝜂k) = p

m∑
j,�=1

v̂j

m∑
k=1

fj,k f
k�∕c = p

m∑
j=1

v̂j∕c = pv̂e∕c

=
1

c
p�(c𝜇I − T)−1e∕�(c𝜇I − T)−1e = p∕c
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which is determined up to a normalization by Lemma 4. Normalizing the first element of � 
as 1, it follows from Lemma 1 that all elements of � are real.

Lemma 1 The solutions of Eq. (11) have real elements.

Proof. If � is the diagonal matrix with diagonal elements �1,… , �m,
B(T + T ⋅ �)B−1 = � . Furthermore, Bc�ImB−1 = c�Im . Subtracting B(−T − T ⋅ � + c�I

m
) 

B
−1 = c�I

m
− � . Then B(c�Im − T − T ⋅ �)−1B−1 = (c�Im − �)−1 and (c�I

m
− T − T ⋅ �)−1

= B
−1(c�I

m
− �)−1B = B

−1
DB . Thus since the matrix (c�Im − T − T ⋅ �) has real elements, 

so has the matrix B−1DB and the matrix c�T ⋅ �B−1DB − (c − 1)�Im + (c − 1)�e ⋅ � + T  . 
Therefore also the solutions of (11) must be real. ▪

Remark that � = �EYc−1 . The matrix Yc−1 defined in Theorem 1 has rows corresponding 
to �1,… , �m . Then Ȳc−1 is the rows corresponding to �̄�1,… , �̄�m where �̄�i is the conjugate of 
�i if this number is not real. Let � and �̃ be the solutions of equation (2). Since the elements 
of � are real

The matrices Ȳc−1 and Ē are nonsingular, such that �̄ = �̃ . This means that in the solu-
tions of equation (3) the complex elements occur in conjugate pairs. But then

must be a real number, since conjugate pairs of �i correspond to conjugate pairs of other 
terms in the sum (12).

But the sum of a complex number and its conjugate must be real. Therefore (12) is real 
and can be used for normalizing �.

5  Computation of the Loads for a Particular Group of Servers

Theorem 1 describes the distribution of the remaining load of the c servers on the open set 
< 0,∞ >c . As pointed out in Remark 1 in Swensen (1986) the distribution on [0,∞ >c can 
easily be obtained. This result can be used to find expressions for probabilities and distri-
butions for particular fixed servers. In addition to the distribution of the load we will con-
sider two such probabilities as a function of the threshold � : the probability that a particular 
server is occupied and the probability that customers are rejected at the particular server. 
Denote the load of this server by Vp1 . The main argument for finding the distribution is, for 
Vp2 the load at another fixed particular server,

(11)�[c�T ⋅ �B−1DB − (c − 1)�Im + (c − 1)�e ⋅ � + T] = 0

� = �Yc−1E = �̃Ȳc−1Ē.

(12)

∑m

k=1
�k{

∑c−1

i=0

�
c

i

�
yk
i
e + yk

c
e[(

1

�
−

1

�k
) exp (−c�k�) +

1

�k
]}

=
∑m

k=1
�ky

k

c−1
{
∑c−1

i=0

�
c

i

�∏c−2

𝓁=i
(c − 𝓁)�c−𝓁+1(𝓁�Im − 𝓁�e ⋅ � − T)−1

+cIm + c�Rk[(
1

�
−

1

�k
) exp (−c�k�) +

1

�k
]}e
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The probabilities on the right-hand side follow from Theorem 1. More details can be found 
in Lemma A.7 in Swensen (1986).

In Fig. 1 the probability that a particular server is busy, i.e. P(Vp1 > 0) , is shown as a func-
tion of the bound � for a queue with 4 servers.

The distributions of the inter-arrival distributions which are considered are an exponential 
distribution and three phase type distributions with intensity matrix

The case with a = 0.4, b = c = d = 0.0 corresponds to the Coxian distribution considered 
in Swensen (1986).

The probability is plotted in Fig.  1 for four distributions which all have expecta-
tion 0.3125. In addition to the exponential distribution there are 3 phase type dis-
tributions; PH1: a = 0.346, b = d = 0.0, c = 0.5 with coefficient of variation 2.98, 
PH2: a = 0.07, b = 0.5, c = 0.8, d = 0.0 with coefficient of variation 2.84, PH3: 
a = 0.05, b = 0.5, c = 0.0, d = 0.8 with coefficient of variation 2.59. The intensity of the 
server distribution, � , is taken equal to 1.

P(Vp1 > v) = P(Vp1 = min
1≤i≤mVi > v) + P(Vp1 > v,Vp1 > min

1≤i≤mVi)

=
1

c
P(min

1≤i≤mVi > v) + (c − 1)P(Vp1 > v,Vp2 = min
1≤i≤mVi > v)

+ P(Vp1 > v, min
1≤i≤mVi = 0).

⎛⎜⎜⎝

−16.0 4.0 b

d − 2.0 a

c 0 − 0.4

⎞⎟⎟⎠
.

Fig. 1  Probability of server 1 being occupied as function of � . Exponential inter-arrivals: solid line, PH1 
inter-arrivals: dashed line, PH2 inter-arrivals: dotted line, PH3 inter-arrivals: dot-dashed line
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As one can see in Fig. 1, P(Vp1 > 0) , the probability of server 1 being busy, is, not surpris-
ingly, increasing in � . This follows from the fact that larger value of � means that there are 
more customers in the system. Therefore the probability that the server is idle is less and the 
probability of being busy is larger.

In Fig. 2 the probability that a particular server has a load such that no new customer is 
allowed at this server, i.e. P(Vp1 > 𝜏) , is shown as a function of the bound � for the a queue 
with 4 servers for the same queuing systems as those used in Fig. 1. The decreasing prob-
ability is due to the fact that as � increases fewer customer are rejected, and the probability of 
being rejected therefore becomes smaller.

As � → 0 , limP(Vp1 > 𝜏) = P(Vp1 > 0) for all inter-arrival distributions. In particular, in 
the situation displayed in Figs. 1 and 2 for the exponential distribution, the system reduces to 
Erlang’s loss system when � = 0 . The probability that a fixed server is busy is then given by 
the Palm-Jacobæus formula which in this case equals 0.617, see page 63 in Asmussen (1987).

The calculations were done using the software package R, R Core Team (2020).

Appendix

A. Stationary Solutions of the Kolmogorov Forward Equations

We will use the following notation T = {tjl}
m
j,l=1

 , tjj = −�j , tjl = �j�jl, j ≠ l for j, l = 1… ,m . 
Also �jj = 0 and �j = 1 −

∑m

l=1
�jl for j = 1,… ,m such that T = (�1�1,… , �m�m)

�.
The forward Kolmogorov equations are a generalization of those used in Swensen 

(1986). Due to the restrictions on � and T in the Coxian case some modifications are neces-
sary when a general phase type distribution is used to describe the arrival process.

0.
0

0.
2

0.
4

0.
6

0.
8

�

P(
V>

ta
u)

Fig. 2  Probability of customer being rejected at server 1 as function of � . Exponential inter-arrivals: solid 
line, PH1 inter-arrivals: dashed line, PH2 inter-arrivals: dotted line, PH3 inter-arrivals: dot-dashed line
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Let pij(t + h, v1,… , vi) be the density of the remaining load for i occupied servers, 
i, i = 0,… , c , and arrival process in state j, j = 1,… ,m at time t + h . Letting first t → ∞ 
and then h → 0 it follows that the following equations must be satisfied by the stationary 
solutions

for i = 1,… , c − 1 when c > 1 and

for j = 1,… ,m.
Firstly, we claim that a solution of the previous equations has the form defined by the 

Eqs. (4)–(6) in the region min vi ≤ � . As in Swensen (1986) where the similar situation is 
treated for the Coxian distributions the verification is by straight forward insertion in (13) 
and (14) for i = 1,… , c − 1.

For the case i = c the insertion of Eqs. (5) and (6) in the left- and right-hand side of Eq. 
(15) yields that the following equations must be satisfied for k = 1,… ,m

and

It follows from Lemma 2 that �k is a solution of (� − �k)∕� = �[c�kIm − T]−1T . 
Therefore the Eq. (16) may be written

(13)[cp11(0),… , cp1m(0)] = −[

m∑
l=1

p0ltl1,… ,

m∑
l=1

p0ltlm],

(14)

−

i∑
l=1

dpij

dvl
=

m∑
l=1

pil(v1,… , vi)tlj

+
�j

(c − i + 1)

m∑
l=1

i∑
k=1

pi−1l(v1,… , vk−1, vk+1,… , vi)�l�l� exp(−�vk)

+ (c − i)pi+1j(v1,… , vi, 0)

(15)

−

c∑
l=1

dpcj

dvl
=

m∑
l=1

pcl(v1,… , vc)tlj

+ 𝛾j

m∑
l=1

c∑
k=1

pc−1l(v1,… , vk−1, vk+1,… , vc)𝜆l𝛼l𝜇 exp(−𝜇vk)

+ 𝛾j

m∑
l=1

c∑
k=1

∫
𝜏∧min vi

0

pcl(v1,… , vk−1, v, vk+1,… , vc)𝜆l𝛼l𝜇 exp(−𝜇(vk − v))dv

+ 𝛾jI(𝜏 < min vi)

m∑
l=1

pcl(v1,… , vc)𝜆l𝛼l

(16)
�

� − �k
yk
c
T = c�yk

c−1
T

(17)yk
c
[c�Im − T] =

�[yk
c
T]�

� − �k
.

(18)yk
c
T = c�yk

c−1
T ⋅ �[c�kIm − T]−1T = c�yk

c−1
RkT,
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where the last equality follows from the definition of Rk . But the definition of yk
c
 and yk

c−1
 

implies (18).
To verify (17) note that from the definition of yk

c−1
 and Rk it follows that

such that the Eq. (17) may be written, using the definition of yk
c−1

 and yk
c

But from the definition of yk
c
 , yk

c−1
 and Lemma 2 it follows that

which implies (19) and therefore (17). Thus the proposed solutions given by Eqs. (4)–(6) 
satisfy the requirements from Eqs. (13)–(15) in the area min vi ≤ � for each �1,… , �m.

Secondly, the general solution will be a linear combination of these solutions. Insert-
ing such a solution in the Eq. (15) one gets when min vi > 𝜏 the following equation on 
vector form

where by using (20)

Let �1,… , �m be the eigenvalues of T + T ⋅ � , B = (b�
1
,… , b�

m
)� be the matrix with the 

normalized left eigenvectors of T + T ⋅ � as rows and let D be the diagonal matrix with 
diagonal elements 1∕(c� − �1),… , 1∕(c� − �m) . Since T + T ⋅ � is a generator the Perron-
Frobenius theorem implies that one eigenvalue, �1 = 0 say, is equal to zero and that the 
other eigenvalues have strictly negative real parts. Also by Assumption 1 ii) �1,… , �m are 
distinct. Since �2,… , �m have negative real parts they are not equal to c𝜇 > 0.

As in Swensen (1986) one can show that

where �1,… ,�m are arbitrary differentiable functions in one variable and �
j
(v

1
+…+ v

c
)

= bj exp(−�jv1)�(−(c − 1)v1 + v2 +⋯ + vc), j = 1,… ,m . Therefore �1,… ,�m are m 
independent solutions of the homogenous differential equation corresponding to (21).

Now define,

Then

yk
c
[c�kIm − T] = c�yk

c−1
Rk[c�kIm − T] = c�yk

c−1
T ⋅ �

(19)c�yk
c−1

T ⋅ � =
�

(� − �k)
yk
c
T ⋅ �.

(20)yk
c
T = c�yk

c−1
T ⋅ �[c�kI − T]−1T = c�yk

c−1
T
(� − �k)

�

(21)

(−

c∑
l=1

dpc1

dvl
,… ,−

c∑
l=1

dpcm

dvl
) − (pc1,… , pcm)(T + T ⋅ �) = K� exp(−�(v1 +…+ vc))

K =

m∑
k=1

�ky
k

c
T�c exp(c(� − �k)�))∕(� − �k) = c

m∑
k=1

�ky
k

c−1
T�c exp(c(� − �k)�)).

�j(T + T ⋅ �) = bj(T + T ⋅ �) exp(−�jv1)�j = �jbj exp(−�jv1)�j = −

c∑
l=1

d�j

dvl

�0(v1,… , vc) = K exp(−�(v1 +⋯ + vc))�B
−1DB.
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Thus, if � is the diagonal matrix with diagonal elements �1,… , �m,

such that �0 is a particular solution of (21) and the general solution is �0 +
∑m

l=1
�l�l.

Since �1 = 0 and �2,… , �m have strictly negative real parts, �1 = ⋯ = �m = 0 because 
pcj → 0, j = 1,…m as 

∑c

l=1
v2
l
→ ∞.

Finally, from the Kolmogorov forward equations it follows that

such that for (v1,… , vc) ∈ {(v1,… , vc) ∶ min vi = �}

Using the definition of yk
c
 and letting Yc−1 be the matrix with rows yk

c−1
, k = 1,… ,m this 

equals

The matrix E has full rank and so has Yc−1 by Lemma 5. Hence it follows from Lemma 4 
that Eq. (22) has a solution up to a multiplicative constant, which is found by normalization.

B. Some Lemmas

Lemma 2 Under Assumption 1 i) the set of solutions �1,… , �m of the equation

is contained in the set of solutions of

Proof. Let � be a solution of Eq. (23). From Assumption 1 i) � is different from the eigen-
values of T/c so that (c�Im − T) is invertible. Then

Using Cauchy’s formula for the determinant of a rank-one perturbation, see Horn and 
Johnson (2013) p. 26, the relation

−

c∑
l=1

d�0

dvl
= c�K exp(−�(v1 +⋯ + vc))�B

−1DB.

−

c∑
l=1

d�0

dvl
− �0(T + T ⋅ �) = K exp(−�(v1 +⋯ + vc))�B

−1(c�D − D�)B

= K� exp(−�(v1 +⋯ + vc))

pcj(v1,… , vc) = lim
h→0

pcj(v1 + h,… , vc + h), j = 1,…m

m∑
k=1

�kc�y
k

c−1
exp(c(� − �k)�)T ⋅ �B−1DB =

m∑
k=1

�ky
k

c
exp(c(� − �k)�).

(22)�EYc−1[c�T ⋅ �B−1DB − (c − 1)�Im + (c − 1)�e ⋅ � + T] = 0.

(23)det[c�e ⋅ � + T − c�Im] = 0

� − �

�
= �[c�Im − T]−1T.

f (c�) = �(c�Im − T)−1(−T)e = �(c�Im − T)−1(c�Im − T − c�Im)e

= �e − c��(c�Im − T)−1e = 1 − c��(c�Im − T)−1e.
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implies that

Hence

Lemma 3 The matrices

have rank m-1.

Proof. As pointed out in Swensen (1986) it suffices to prove that the matrix (24) 
is singular. The case where Rk − I is non-singular is proved as in Swensen (1986). 
To deal with the case where Rk − I is singular note that from Lemma 2 it follows that 
RkT = T ⋅ �[c�kIm − T]−1T = [(� − �k)∕�]T so T is a right eigenvector of Rk and (� − �k)∕� 
is the non-zero eigenvalue. When Rk − I is singular, 1 has to be the non-zero eigenvalue of Rk 
such that 1 = (� − �k)∕� and �k = 0 . Furthermore, for �k = 0 and using Cauchy’s formula for 
the determinant of a rank-one perturbation

such that c��T−1e = −1 and

which shows that the matrix (24) must be singular also when Rk − I is singular. ▪

Lemma 4 Let �1,… , �m be the eigenvalues of T + T ⋅ � and B the matrix with rows as nor-
malized left eigenvectors of T + T ⋅ � and let D be the diagonal matrix with diagonal ele-
ments 1∕(c� − �1),… , 1∕(c� − �m) . Under Assumption 1 ii) the matrix

has rank m-1.

Proof. From Lemma 1 in Neuts (1982) it follows that the matrix (c − 1)�I
m
− (c − 1)�e⋅ 

� − T  has rank m. The matrix c�T ⋅ �B−1DB − (c − 1)�Im + (c − 1)�e ⋅ � + T  therefore 
has rank at least m-1. Hence, it suffices to show that it is singular.

Let � be the diagonal matrix with diagonal elements �1,… , �m . Without loss of general-
ity we can assume �1 = 0 . Then

0 = det[c�e ⋅ � + T − c�Im] = det(T − c�Im)(1 + c��(T − c�Im)
−1e)

1

�
= −c�(T − c�Im)

−1e.

� − �

�
= 1 −

�

�
= 1 − c��(c�Im − T)−1e = f (c�) = �(c�Im − T)−1T. ▪

(24)(c − 1)�Im − (c − 1)�e ⋅ � − T − c�Rk, k = 1,… ,m

0 = det(c�e ⋅ � + T − c�kIm) = det(c�e ⋅ � + T) = (det T)(1 + c��T−1e)

[(c − 1)�Im − (c − 1)�e ⋅ � − T − c�Rk]e = (−T + c�T ⋅ �T−1)e = (−Te) − T) = 0,

c�T ⋅ �B−1DB − (c − 1)�Im + (c − 1)�e ⋅ � + T

B(T + T ⋅ �)e = �Be,

BTe + BT ⋅ �e = �Be,
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but �i ≠ 0 such that bie = 0 for the ith row of B, bi , i = 2,… ,m and Be = (e�b�
1
, 0,⋯ , 0)�

= a(1, 0,⋯ , 0)� = ae
1
 . This implies that e = B−1Be = aB−1e1 and

Also,

Hence,

by (25), which shows that c�T ⋅ �B−1DB − (c − 1)�Im + (c − 1)�e ⋅ � + T  is singular. ▪

Lemma 5 The vectors yk
c−1

, k = 1… ,m are linearly independent.

Proof. See Lemma A.6 in Swensen (1986). The argument for the Coxian distributions is 
also valid for phase type distributions. ▪
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