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Abstract
Hedging at-the-money digital options near maturity, remains a challenge in quantitative 
finance. In the present work, we carry out a hedging strategy by means of a bull spread. 
We study the probability of super- and sub-hedge the digital option and minimize the prob-
ability of a sub-hedge considering the cost of hedging and illiquidity issues. We perform 
a wide variety of numerical experiments under different models for the underlying asset 
dynamics. A calibration to market data is provided and used to get the optimal composition 
of the bull spread satisfying the cost of hedging restriction.

Keywords Digital option · Short maturity · At-the-money · Hedging · Bull call spread · 
Black-Scholes · Heston model · CGMY model

JEL Classification G13 · G32 · C61 · C63

1 Introduction

Hedgers of derivatives wish to replicate the opposite payoff of their positions. Hedging 
strategies can be roughly classified as dynamic or static. Dynamic hedging requires con-
stant re-balancing of portfolios as relevant prices change over time. On the contrary, static 
hedging does not need to re-balance portfolios. Comparisons on dynamic and static hedg-
ing strategies for barrier options, Asian options, lookback options and quanto options are 
presented in Engelmann et  al. (2006) and Tompkins (2002). A combination of dynamic 
and static hedges for exotic options is presented in İlhan et al. (2009), and numerous meth-
odologies for dynamic hedging are shown in Zakamouline (2009).

A problem that remains a challenge in quantitative finance is the hedging of at-the-
money digital options near maturity. The problem stems from the fact that a digital option 
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has a discontinuous payoff at the strike price and has a huge delta and gamma near expi-
ration. This problem is well-known among practitioners, and it is also put forward in 
Zakamouline (2009), where the author touches upon the delta-hedging of digital options. 
Hedging errors for digital options are studied in Gallus (1999). The author shows that 
even if one is correct in assuming a geometric Brownian motion (GBM) model for the 
distribution of the underlying risky asset, a delta-hedging strategy with a wrong volatil-
ity for a digital option position may actually increase the risk compared to the alterna-
tive of not hedging at all. Digital option replication is considered in Tichý (2006), where 
dynamic and static hedging are carried out for four different models: GBM, Hull-White 
stochastic volatility, the variance gamma and variance gamma in stochastic environment. 
For the static hedging, the author considers a concrete example by combining regular call 
options, simulates random paths of the underlying asset price evolution, and calculates 
some statistics of the terminal replication payoff error.

In this work, we consider a general setting for hedging at-the-money digital options 
near maturity by means of a bull spread. We solve different optimization problems, with 
the aim of minimizing the probability of sub-hedging the digital option at maturity, con-
sidering transaction costs and illiquidity issues. The main contributions of this paper are 
the following:

• We compute the delta Greek of a digital call option under GBM and Heston dynamics for 
a wide range of values for the underlying asset. In the case of Heston model, the delta is 
obtained by means of COS method (Fang and Oosterlee 2008), which belongs to the class 
of option pricing methods based on Fourier inversion.

• Given a confidence level, we determine the composition of the bull spread such that the 
probability of super- and sub-hedge a digital option meets that confidence level. We con-
sider GBM and Heston models. In the case of Heston model, the probability density func-
tion for the asset price at maturity is approximated by the COS method.

• We determine the composition of the bull spread that minimizes the probability 
of sub-hedging a digital option given that the cost of hedging is below a certain 
threshold. We consider GBM, Heston and CGMY models for driving the dynam-
ics of the underlying asset. The COS method is used for pricing under Heston and 
CGMY dynamics. The optimization algorithm employed is derivative-free for all 
three models considered.

• We solve the aforementioned optimization problem with a gradient based method when 
the dynamics of the underlying asset follows a GBM model.

• We introduce the modeling of the illiquidity issue in the optimization problem, and solve it 
for the Heston model.

• We calibrate the CGMY model to real market data and solve the optimization problem 
with transaction costs with the calibrated model.

The paper is organized as follows. We put forward the issues with the delta Greek for at-the-
money digital options near maturity in Section 2. In Section 3, we propose a novel method-
ology for carrying out static hedging strategies. We show the performance of the proposed 
methods by means of a variety of numerical experiments in Section 4. Section 5 concludes 
and gives some pointers for future research.
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2  Dynamic Hedging of Digital Options

Derivative dealers use dynamic hedging to adjust their positions as the underlying assets 
move. The hedge is often carried out several times a day. A particular case of dynamic 
hedging is delta-hedging. This technique consists of offsetting the risk of buying or selling 
options, by holding underlying in an amount equal to minus the delta of the options. When 
portfolios include near-the-money digital options, with a short time to maturity, some 
instabilities may arise that hamper the computation of the delta. We show this fact in Sec-
tions 2.1 and 2.2, where the models considered for the underlying asset dynamics are the 
GBM as well as the Heston model, respectively. We present the stock price model driven 
by CGMY process in Section 2.3, since it will be used in the numerical experiments.

2.1  Computation of the Delta of a Digital Option Under the GBM Model

A European call (respectively, put) option, gives to the holder the right to buy (respec-
tively, sell) the underlying asset at maturity time T at an agreed price K called strike. The 
GBM model assumes that the price St of the underlying asset has a constant volatility � , 
and is governed by the stochastic differential equation,

being r the risk-free interest rate, and Wt a Brownian motion. Under this model, the valua-
tion formulae at time t of European call and put options can be found in the seminal paper 
(Black and Scholes 1973). These formulae are given, respectively, by,

where,

being � ∶= T − t the time to maturity, and Φ the standard normal cumulative distribution 
function.

A digital call (respectively, put) option pays nothing when ST ≤ K (respectively, 
ST ≥ K ) or pays a predetermined constant amount C when ST > K (respectively, ST < K ), 
where ST denotes the underlying asset at maturity time. Without loss of generality, we will 
assume that C = 1.

Under the GBM dynamics, the risk-neutral valuation formulae (see Chapter  25 of 
Hull 2012) of the digital call and put, respectively, at time t, read,

The delta of the digital call option reads,

where � denotes the density function of the standard normal distribution.

dSt = rStdt + �StdWt,

ct = StΦ(d1) − Ke−r�Φ(d2), pt = Ke−r�Φ(−d2) − StΦ(−d1),

d1 =
ln(St∕K) + (r + �2∕2)�

�
√
�

, d2 =
ln(St∕K) + (r − �2∕2)�

�
√
�

,

cd
t
= e−r�Φ(d2), pd

t
= e−r�Φ(−d2).

Δ =
e−r��(d2)

St�
√
�

,
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Since the digital option payoff is discontinuous at the strike, digital options are difficult 
to hedge when they are close to expiration and near the money. Around the strike, small 
moves in the underlying asset price can have very large effects on the value of the option, 
that is, the absolute value of delta can be large close to maturity. Moreover, the delta may 
exhibit abrupt changes as the underlying price changes when the option is close to maturity 
(see Fig. 1). It is common among practitioners to consider that an option is close to expiry 
when it remains at most ten days to maturity.

2.2  Computation of the Delta of a Digital Option Under the Heston Model

We consider now the celebrated Heston model (see Heston 1993) for driving the dynamics 
of the underlying asset. Within this model, the volatility, denoted by 

√
ut , is modeled by an 

additional stochastic differential equation,

where xt denotes the log-asset price variable and ut the variance of the asset price process. 
The parameters of the Heston model are the initial volatility u0 , the mean reversion rate 
� ≥ 0 , the long run variance ū ≥ 0 , the volatility of variance � ≥ 0 and the correlation � , 
between the two Brownian motions W1

t
 and W2

t
 . The parameter � represents the rate of return.

We use the COS method (see Fang and Oosterlee  2008) to compute the delta of the 
digital call under the Heston model. The starting point for pricing European options with 
numerical integration techniques is the risk neutral valuation formula,

where v denotes the option value, � is the time to maturity ( T − t ) and �Q[⋅] denotes the 
expectation operator under the risk neutral measure Q. The variables x and y are state vari-
ables at times t and T, respectively, f(y|x) is the probability density of y given x, and r is 
the risk free rate. The COS method belongs to the class of Fourier inversion methods, and 
the probability density function (PDF) of the price process at terminal time T is recovered 
from its characteristic function, that is, the Fourier transform of the PDF.

(1)dxt = (� −
1

2
ut)dt +

√
utdW

1
t
,

(2)dut = 𝜆(ū − ut)dt + 𝜂
√
utdW

2
t
,

(3)v(x, �) = e−r�𝔼Q[v(y, 0)|x] = e−r� ∫
ℝ

v(y, 0)f (y|x)dy,

Fig. 1  Delta of a digital option 
under the Black-Scholes 
dynamics with parameters 
K = 100, r = 0.05, � = 0.05 , 
and times to maturity 
� = 1∕365, 5∕365, 10∕365
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Generally speaking, a PDF f(x) and its characteristic function �(w) form a Fourier pair,

For a function supported on [0,�] , the cosine expansion reads,

where 
∑′ indicates that the first term in the summation is weighted by one-half. For func-

tions supported in any other finite interval, say [a, b] ⊂ ℝ , the Fourier-cosine series expan-
sion can easily be obtained via a change of variables,

It then reads,

When [a, b] is conveniently chosen, it can be shown that Ak ≈ Fk , where,

and ℜ(z) denotes the real part of z. Finally, we replace Ak by Fk in (7), and truncate the 
series summation such that,

We now return to the option pricing problem (3). Because the density function f(y|x) 
is not known, we rely on its known characteristic function. We can first truncate the infi-
nite domain into a finite domain [a, b], and then replace f(y|x) by its Fourier-cosine series 
expansion, to end up with (see all the details in Fang and Oosterlee 2008),

with characteristic function � . The so called payoff coefficients Vk can be obtained analyti-
cally for European plain vanilla and digital (also called cash-or-nothing) options. Since we 
assume that the characteristic function of the log-asset price is known, we represent the 
payoff as a function of the log-asset price. If we denote the log-asset prices by,

the payoff for European options, in log-asset price, reads,

(4)�(w) = ∫
ℝ

eiwxf (x)dx, and, f (x) =
1

2� ∫
ℝ

e−ixw�(w)dw.

(5)f (�) =

∞∑
k=0

�Ak cos(k�), Ak =
2

� ∫
�

0

f (�) cos(k�)d�,

(6)� ∶=
x − a

b − a
�, x = a +

b − a

�
�.

(7)f (x) =

∞∑
k=0

�Ak cos
(
k�

x − a

b − a

)
, with, Ak =

2

b − a ∫
b

a

f (x) cos
(
k�

x − a

b − a

)
dx.

(8)Fk =
2

b − a
ℜ

{
�

(
k�

b − a

)
exp

(
−i

ka�

b − a

)}
,

(9)f (x) ≈

N−1∑
k=0

�Fk cos
(
k�

x − a

b − a

)
.

(10)

v(x, �) ≈ e−r�
N−1∑
k=0

�
ℜ

{
�

(
k�

b − a
;x
)
e
−ik�

a

b−a

}
Vk, Vk =

2

b − a ∫
b

a

v(y, 0) cos
(
k�

y − a

b − a

)
dy,

(11)x ∶= ln(St∕K), y ∶= ln(ST∕K),

(12)v(y, 0) = max (�K(ey − 1), 0),
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with � = 1 for a call option and � = −1 for a put option, and then, the payoff coefficients 
for European call and put options, respectively, read,

where,

and,

For digitals call and put options, the payoff coefficients read, respectively,

In the case of the Heston model, the pricing equation in (10) reads,

where,

and �(w) is specified in Appendix A.
The delta Greek can be obtained by computing the derivative of the option value given 

in expression (17) with respect to the underlying asset,

As it was observed under the GBM dynamics, the delta of a digital option under the 
Heston model exhibits abrupt changes of value as the underlying price changes when a 
near the money option is close to maturity (see Fig. 2). A remedy for the moving delta tar-
get is to avoid dynamic delta-hedging and to choose static hedging instead.

2.3  Stock Price Model Driven by CGMY Process

In this section, we introduce the CGMY process, which belongs to the class of Lévy pro-
cesses. As pointed out in Schoutens (2003) Lévy processes give a much better fit to the 
data than the GBM model. We refer the readers to Applebaum (2004) for a more detailed 

(13)Vcall
k

=
2

b − a
K(�k(0, b) − �k(0, b)), V

put

k
=

2

b − a
K(−�k(a, 0) + �k(a, 0)),

(14)

�k(c, d) ∶=
1

1 +
(

k�

b−a

)2

[
cos

(
k�

d − a

b − a

)
ed − cos

(
k�

c − a

b − a

)
ec

+
k�

b − a
sin

(
k�

d − a

b − a

)
ed −

k�

b − a
sin

(
k�

c − a

b − a

)
ec
]
,

(15)�k(c, d) ∶=

{[
sin

(
k�

d−a

b−a

)
− sin

(
k�

c−a

b−a

)]
b−a

k�
, if k ≠ 0,

(d − c), if k = 0.

(16)Vdcall
k

=
2

b − a
K�k(0, b) and V

dput

k
=

2

b − a
K�k(a, 0).

(17)v(x, �) ≈ e−r�
N−1∑
k=0

�
ℜ

{
�

(
k�

b − a

)
e
ik�

x−a

b−a

}
Vk,

(18)�(w;x) = �(w)eiwx,

(19)Δ =
dv

dSt
=

dv

dx

dx

dSt
=

1

St

dv

dx
≈ e−r�

N−1∑
k=0

�
ℜ

{
�

(
k�

b − a

)
e
ik�

x−a

b−a
ik�

b − a

}Vk

St
.
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discussion on Lévy processes, and Schoutens (2003) for modelling the stock price based on 
Lévy processes.

Definition 1 Let X = (Xt)t≥0 be a stochastic process defined on a probability space (Ω,F,P) . We 
say that it has independent increments if, for each n ∈ ℕ and each 0 ≤ t1 < t2 ≤ ⋯ < tn+1 < ∞ , 
the random variables Xtj+1

− Xtj
, j = 1,… , n are independent and that it has stationary incre-

ments if each Xtj+1
− Xtj

d
=Xtj+1−tj

− X0.

Definition 2 We say that X is a Lévy process if, 

 (i) X0 = 0 (almost surely),
 (ii) X has independent and stationary increments,
 (iii) X is stochastically continuous, i.e. for all a > 0 and for all s ≥ 0 , limt→s P(|Xt − Xs| > a) = 0.

We now have the Lévy-Khinchine formula for the characteristic function of a Lévy pro-
cess X = (Xt)t≥0,

where a is the drift rate, b is the diffusion coefficient, k(x) is called the Lévy density, and 
completely characterizes the jump component of Lévy processes. The Lévy density of 
the CGMY process (see Carr et al. 2002 or Geman 2002 for the details) with parameters 
C, G, M, Y is given by,

The parameter C can be viewed as a measure of the overall level of activity, and it controls 
the overall kurtosis of the distribution. The parameters G and M control the rate of exponen-
tial decay on the right and left of the CGMY density, respectively. When they are equal to 
each other, the distribution underlying the CGMY process becomes symmetric. In the case 
of G ≠ M , it leads to a skewed distribution. If G < M , the left tail of the distribution is heav-
ier than the right one, whereas G > M , the right tail is heavier than the left one. Finally, the 
parameter Y is used to characterize the fine structure of the stochastic process. This parameter 

E
[
eiwXt

]
= exp

(
iwat −

w2b2t

2
+ t ∫

∞

−∞

(
eiwx − 1

)
k(x)dx

)
,

k(x) =

{
C

e−G|x|

|x|1+Y , for x < 0,

C
e−M|x|

|x|1+Y , for x > 0.

Fig. 2  Delta of a digital option 
under the Heston dynamics 
with parameters taken from 
Fang and Oosterlee (2008), 
K = 100,𝜇 = 0, u0 = 0.0175, ū =

0.0398, � = 1.5768, � = 0.5751, � =

−0.5711 , and times to maturity 
� = 1∕360, 5∕360, 10∕360 . 
The computations are carried 
out by means of COS method 
with N = 103 . The details to 
determine the interval [a, b] are 
in Appendix B
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determines whether the CGMY model has a complete monotone density, and whether the pro-
cess has finite or infinite activity.

The CGMY model for the stock price process assumes that the martingale component of 
the movement in the logarithm of prices is given by the CGMY process extended to include 
an orthogonal diffusion component. The characteristic function for the logarithm of the stock 
price is given in Appendix A.

3  Static Hedging of Digital Options

Assume that we need to hedge at time t a short digital call with strike K, as defined in Sec-
tion 2.1. A way of performing the hedging strategy is to build a bull call spread with value bt 
at time t, composed of 1

2h
 units of a long call with strike K − h and value ct(K − h) , and 1

2h
 units 

of a short call with strike K + h and value ct(K + h) , for a certain h > 0,

with payoff at maturity t = T ,

The payoff bT is illustrated in Fig. 3, where we have considered K = 100 and h = 15 . We 
can observe that the super-hedging interval is [K − h,K] = [85, 100] , while the sub-hedging 
interval is (K,K + h) = (100, 115).

We must compute h to determine the number of calls and the value of the strikes involved 
in the bull call spread. In Section 3.1 we calculate the value of h such that,

for a given confidence level � ∈ (0, 1) close to 1. We assume that the underlying follows 
either GBM or Heston dynamics.

(20)bt =
ct(K − h) − ct(K + h)

2h
,

(21)bT =

⎧⎪⎨⎪⎩

0, if ST < K − h,
1

2h

�
ST − K + h

�
, if K − h < ST < K + h,

1, if ST > K + h.

(22)P
(
K − h < ST < K + h

)
= 1 − 𝛼,

Fig. 3  Payoff of a digital option 
with strike K = 100 (black) and 
payoff of a bull call spread with 
the same strike and h = 15 (red)
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3.1  Determining h Given a Fixed Level of Probability

We know that, under a GMB, the log-asset price ST at terminal time T is normally distributed with 
mean ln(St) +

(
� −

�2

2

)
� , and variance �2� . Standardizing expression (22), we end up with,

where Z follows a standard normal distribution. Then, the value of h can be numerically 
obtained by solving the equation,

Under the Heston dynamics, we do not have a closed-form expression for the probability 
density function of ln(ST∕K) , although we have instead its numerical approximation given by 
the corresponding Fourier-cosine series expansion. Then, expression (22) turns out,

where, c(h) = ln
(

K−h

K

)
 , and, d(h) = ln

(
K+h

K

)
 . Finally, if we integrate the right hand side 

of expression (25), the value of h can be obtained by solving the equation,

3.2  Cost of Hedging and Potential Losses

We need to assess the convenience of shorting an option based on the cost of hedging, as well 
as on the probability of having a loss with the selected hedge. Each time we cover a digital call 
with a bull call spread we incur in transactional costs. We assume that the transactional costs 
represent a percentage � of the value of the option. Then, the total cost of hedging at time t is 
given by,

The potential loss of hedging the digital call with the bull call spread could be replicated at 
time t, by shorting 1

2h
 puts with strike K and value pt(K) , buying 1

2h
 puts with strike K + h and 

value pt(K + h) , and shorting 1
2
 digital puts with strike K and value pd

t
(K),

(23)

P

⎛
⎜⎜⎜⎝

ln(K − h) − ln(St) −
�
r −

𝜎2

2

�
𝜏

𝜎
√
𝜏

< Z <

ln(K + h) − ln(St) −
�
r −

𝜎2

2

�
𝜏

𝜎
√
𝜏

⎞
⎟⎟⎟⎠
= 1 − 𝛼,

(24)

Φ

⎛⎜⎜⎜⎝

ln(K + h) − ln(St) −
�
r −

�2

2

�
�

�
√
�

⎞⎟⎟⎟⎠
− Φ

⎛⎜⎜⎜⎝

ln(K − h) − ln(St) −
�
r −

�2

2

�
�

�
√
�

⎞⎟⎟⎟⎠
= 1 − �.

(25)

1 − 𝛼 = P
(
ln
(
K − h

K

)
< ln(ST∕K) < ln

(
K + h

K

))
= ∫

d(h)

c(h)

N−1∑
k=0

�Fk cos
(
k𝜋

y − a

b − a

)
dy,

(26)

1

2
F0(d(h) − c(h)) +

N−1∑
k=1

Fk

b − a

k�

(
sin

(
k�

d(h) − a

b − a

)
− sin

(
k�

c(h) − a

b − a

))
= 1 − �.

(27)Ht(h) =
�

2h
(ct(K − h) + ct(K + h)).
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Figure 4 illustrates an increasing potential loss and a decreasing cost of hedging for increas-
ing values of h, under the Heston dynamics.

The potential loss at maturity time t = T is described in Table 1. As we can observe, there 
is a loss only when K < ST < K + h (see Fig. 3). That is why, from now on, we focus our 
attention on the probability that ST lies within the sub-hedging interval [K,K + h].

If we take into account the cost of hedging Ht(h) as well as the cost of the potential loss 
Lt(h) , then the value of h in the hedging strategy can be obtained as the solution of a minimi-
zation problem with constraints. Defining,

the non-linear optimization problem can be formulated as follows,

where Gt(h) ∶= Ht(h) + Lt(h) represents the global cost at time t of the hedging strategy, 
and g is a fixed threshold.

(28)Lt(h) =
1

2h
(pt(K + h) − pt(K)) −

1

2
pd
t
(K).

P(h) ∶= P
(
ln(K) < ln(ST ) < ln(K + h)

)
,

(29)min P(h)

(30)s.t.: Gt(h) ≤ g,

Fig. 4  Cost of hedging H
t
(h) 

with � = 0.001 (red) and  
potential loss L

t
(h) (black) with  

respect to h, when the underly-
ing asset is driven by Heston  
dynamics with parameters 
S0 = 100,K = 100,� = 0, u0 =

0.0175, ū = 0.0398, 𝜆 = 1.5768,

� = 0.5751, � = −0.5711 and 
times to maturity � = 1∕360

Table 1  Potential loss at maturity time t = T

ST −
1

2h
pT (K)

1

2h
pT (K + h) −

1

2
pd
T
(K) LT (h)

ST < K − h −
1

2h
(K − ST )

1

2h
(K + h − ST ) −0.5 0

K − h < ST < K −
1

2h
(K − ST )

1

2h
(K + h − ST ) −0.5 0

K < ST < K + h 0 1

2h
(K + h − ST ) 0 1

2h
(K + h − ST )

ST > K + h 0 0 0 0
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3.3  Adding the Illiquidity Cost

In this section, we present an alternative model by adding a penalty corresponding to an illi-
quidity cost. Illiquidity costs are common in over the counter options trading. In our case, 
the calls and puts with strike K + h or K − h might not be available on the open market, and 
illiquidity costs could arise. In Çetin et al. (2006) a theoretical framework for liquidity costs 
is developed. In Harr (2011) an empirical analysis based on Çetin et al. (2006) is presented 
for options on stocks, and the author estimates liquidity costs to be in the rage of 10−3 to 10−2 
times the value of the option. We choose 10−2 as a reference value for our problem. The illi-
quidity cost is the highest when the desired strike is in the midpoint of the two closest strikes 
available in the market (without loss of generality, here we assume that 0 < h < 1 and the 
strikes are available in a unit basis). The illiquidity penalty function is given by,

and it is illustrated in Fig. 5. The maximum penalization is 10−2 and corresponds to h = 0.5

.
If we define,

and,

then, the non-linear optimization problem including illiquidity costs, can be formulated as 
follows,

where G̃t(h) ∶= H̃t(h) + L̃t(h) represents the global cost at time t of the hedging strategy, 
and g̃ is a fixed threshold.

(31)I(h) =

{
0.02h, if 0 < h ≤ 0.5,

−0.02h + 0.02, if 0.5 < h < 1,

(32)H̃t(h) =
𝜅

2h
(1 + I(h))(ct(K − h) + ct(K + h)),

(33)L̃t(h) =
1

2h

(
(1 + I(h))pt(K + h) − pt(K)

)
−

1

2
pd
t
(K),

(34)min P(h)

(35)s.t.: G̃t(h) ≤ g̃,

Fig. 5  Illiquidity penalty func-
tion I(h)
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4  Numerical Experiments

We start this section by determining the value of h in expression (20) that satisfies (22) for 
different levels of � and several times to maturity � . Results1 are presented in Table 2 for 
GBM dynamics (by numerically solving Eq. (24)) and Table 3 for Heston dynamics (by 
numerically solving Eq. 26). The root-finding method used is the secant method. In both 
situations, the value of h is greater for longer times to maturity, meaning that the hedg-
ing strategy of a short at-the-money digital call requires less call options in these situa-
tions, and the replication of the payoff needs to be less precise. As expected, the value of h 
increases for increasing values of 1 − � as well.

Now we consider the optimization problem of Section 3.2. We plot in Fig. 6 the prob-
ability P(h) and the function Gt(h) under the GBM dynamics when the time to maturity is 
� = 1∕360.

We observe that P(h) is an increasing function in h, while Gt(h) has a minimum close to 
zero. This optimization problem has a non-linear objective function as well as a non-linear 
restriction. To solve this constrained problem, we have employed a derivative-free optimiza-
tion algorithm, which does not rely on gradients, called COBYLA (constrained optimization 

Table 2  Differences (in absolute value) when hedging a digital call with a bull call spread priced 
under GBM dynamics with parameters S0 = 100,K = 100, r = 0.05, � = 0.05 and times to maturity 
� = 1∕360, 5∕360, 10∕360

1 − � � =
1

360
� =

5

360
� =

10

360

h |b0 − cd
0
| h |b0 − cd

0
| h |b0 − cd

0
|

0.01 0.0033 4.62e-07 0.0074 2.71e-07 0.0106 1.64e-06
0.02 0.0066 2.00e-06 0.0149 3.71e-06 0.0212 6.53e-06
0.05 0.0165 1.27e-05 0.0372 2.78e-05 0.0530 4.08e-05
0.1 0.0332 5.11e-05 0.0745 1.14e-04 0.1061 1.63e-04

Table 3  Differences (in absolute value) when hedging a digital call with a bull call spread priced under  
Heston dynamics with parameters S0 = 100,K = 100,𝜇 = 0, u0 = 0.0175, ū = 0.0398, 𝜆 = 1.5768, 𝜂 =

0.5751, � = −0.5711 and times to maturity � = 1∕360, 5∕360, 10∕360 . The computations associated to the 
bull spread are carried out with the function callHestoncf of the R package NMOF, while the value of 
the digital options is obtained with the COS method with N = 103

1 − � � =
1

360
� =

5

360
� =

10

360

h |b0 − cd
0
| h |b0 − cd

0
| h |b0 − cd

0
|

0.01 0.0087 9.29e-07 0.0194 2.17e-06 0.0272 3.23e.06
0.02 0.0175 3.71e-06 0.0388 8.66e-06 0.0545 1.29e-05
0.05 0.0436 2.31e-05 0.0970 5.41e-05 0.1362 8.07e-05
0.1 0.0873 9.23e-05 0.1940 2.13e-04 0.2724 3.20e-04

1 The computations were performed in R code on a personal computer with a 2.80GHz Intel Core 
i7-7700HQ processor and 16.0 GB of RAM.
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by linear approximations), described in Powell (1994), and available within the R package 
nloptr. This algorithm constructs successive linear approximations of the objective func-
tion and constraints via a simplex of n + 1 points (n dimensions) and optimizes these approxi-
mations in a trust region at each step.

We tackle this problem by considering the GBM model, the Heston model put forward 
in Section 2.2, and the CGMY model of Section 2.3. The pricing of options under CGMY 
dynamics is carried out by means of the COS method, following expression (17) and expres-
sion (18), with the corresponding �(w) specified in Appendix A. The results for different val-
ues of g are displayed in Table 4. It is worth remarking that the optimal values computed for 
h lead to a very small percentage of potential losses compared to the option premium (e.g. 
0.14% for GBM dynamics when g = 0.1 and � = 1∕360).

The minimization problem in (29) can also be solved by means of an algorithm based on 
gradients, which is much faster than the derivative-free algorithm used. We present the solu-
tion of the problem in the case of GBM model, where formulae are available in closed form. 
For that purpose, we calculate the derivative of the objective function P(h),

and the derivative of Gt(h),

(36)P�(h) =
1

�
√
�
⋅

1

K+h
�

�
ln(K+h)−ln(St)−(r−

�2

2
)�

�
√
�

�
,

(37)G�
t
(h) = H�

t
(h) + L�

t
(h),

Fig. 6  P(h) and G
t
(h) under 

GBM dynamics with parameters 
S0 = 100,K = 100, r = 0.05, � = 0.05 
and time to maturity � = 1∕360

Table 4  Optimal values of h, where S0 = 100,K = 100 and � = 0.001 . The parameters of the underlying 
asset are r = 0.05, � = 0.05 (GBM), 𝜇 = 0, u0 = 0.0175, ū = 0.0398, 𝜆 = 1.5768, 𝜂 = 0.5751, 𝜌 = −0.5711 
(Heston), and r = 0.05, � = 0.05,C = 1,G = 5,M = 5,Y = 0.7 (CGMY). COS method is used for Heston 
and CGMY models with N = 103 . The details to determine the interval [a, b] are in Appendix B

g GBM Heston CGMY

� =
1

360
� =

5

360
� =

10

360
� =

1

360
� =

5

360
� =

10

360
� =

1

360
� =

5

360
� =

10

360

0.1 0.00113 0.00273 0.00408 0.00105 0.00235 0.00333 0.00202 0.00605 0.00942
0.5 0.00022 0.00054 0.00081 0.00021 0.00047 0.00066 0.00047 0.00163 0.00270
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where,

and,

The expressions corresponding to c�
t
(K + h), c�

t
(K − h) and p�

t
(K + h) , are given by,

The results obtained with the gradient-based method of Svanberg (2002) (called glob-
ally convergent method of moving asymptotes, available within the R package nloptr) 
are displayed in Table 5. The outcomes agree with those values in Table 4, obtained with 
a derivative-free algorithm. It is worth remarking that the gradient based method is much 
faster than the derivative-free one. The method employs outer and inner iterations. An outer 
iteration starts from the current iterate hk and ends up with a new iterate hk+1 . In each inner 
iteration, within a given outer iteration, a convex subproblem is generated and solved. In 
this subproblem, the original objective and constraint functions are replaced by certain con-
vex separable functions which approximate the original functions around hk . The optimal 
solution of the subproblem is either accepted or rejected. If accepted, it becomes hk+1 and 
the outer iteration is completed. If rejected, a new inner iteration is made, with a modified 
subproblem based on somewhat modified approximating functions. These inner iterations 

(38)H�
t
(h) =

�

2h

[
c�
t
(K + h) − c�

t
(K − h) −

1

h

(
ct(K − h) + ct(K + h)

)]
,

(39)L�
t
(h) = −

1

2h2
p�
t
(K + h),

(40)c�
t
(K + h) =

K + h

�
√
�
�(d+

1
) − e−r�

�
Φ(d+

2
) +

(K + h)2

�
√
�St

�(d+
2
)

�
,

(41)c�
t
(K − h) =

K − h

�
√
�
�(d−

1
) − e−r�

�
−Φ(d−

2
) +

(K − h)2

�
√
�St

�(d−
2
)

�
,

(42)p�
t
(K + h) =

K + h

�
√
�
�(−d+

1
) + e−r�

�
Φ(−d+

2
) −

(K + h)2

�
√
�St

�(−d+
2
)

�
,

(43)d+
1
=

ln
�

St

K+h

�
+ (r +

1

2
�2)�

�
√
�

, d+
2
= d+

1
− �

√
�,

(44)d−
1
=

ln
�

St

K−h

�
+ (r +

1

2
�2)�

�
√
�

, d−
2
= d−

1
− �

√
�.

Table 5  Optimal values of h for the GBM model, where S0 = 100,K = 100, � = 0.001, r = 0.05, � = 0.05

g � =
1

360
� =

5

360
� =

10

360

0.1 0.00113 0.00273 0.00408
0.5 0.00022 0.00054 0.00081
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are repeated until the approximating objective function and constraint functions become 
greater than or equal to the original functions at the optimal solution of the subproblem. 
This does not imply that the feasible set of the subproblem is completely contained in the 
original feasible set, but it does imply that the optimal solution of the subproblem is a fea-
sible solution of the original problem, with lower objective value than the previous iterate. 
Each new outer iteration requires function values and first order derivatives of the original 
objective and constraint functions, calculated at the current iterate hk . Each new inner itera-
tion requires function values, but not derivatives, calculated at the optimal solution of the 
most recent subproblem.

We move on to the minimization problem presented in Section 3.3, where an illiquidity 
penalty is considered. Results for the Heston model are shown in Table 6. We observe that 
if we keep the same values of g used in Table 4, then we get higher values for h, meaning 
that less calls can be used in the hedging strategy and higher potential losses are expected.

4.1  Calibration of the CGMY Model

We have tackled the minimization problem associated to the hedging strategy with three 
well-known models (GMB, Heston and CGMY) where the parameters are taken from the 
literature. It is worth remarking that CGMY model is fairly sensitive with respect to the 
parameter Y. For this reason, we calibrate this model to real market data. Let us assume 
that we use a set of n different options to calibrate the model, so that i ∈ [1, n] ⊂ ℤ . Then, 
the calibration of the model is defined as the minimization problem,

where r(�) is the n-dimensional vector of the residuals obtained when pricing the options 
considered for calibration using the model parameters. That is,

where V(�;Ki) and V∗(Ki) , represent the model price and the market price, respectively, of 
the option with strike Ki , and � = (C,G,M, Y) is the set of parameters to be calibrated.

As for the data, we consider the set of options described in Table 7,
The calibration process gives the optimal set of values (C∗ = 0.057,G∗ = 5.022,M∗ =

4.999, Y∗ = 1.339) . Finally, we calculate the optimal value of h with the calibrated CGMY 
model to hedge a digital call on bitcoin with a bull call spread (without illiquidity costs), 
parameters S0 = 49955.69,K = 49000, r = 0.02, � = (0.66 + 0.759)∕2 and � = 1∕360 . 
Thus, we solve the minimization problem (29) with g = 0.01 . The optimal value is 
h = 0.01139.

(45)min
�∈ℝ4

f (�), f (�) ∶=
1

2
||r(�)||2 = 1

2
r
T (�)r(�),

(46)r(�) ∶=
[
r1(�),… , rn(�)

]T
, ri(�) ∶= V(�;Ki) − V∗(Ki), i = 1,… , n,

Table 6  Optimal values of h for the Heston model, where S0 = 100,K = 100, � = 0.001,� = 0, u0 =

0.0175, ū = 0.0398, 𝜆 = 1.5768, 𝜂 = 0.5751, 𝜌 = −0.5711 . COS method is used for computations with 
N = 103 . The details to determine the interval [a, b] are in Appendix B

g̃ � =
1

360
� =

5

360
� =

10

360

0.1 0.00287 0.00664 0.00962
0.5 0.00056 0.00126 0.00178
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5  Conclusions

In this work, we have investigated the hedging of at-the-money digital options near 
maturity, which remains a challenge in quantitative finance. We carry out a hedging 
strategy by means of a bull spread, and solve different optimization problems, with 
the aim of minimizing the probability of sub-hedging the digital option at maturity, 
taking into account transaction costs and illiquidity issues. We perform a wide variety 
of numerical experiments under different asset dynamics, GBM, Heston and CGMY 
models. The CGMY model is calibrated to market data and used to get the optimal 
composition of the bull spread satisfying the cost of hedging restriction. Derivative-
free algorithms are employed within the minimization problems. For the GBM dynam-
ics, a gradient based algorithm is implemented, showing a best performance than 
derivative-free algorithms. In terms of ease of implementation, the GBM model is 
preferred, since formulae are available in closed form. For the other two models, the 
choice should be based on their ability to fit the real data, which in turn depends on the 
underlying asset. All in all, we provide a set of solutions for hedging digital options 
that can be potentially used in practice.

The hedging of digital options presented in this work belongs to the class of static hedg-
ing strategies, in contrast to delta-hedging which belongs to dynamic hedging strategies. 
Our recommendation is to start with delta-hedging when the digital option is not near 
the money, and check the quotes for the static hedging in the meanwhile, since it is more 
advantageous to buy underlying asset than options in terms of transaction costs. Then, we 
can switch from dynamic to static hedging when either the static hedging is cheaper or 
when the digital option is near the money, whatever comes first.

Future research encompass methodological innovations as well as computational 
improvements related to the present work. In regard to the first aspect, the problem of 
hedging near maturity digital options with instruments with a longer maturity may arise 
when the options market is not liquid. That issue is studied in Mayer et al. (2015) for Euro-
pean style payoffs under GBM, Heston and CGMY models. Another methodological chal-
lenge consists of finding the optimal time to switch from a dynamic to a static hedging. 
Related to the second aspect, gradient based methods for Heston and CGMY models might 
be employed to speed up computations in the optimization problems.

Table 7  Options quotes on 
bitcoin for calibration on 
September 4, 2021 with 
S0 = 49955.69 and one day to 
maturity. Market prices and 
volatilities are calculated as the 
average of the bid and ask prices 
and volatilities (if available), 
respectively. Function bobyqa 
(available within the R package 
nloptr) is used to solve the 
minimization problem in (45)

call/put Ki V∗(Ki) �

put 45000 24.96 2.12
put 46000 (24.97+49.94)/2 (0.91+1.03)/2
put 47000 (24.96+74.87)/2 (0.70+0.89)/2
put 48000 (99.91+124.89)/2 (0.70+0.76)/2
call 49000 (1223.95+1298.89)/2 (0.66+0.76)/2
call 50000 (624.43+674.38)/2 (0.67+0.73)/2
call 51000 (274.76+299.74)/2 (0.69+0.72)/2
call 52000 (74.93+124.89)/2 (0.65+0.75)/2
call 53000 (24.98+74.93)/2 (0.69+0.86)/2
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Appendix A. Characteristic Functions

For Heston and CGMY models, characteristic functions take the form,

where, in the case of Heston model,

with, D =
√
(� − i��w)2 + (w2 + iw)�2 , and G =

�−i��−D

�−i��+D
 , and, for CGMY model,

where q stands for the dividend yield, assumed to be zero throughout this work.

Appendix B. Truncation Range and Cumulants

 To determine the truncation interval [a, b] for the COS method, we consider,

with L = 10 (the authors of the COS method prescribe a value for L within the interval 
[7.5, 10], see Section 5.1 of Fang and Oosterlee 2008 for the details). Here cn denotes the n th 
cumulant of ln

(
ST

K

)
 . The cumulants corresponding to the models used in this work read,

• GBM: 

• Heston: 

• CGMY: 

(47)�(w;x) = �(w)eiwx,

(48)�(w) = exp

(
iw�� +

u0

�2

(
1 − e−D�

1 − Ge−D�

)
(� − i�w − D)

)

(49)⋅ exp

(
𝜆ūt

𝜂2

(
𝜏(𝜆 − i𝜌𝜂w − D) − 2 log

(
1 − Ge−D𝜏

1 − G

)))
,

(50)
�(w) = exp(iw(r − q)� − 0.5w2�2�) exp(�CΓ(−Y)[(M − iw)Y −MY + (G + iw)Y − GY ]),

[a, b] =

�
c1 − L

�
c2 +

√
c4, c1 + L

�
c2 +

√
c4

�
,

c1 = r�, c2 = �2�, c4 = 0.

(51)

c1 = 𝜇𝜏 + (1 − e−𝜆𝜏 )
ū−u0

2𝜆
−

1

2
ū𝜏,

c2 =
1

8𝜆3

(
𝜂𝜏𝜆e−𝜆𝜏 (u0 − ū)(8𝜆𝜌 − 4𝜂) + 𝜆𝜌𝜂(1 − e𝜆𝜏 )(16ū − 8u0) + 2ū𝜆𝜏(−4𝜆𝜌𝜂 + 𝜂2 + 4𝜆2)

+ 𝜂2((ū − 2u0)e
−2𝜆𝜏 + ū(6e−𝜆𝜏 − 7) + 2u0) + 8𝜆2(u0 − ū)(1 − e−𝜆𝜏 )

)
,

c4 = 0.

c1 = r� + C�Γ(1 − Y)(MY−1 − GY−1),

c2 = �2� + C�Γ(2 − Y)(MY−2 − GY−2),

c4 = C�Γ(4 − Y)(MY−4 − GY−4).
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