
Vol.:(0123456789)

https://doi.org/10.1007/s11009-023-09994-1

1 3

Voting Rights, Markov Chains, and Optimization by Short 
Bursts

Sarah Cannon1  · Ari Goldbloom‑Helzner2 · Varun Gupta3 · JN Matthews4 · 
Bhushan Suwal5

Received: 5 November 2020 / Revised: 11 May 2022 / Accepted: 13 November 2022 / 

© The Author(s) 2023

Abstract
Finding outlying elementsin probability distributions can be a hard problem. Taking a real 
example from Voting Rights Act enforcement, we consider the problem of maximizing the 
number of simultaneous majority-minority districts in a political districting plan. An unbi-
ased random walk on districting plans is unlikely to find plans that approach this maxi-
mum. A common search approach is to use a biased random walk: preferentially select 
districting plans with more majority-minority districts. Here, we present a third option, 
called short bursts, in which an unbiased random walk is performed for a small num-
ber of steps (called the burst length), then re-started from the most extreme plan that was 
encountered in the last burst. We give empirical evidence that short-burst runs outperform 
biased random walks for the problem of maximizing the number of majority-minority dis-
tricts, and that there are many values of burst length for which we see this improvement. 
Abstracting from our use case, we also consider short bursts where the underlying state 
space is a line with various probability distributions, and then explore some features of 
more complicated state spaces and how these impact the effectiveness of short bursts.

Keywords Voting rights · Markov chain · Random walk · Optimization · Redistricting · 
Outlier analysis

Mathematics Subject Classification (2010) 60-08 (Probability Theory and Stochastic 
Processes - Computational methods for problems pertaining to probability theory)

1 Introduction

The problem of finding small-probability outlying elementsin a large discrete state space is 
a challenging one. As a motivating example, we consider the problem of finding a politi-
cal districting plan for a given state or region with a large number of districts that have a 
majority of their population from a given minority group, such as African-Americans. This 
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is relevant for Voting Rights Act litigation: in launching a claim, plaintiffs typically offer 
a demonstration that it would have been possible to form a greater number of majority-
minority districts than are currently present  (Thornburg  v.  Gingles 1986). For example, 
see (Negron v. City of Miami Beach, Florida 1997; Chestnut v. Merrill 2018; Johnson v. 
Ardoin 2018; Dwight v. Kemp 2018; Milligan v. Merrill 2021). For these reasons, it is an 
interesting and practically useful problem to find districting plans that maximize the num-
ber of majority-minority districts that can be simultaneously created.

However, the space of possible districting plans is enormous, and one cannot hope to 
examine every possible plan in any reasonable amount of time. To combat this, mathemati-
cians have turned to random sampling to construct a large collection of districting plans 
for a given state. This is usually done via a random walk on districting plans: from the 
current plan, make a random alteration according to specified rules to obtain a new plan, 
and repeat. Various types of random walk steps have been considered, including a step that 
flips one geographic unit from one district to another or a step that redraws the boundary 
between a random pair of districts.

Rather than using sampling to discover the properties of typical districting plans, we 
would like to explore districting plans that have as many majority-minority districts as 
possible. An unbiased random walk on districting plans will not typically find the most 
extreme outlying elementsor other highly unlikely events. One widely used approach for 
these types of problems is a biased random walk, where one increases the probability of 
transitioning to a configuration with more majority-minority districts. Because a single 
step changes the number of majority-minority districts by at most one, the idea is to make 
gradual progress toward the outlying elementswe are seeking. Biased random walks usu-
ally outperform unbiased random walks for finding outlying elements, but they can still get 
stuck in local maxima and can fail to find, or even get close to, the desired configurations.

We present a new method for finding outlying elements, which outperforms both unbi-
ased and biased random walks in our use case. This method, which we call short bursts, 
begins at an arbitrary starting configuration and performs b steps of an unbiased random 
walk. We then identify the observed configuration with the most extreme value (e.g., the 
districting plan with the most majority-minority districts) and we re-start another unbiased 
random walk of length b from there. Each unbiased random walk of length b is called a 
short burst, and these short bursts and restarts are performed repeatedly. An illustration of 
this process, projected onto the one-dimensional score being maximized, is shown in Fig. 1 
for bursts of length b = 5.

While we demonstrate the effectiveness of this method for the problem of maximizing 
majority-minority districts in the context of the Voting Rights Act, the idea itself is much 
more general. In any application where biased random walks are currently used to find out-
lying elements, short bursts has the potential to provide a significant improvement.

1.1  Summary of Findings

After presenting preliminaries in Sections 2 and 3, we turn to Louisiana’s state-level House 
of Representatives in Section 4. Louisiana was chosen because of its significant Black pop-
ulation and large number of state representatives, which allows for better resolution in our 
results. We also note that majority-minority districts were a source of contention in the cur-
rent districting plan for the Louisiana House of Representatives when it was introduced in 
2011 (Anderson 2011), and Louisiana’s U.S. Congressional districts have been challenged 
in court under the Voting Rights Act as racially gerrymandered (Johnson v. Ardoin 2018). 
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We empirically compare random walks with varying bias to short bursts with varying burst 
lengths. We see short bursts of almost any length outperform all biased random walks, 
and that a wide range of burst lengths perform similarly well. In fact, the biased random 
walks on average do not even find a single plan with as many majority-minority districts as 
the current enacted plan in the Louisiana House of Representatives. This shows that short 
bursts can be a valuable empirical tool in Voting Rights Act litigation.

We next investigate the reasons for the success of short bursts and look to better under-
stand why short bursts with such a variety of burst lengths perform well. In Section 5, we 
consider simpler models and attempt to address these questions. For random walks on a 
uniform one-dimensional line, short bursts and biased random walks are essentially equiv-
alent. However, when the probability distribution on that line is changed to be approxi-
mately normally distributed, short bursts begin to significantly outperform biased random 
walks, as we see in our Louisiana experiments. However, for this normal model, the short-
est burst lengths perform better than all other burst lengths, which is not what we observe 
in Louisiana where a wide range of short burst lengths performs similarly well. Finally, we 
build a model of a state space with a bottleneck: in this setting, short bursts of a moderate 
length are best. Though the findings are preliminary, this suggests there may be underlying 
bottlenecks in the state space of possible districting plans, and this structure is why we see 
a wide range of effective short burst lengths rather than shorter bursts always performing 
better.

Fig. 1  The position over time for short bursts of length five for the simple random walk on the line, with 
score equal to position. After each five steps of this simple random walk, we re-start at the highest position 
visited so far, take five more steps, and repeat
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1.2  Related Work

Most mathematical work on redistricting thus far has focused on randomly sampling typi-
cal districting plans, rather than looking for outlying elements. These typical districting 
plans can be used to construct a baseline; if a given plan is an outlier with respect to this 
baseline, this is evidence it is a partisan or racial gerrymander. In the peer-reviewed litera-
ture, work in this direction includes (Chen and Rodden 2015; Chikina et al. 2017; 2020; 
DeFord et al. 2020; Herschlag et al. 2020; Carter et al. 2019). The process of random sam-
pling to find the typical properties of legal districting plans has also been used in technical 
reports (Metric Geometry and Gerrymandering Group 2018a, b, 2019a, b) and as evidence 
in court cases (Pegden 2018; Duchin 2017; Mattingly 2017; Duchin et al. 2019).

Though these approaches seek to understand typical properties, there are also numer-
ous applications for finding districting plans that are extreme according to some statistic. 
Many states have laws that direct district-drawers to favor plans with certain properties. For 
example, North Carolina requires Congressional districting plans to split as few counties as 
possible, and when sampling districting plans this needs to be considered, as in (Herschlag 
et al. 2020). Several states have introduced rules requiring districting plans to favor com-
petitive districts, and recent work has explored what happens when districting plans are 
optimized for competitiveness (DeFord et al. 2020).

Though extreme plans are sometimes sought in accordance with law and in good faith, 
it is also clear that extreme plans are sometimes desired for less upstanding purposes, such 
as to supply an extreme partisan gerrymander. Since this paper presents an effective opti-
mization protocol, we recognize that it could be used to gerrymander. However, we are 
confident that extreme plans found by an optimization protocol would be correctly detected 
as outliers in a neutral ensemble constructed only according to the enacted rules.

Markov chains are most commonly used to generate likely or typical states, though there 
has been some work using Markov chains to find outlying elements. For example, in some 
scientific applications, outlying elementsin high-dimensional distributions can be found by 
constructing a Markov chain on the data points, calculating the stationary distribution of 
the Markov chain, and concluding that the data points with low stationary probability are 
outlying elements, such as in (Moonesinghe and Tan 2006). To our knowledge, approaches 
resembling the short burst method have not yet appeared in the scientific literature.

2  Background

In this section we present relevant background on Markov chains, including how they are 
used for the purposes of redistricting.

2.1  Markov Chains

The random walks and biased random walks described above are examples of a more gen-
eral mathematical structure known as a Markov chain. A Markov chain is a memoryless 
random process on a state space Ω ; we only consider discrete state spaces, where Ω is 
all districting plans for a given state or region. In particular, a Markov chain randomly 
transitions between the states of Ω in a time-independent, or stochastic, fashion: there are 
fixed rules that prescribe the probabilities with which the chain transitions to its next state 
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that depend only on its current state. The probabilities of moves have no dependence on 
any past behavior of the Markov chain, how long the chain has been running for, or any 
other factors. For a more detailed background on Markov chains than is included here, 
see (Levin et al. 2009).

The most common use of Markov chains is to generate random samples via a process 
known as Markov Chain Monte Carlo. Provided a Markov chain is finite and aperiodic, 
after enough random steps it converges to a distribution on Ω known as a stationary distri-
bution. If one runs a Markov chain for sufficiently long, the current state is approximately a 
random sample drawn from this stationary distribution. In particular, when Ω is extremely 
large, a random sample can often be obtained via this method fairly quickly without need-
ing to enumerate Ω . As we discuss in more detail in Section 2.2, Markov chains are used to 
generate collections of random districting plans and detect gerrymandering.

An elementary example of a Markov chain, which will be of particular relevance in Sec-
tion 5, is the simple random walk on the line. Here Ω = ℤ , the initial state is X0 = 0 , and in 
each time step the chain moves right (to a larger integer) with probability 1/2 and left with 
probability 1/2, no matter the current position. Conditioned on Xt = a , this means the state 
Xt+1 at time t + 1 satisfies

We also consider biased random walks on the line. Like the simple random walk, the ini-
tial state is X0 = 0 and the probability of moving right is the same no matter the current 
position. Unlike the simple random walk, the probabilities of moving left and right are not 
equal. For a biased random walk on the line with bias p ∈ (0, 1) , conditioned on the state at 
time t satisfying Xt = a , the state Xt+1 at time t + 1 satisfies

In general, when considering biased random walks we assume p > 1∕2 , that is, the walk is 
biased rightwards, toward larger integers.

2.2  Applications of Markov Chains in Redistricting

The number of possible valid districting plans in any given state is incredibly large. Con-
sider Minnesota, which has 134 State House districts that are paired to make their 67 State 
Senate districts: there are 6,156,723,718,225,577,984 ways just to pair State House dis-
tricts in Minnesota to form State Senate districts, which doesn’t even begin to address the 
number of valid State House districting plans one could draw (Caldera et  al. 2020). We 
would like to be able to explore the full space of possible districting plans in a state, but we 
can’t do that when it is infeasible to even count the size of that space.

In redistricting, Markov Chain Monte Carlo (MCMC) methods allow us to generate an 
ensemble of valid plans. This ensemble contains samples from the full space of possible 
districting plans, which are treated as representative of all possible districting plans.

Political districting plans partition a state or region into connected pieces known as dis-
tricts. Districts are typically built out of census blocks, the smallest unit of census geogra-
phy. (There are a few exceptions where districts split blocks, but these are negligibly rare.) 
In some cases, larger collections of census blocks, like precincts or counties, may be used 
as the atoms of a plan. Once the basic building blocks are selected, one can form a dual 
graph where each node is a geographic unit and the edges indicate geographic adjacency. 

ℙ(Xt+1 = a + 1) = 0.5, ℙ(Xt+1 = a − 1) = 0.5, ℙ(Xt+1 = b) = 0 if b ≠ a + 1, a − 1

ℙ(Xt+1 = a + 1) = p, ℙ(Xt+1 = a − 1) = 1 − p, ℙ(Xt+1 = b) = 0 if b ≠ a + 1, a − 1
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A districting plan then is thought of as a partition of the nodes of the dual graph into d con-
nected parts with approximately equal population in each.

To generate a collection of valid districting plans known as an ensemble, one takes 
Markov steps from a seed plan and collects all plans visited, or some subset of the plans 
visited, to form the ensemble. Different ways of selecting seed plans and different types of 
Markov chain steps have been considered (Metric Geometry and Gerrymandering Group 
2018b; Herschlag et al. 2020; Carter et al. 2019; DeFord et al. 2020). Here, we use Markov 
chain steps known as Recombination starting from initial plans generated by a recursive 
spanning-tree method, as in (DeFord et al. 2020).

These ensembles of typical districting plans have been used to conduct outlier analy-
sis in numerous legal challenges to partisan gerrymandering, including in expert reports 
submitted for court cases in Pennsylvania (Pegden 2018; Duchin 2017), Wisconsin (Chen 
2018), Florida (Chen and Rodden 2013), and North Carolina (Chen 2016; Mattingly 2017; 
Duchin et  al. 2019). In outlier analysis, the current or proposed plan is compared to the 
constructed ensemble of typical districting plans along certain statistics of interest such as 
number of seats won by each party. It is deemed to be gerrymandered if it is an extreme 
outlier compared to the ensemble.

While MCMC approaches are most commonly used to generate ensembles against 
which a proposed plan could be flagged as an outlier, sometimes we are interested in gen-
erating such extreme plans themselves. One powerful example is plans that have more 
majority-minority districts than in the enacted plan. In the landmark U.S. Supreme Court 
case Thornburg v. Gingles (1986), the court established the framework upon which to build 
Voting Rights Act cases against racial gerrymandering. One of those threshold conditions 
is that “... the minority group must be able to demonstrate that it is sufficiently large and 
geographically compact to constitute a majority in a single-member district.” While the 
VRA does not ultimately require the creation of majority-minority districts, to launch a 
claim, plaintiffs typically demonstrate that it would have been possible to form a greater 
number of such districts than are present in the system under challenge.1 This demonstra-
tion step is an important application of optimization techniques in practical redistricting. 
Markov chains like Recombination are unlikely to find these outlying elementsin a reason-
able amount of time simply because of the size of the sample space of districting plans, 
especially as they are designed for representative rather than extreme sampling. Biasing 
runs towards accepting more extreme plans gives an improvement, but we present another 
method which we find is empirically even better at finding extreme plans, such as those 
with many majority-minority districts.

3  Short Bursts

We begin by formalizing the problem. Let Ω be a discrete state space, and let M be a 
Markov chain on Ω . Let s ∶ Ω → ℤ be a score function where if � and � are two states of 
Ω that differ by one transition of M , then |s(�) − s(�)| ≤ 1 . The goal is to find a state with 
as large a score as possible. We do not expect our results to change for real-valued score 
functions or other small, constant bounds on the score differences between adjacent states, 

1 In the important case Bartlett v. Strickland (2009), the court reaffirmed the importance of districts with 
over 50% minority population share, as opposed to districts in which the minority group could merely exert 
influence.
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provided these differences are small with respect to the overall range of possible scores. 
In our applications, Ω is all districting plans for a state, M is the Recombination Markov 
chain, and s(�) is the number of majority-minority districts in districting plan �.

One approach to finding the state in Ω with the largest score is to simply list every-
thing in Ω and calculate the score of each. For many applications, including ours, this is 
completely infeasible due to the large size of Ω . We note that because we cannot hope to 
examine all of Ω , or even a sizeable fraction of the states in Ω , we are unable to find the 
state with the maximum score, or to certify that a state with a large score is in fact the 
maximum. When we talk below about maximizing score functions, we mean finding a state 
with as large a score as we can find, not finding the true maximum score.

We propose a new method for maximizing the score function which we call short bursts. 
This process works in phases known as bursts. In one burst, b steps of Markov chain M are 
performed from the starting state; b is called the burst length. The states visited in the burst 
are examined, and the state � with the largest score is found. If there are multiple states 
with the same score visited during a burst, one should pick the most recently visited. The 
next burst begins from � , and this process is repeated as many times as is desired. See 
Fig. 1, which depicts short bursts of length 5 for the simple random walk on the line where 
the score of a state is its integer label. For more complicated state spaces, the projection of 
short bursts in Ω onto the score functions looks similar, though the score may at times stay 
the same for multiple iterations. In addition to burst length, sometimes it will be more con-
venient to discuss burst size, which is the total number of plans visited during a short burst: 
since this counts both the starting and ending plans, it is one more than the burst length.

We will revisit short bursts for the simple random walk on the line and give a precise 
mathematical characterization of it in Section  5. First, we demonstrate empirically that, 
somewhat surprisingly, for the redistricting application of maximizing majority-minority 
districts, short bursts of nearly all considered lengths outperform biased random walks for 
finding districting plans with large scores.

4  Majority‑Minority Districts in Louisiana

In this section we show that short bursts outperform biased random walks for finding dis-
tricting plans for the Louisiana House of Representatives with a large number of majority-
minority districts. In addition to Louisiana, we also performed this analysis on New Mex-
ico, Texas, and Virginia; our findings for Texas are discussed in Section 4.4 in the context 
of voting coalitions, while our results for New Mexico and Virginia are summarized in 
Appendix A.

We saw similar results in all cases—with short bursts outperforming biased runs—in 
states where the minority population accounted for roughly 30% or more of the voting age 
population. For states where the minority population accounts for less than 20% of the total 
voting age population, there were similar trends but experimental results were too tightly 
clustered to obtain conclusive findings.

We begin with some fundamentals about districting in Louisiana, and then describe our 
methods in more details before giving our results, which indicate that short bursts clearly 
outperform both unbiased and biased random walks.
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4.1  Louisiana: Demographics and Districting

We focus our analysis on Louisiana as it is a state with both a significant People of Color 
population (around 30% Black and 10% other People of Color populations) and a large 
enough number of State House seats (105). The latter provides us with good resolution 
when our results are projected onto numbers of seats. At the same time, Louisiana is popu-
lous enough that population balance between districts can be achieved even with districts 
drawn on census block groups.

4.1.1  Minority Representation in the Louisiana State Legislature

The Louisiana State Legislature is comprised of the Louisiana Senate, with 39 seats, and 
the Louisiana House of Representatives, with 105 seats. In the 2010 Decennial Census, the 
non-Hispanic Black population (BPOP) made up 31.82% of Louisiana’s total population 
(TOTPOP), and the non-Hispanic Black voting age population (BVAP) made up 29.85% 
of Louisiana’s voting age population (VAP). Table 1 details demographic information from 
the 2010 Decennial Census as well as the 2014-2018 American Community Survey (ACS) 
Estimates. (Note that here and throughout this section, “Hispanic” is used to refer to all 
Census/ACS respondents who selected Hispanic or Latino as their ethnicity regardless of 
their race selection, “White” refers to non-Hispanic White alone, “Black” refers to non-
Hispanic Black alone, and so forth).The distribution of BVAP across the different census 
tracts of Louisiana can be found in Fig. 2.

[Edit]
Of Louisiana’s 39 senators, 10 are members of the Louisiana Legislative Black Cau-

cus (LLBC); in the Louisiana House of representatives, 27 of the 105 representatives are 
members of the LLBC (Louisiana Legislative Black Caucus 2020). From 2010-2018, there 
was one Hispanic representative in the State House, Helena Moreno, who resigned from 
the House of Representatives after being elected as Councilmember At-Large on the New 
Orleans City Council. The Louisiana House of Representatives currently reports no His-
panic members.

Table 1  Racial demographics in Louisiana. TOTPOP is total population, VAP is Voting Age Population, 
and ACS refers to the Census Bureau’s American Community Survey

2010 Census 2010 Census 2014-2018 ACS
TOTPOP VAP TOTPOP

White 2,734,884 (60.33%) 2,147,661 (62.88%) 2,744,265 (58.84%)
Black 1,442,420 (31.82%) 1,019,582 (29.85%) 1,492,230 (32.00%)
Hispanic 192,560 (4.248%) 138,091 (4.043%) 234,920 (5.037%)
Asian 69,327 (1.529%) 53,638 (1.57%) 79,137 (1.697%)
Two or more races 57,766 (1.274%) 30,755 (0.9005%) 78,991 (1.694%)
Amer. Indian/Alaska Native 28,092 (0.6197%) 19,952 (0.5842%) 24,014 (0.5149%)
Other races 6,779 (0.1495%) 4,526 (0.1325%) 8,905 (0.1909%)
Native Hawaiian and Other 

Pacific Islander
1,544 (0.0341%) 1,152 (0.0337%) 1,154 (0.0247%)

Total 4,533,372 3,415,357 4,663,616
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Fig. 2  Distribution of Black voting age population in Louisiana. The top figure shows the whole state and 
the bottom figure shows the combined metropolitan areas of Baton Rouge and New Orleans
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The Black voting age population exceeds 50% of the voting age population in 10 State 
Senate districts and 28 State House districts. There are currently no State House or State 
Senate districts where the Hispanic voting age population share is over 50%. The House 
district with the largest such share is District 93, where the Hispanic population is 21.1% of 
the voting age population.

4.1.2  Redistricting in Louisiana

Like all states, Louisiana must comply with federal equal population requirements and Sec-
tion 2 of the Voting Rights Act. Additional guidelines were adopted by the state legislative 
committees tasked with redistricting  (Louisiana House of Representatives Committee on 
House and Government Affairs 2011; Louisiana Senate Committee on Senate and Gov-
ernment Affairs 2011). These guidelines call for districts to be contiguous; that districts 
should respect recognized political boundaries and natural geography of this state, to the 
extent practicable; and that due consideration should be given to existing district align-
ments. In addition they state that no plan with “absolute deviation of population which 
exceeds plus or minus five percent of the ideal district population” shall be considered for 
the Louisiana Senate or the Louisiana House of Representatives.

4.2  Methods

In order to most prominently see the effects of short bursts, we chose states that had 
both a relatively large number of state House districts and a large minority population. 
While the results we first present here focus on BVAP in Louisiana, we also used similar 
methods to compare short bursts and biased runs for People of Color voting age popula-
tion in Louisiana and for various minority populations in New Mexico, Texas, and Vir-
ginia; see Section 4.4 and Appendix A.

4.2.1  Data

2010 Decennial Census demographic data was downloaded from the Census API. The 
2010 census block group shapefile for Louisiana, as well as block and tract level shape-
files and state legislative districts, is available from the US Census Bureau’s TIGER/
Line Shapefiles. Block groups were assigned to state legislative districts using MGGG’s 
geospatial preprocessing package maup, available at https:// github. com/ mggg/ maup.

Our experiments focus on the block group level data, although data at other levels is 
included in our state level analysis. The final data for Louisiana (and other states) can be 
found in the github repository https:// github. com/ vrdi/ short bursts- gingl es/ tree/ master/ 
state_ exper iments.

4.2.2  Experiments

We want to understand how short bursts performs in maximizing the number of majority-
minority districts in Louisiana. Specifically, the score we assign to each districting plan is 
the number of districts where the voting age population is over 50% black (majority BVAP 
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districts). For each short burst length b ∈ {2, 5, 10, 25, 50, 100, 200} , we ran ten trials, 
keeping track of the largest score seen among districting plans visited; for further granu-
larity, the additional burst lengths b ∈ {6, 7, 8, 9, 11, 12, 13, 14, 15, 20} were then consid-
ered as well. For comparison, we also performed some biased and unbiased random walks 
that did not use the short bursts method. For our biased random walks, if a new proposed 
plan increased the score or kept the score the same, we always accepted it; if it decreased 
the score, we accepted it with probability q. We ten trials for each q ∈ {

1

4
,
1

8
,

1

16
} , where 

q = 1 corresponds to an unbiased random walk. Here smaller q values correspond to a 
heavier bias in the random walk.

In each of these trials we used block groups as our basic geographic building blocks 
for districts. Population constraints were set so that each State House district can be at 
most 4.5% away from the ideal population. This was the tightest population bound for 
which we could find a good starting plan, and is a slightly tighter bound than the level 
of population deviation present in Louisiana’s currently enacted plan.

Each trial is started at a seed plan that we’ve generated with a recursive spanning 
tree method to be within the population constraints (for more details on this method, 
see (Metric Geometry and Gerrymandering Group 2018b)). We then generate 100,000 
additional random valid districting plans beginning at this seed plan using the Recom-
bination Markov chain developed by MGGG  (DeFord et  al. 2020). At each step, in 
addition to checking a proposed plan has balanced population, we check a compactness 
constraint, ensuring the number of dual graph edges whose endpoints are in different 
districts is no more than twice the number of such edges present in the seed plan.

4.3  Results

4.3.1  Unbiased Ensemble Baseline

First, we ran an unbiased random walk on the state space to understand some of the base-
line properties of Louisiana State House districting plans; see Fig. 3 which shows a his-
togram of the number of majority-BVAP districts in each plan encountered and a boxplot 
of the BVAP in the top 40 districts with the largest BVAP. In particular, we se typical 
plans have an average of about 13 majority-BVAP districts, though plans with as many as 
18 majority-BVAP districts were found by this unbiased Markov chain. This baseline will 
serve to help us compare biased random walks and short bursts.

4.3.2  Comparing Short Bursts and Biased Runs

In this section, we use both short bursts and biased runs to find districting plans with as 
many majority-BVAP districts as possible.

Figure  4 shows the maximum number of majority-BVAP districts found using short 
burst runs with bursts of varying lengths, from 2 to 200; for biased random walks with 
three different biases q = 0.25 , q = 0.125 , and q = 0.0625 ; and for unbiased runs ( q = 1 ). 
To be sure that our results were not atypical, this same experiment was performed ten times 
in each case.

While the unbiased process, across 10 different runs, only found districting plans with 
maximum scores between 18 and 21 in 100,000 steps, short bursts of all considered lengths 
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easily found plans with far more than 21 majority-BVAP districts. In fact, short bursts 
found districting plans with up to 33 majority-BVAP districts.

A biased run with bias q follows the same steps as an unbiased run, with one exception: 
If the proposed new plan has fewer majority-BVAP districts than the current plan, then the 
Markov chain only moves to that new plan with probability q and remains at its current 

Fig. 3  The distribution of majority-BVAP districts in randomly sampled districting plans for the Louisi-
ana state House of Representatives. The histogram (top) shows the number of sampled plans with vari-
ous values for the number of majority-BVAP districts. The boxplot (bottom) shows the observed distribu-
tion of BVAP percentage in the top 40 State House districts indexed by BVAP. That is, the rightmost box 
shows the BVAP percentage in the district with the largest BVAP percentage across all sampled plans, the 
second-rightmost box shows the BVAP percentage in the district with the second-largest BVAP percentage 
across all sampled plans, etc. The enacted plan has 28 majority-BVAP districts in the House, indicated by 
a dashed-dotted line in the histogram and the red dots on the boxplot. Of these 28 districts, 27 have elected 
Black representatives
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plan otherwise. Note that a biased run with probability q = 1 is equivalent to an unbiased 
run. While the runs with bias 0.0625 are fairly comparable to short bursts of length 200, 
otherwise all short burst runs outperformed all biased runs. Short bursts, when run for the 
same number of total steps as a biased random walk, were able to find plans with up to six 
additional majority-BVAP districts, a remarkable improvement. We note that biased runs 
with bias smaller than 0.0625 were not considered as rejection probabilities higher than 
0.9375 significantly slow down the chain, leading it to stay at the same districting plan for 
long periods of time.

The success of the short bursts approach compared to biased random walks is robust 
to the choice of burst length: every short burst run for b = 2, 5, 10, 25 outperformed every 
biased random walk; the worst short burst run for b = 50 had the same performance as the 
best biased random walk; and short bursts runs with b = 100 still noticeably outperformed 

Fig. 4  Range of maximum numbers of majority-BVAP districts observed for short bursts, biased runs, and 
unbiased (q = 1) runs. The dot is the mean across the ten trials and the bars indicate the min/max range. 
Each type of 100,000 step run was performed 10 times. The short burst runs not only perform better than 
the biased and unbiased runs, but they also all find a plan with more Gingles districts than the enacted plan
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biased random walks on average. For further granularity, we also considered additional 
burst lengths between 5 and 25, and saw similarly strong performances; see Fig. 5.

For practitioners interested in applying this method in political districting con-
texts, we note that b = 10 appears to perform best, with both the highest average score 
achieved and highest maximum value, and would therefore suggest it as a starting point. 
We would expect to see little difference if nearby values from 5 to 25 were used. We 
do not have statistical evidence that 10 is the best choice, due to the difficulty of distin-
guishing between the similarly good performances of several burst lengths. We feel this 
is a strength of our method, as one need not find the exact optimal burst length in order 
see marked improvements over other methods such as biased random walks.

Fig. 5  Range of maximum numbers of majority-BVAP districts observed for short bursts of different 
lengths. Each type of 100,000 step run was performed ten times. The dot is the mean across the ten trials, 
and the bars indicate the min/max range. All of these burst length, from 5 up to 25, perform similarly well, 
and better than any biased random walks (see Fig. 4 for the outcomes of similar experiments for biased and 
unbiased random walks)
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We also looked at how quickly this separation between the different methods emerged. The 
average number of majority-BVAP districts found over time for short bursts of the best observed 
burst length ( b = 10 ), a biased random walk with the best observed bias ( q = 0.0625 ), and an 
unbiased random walk are shown in Fig. 6. The shaded cones around the average lines denote the 
min/max range across the ten runs. This plot demonstrates the separation between short bursts 
and bias random walks happens quite early on, by around 10,000 steps, and persists throughout 
the remaining 90,000 steps.

4.4  Different Minority Groups and Voting Coalitions

In Louisiana, there is only one minority group with a large enough population to comprise a 
majority in any district in the state’s current districting plan. However, it is a well-established 
fact that people of color often form voting coalitions to elect minority representatives. For 
this reason, it may make sense to instead consider the People of Color Voting Age Population 
(POCVAP) rather than BVAP in Louisiana, as this may give a better representation of how 
likely a district is to elect a minority representative. We saw similar results to our experiments 
using BVAP, though in fact there was an even larger separation between the success of biased 
runs and of short bursts; see Fig. 7.

Fig. 6  Maximum numbers of majority-BVAP districts observed at each step in the chain for the best pre-
forming short burst length (b = 10), biased run (q = 0.0625), and the unbiased run (q = 1). The line indi-
cates the mean, and the colored band the min/max range, across the trials. Each type of 100,000 step run 
was performed 10 times. The short bursts runs outperform the biased runs
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The nearby state of Texas has both a large Black and a large Hispanic population. We 
ran similar experiments as in Louisiana for the 150-seat Texas House of Representatives, 
but considered the BVAP (Black Voting Age Population, 11.4% of VAP), HVAP (Hispanic 
Voting Age Population, 33.6% of VAP), and POCVAP (People of Color Voting Age Popu-
lation, 50.4% of VAP). We obtained data from similar governmental sources, allowed dis-
tricts to differ in population from their ideal population by at most 2%, and began at a 
random initial plan.

For maximizing the number of majority-HVAP districts, short bursts clearly outper-
formed other methods; see Fig. 8a–c. Short bursts also appear to outperform other meth-
ods for majority-BVAP districts, though there is too much overlap in the expected maxi-
mum curves to be sure; see Fig. 8d–f. This was consistent with observations in other states: 
when the range of possible values for the number of majority-minority seats is too narrow, 
it is hard to distinguish between the methods. Texas’s range of possible majority-BVAP 
districts is indeed quite narrow, only ranging from 1 to 6 in our experiments. This narrow 
range of possible values is likely a factor of both Texas’s comparably small black popula-
tion and the spatial distribution of these voters.

However, it makes sense to consider the Black and Hispanic populations simultane-
ously, rather than in separate experiments. While one could consider a multi-dimensional 
process where the score function is, say, the sum of the BVAP Gingles districts and the 
HVAP Gingles districts, this ignores the fact that Black and Hispanic populations often 
vote similarly and form voting coalitions. Instead, we consider the POCVAP, the total vot-
ing age population consisting of people of color; see Fig. 8g–i. Using POCVAP, rather than 
some combination of BVAP and HVAP, gives a more accurate representation of the num-
ber of districts that have an opportunity to elect a minority candidate. For POCVAP-major-
ity districts in Texas, some short burst experiments were able to find 94 such districts, as 
compared to maximums of 48 HVAP Gingles districts and 6 BVAP Gingles districts. Short 

(b)(a)

Fig. 7  Louisiana  — Maximum numbers of majority-POCVAP districts observed for short bursts, biased 
runs, and an unbiased run (q = 1). Each type of 100,000 step run was performed 10 times. The left figure 
(a) shows the range of maxes observed for each run type. The dot is the mean across the ten trials and 
the bars indicate the min/max range. The right figure (b) shows maximum number of majority-POCVAP 
districts achieved at each step in the chain for the best preforming short burst length (b = 5), biased run (q 
= 0.0625), and the unbiased run (q = 1). The line indicates the mean, and the colored band the min/max 
range, across the trials. The short bursts runs outperform the biased runs
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bursts also outperformed other methods of maximizing the total number of POCVAP-
majority districts.

We briefly note that for all of these experiments, a burst length of b = 10 had the highest 
average value achieved across 10 runs. However, there was similarly strong performance 
for other burst lengths from 2-25, so we do not claim with statistical certainty that 10 will 
always be the best burst length. In all cases, there was a wide range of short burst lengths 
that outperformed all biased random walks.

For additional experiments in Virginia and New Mexico, see the Appendix. In all cases, 
except when the population of interest was too small (that is, when the range of possible 
maximum values is too small), short bursts could be seen to outperform other methods.

5  Explanatory Models

We have shown in Section  4 that short bursts outperform biased and unbiased random 
walks for maximizing the number of Gingles districts in Louisiana. In this section, we turn 
away from real-world data to simpler models to attempt to understand why this happens. 
We examine the effect of short bursts on the process of finding outlying elementswith large 
scores for simple random walks in one dimension and on other uncomplicated state spaces.

We begin by studying the simple random walk on ℤ , and prove that short bursts and 
biased random walks are equivalent in expectation. We then examine a more realistic one-
dimensional random walk where transition probabilities are not uniform, but depend on the 
current position: the farther from the origin a random walk is, the less likely it is to move 
away from the origin. Specifically, we consider a random walk on ℤ whose stationary dis-
tribution is approximately normal. In this case, short bursts do indeed outperform biased 
random walks. However, the effectiveness of short bursts strictly decreases as burst length 
increases, which is not what was observed in practice. Finally, we move beyond one dimen-
sion and consider random walks on a graph with a bottleneck. In this case, many burst 
lengths perform similarly, with some moderate-length bursts even outperforming shorter 
bursts.

Altogether, these results suggest short bursts of a variety of lengths are successful for 
Louisiana for two reasons. First, short bursts are successful because the distribution of 
majority-minority districts is unimodal and approximately normal (Fig.  3, top). Second, 
rather than seeing the effectiveness of bursts strictly decrease with bursts length, many 
short bursts lengths perform similarly well because there are small bottlenecks in the state 
space that the unbiased bursts must overcome – provided the burst length is large enough to 
overcome these bottlenecks, we see similar results for different burst lengths.

5.1  Short bursts for a Simple Random Walk on ℤ

In this section, we consider a simple random walk on ℤ , where the score of a state is its 
label. This can be viewed as a one-dimensional projection of a larger Markov chains onto 
the (integer) score values of its states. Considering a simple random walk is equivalent 
to assuming that in the larger Markov chain, the scores are equally likely to increase or 
decrease in any given step. This is of course an over-simplification, but enables rigorous 
mathematical study of short bursts and a comparison to biased random walks. More realis-
tic one-dimensional models are considered in the next subsection.
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5.1.1  Rigorous Analysis of One Short Burst

In this section, we rigorously analyze one short burst of length b of a simple random 
walk. When we do not specify the starting point, we assume that the random walk starts 
at X0 = 0 . We are able to obtain a precise formulation for the probability distribution over 
the maximum achieved (m) in a random walk with burst of length b. We prove a recursive 
formula to describe the distribution of m and show it has a closed form involving binomial 
coefficients. We then use that result to calculate the expected maximum value achieved by 
a short burst of length b.

We briefly remark that m is the maximum of a burst of length b precisely when, in a 
simple random walk, the hitting time for m is less than or equal to b and the hitting time 
for m + 1 is greater than b. However, rather that working with hitting times, which would 
require careful consideration of conditional probabilities, we calculate the distribution of m 
directly by setting up a recursion.

We consider the maximum position m achieved in a burst of length b starting at 0. There 
are 2b possible walks of length b and we define f(m, b) to be the number walks of length b 
starting at 0 that have m as their maximum value, where 0 ≤ m ≤ b.

Proposition 1 For m, b ∈ ℤ and b ≥ 1 , the number f(m, b) of bursts of length b whose max-
imum value achieved is m satisfies:

Proof We prove this by induction on b, the burst length.
Base Case ( b = 1 ): The possible bursts of length 1 are one rightward step (from 0 to 1) 

or one leftward step (from 0 to −1 ) with maximums of 1 and 0, respectively. Using our for-
mula, we find that f (0, 1) = 1 and f (1, 1) = 1 . This is the desired result.

Inductive Step: For b ≥ 2 , we assume f (m, b − 1) satisfies the recursive formula for all 
values of m. We will show that f(m, b) satisfies the recursive formula for all values of m. 
We do cases for the different values of m.

Case 1 ( m = 0 ): Since m = 0 and b > 1 , we want to show that f (0, b) = f (0, b − 1)+

f (1, b − 1) from the recursive formula. We will count the number of the 2b possible paths 
that result in a maximum value of 0. If the maximum value of the path is 0, then its first 
step must be leftward. We now consider the possibilities for the remaining b − 1 steps 
which are exactly the 2b−1 possible paths of a random walk of length b − 1 . If we add a left-
ward step to the beginning of all such paths whose maximum value is 0 or 1, we find a set 
of paths of length b whose maximum value is 0. There are no other paths of length b whose 

f (m, b) =

⎧⎪⎨⎪⎩

f (m − 1, b − 1) + f (m + 1, b − 1) if 0 < m < b − 1

f (m, b − 1) + f (m + 1, b − 1) if m = 0 and b > 1

1 if m = b − 1 or m = b

0 if m < 0 or m > b

Fig. 8  Texas — Maximum numbers of majority-minority districts observed for short bursts, biased runs, 
and an unbiased run (q = 1) for different minority populations. The short burst and biased 100,000 step 
runs were performed 10 times, and the unbiased run (q=1) was performed 3 times. The left figures (a, d, 
g) show the range of maxes observed for each run type. The dot is the mean across the ten trials and the 
bars indicate the min/max range. The right figures (b, e, h) show maximum number of majority-minority 
districts achieved at each step in the chain for the best preforming short burst length (b = 5 or 2), biased run 
(q = 0.0625), and the unbiased run (q = 1). The line indicates the mean, and the colored band the min/max 
range, across the trials. The short bursts runs outperform the biased runs

▸
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maximum value is 0 because paths of length b − 1 with a maximum value of 2 or higher 
result in paths of length b with a maximum value of 1 or higher. This verifies our result that 
f (0, b) = f (0, b − 1) + f (1, b − 1).

Case 2 ( 0 < m < b − 1 ): Since 0 < m < b − 1 , we want to show that f (m, b) = f (m − 1, b

−1) + f (m + 1, b − 1) . We will count the number of length b possible paths that result in a 
maximum value of m. We create simple random walks of length b by taking all the paths 
of length b − 1 and adding a rightward or leftward step to the beginning. This will shift the 
maximum position reached up or down one integer from the maximum of the original path. 
If we take all the paths of length b − 1 with a maximum value of m + 1 and add a leftward 
step to the beginning of the path, we shift its maximum value to m. Likewise, if we take the 
paths with maximum m − 1 and add a rightward step to the beginning, we shift the maxi-
mum value of the new path to m. Thus, the number of length b paths with maximum m is 
exactly equal to the number of length b − 1 paths with maximum m − 1 plus the number of 
paths with maximum m + 1 . Thus, f (m, b) = f (m − 1, b − 1) + f (m + 1, b − 1).

Case 3 ( m = b − 1 ): Since m = b − 1 , we want to show that f (b − 1, b) = 1 from the 
recursive formula. The only path of length b whose maximum value is b − 1 is a path with 
b − 1 rightward steps followed by a leftward step. So, f (b − 1, b) = 1.

Case 4 ( m = b ): Since m = b , we want to show that f (b, b) = 1 from the recursive for-
mula. The only path of length b whose maximum value is b is a path with b rightward 
steps. So, f (b, b) = 1.

Case 5 ( m < 0 or m > b ): We cannot have any walks where m < 0 since all walks begin 
at 0 which establishes a lower bound on m. We also cannot have any walks of length b 
where m > b as the most rightward path (all rightward steps) results in m = b.

We now use this recursive formula to show a surprising connection between f(m, b) and 
the binomial coefficients. Although f(m, b) is not precisely a binomial distribution, it is a 
reshuffling of that distribution. Consider the table below of b-step random walks and the 
frequency distribution of the maximums achieved:

These are exactly the binomial coefficients; however, they are in descending order 
instead of the common symmetric order found, for instance, in Pascal’s triangle. We will 
prove this relationship rigorously in the following proposition. Note that while there are 
simpler ways of expressing the following, we use the formula given to denote this alternat-
ing order of binomial coefficients.

Proposition 2 The distribution of f(m, b) can be written as a permutation of the binomial 
coefficients as follows:
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Proof We will prove this for even b and a similar methodology applies for odd b. We use 
induction on even values of b to prove the result.

Base Case: Consider b = 2 . We calculate

which we can verify in our table above.
Inductive Step: Assume that for a fixed, arbitrary, even b ≥ 2 , f (m, b) =

�
b

b

2
+(−1)m⌈ m

2
⌉
�
 for 

m satisfying 0 ≤ m ≤ b . We will prove that f (m, b + 2) =
�

b+2
b+2
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2
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�
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0 ≤ m ≤ b + 2 using the inductive assumption and Proposition 1. We prove this in cases; 
when m is close to 0 or close to b, care needs to be taken when applying Proposition 1.

Case 1 ( m = 0):

which is the desired result.
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which is the desired result.
Case 4 ( m = b − 1 or b):

which is the desired result.
Case 5 ( m = b + 1 or b + 2):

which matches our results from Proposition 1.
The base case for the odd formula ( b = 1 ) gives f (0, 1) =

(
1

0

)
= 1 and f (1, 1) =

(
1

1

)
= 1 

which we can verify in our table above. A nearly identical approach using induction on the 
odd values of b verifies the proposition in the odd case. Thus, we have proved that this per-
mutation of binomial coefficients matches f(m, b) exactly for all b and all 0 ≤ m ≤ b.

We now define a random variable for the maximum achieved in a burst of length b, and use 
the closed form formula of the previous proposition to calculate its expectation.

Definition 1 For b ≥ 1 , let Xb be a random variable denoting the maximum achieved in a 
single short burst of length b starting from 0. The distribution of Xb is:

f (m, b + 2) = f (m − 1, b + 1) + f (m + 1, b + 1)
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Proposition 3 For any b ≥ 1 , the expected value of the random variable Xb is

Proof We use the definition of expectation to see that

We consider the term 
∑b

m=0
mf (m, b) . Suppose b is even; a similar methodology can be 

applied for odd b, but we omit the details. Using Proposition 2, the identity 
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So, we have found that for even b,

That is, we have shown

The proof for odd b is nearly identical.

We note that for a simple random walk, it does not matter where the burst starts. The 
expected maximum displacement to the right is the same. We demonstrate this behavior 
in the following lemma which we will use in the next subsection, which looks at multi-
ple short bursts.

While we continue to use random variable Xb to denote the maximum value achieved 
after a short bursts of length b, below we use random variable X0 to denote the starting 
position of the burst, which can be thought of as the maximum achieved after 0 steps.

Lemma 1 Let x0 be the initial position of the short burst. Then

Proof The possible values for Xb range from x0 to x0 + b , so

Because the transition probabilities in an unbiased short burst are invariant to the position, 
we can shift all probabilities to start at X0 = 0 . In other words, we know

This fact leads us to the following
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36 Page 24 of 38



Methodology and Computing in Applied Probability (2023) 25:36

1 3

If we let m� = m − x0 , we find

This lemma shows that short bursts according to a simple random walk are invariant to 
position. Thus, the expected maximum displacement for a short burst of length b is also 
invariant to starting position. A series of short bursts in this regime can then be described 
as a set of independent single short bursts whose starting point is the maximum value of 
the previous burst. This useful independence makes one-dimensional simple random walks 
a good first candidate for understanding the behavior of short bursts, but is unlikely to 
occur in more complicated systems.

5.1.2  Analysis of Multiple Short Bursts and Effects of Burst Length

In this section, we compare a series of short bursts with biased and unbiased simple ran-
dom walks. We see that in this one-dimensional model, short bursts are essentially equiva-
lent to biased random walks. All of the code used for these experiments is available at 
https:// github. com/ vrdi/ short bursts- gingl es/ tree/ master/ toy_ models.

Figure 9 shows walks on the integer line using short bursts, biased, and unbiased ran-
dom walks. We plot one unbiased simple random walk ( p = 0.5 ) and a number of biased 
random walks where p is the probability of stepping rightward. We run each of these ran-
dom walks for 1000 steps. We also plot short bursts where the product of the number of 
steps in the burst, b, and the total number of bursts, k, is constant at n = 1000 . Conse-
quently, each total short burst run is 1000 steps.

x0+b∑
m=x0

m ⋅ ℙ(Xb = m|X0 = x0) =

x0+b∑
m=x0

m ⋅ ℙ(Xb = m − x0|X0 = 0)

x0+b∑
m=x0

m ⋅ ℙ(Xb = m − x0|X0 = 0) =

b∑
m�=0

(m� + x0) ⋅ ℙ(Xb = m�|X0 = 0)

=

b∑
m�=0

m�
⋅ ℙ(Xb = m�|X0 = 0) + x0

b∑
m�=0

ℙ(Xb = m�|X0 = 0)

= 𝔼[Xb|X0 = 0] + x0.

Fig. 9  Comparing unbiased short 
burst runs of different lengths 
with unbiased and biased simple 
random walks. All of the walks 
are run for a total of 1000 steps 
shown on the y-axis. The posi-
tion of these walks is shown on 
the x-axis
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We observe that the more biased the random walk, the further it travels rightward. 
For short burst runs, as b decreases, it travels further rightward. This behavior becomes 
clear when we consider the extreme run with b = 1 where the walk can only move to the 
right or stay the same. From Fig. 9, it appears that biased random walks and unbiased 
short burst runs exhibit similar behavior. For example, the biased run with p = 0.6 over-
laps significantly with a short burst with b = 10.

We prove that for every short burst run, its expected position after a given number of 
steps is the same as the expected position of a biased random walk with appropriately 
chosen bias p. We note the same would be true for any random process whose expected 
position after n steps is linear in n.

Proposition 4 Consider integers n and b where b is a divisor of n. Let Dn
p
 be the position of 

a biased random walk with bias p after n steps. Let Dn
b
 be the position of an unbiased short 

burst run after n/b bursts, each of length b. Suppose p satisfies

where �[Xb] is the expected maximum of one short burst of length b from Proposition 3.

Then �[Dn
p
] = �[Dn

b
].

Proof We will derive expressions for �[Dn
p
] and �[Dn

b
] in terms of p and b. Let’s first 

consider the biased random walk. Since each step in a biased random walk is inde-
pendent, and the expected change in position after one step of a biased random walk is 
(−1)(1 − p) + (1)(p) = 2p − 1,

Now, let’s consider the unbiased short burst run. Since each of the n/b short bursts are 
independent, we know

The expected position of an unbiased run after one short burst of length b is identi-
cal to the expected maximum achieved over a short burst of length b. In other words, 
�[Db

b
] = �[Xb] . So, we know

Assuming the relationship in the proposition and putting this all together, we find

(3)p =
�[Xb]

2b
+

1

2

�[Dn
p
] = n�[D1

p
] = n(2p − 1)

�[Dn
b
] =

n

b
�[Db

b
]

�[Dn
b
] =

n

b
�[Xb]
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Proposition 4 indicates that given a short burst run, there is a biased random walk 
with the same expected position after n steps. These are standard calculations to find 
the value p such that a biased random walk has a desired expectation; for example, 
the same calculations are used to determine the correct value p to approximate biased 
Brownian motion with a random walk, and the formula we obtain is similar.

We note that the shortest possible burst length ( b = 1 ) is equivalent to p = 0.75 , 
so in this one-dimensional setting, short burst runs cannot match biased runs with 
p > 0.75.

This indicates that simple random walks, while a logical first choice for exploration, 
do not help explain why short bursts outperform biased random walks as in Section 4. 
A main feature of the explorations in Section 4 not captured by simple random walks 
is that transition probabilities may depend on score value. As we find districting plans 
with more majority-minority districts, redistricting plans with even more such districts 
are harder to find. A simple random walk, while mathematically appealing, does not 
capture this behavior. In the next section, we implement the short burst methodology 
over a more complex distribution.

5.2  Normal Model

In this section we move beyond a simple random walk on a line to a random walk on a 
line where transition probabilities depend on position: the farther away from the origin 
a random walk is, the less likely it is to move even farther from the origin. Specifi-
cally, we pick probabilities so that the stationary distribution of this random walk is 
approximately a normal distribution centered at 0. This is a better model of the transi-
tion probabilities between districts with various numbers of majority-minority districts 
in real state data. Figure 3(top) shows a histogram, based on an ensemble baseline in 
Lousiana, of the number of districts in which over 50% of the voting age population 
is black. This histogram resembles a normal distribution, justifying our choice of a 
normal stationary distribution for the one-dimensional random walk. While of course 
such a projection onto one dimension hides other structural elements of the state space, 
a one-dimensional random walk with transition probabilities drawn to ensure the sta-
tionary distribution is normal is a better one-dimensional model than simple random 
walks. Unfortunately we cannot make rigorous comparisons between short bursts and 
biased random walks under this normal model, but we present extensive empirical 
investigations showing short bursts do indeed outperform biased random walks.
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] = n(2p − 1)

= n
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5.2.1  Random Walks According to the Normal Distribution

Consider a random walk N  on the line that moves according to a normal distribution. Let 
� be the stationary distribution and P(i, j) represents the probability to move from state i to 
state j. We will define the stationary distribution, � , using the normal probability density 
function as follows:

In this case, we set � = 0 to center our random walk at 0 and fit � to 1.44 from our distri-
bution on Louisiana BVAP districts in Fig. 3.

From the detailed balance conditions for a reversible random walk, we know � and P 
should satisfy �(i)P(i, i + 1) = �(i + 1)P(i + 1, i) . We use this to appropriately set the tran-
sition probabilities of this random walk N  , for simplicity assuming the probability of mov-
ing towards 0 from either direction is always 0.5. This leads us to the following transition 
probabilities for positive i:

Similarly for negative i, we find:

Finally, for i = 0 , we find:

5.2.2  Analysis of One Short Burst for Different X
0

For this random walk N  , we run simulations of one short burst on the line from different 
starting points of various lengths. All of the code used for these experiments is available 
at https:// github. com/ vrdi/ short bursts- gingl es/ tree/ master/ toy_ models. In Fig. 10, we com-
pare these bursts starting at X0 = 0, 1 and 2. For each starting point, we numerically find 
the expected maximum value for a range of burst lengths. For each b from 1 to 50, we 
run 1000 simulated random walks of length b starting from X0 and take the average maxi-
mum value achieved. Each of these curves is concave which implies that as the burst length 
increases, the expected maximum value is increasing less rapidly. When we compare 
the curves for different X0 , we see that as b increases, the expected maximum values for 
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different X0 become closer. Additionally, the expected maximum value curves become flat-
ter and less concave as X0 increases, indicating there is less added benefit for larger short 
bursts. This is unsurprising: because the tails in a normal distribution drop off quickly, the 
probability of rightward steps decreases greatly as the random walk N  goes further right. 
Once N  moves far enough to the right, the history of the starting point becomes negligible 
and the power of the tails of the normal distribution take over.

For random walk N  (and in fact, in any one-dimensional model), it is better to take 
many short bursts with a smaller b than a few short bursts with a larger b. This can be 
explained mathematically by coupling two short burst runs. For example, consider the first 
to be one short bursts of 50 steps of N  and the second to be two short bursts for N  each 
being 25 steps. Our coupling only requires that if the two runs are at the same position at 
the same time step, they make the same move in the next time step. For the first 25 steps, 
these two runs move in sync. Then, the second run will immediately jump to the right to 
the burst maximum. The second run will then always be to the right of or at the same posi-
tion as the first run. The second run may be more likely to move left since it is farther from 
the origin and thus further into the tails of the distribution. However, the first run will never 
move right of the second because of the coupling. This shows that short bursts with smaller 
burst length b will never be worse on average than short bursts with larger burst length b. 
In fact, in all observed cases, for the same number of total steps, longer burst lengths give 
strictly worse performance than shorter burst lengths. This is a feature of one-dimensional 
random walks; for an example of a graph for which many burst lengths perform similarly, 
see Section 5.3.

5.2.3  Comparison of Short Bursts to Unbiased and Biased Random Walks

In this section, we run simulations to compare random walk N  with biased random walks 
and short bursts for the same process. The code used for these experiments is available at 
https:// github. com/ vrdi/ short bursts- gingl es/ tree/ master/ toy_ models. For this biased random 
walk, we implement a rejection sampling algorithm just as done in Section  4. First, we 
propose a move based on the probabilities of N  . If the move increases the score (position) 
or keeps it the same, we accept it. If the move would decrease the score, we accept it with 
some probability q where 0 < q < 1 . If we don’t accept it, we count the step as staying in 
the same position.

Fig. 10  Numerical estimation 
of the expected maximum value 
for a short burst whose length 
b is the number of steps. For 
each data point, we use 1000 
simulated short bursts of length 
b (number of steps) starting from 
X0 = 0, 1, or 2
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The parameter q can be varied and represents the relative probability of moving left 
compared to the probability of moving right or staying constant. There is a straightforward 
relationship between q and the bias parameter, p, from biased simple random walks in the 
previous section. For biased simple random walks, p is the probability of moving right and 
1 − p is the probability of moving left. Since q is ratio between these two probabilities, we 
find q =

1−p

p
 or similarly, p =

1

1+q
 . We use this relationship to equate biased simple random 

walks and biased random walks according to the normal distribution.
We ran simulations of a fixed total length for random walks and a variety of short burst 

runs for random walk N  . We run 1000 unbiased and biased random walks for 20000 steps 
and 1000 short burst runs each with a total length of 20000 steps (keeping the product of 
the burst length b and the number of bursts k constant at 20000). Figure 11 shows the aver-
age maximum position achieved for each of these over time for each of these. When plot-
ting, we average over all 1000 trials and display a cone of 1 standard deviation around the 
mean.

We see that the short burst runs do much better than the unbiased and biased walks 
under the normal distribution. All of the short burst runs ( b = 1, 10, 50 ) have maximum 
positions that are larger than any biased or unbiased random walks. Similarly to the simple 
case, short burst runs achieve higher maximums as the burst length decreases. However, 
even the short burst run with the longest burst length ( b = 50 ) achieves a higher maxi-
mum position than the most biased random walk with q = 1∕9 (or, in analogy to the previ-
ous section, p = 0.9 ). This is due to the rapidly diminishing tails of the normal probability 

Fig. 11  Comparing short bursts of various burst lengths to biased random walks (with probability q of 
accepting a move that decreases the score function) and an unbiased random walk ( q = 1 ) of Markov chain 
N  . For each, the average maximum position achieved over 1000 independent trials is plotted; the shaded 
regions are cones of 1 standard deviation around the mean
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distribution. After each short burst, the maximum value attained can never be less than the 
maximum of the previous short burst, whereas this is not the case for biased random walks. 
For short bursts, this has the effect of ‘pinning’ the random walk far out in the tails of the 
normal distribution. Thus, over time, the short bursts outperform biased random walks. 
This helps explain why short bursts outperform biased random walks for finding major-
ity-minority districts, where the distribution of the number of such districts appears to be 
approximately normal.

We do not believe there is anything special about a normal distribution, and that a simi-
lar effect would be found for any unimodal distribution with small tails. For instance, for a 
random walk on a line where probabilities of moving away from the origin decrease geo-
metrically with the distance from the origin, a similar effect was observed; we found that 
after enough steps, short burst walks of varying burst lengths under a geometric distribu-
tion have maximum positions that are larger than biased or unbiased random walks.

5.3  Beyond One Dimension: Bottleneck Models

In this section, we move beyond one-dimensional models. Looking only at the one-dimension 
projection of a score function can hide other features of a state space that may be affecting how 
well various approaches perform.

In the one dimensional models, we saw that shorter bursts always outperformed longer 
bursts, often significantly so. However, this is not what we observed in the experiments of 
Section 4, where bursts of many different lengths had similarly strong performances.2 We 
believe this is specific to the line and present a scenario where many bursts of longer length 
perform similarly, and in fact even outperform the shortest bursts.

In this section, we consider a graph with a bottleneck, where reaching the other side of 
the bottleneck – where scores are higher – requires first traversing a path with lower scores. 
On such a graph, biased walks perform poorly, as do short bursts whose burst length is 
shorter than or of comparable length to the length of the low-scoring path. Greedy random 
walks, where a new plan is only accepted if its score is the same or higher, also fail to cross 
this bottleneck.

The bottleneck graph we consider consists of two 20-vertex complete graphs K20 joined 
by a path P7 of length 7; see Fig. 12 In one K20 , which we call the positive copy of K20 , 
each node has a score of 1 or 2. In the other K20 , which we call the negative K20 , nodes 
have scores of -1 or -2. The P7 path has nodes with scores of [0,−1,−2,−3,−2,−1, 0] . The 
first vertex in this path is connected to a vertex in the positive K20 which has score 1, and 
the last vertex of this path is connected to a vertex in the negative K20 with score −1 . Note 
all scores are integers and scores between adjacent vertices differ by at most one.

For this bottleneck graph and its associated scores, we simulated the behavior of unbi-
ased random walks, biased random walks, short bursts, and a greedy random walk (equiva-
lent to short bursts with b = 1 or a biased random walk with q = 0 ). We ran 100 simula-
tions each for a fixed total length of 2400. Figure 13 shows the maximum position achieved 
for each of these over time for each of these. Each line represents the average of 100 runs, 

2 Due to a slight inconsistency in notation, the bursts with b = 2 shown in the plots of Section 4 corre-
spond to bursts consisting of two plans, a start plan and an end plan, which in this section have been called 
bursts of length 1. These bursts are equivalent to a greedy walk which only accepts a new plan if it does not 
decrease the score function.
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and the shaded region is a 95% confidence interval for that average. The start node at the 
beginning of all simulations was a random node in the negative K20 with a score of −1.

Figure  13a shows that a short burst of length 20 significantly outperforms the other 
methods. By step 2400, all 100 runs have found the maximum possible score. Biased ran-
dom walks have varying levels of success by time step 2400, where it seems that the higher 
the value of q, i.e the higher the chance of accepting a move that decreases the score, the 
better you are expected to perform. The greedy method using a burst length of 1, which 
only accepts a move to a score greater than or equal to the current score, never manages to 
get out of the negative K20 and across the bottleneck.

Having established that bursts perform better than biased and unbiased random walks, 
Figure 13b compares the different burst lengths with each other. Bursts of length 10, 20, 
40, and 100 are able to find a state with the highest score of 2 in nearly all experiments, 
though medium-sized bursts of length 10, 20, and 40 seem to do so more quickly than 
bursts of length 100. When the burst length is shorter than the path P7 , the positive side 

Fig. 12  Bottleneck Graph: One 
copy of K20 with scores randomly 
assigned to be −1 (light blue) or 
−2 (blue), a second copy of K20 
with scores randomly assigned to 
be 1 (orange) or 2 (red), joined 
by a path of length 7 with scores 
of: 0, -1, -2, -3, -2, -1, 0

(a) (b)

Fig. 13  Comparative behavior of short bursts and other optimization approaches on the K20,P7 bottleneck 
graph. Each simulation was run 100 times, the lines in the plots show the average maximum values over 
time of those runs and the colored bars indicate a 95% confidence interval for those averages
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of the graph is never reached. This example suggests that bottlenecks in the state space are 
one possible explanation for why we see short bursts of many different moderate lengths 
performing similarly in our case study for Louisiana rather than seeing strictly decreas-
ing performance for longer burst lengths. In this example we also see bursts of shorter 
lengths (2 and 5) performing worse than shorter busts of moderate lengths. This is some-
thing we did observe to a small extent in our experiments that was unexplained by our one-
dimensional explorations, though the effect is certainly more dramatic here. One possible 
explanation is that there are bottlenecks of a variety of sizes within the state space, some of 
which short bursts of length 2 and 5 can still cross, but some of which are longer and are 
best traversed by short bursts of longer lengths.

Similar effects were observed for sample graphs with more than one bottleneck. Short 
bursts with a burst length longer than any of the bottlenecks were almost always able to 
successfully cross all bottlenecks, while biased random walks, unbiased random walks, and 
short bursts with a burst length less that the bottleneck length were not.

6  Conclusion

We close with a summary of our findings, a discussion of limitations, and ideas for future 
work. We have introduced an alternative to biased random walks for exploring the state 
space of a Markov chain to find states that are outlying elementswith regard to some sum-
mary statistic. We have shown that this method, called short bursts, outperforms both unbi-
ased and biased random walks in a practical use case: finding political districting plans 
with a large number of majority-minority districts. In this application setting, a wide range 
of values for the burst length parameter leads to an improvement over biased random 
walks, suggesting the success of the method is robust with regard to the choice of the burst 
length parameter. Finally, we explored simpler models, with both rigorous and empirical 
methods, to find possible explanations for the strong performance of short bursts in our 
empirical setting.

We expect our results to generalize for any state and any minority population that is large 
enough and compact enough to comprise a majority in several districts. When a minority 
population is small enough and/or dispersed enough that it is only possible to comprise 
a minority in a few districts, we see less benefit of short bursts compared to biased ran-
dom walks. This observed with the black population in Texas, where BVAP only comprises 
11.4% of VAP and only 6 possible majority-BVAP districts were found (Fig. 8d–f) and the 
black population in Virginia, where BVAP only comprises 18.5% of the population and 
only 12 majority-BVAP districts were found (Fig. 14a–c). In both cases, while short bursts 
seem to perform slightly better than biased random walks, significant overlap in the results 
of both methods gives us less confidence in our conclusions; further experiments would be 
needed to distinguish the two. This is the only effect we observe minority population hav-
ing on our conclusions about short bursts, though it certainly may be interacting with vari-
ous parameters in more subtle ways.

This work has some limitations that are worth noting. In particular, we do not yet fully 
understand why short bursts succeed to find political districting plans with many majority-
minority districts. Though we propose one such explanation in Section 5.3, we do not have 
evidence to verify it is correct. We also do not provide evidence as to the best possible 
choice of burst length. Because many burst lengths perform similarly well in our experi-
ments, more experiments beyond the proof-of-concept ones we present here would be 
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needed to determine a statistically significant best choice of optimal burst length. More 
experiments could also shed light on which parameters of the problem (such as which per-
cent of the population the minority group comprises or how the minority population is dis-
tributed throughout the state) affect the optimal burst length. However, we have observed 
no patterns so far and are doubtful whether any would emerge, provided the minority popu-
lation is large enough to comprise a majority in a moderate number of districts. Finally, we 
do not consider how the method of optimizing a certain statistic via short bursts performs 
in other statistical problems outside the setting of political districting.

One direction of future work that will likely help us understand why short bursts work 
well for this problem would be to study the structure of the state space of political district-
ing plans. Learning how districting plans are connected to each other by the moves of the 
Recombination Markov chain and what the energy landscape looks like will be helpful 
for identifying local maxima, bottlenecks, and other structural features that aid or hinder 
explorations by biased random walks and short bursts. Additional future work within the 
context of political districting includes studying how short bursts perform when optimiz-
ing other characteristics of districting plans: while we focus on the number of majority-
minority districts, there are many other relevant statistics. For example, short bursts could 
be used to explore districting plans while trying to minimize the number of counties split 
between two districts, the compactness or competitiveness of districts, or the partisan bal-
ance of the state. It is not clear that short bursts would perform similarly well on these 
statistics. Exploration in this direction could also help explain why short bursts perform 
as well as they do for maximizing majority-minority districts and consequently how they 
might perform in settings unrelated to political districting.

Appendix

A. Further Empirical Investigations

We also looked at additional states beyond Louisiana and Texas to understand the robust-
ness of our findings. In Virginia, just like Louisiana, we looked for state House plans with 
many districts with majority Black voting age population (BVAP) as well as districts with 
a majority People of Color voting age population (POCVAP), see Fig. 14. In New Mexico, 
we looked for state House plans with many districts with majority Hispanic voting age 
population (HVAP) and POCVAP, see Fig. 15. In our experiments on these states we used 
different population balances, in particular the tightest bound for which we could find a 
starting seed plan. For Virginia this was 2%, and for New Mexico this was 4.5%. Other-
wise, we obtained data from similar governmental sources and ran the same experiments as 
for Louisiana.

For the results of our experiment with Virginia, note there are two lines displaying enacted 
plans. This is because a new plan was enacted in 2019, after the 2011 Virginia House of Del-
egates map was found to be a racial gerrymander  (Bethune-Hill  v.  Virginia State Board of 
Elections 2017; Virginia House of Delegates v. Bethune-Hill 2019). The 2019 plan has fewer 
majority-black districts, but is believed to give the black population a better opportunity to elect 
representatives of choice; see (Metric Geometry and Gerrymandering Group 2018b).

Overall, these states show a similar story as seen in Louisiana, where short bursts gen-
erally outperform biased runs. However, when the range of possible values is narrow (see 
majority BVAP districts in VA, Fig.  14, top), there is too much overlap in the expected 
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maximum curves for the advantage of short bursts to be conclusive. This is the same 
effect observed for BVAP in Texas, see Fig. 8d–f. This narrow range of possible numbers 
of majority-minority districts is likely a combined effect of the spatial distribution of the 
population and the population of interest being a smaller fraction of the total population. 
In Virginia the BVAP accounts for 18.5% of the total voting age population and in Texas 
BVAP is only 11.4% of the total voting age population. In the rest of the plots, the minority 
voting age population accounts for roughly 30% or more of the total population, and the 
advantage of short bursts over biased runs is clear.

(a) (b)
(c)

(d) (e)
(f)

Fig. 14  Virginia — Maximum numbers of majority-minority districts observed for short bursts, biased 
runs, and an unbiased run (q = 1). The short burst and biased 100,000 step runs were performed 10 times, 
and the unbiased run (q = 1) was performed 5 times. The left figures (a, d) show the range of maxes 
observed for each run type. The dot is the mean across the ten trials and the bars indicate the min/max 
range. The right figures (b, e) show maximum number of majority-minority districts achieved at each step 
in the chain for the best preforming short burst length (b = 5), biased run (q = 0.0625), and the unbiased 
run (q = 1). The line indicates the mean, and the colored band the min/max range, across the trials. The 
short bursts runs outperform the biased runs
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(a) (b)
(c)

(d) (e)
(f)

Fig. 15  New Mexico — Maximum numbers of majority-minority districts observed for short bursts, 
biased runs, and an unbiased run (q = 1). The short burst and biased 100,000 step runs were performed 10 
times, and the unbiased run (q=1) was performed 5 times. The left figures (a, d) show the range of maxes 
observed for each run type. The dot is the mean across the ten trials and the bars indicate the min/max 
range. The right figures (b, e) show maximum number of majority-minority districts achieved at each step 
in the chain for the best preforming short burst length (b = 5), biased run (q = 0.0625), and the unbiased 
run (q = 1). The line indicates the mean, and the colored band the min/max range, across the trials. The 
short bursts runs outperform the biased runs

36 Page 36 of 38



Methodology and Computing in Applied Probability (2023) 25:36

1 3

Data Availability The code used to generate the figures in this paper can be found at https:// github. com/ vrdi/ 
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