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Abstract
Motivated by the subordinated Brownian motion, we define a new class of (in general dis-
continuous) random fields on higher-dimensional parameter domains: the subordinated 
Gaussian random field. We investigate the pointwise marginal distribution of the con-
structed random fields, derive a Lévy-Khinchin-type formula and semi-explicit formulas 
for the covariance function. Further, we study the pointwise stochastic regularity and pre-
sent various numerical examples.
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1 Introduction

In many applications of stochastic modeling, it is meaningful to consider random fields 
which are discontinous in space (e.g. in fractured porous media modeling). In the situation 
of a one-dimensional parameter space, like financial modeling, Lévy processes turned out 
to be a very powerful class of (in general) discontinuous stochastic processes, combined 
with useful properties, see for example Schoutens (2003), Applebaum (2009), Sato (2013).

Whereas the extension of ℝ-valued Lévy processes with one-dimensional parameter 
space to Hilbert space H -valued Lévy processes is straight forward (see for example 
Barth and Stein (2018b)), the extension of Lévy processes to higher-dimensional param-
eter spaces is more challenging. The reason can be found at the very starting point of the 
definition of Lévy processes where time increments are considered: In fact, the definition 
of Lévy processes makes explicitly use of the total ordered structure underlying the con-
sidered time interval. The absence of such a structure on a higher-dimensional parameter 
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space makes it difficult to extend the definition of a standard Lévy process to higher-dimen-
sional parameter spaces.

Subordinated fields did receive only little attention in the recent literature. In some 
classical papers on generalized random fields, of which Dobrushin (1979) is an important 
representative (see also the references therein), subordinated fields are defined in terms 
of iterated Itô-integrals. In the recent article, Makogin and Spodarev (2021), the authors 
investigate deterministic transformations of Gaussian random fields, so called Gaussian 
subordinated fields, and study excursion sets. The Rosenblatt distributions and long-range 
dependence of (subordinated) fields are looked into in Leonenko et  al. (2017). The arti-
cle Barndorff-Nielsen et al. (2001) presents an extension of the concept of subordination 
to multivariate Lévy processes and investigates self-decomposibility of the resulting pro-
cesses defined on a one-dimensional parameter domain. In the recent paper Buchmann 
et al. (2019), the authors define the so called weak subordination of multivariate Lévy pro-
cesses as a generalization of the classical subordination. The resulting multivariate pro-
cesses depend on a one-dimensional time parameter and the authors prove that weak subor-
dination is an extension of the classical (strong) subordination. In Buchmann et al. (2017) 
and Buchmann et al. (2020), the authors consider multivaritate Brownian motions (weakly) 
subordinated by multivariate Thorin subordinators, investigate self-decomposibility as well 
as the existence of moments of the resulting distributions and present some applications in 
mathematical finance. The considered subordinated multivariate processes are defined on a 
one-dimensional parameter domain.

In contrast, the main contribution of our work is to prove properties of the (discontinu-
ous) subordinated random fields on higher-dimensional parameter domains and of their 
pointwise distributions, which are important in applications (see for example Zhang and 
Kang (2004), Bastian (2014) and Barth and Stein (2018a)).

We present an approach for an extension of a subclass of Lévy processes to more gen-
eral parameter spaces: Motivated by the subordinated Brownian motion, we employ a 
higher-dimensional subordination approach using a Gaussian random field together with 
Lévy subordinators.

Figure  1 illustrates the approach with samples of a Gaussian random field (GRF) on 
[0, 1]2 with Matérn-1.5 covariance function and the corresponding subordinated field, 
where we used Poisson and Gamma processes on [0, 1] to subordinate the GRF.

These examples illustrate how the jumps of the Lévy subordinators produce jumps in 
the two-dimensional subordinated GRF. The flexibility of the resulting random fields make 
them attractive for a variety of applications. In a recent article by Barth and Merkle (2020), 
the authors consider a randomized elliptic partial differential equation, where the subordi-
nated GRF occur in the diffusion coefficient, to name just one possible application.

Fig. 1  Sample of Matérn-1.5-GRF (left), Poisson-subordinated GRF (middle) and Gamma-subordinated 
GRF (right)
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The question arises whether it is possible to transfer some theoretical results of one-
dimensional Lévy processes to these random fields on higher-dimensional parameter 
spaces. In particular, a Lévy-Khinchin-type formula to access the pointwise distribution of 
the constructed random field is of great interest (see Sect. 4). In Sect. 5 we investigate the 
covariance structure of the subordinated fields and show how it is influenced by the choice 
of subordinators. The stochastic regularity of the subordinated fields is studied in Sect. 6. 
There, we derive conditions which ensure the existence of pointwise moments. In the last 
section we present some numerical experiments on the theoretical results presented in this 
paper intended to help fitting random fields to data.

2  Preliminaries

In this section we give a short introduction to Lévy processes and Gaussian random fields 
as basis for the construction of subordinated Gaussian random fields. Throughout the 
paper, let (Ω,F,ℙ) be a complete probability space.

2.1  Lévy Processes

Let T ⊆ ℝ+ ∶= [0,+∞) be an arbitrary time domain. A stochastic process 
X = (X(t), t ∈ T) on T  is a family of random variables on the probability space (Ω,F,ℙ) . 
A stochastic process l on T = [0,+∞) is said to be a Lévy process if l(0) = 0 ℙ − a.s. , l has 
independent and stationary increments and l is stochastically continuous. A very impor-
tant characterization property of Lévy processes is given by the so called Lévy-Khinchin 
formula.

Theorem  2.1 (Lévy-Khinchin formula, see (Applebaum  2009, Th. 1.3.3 and p. 29)) 
Let l be a real-valued Lévy process on T = ℝ+ ∶= [0,+∞) . There exist parameters 
b ∈ ℝ, �2

N
∈ ℝ+ and a measure � on (ℝ,B(ℝ)) such that the pointwise characteristic func-

tion �l(t) , for t ∈ T  , admits the representation

for � ∈ ℝ . The measure � on (ℝ,B(ℝ)) satisfies

and a measure with this property is called Lévy measure.

It follows from the Lévy-Khinchin formula that every Lévy process is fully character-
ized by the so called Lévy triplet (b, �2

N
, �).

Within the class of Lévy processes there exists a subclass which is given by the so 
called subordinators: A Lévy subordinator on T  is a Lévy process that is non-decreasing ℙ
-almost surely. The pointwise characteristic function of a Lévy subordinator l(t), for t ∈ T  , 
admits the form

�l(t)(�) ∶= 𝔼(exp(i�l(t)))

= exp
(
t
(
ib� −

�2
N

2
�2 + �

ℝ⧵{0}

ei�y − 1 − i�y1{|y|≤1}(y) �(dy)
))

,

∫
ℝ

min(y2, 1) 𝜈(dy) < ∞,
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(see (Applebaum 2009, Theorem 1.3.15)). Here, � is the Lévy measure and � is called drift 
parameter of l. The Lévy measure � on (ℝ,B(ℝ)) of a Lévy subordinator satisfies

Since any Lévy subordinator l is a Lévy process, the Lévy-Khinchin formula holds and we 
obtain �2

N
= 0 and b = � + ∫ 1

0
y �(dy) in Theorem 2.1 for the subordinator l. In the follow-

ing, we always mean the triplet (� , 0, �) corresponding to representation (1) if we refer to 
the characteristic triplet of a Lévy subordinator.

2.2  Gaussian Random Fields

Let D ⊂ ℝ
d be a spatial domain. A random field R = (R(x), x ∈ D) is a family of random 

variables on the probability space (Ω,F,ℙ) . In our approach to extend Lévy processes on 
higher-dimensional parameter domains, one important component is given by the Gaussian 
random field.

Definition 2.2 (see (Adler and Taylor 2007, Sc. 1.2)) A random field W ∶ Ω ×D → ℝ on 
a d-dimensional domain D ⊂ ℝ

d is said to be a Gaussian random field (GRF) if, for any 
x(1),… , x(n) ∈ D with n ∈ ℕ , the n-dimensional random variable (W(x(1)),… ,W(x(n))) is 
multivariate Gaussian distributed. For a GRF W and arbitrary points x(1), x(2) ∈ D , we 
define the mean function by �W (x

(1)) ∶= �(W(x(1))) and the covariance function by

The GRF W is called centered, if �W (x
(1)) = 0 for all x(1) ∈ D.

Note that every Gaussian random field is determined uniquely by its mean and covariance 
function. We denote by Q ∶ L

2(D) → L
2(D) the covariance operator of W which is, for 

� ∈ L
2(D) , defined by

Here, L2(D) denotes the set of all square integrable functions over D . Further, if D is 
compact, there exists a decreasing sequence (�i, i ∈ ℕ) of real eigenvalues of Q with cor-
responding eigenfunctions (ei, i ∈ ℕ) ⊂ L

2(D) which form an orthonormal basis of L2(D) 
(see (Adler and Taylor 2007, Section 3.2) and (Werner 2011, Theorem VI.3.2 and Chap-
ter II.3)). The GRF W is called stationary if the mean function �W is constant and the 
covariance function qW (x(1), x(2)) only depends on the difference x(1) − x(2) of the values 
x(1), x(2) ∈ D . Further, the stationary GRF W is called isotropic if the covariance function 
qW (x

(1), x(2)) only depends on the Euclidean length ‖x(1) − x(2)‖2 of the difference of the val-
ues x(1), x(2) ∈ D (see Adler and Taylor (2007), p. 102 and p. 115).

(1)�l(t)(�) = 𝔼(exp(i�l(t))) = exp
(
t
(
i�� + ∫

∞

0

ei�y − 1 �(dy)
))

, for � ∈ ℝ,

𝜈(−∞, 0) = 0 and ∫
∞

0

min(y, 1) 𝜈(dy) < ∞.

qW (x
(1), x(2)) ∶= �

(
(W(x(1)) − �W (x

(1)))(W(x(2)) − �W (x
(2)))

)
.

Q(�)(x) = ∫
D

qW (x, y)�(y)dy, for x ∈ D.
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3  The Subordinated Gaussian Random Field

Throughout the rest of this paper, let d ∈ ℕ be a natural number with d ≥ 2 and 
T1,… , Td > 0 be positive values. We define the horizon vector � ∶= (T1,… , Td) and 
consider the spatial domain [0, 𝕋 ]d ∶= [0, T1] ×⋯ × [0,Td] ⊂ ℝ

d . In the following, we 
will also use the notation (0, � ]d ∶= (0, T1] ×⋯ × (0,Td] . After a short motivation we 
define next the subordinated field and show that it is indeed measurable.

3.1  Motivation: The Subordinated Brownian Motion

In order to motivate the novel subordination approach for the extension of Lévy pro-
cesses, we shortly repeat the main ideas of the subordinated Brownian motion which is 
defined as a Lévy-time-changed Brownian motion: Let B = (B(t), t ∈ ℝ+) be a Brown-
ian motion and l = (l(t), t ∈ ℝ+) be a subordinator. The subordinated Brownian motion 
is then defined to be the process

It follows from (Applebaum 2009, Theorem 1.3.25) that the process L is again a Lévy pro-
cess. Note that the class of subordinated Brownian motions is a rich class of processes with 
great distributional flexibility. For example, the well known Generalized Hyperbolic Lévy 
process can be represented as a NIG-subordinated Brownian motion (see Barth and Stein 
(2018b) and especially Lemma 4.1 therein).

3.2  The Definition of the Subordinated Gaussian Random Field

Let W = (W(x), x = (x1,… , xd) ∈ ℝ
d
+
) be a GRF such that W is F⊗B(ℝd

+
) −B(ℝ)

-measurable. We denote by �W ∶ ℝ
d
+
→ ℝ the mean function and by qW ∶ ℝ

d
+
×ℝ

d
+
→ ℝ 

the covariance function of W. Let lk = (lk(x), x ∈ [0, Tk]) be independent Lévy subor-
dinators with triplets (�k, 0, �k) , for k ∈ {1,… , d} , corresponding to representation (1). 
Further, we assume that the Lévy subordinators are stochastically independent of the 
GRF W. We consider the random field

and call it subordinated Gaussian random field (subordinated GRF).

Remark 3.1 Note that assuming that W has continuous paths is sufficient to ensure that W is 
a jointly measurable function since W is a Carathéodory function in this case (see (Aliprantis 
and Border 2006, Lemma 4.51)). A sufficient condition for the pathwise continuity of GRFs 
is given, for example, by (Adler and Taylor 2007, Theorem 1.4.1) (see also the discussion 
in (Adler and Taylor 2007, Section 1.3, p. 13)). A specific example for a class of GRFs with 
at least continuous samples is given by the Matérn GRFs: for a given smoothness parameter 
𝜈 > 1

2
 , a correlation parameter r > 0 and a variance parameter 𝜎2 > 0 the Matérn-� covari-

ance function on ℝd
+
×ℝ

d
+
 is given by qM

W
(x, y) = �M(‖x − y‖2) with

L(t) ∶= B(l(t)), t ∈ ℝ+.

L ∶ Ω × [0, 𝕋 ]d → ℝ with L(x1,… , xd) ∶= W(l1(x1),… , ld(xd)), for (x1,… , xd) ∈ [0, 𝕋 ]d,
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where Γ(⋅) is the Gamma function and K�(⋅) is the modified Bessel function of the second 
kind (see (Graham et  al.  2015,  Section  2.2 and Proposition 1)). Here, ‖ ⋅ ‖2 denotes the 
Euclidean norm on ℝd . A Matérn-� GRF is a centered GRF with covariance function qM

W
.

The subordinated GRF constructed above is one possible way to extend the concept 
of the subordinated Brownian motion to higher-dimensional parameter domains. How-
ever, construction of a random field by subordination in each spatial variable is not con-
fined to this approach. For example, the construction itself is not limited to the case that 
W is a GRF and l is a Lévy subordinator. One could consider more general random fields 
(R(x), x ∈ ℝ

d
+
) subordinated by d positive valued stochastic processes. However, in general 

it might be difficult or impossible to investigate theoretical properties of the resulting ran-
dom field. In contrast, the subordinated GRFs inherits several properties from the GRF and 
the Lévy subordinators investigated in the following sections.

3.3  Measurability

In Subsection 3.2 we introduced the subordinated GRF L as a random field. Strictly speak-
ing, we therefore have to verify that point evaluations of the field L are random variables, 
meaning that we have to ensure measurability of these objects. Note that this is not triv-
ial, since - due to the construction of L - the Lévy subordinators induce an additional �
-dependence in the spatial direction of the GRF W. The following lemma proves joint 
measurability of L.

Lemma 3.2 Let L be a subordinated GRF on the spatial domain [0, � ]d as constructed in 
Subsection 3.2, where we use the notation x = (x1,… , xd) ∈ [0, � ]d . The mapping

is F⊗B([0, 𝕋 ]d) −B(ℝ)-measurable.

Proof For any k ∈ {1,… , d} , the Lévy process lk has càdlàg paths and, hence, the mapping 
lk ∶ Ω × [0,Tk] → ℝ+, is F⊗B([0, Tk]) −B(ℝ+)-measurable (see (Protter 2004, Chapter 1, 
Theorem 30) and (Sato 2013, Section 30)). We consider domain-extended versions of the processes: 
for any k ∈ {1… , d} , we define the mapping l̃k(𝜔, x) ∶= lk(𝜔, xk), for (𝜔, x) ∈ Ω × [0, � ]d , 
which is F⊗B([0, 𝕋 ]d) −B(ℝ+) measurable by (Aliprantis and Border (2006), Lemma 4.51). 
An application of (Aliprantis and Border 2006, Lemma 4.49) yields the F⊗B([0, 𝕋d]) −B(ℝd

+
)

-measurability of the mapping

Further, the mapping (�, x) ↦ � is F⊗B([0, � ]d) −F-measurable and, hence, (Aliprantis  
and Border 2006, Lemma 4.49) yields that the mapping

�M(s) = �2 2
1−�

Γ(�)

�2s√�

r

��

K�

�2s√�

r

�
, for s ≥ 0,

L ∶ Ω × [0, 𝕋 ]d → ℝ, (�, x) ↦ W(�, l1(�, x1)… , ld(�, xd)),

Ω × [0, 𝕋 ]d → ℝ
d
+
, (𝜔, x) ↦ (l̃1(𝜔, x),… , l̃d(𝜔, x)) = (l1(𝜔, x1),… , ld(𝜔, xd)).

Ω × [0, 𝕋 ]d → Ω ×ℝ
d
+
,

(𝜔, x) ↦ (𝜔, (l̃1(𝜔, x),… , l̃d(𝜔, x))) = (𝜔, (l1(𝜔, x1),… , ld(𝜔, xd))),
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is F⊗B([0, 𝕋d]) −F⊗B(ℝd
+
)-measurable. By assumption, the GRF W is 

F⊗B(ℝd
+
) −B(ℝ)-measurable and, therefore, the mapping

is F⊗B([0, 𝕋d]) −B(ℝ)-measurable as composition of measurable functions.   ◻

4  The Pointwise Distribution of the Subordinated GRF 
and the Lévy‑Khinchin‑formula

In this section we prove a Lévy-Khinchin-type formula for the subordinated GRF in order 
to have access to the pointwise distribution. This is important, for example, in view of 
statistical fitting and other applications. In order to be able to do so we need the follow-
ing technical lemma about the expectation of the composition of independent random 
variables, which is a generalization of the corresponding assertion given in the proof of 
(Sato 2013, Theorem 30.1).

Lemma 4.1 Let W ∶ Ω ×ℝ
d
+
→ ℝ be a ℙ − a.s. continuous random field and let 

Z ∶ Ω → ℝ
d
+
 be a ℝd

+
-valued random variable which is independent of the random field W. 

Further, let g ∶ ℝ → ℝ be a deterministic, continuous function. It holds

where m(z) ∶= �(g(W(z)) for deterministic z ∈ ℝ
d
+
.

Proof Step 1: Assume that g is globally bounded. We denote by Cb(ℝ
d
+
) the space of con-

tinuous, bounded functions on ℝd
+
 equipped with the usual supremum norm. We define the 

function

which is continuous and, hence, Borel-measurable. For a fixed threshold A > 0 , we 
define the cut function �A(x) ∶= min(x,A) , for x ∈ ℝ and consider the random field 
WA(�, x) ∶= W(�,�A(x1),… ,�A(xd)) , for � ∈ Ω and x = (x1,… , xd) ∈ ℝ

d
+
 . Since W has 

continuous paths and [0,A]d is compact, WA has paths in Cb(ℝ
d
+
) and we have the pathwise 

identity g(WA(Z)) = F(WA, Z) . Using the independence of W and Z together with (Da Prato 
and Zabczyk 2014, Proposition 1.12) yields

where mA(z) ∶= �(g(WA(z))) for z ∈ ℝ
d
+
 . Further, since g is continuous and bounded and 

W has continuous paths, we obtain the pathwise convergence g(WA(Z)) → g(W(Z)) and 
mA(Z) → m(Z) , for A → ∞ . Using again the boundedness of g and the dominated conver-
gence theorem, we obtain �(g(W(Z))) = �(m(Z)).

Step 2: In this step we assume that g(x) ≥ 0 on ℝ but g does not necessarily have to be 
bounded. It follows that m is also non-negative on ℝd

+
 . Since g and m are non-negative 

we obtain the ℙ − a.s. monotone convergence of �A(g(W(Z)))) → g(W(Z))) for A → +∞ . 
We define mA(z) ∶= �(�A(g(W(z))) , for z ∈ ℝ

d
+
 , and obtain by the monotone convergence 

theorem

L ∶ Ω × [0, 𝕋 ]d → ℝ, (�, x) ↦ W(�, (l1(�, x1)… , ld(�, xd))),

�(g(W(Z)) = �(m(Z)),

F ∶ Cb(ℝ
d
+
) ×ℝ

d
+
→ ℝ, (f , x) ↦ g(f (x)),

�(g(WA(Z)) = �(F(WA, Z)) = �(�(F(WA, Z) | �(Z))) = �(mA(Z)),
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Using Step 1 and the monotone convergence theorem we obtain:

Step 3: Finally, we consider an arbitrary continuous function g ∶ ℝ → ℝ . We write 
g+ = max{0, g}, g− = −min{0, g} as well as m̃+(z) = �(g+(W(z))), m̃−(z) = �(g−(W(z))) 
for z ∈ ℝ

d
+
 and obtain the additive decomposition g(x) = g+(x) − g−(x) for x ∈ ℝ and 

m(z) = m̃+(z) − m̃−(z) for z ∈ ℝ
d
+
 by the additivity of the integral with respect to the inte-

gration domain. We apply Step 2 to optain

which proves the assertion.   ◻

Remark 4.2 We emphasize that the assumptions on the random field W and the random 
variable Z in Lemma 4.1 are very mild. In particular, we do not assume the existence of 
continuous densities of the random field W or the random vector Z. Further, we mention 
that the assertion obviously may be extended to deterministic, bounded and continuous 
functions g ∶ ℝ → ℂ which are complex-valued.

A GRF W is pointwise normally distributed with parameters specified by the mean 
�W and covariance function qW . Using this together with Lemma 4.1 and Remark 4.2 we 
obtain the following semi-explicit formula for the pointwise characteristic function of a 
subordinated GRF.

Corollary 4.3 Let W be a ℙ − a.s. continuous GRF on ℝd
+
 with mean function �W ∶ ℝ

d
+
→ ℝ 

and covariance function qW ∶ ℝ
d
+
×ℝ

d
+
→ ℝ . Further, let lk = (lk(t), t ∈ [0, Tk]) , for 

k = 1,… , d , be independent Lévy subordinators which are independent of W. The pointwise 
characteristic function of the subordinated GRF defined by L(x) ∶= W(l1(x1),… , ld(xd)) , 
for x = (x1,… , xd) ∈ [0, � ]d , admits the formula

for � ∈ ℝ and any fixed point x = (x1,… , xd) ∈ [0, � ]d . Here, the variance function 
�2
W
∶ ℝ

d
+
→ ℝ+ is given by �2

W
(x) ∶= qW (x, x) for x ∈ ℝ

d
+
.

In the one-dimensional case, the Lévy-Khinchin formula gives an explicit representation 
of the pointwise characteristic function of a Lévy process. This representation also applies 
to the subordinated Brownian motion, since it is itself a Lévy process (see Subsection 3.1). 
Note that in the construction of the subordinated Brownian motion one cannot replace the 
Brownian motion by a general one-parameter GRF on ℝ+ without losing the validity of the 
Lévy-Khinchin formula. Hence, in the case of a subordinated GRF on a higher-dimensional 
parameter space, it is natural that we have to restrict the class of admissible GRFs in order to 
obtain a Lévy-Khinchin-type formula which is the d-dimensional analogon of Theorem 2.1. 
We recap that the pointwise characteristic function of a standard Brownian motion B is 
given by

mA(Z) → m(Z) ℙ − a.s. for A → +∞.

�(g(W(Z))) = lim
A→+∞

�(�A(g(W(Z)))) = lim
A→+∞

�(mA(Z)) = �(m(Z)).

�(g(W(Z))) = �(g+(W(Z))) − �(g−(W(Z))) = �(m̃+(Z)) − �(m̃−(Z)) = �(m(Z)),

�(exp(i�L(x))) = �(exp(i�W(l1(x1),… , ld(xd))))

= �

(
exp

(
i�W (l1(x1),… , ld(xd)) −

1

2
�2�2

W
(l1(x1),… , ld(xd))

))
,
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for t ≥ 0 . Note that the Brownian motion ist not characterized by this property, i.e. not 
every zero-mean GRF on ℝ+ with the above pointwise characteristic function is a Brownian 
motion, since this specific characteristic function can be attained by different covariance 
functions, whereas the covariance function of the Browian motion is given uniquely by 
qBM(s, t) = Cov(B(s),B(t)) = min{s, t} for s, t ≥ 0 (see for example (Schoutens 2003, Sec-
tion 3.2.2)). Motivated by this, we impose the following assumptions on the GRF on ℝd

+
.

Assumption 4.4 Let W = (W(x), x ∈ ℝ
d
+
) be a zero-mean continuous GRF. We assume 

that there exists a constant 𝜎 > 0 such that the pointwise characteristic function of W is 
given by

for � ∈ ℝ and every x = (x1,… , xd) ∈ ℝ
d
+
.

Remark 4.5 Note that for a zero-mean, continuous and stationary GRF W̃ = (W̃(x), x ∈
ℝ

d

+
) , the GRF W defined by

satisfies Assumption 4.4.

We are now able to derive the Lévy-Khinchin-type formula for the subordinated GRF.

Theorem  4.6  (Lévy‑Khinchin‑type formula) Let Assumption 4.4 hold. We assume inde-
pendent Lévy subordinators lk = (lk(x), x ∈ [0, Tk]) , with Lévy triplets (�k, 0, �k) , for 
k = 1,… , d , are given corresponding to representation (1). Further, we assume that these 
processes are independent of the GRF W. We consider the subordinated GRF defined by 
L ∶ Ω × [0, 𝕋 ]d → ℝ with L(x) ∶= W(l1(x1),… , ld(xd)) for x = (x1,… , xd) ∈ [0, 𝕋 ]d . The 
pointwise characteristic function of the random field L is, for any x = (x1,… , xd) ∈ [0, � ]d , 
given by

for � ∈ ℝ . Here, the jump measure �ext is defined through

for a, b ∈ ℝ where the Lévy measure �#
k
 , for k = 1,… , d and a, b ∈ ℝ , is given by

�B(t)(�) = 𝔼(exp(i�B(t))) = exp
(
−

1

2
t�2

)
, for � ∈ ℝ,

�W(x)(�) = �(exp(i�W(x))) = exp
(
−

1

2
�2�2(x1 +⋯ + xd)

)
,

W(x) ∶=
√
x1 +⋯ + xdW̃(x), for x = (x1,… , xd) ∈ ℝ

d
+
,

�L(x)(�) = 𝔼(exp(i�W(l1(x1),… , ld(xd)))

= exp
(
− (x1,… , xd) ⋅

(�2�2

2
(�1,… , �d)

t + �
ℝ⧵{0}

1 − ei�z + i�z1{|z|≤1}(z)�ext(dz)
))

,

�ext([a, b]) ∶=
⎛⎜⎜⎝

�#
1
([a, b])

⋮

�#
d
([a, b])

⎞⎟⎟⎠
,

�#
k
([a, b]) ∶= ∫

∞

0 ∫
b

a

1√
2��2t

exp

�
−

x2

2�2t

�
dx �k(dt).
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Proof It follows by (Sato 2013, Theorem 30.1 and Lemma 30.3) that the measures �#
k
 are 

Lévy measures for k = 1, ..., d . For notational simplicity we prove the assertion for d = 2 . 
For general d ∈ ℕ the assertion follows by the same arguments.

Claim 1: For a Lévy measure � on (ℝ+,B(ℝ+)) it holds for every � ∈ ℝ:

where the measure 𝜈♯ is defined by 𝜈♯(I) = ∫ ∞

0
∫ b

a

1√
2𝜋t

exp(−
x2

2t
)dx𝜈(dt) , for I = [a, b] 

with a, b ∈ ℝ . We use the notation fs(x) ∶=
1√
2�s

exp(−
x2

2s
) for s > 0 and x ∈ ℝ and derive 

this equation by a direct calculation using the definition of the measure 𝜈♯:

In the last step we used that the characteristic function of a N(0, s)-distributed random 
variable is given by �(�) = exp(−

s�2

2
) for � ∈ ℝ and s > 0 . Further, we used the fact that 

f �
s
(x) = −x∕sfs(x) to see that

Claim 2: (See (Applebaum 2009), P. 53) For a Lévy subordinator l with triplet (� , 0, �) it 
holds

for t ≥ 0 and 𝜉 > 0.
With these two assertions at hand we can now prove the Lévy-Khinchin-type for-

mula. The case � = 0 is trivial since both sides equal 1 in this case. Let (x, y) ∈ [0, � ]2 
and 0 ≠ � ∈ ℝ be fixed. Using Lemma 4.1 and Remark 4.2 with g(⋅) = exp(i�⋅) and 
Z = (l1(x), l2(y)) we calculate

where

where we used Assumption 4.4. Therefore, using the independence of the processes l1 and 
l2 together with Claim 2 we obtain

�
∞

0

exp(−
𝜉2

2
y) − 1𝜈(dy) = �

ℝ⧵{0}

exp(i𝜉x) − 1 − i𝜉x1{|x|≤1}(x)𝜈♯(dx),

�
ℝ⧵{0}

exp(i𝜉x) − 1 − i𝜉x1{|x|≤1}(x)𝜈♯(dx)

= �
ℝ⧵{0}

(exp(i𝜉x) − 1 − i𝜉x1{|x|≤1}(x))�
∞

0

fs(x)𝜈(ds)dx

= �
∞

0 �
ℝ⧵{0}

exp(i𝜉x)fs(x)dx − 1 − i𝜉 �
1

−1

xfs(x)dx𝜈(ds)

= �
∞

0

exp(−
s𝜉2

2
) − 1𝜈(ds).

∫
1

−1

xfs(x) = −s(fs(1) − fs(−1)) = 0.

�(exp(−�l(t))) = exp(−t(�� + ∫
∞

0

(1 − exp(−�y))�(dy))),

�(exp(i�W(l1(x), l2(y)))) = �(m(l1(x), l2(y)))

m(x�, y�) ∶= 𝔼(exp(i�W(x�, y�))) = exp(−
1

2
�2�2(x� + y�)) for (x�, y�) ∈ ℝ

2
+
,
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where we define the (Lévy-)measures �̂�1 and �̂�2 by �̂�k([a, b]) = 𝜈k([a∕𝜎
2, b∕𝜎2]) for 

a, b ∈ ℝ+ and k = 1, 2 . Now, using Claim 1 we calculate

where the measures �̂�♯
k
 for k = 1, 2 are given by:

for a, b ∈ ℝ . This finishes the proof.   ◻

Using Theorem  4.6 together with the convolution theorem (see for example 
(Klenke 2013, Lemma 15.11 (iv))) we immediately obtain the following corollary.

Corollary 4.7 Let Assumption 4.4 hold. We assume d independent Lévy sub-
ordinators lk = (lk(x), x ∈ [0, Tk]) are given for k = 1,… , d , which are inde-
pendent of W and the corresponding Lévy triplets are given by (�k, 0, �k) for 
k = 1,… , d . We consider the subordinated GRF L ∶ Ω × [0, 𝕋 ]d → ℝ defined by 
L(x) ∶= W(l1(x1),… , lk(xd)), for x = (x1,… , xd) ∈ [0, � ]d . Further, we assume that inde-
pendent Lévy processes l̃k on [0,Tk] are given with triplets (0, �2�k, �

#
k
) for k = 1,… , d in 

the sense of the one-dimensional Lévy-Khinchin formula, see Theorem 2.1. Here, the Lévy 
measure �#

k
 is defined by

for k = 1,… , d and a, b ∈ ℝ . The pointwise marginal distribution of the subordinated 
GRF satisfies

for every x = (x1,… , xd) ∈ [0, � ]d.

𝜙L(x,y)(𝜉) = �(exp(−
1

2
𝜎2𝜉2l1(x)))�(exp(−

1

2
𝜎2𝜉2l2(x)))

= exp(−x(𝛾1
𝜎2𝜉2

2
+ ∫

∞

0

(1 − exp(−
𝜉2

2
y))�̂�1(dy)))

⋅ exp(−y(𝛾2
𝜎2𝜉2

2
+ ∫

∞

0

(1 − exp(−
𝜉2

2
y))�̂�2(dy))),

𝜙L(x,y)(𝜉) = exp
(
− x(𝛾1

𝜎2𝜉2

2
− �

ℝ⧵{0}

exp(i𝜉x) − 1 − i𝜉x1{|x|≤1}(x)�̂�♯1(dx)))

− y(𝛾2
𝜎2𝜉2

2
− �

ℝ⧵{0}

exp(i𝜉x) − 1 − i𝜉x1{|x|≤1}(x)�̂�♯2(dx))
)
,

�̂�♯
k
([a, b]) = ∫

∞

0 ∫
b

a

1√
2𝜋t

exp(−
x2

2t
)dx�̂�k(dt)

= ∫
∞

0 ∫
b

a

1√
2𝜋𝜎2t

exp(−
x2

2𝜎2t
)dx𝜈k(dt),

�#
k
([a, b]) ∶= ∫

∞

0 ∫
b

a

1√
2��2t

exp

�
−

x2

2�2t

�
dx �k(dt),

L(x)
D

=l̃1(x1) +⋯ + l̃d(xd),
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We point out that the case of stationary GRFs is excluded by Assumption 4.4. There-
fore, we consider this situation in the following remark where we again assume d = 2 
for notational simplicity.

Remark 4.8 Let W be a stationary, centered GRF with covariance function 
qW ((x, y), (x

�, y�)) = q̃W ((x − x�, y − y�)) , for (x, y), (x�, y�) ∈ ℝ
2
+
 , and pointwise variance 

𝜎2 ∶= q̃W ((0, 0)) > 0 . Let l1 and l2 be independent Lévy subordinators, which are also inde-
pendent of W. We obtain by Lemma 4.1 the following representation for the pointwise char-
acteristic function of the subordinated random field defined by L(x, y) ∶= W(l1(x), l2(y)) , 
for (x, y) ∈ [0, � ]2:

where

which is a constant function in (x�, y�) . Therefore we obtain

for (x, y) ∈ [0, � ]2 . Hence, in case of a stationary GRF, the subordinated GRF is pointwise 
normally distributed with variance �2.

We conclude this subsection with a remark on the given Lévy-Khinchin formula.

Remark 4.9 With the approach of subordinating GRFs on a higher-dimensional domain, 
we obtain a discontinuous Lévy-type random field and a Lévy-Khinchin formula which 
allows access to the pointwise distribution of the random field. Further we obtain a simi-
lar parametrization of the class of subordinated random fields, as it is the case for Lévy 
processes on a one-dimensional parameter space: Under the assumptions of Theorem 4.6, 
every subordinated GRF can be characterized by the tuple (�2, �1,… , �d, �ext, qW ) , where 
qW ∶ ℝ

d
+
×ℝ

d
+
→ ℝ is the covariance function of the GRF. Further, the class of sub-

ordinated GRFs is linear in the sense that for the sum of two independent subordinated 
GRFs one can construct a single subordinated GRF with the same pointwise characteristic 
function.

5  Covariance Function

One advantage of the subordinated GRF is that the correlation between spatial points is 
accessible. The correlation structure is hereby determined by the covariance function of 
the underlying GRF and the specific choice of the subordinators. For statistical applica-
tions it is often important to image or enforce a specific correlation structure in view of 
fitting random fields to physical phenomena. In this context the question arises whether 
one can find analytically explicit formulas for the covariance function of a subordinated 
Gaussian random field. This will be explored in the following section.

�L(x,y)(�) = �(exp(i�W(l1(x), l2(y))) = �(m(l1(x), l2(y))),

m(x�, y�) = �(exp(i�W(x�, y�))) = exp
(
−

1

2
�2�2

)
,

�L(x,y)(�) = exp
(
−

1

2
�2�2

)
,
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For notational simplicity we restrict the dimension to be d = 2 in this section but we point 
out that analogous results apply for dimensions d ≥ 3 . A direct application of Lemma 4.1 
yields the following corollary.

Corollary 5.1 Let W be a continuous, zero-mean GRF on ℝ2
+
 . Further, let l1 and l2 be two 

independent Lévy subordinators which are independent of W. Then the subordinated 
GRF L defined by L(x, y) ∶= W(l1(x), l2(y)) , for (x, y) ∈ ℝ

2
+
 , is zero-mean with covariance 

function

for (x, y), (x�, y�) ∈ ℝ
2
+
 , where qW ∶ ℝ

2
+
×ℝ

2
+
→ ℝ denotes the covariance function of the 

GRF W.

Proof For (x, y) ∈ [0, � ]2 , we use Lemma 4.1 and the fact that the GRF W is centered to 
deduce �(L(x, y)) = �(W(l1(x), l2(y))) = 0 . Let (x, y), (x�, y�) ∈ [0, � ]2 be fixed. Another 
application of Lemma 4.1 with W̃(x1, y1, x2, y2) ∶= W(x1, y1) ⋅W(x2, y2) , g = id

ℝ
 and 

Z ∶= (l1(x), l2(y), l1(x
�), l2(y

�)) yields the desired formula.   ◻

5.1  The Isotropic Case

We use Corollary 5.1 to derive a semi-explicit formula for the covariance function of the sub-
ordinated GRF, where the underlying GRF is isotropic.

Lemma 5.2 Let W ∶ Ω ×ℝ
2
+
→ ℝ be a zero-mean, continuous and isotropic GRF with 

covariance function qW ((x, y), (x�, y�)) = q̃W (|x − x�|, |y − y�|) . Further, suppose that l1 and 
l2 are independent Lévy subordinators on [0,T1] (resp. [0,T2] ) with density functions f1 
and f2 , i.e. f x

1
(⋅) (resp. ly

2
(⋅) ) is the density function of l1(x) (resp. l2(y) ) for (x, y) ∈ (0, � ]2 . 

The covariance function of the subordinated GRF L with L(x, y) ∶= W(l1(x), l2(y)) , for 
(x, y) ∈ [0, � ]2 , admits the representation

for (x, y), (x�, y�) ∈ [0, � ]2 with x ≠ x′ and y ≠ y′.

For x = x� and y ≠ y′ it holds

for x ≠ x′ and y = y� one obtains

and for (x, y) = (x�, y�) the pointwise variance is given by

qL((x, y), (x
�, y�)) ∶= �(L(x, y)L(x�, y�)) = �

(
qW ((l1(x), l2(y)), (l1(x

�), l2(y
�)))

)
,

qL((x, y), (x
�, y�)) = ∫

ℝ+
∫
ℝ+

q̃W (s, t)f
|x−x�|
1

(s)f
|y−y�|
2

(t)dsdt,

qL((x, y), (x, y
�)) = ∫

ℝ+

q̃W (0, t)f
|y−y�|
2

(t)dt,

qL((x, y), (x
�, y)) = ∫

ℝ+

q̃W (s, 0)f
|x−x�|
1

(s)ds,

Var(L(x, y)) = qL((x, y), (x, y)) = q̃W (0, 0).
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Proof The assertion follows immediately by Corollary 5.1 together with the independence 
of the processes l1 and l2 and the fact that |lk(x) − lk(x

�)|D=lk(|x − x�|) for x, x� ∈ [0, Tk] and 
k = 1, 2 by the definition of a Lévy process.   ◻

5.2  The Non‑isotropic Case

In this subsection, we derive a formula for the covariance function of the subordinated 
GRF for the case that the underlying GRF is not isotropic. In the following, we use the 
notation x ∧ y ∶= min(x, y) and x ∨ y ∶= max(x, y) for real numbers x, y ∈ ℝ . The next 
lemma will be useful in the proof of the covariance representation.

Lemma 5.3 Let l = (l(x), x ∈ [0, T]) be a general Lévy process with density func-
tion f ∶ (0,T] ×ℝ → ℝ , i.e. the probability density function of the random varia-
ble l(x) is given by f x(⋅) , for x ∈ (0,T] . In this case, the joint probability density func-
tion of the random vector Z ∶= (l(x ∧ x�), l(x ∨ x�)) , with x ≠ x� ∈ (0,T] , is given by 
fZ(s, t) = fmin(x,x�)(s) ⋅ f |x�−x|(t − s) for t, s ∈ ℝ.

Proof Let x, x� ∈ (0, T] with x < x′ and x1, x2 ∈ ℝ be fixed. The increment l(x�) − l(x) is 
stochastically independent of the random variable l(x), which yields

For the case that x′ < x the same argument yields

which finishes the proof.   ◻

Remark 5.4 Note that Lemma 5.3 immediately implies that the joint density fZ(s, t) of the 
two-dimensional random vector Z = (l(x ∧ x�), l(x ∨ x�)) for a Lévy subordinator l with 
x ≠ x� ∈ (0,T] is given by

With this lemma at hand we are able to derive a formula for the covariance func-
tion of the subordinated (non-isotropic) GRF. Without loss of generality we consider 
points (x, y), (x�, y�) with x ≤ x′ and y ≤ y′ in the following Lemma. Formulas for the 
other cases follow by the same arguments with Lemma 5.3 and Remark 5.4.

ℙ(l(x) ≤ x1 ∧ l(x�) ≤ x2) = 𝔼(1{l(x)≤x1}1{l(x�)≤x2})
= 𝔼(1{l(x)≤x1}1{l(x�)−l(x)≤x2−l(x)})

= �
ℝ
�
ℝ

1{s≤x1}1{t≤x2−s}f
x(s)f x

�−x(t)dtds

= �
x1

−∞ �
x2−s

−∞

f x(s)f x
�−x(t)dtds

= �
x1

−∞ �
x2

−∞

f x(s)f x
�−x(t − s)dtds.

ℙ(l(x) ≤ x1 ∧ l(x�) ≤ x2) = �
x1

−∞ �
x2

−∞

f x
�

(s)f x−x
�

(t − s)dsdt,

fZ(s, t) = fmin(x,x�)(s) ⋅ f |x�−x|(t − s), for s, t ∈ ℝ+.
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Lemma 5.5 Let W ∶ Ω ×ℝ
2
+
→ ℝ be a zero-mean, continuous and non-isotropic GRF with 

covariance function qW . Further, suppose that l1 and l2 are independent Lévy subordinators 
on [0,T1] (resp. [0,T2] ) with density functions f1 and f2 , i.e. f x

1
(⋅) (resp. ly

2
(⋅) ) is the density 

function of l1(x) (resp. l2(y) ) for (x, y) ∈ (0, � ]2 . The covariance function of the subordin-
ared GRF L with L(x, y) ∶= W(l1(x), l2(y)) , for (x, y) ∈ [0, � ]2 , admits the representation

for (x, y), (x�, y�) ∈ (0, � ]2 with x < x′ and y < y′.

For x = x� and y < y′ , it holds

and for x < x′ and y = y� it holds

For (x, y) = (x�, y�) one obtains for the pointwise variance of the field

Proof Using Corollary 5.1, the independence of the processes l1 and l2 , Lemma 5.3 and 
Remark 5.4 we calculate for (x, y), (x�, y�) ∈ (0, � ]2 with x < x′ and y < y′:

The remaining cases follow by the same argument.   ◻

5.3  Statistical Fitting of the Covariance Function

The parametrization property of the subordinated GRF (see Remark 4.9) motivates a direct 
approach of covariance fitting: For a natural number N ∈ ℕ , we assume that discrete points 
{(xi, yi), i = 1,… ,N} are given with corresponding empirical covariance function data 
Cemp = {C

emp

i,j
, i, j = 1,… ,N} , where Cemp

i,j
 represents the empirical covariance of the field 

evaluated at the points (xi, yi) and (xj, yj) . We search for the solution to the problem

qL((x, y), (x
�, y�)) = ∫

ℝ+
∫
ℝ+

∫
ℝ+

∫
ℝ+

qW ((x1, x2), (x3, x4))f
x
1
(x1)f

y

2
(x2)

× f x
�−x

1
(x3 − x1)f

y�−y

2
(x4 − x2)dx1 dx2 dx3 dx4,

qL((x, y), (x, y
�)) = ∫

ℝ+
∫
ℝ+

∫
ℝ+

qW ((x1, x2), (x1, x4))f
x
1
(x1)f

y

2
(x2)

× f
y�−y

2
(x4 − x2)dx1 dx2 dx4,

qL((x, y), (x
�, y)) = ∫

ℝ+
∫
ℝ+

∫
ℝ+

qW ((x1, x2), (x3, x2))f
x
1
(x1)f

y

2
(x2)

× f x
�−x

1
(x3 − x1)dx1 dx2 dx3.

Var(L(x, y)) = qL((x, y), (x, y)) = ∫
ℝ+

∫
ℝ+

qW (x1, x2, x1, x2)f
x
1
(x1)f

y

2
(x2)dx1dx2.

qL((x, y), (x
�, y�)) = ∫

ℝ
4
+

qW ((x1, x2), (x3, x4))dℙ(l1(x),l2(y),l1(x
�),l2(y

�))(x1, x2, x3, x4)

= ∫
ℝ+

∫
ℝ+

∫
ℝ+

∫
ℝ+

qW ((x1, x2), (x3, x4))f
x
1
(x1)f

y

2
(x2)

× f x
�−x

1
(x3 − x1)f

y�−y

2
(x4 − x2)dx1 dx2 dx3 dx4.
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where we use the notation q̃L ∶= {qL(xi, yi), i, j = 1,… ,N} and ‖ ⋅ ‖∗ is an appropriate 
norm on ℝN , e.g. the euclidian norm. In order to solve this type of problem, the formulas 
for the covariance function given by Lemma 5.2 and Lemma 5.5 can be used, but still 
accessing the solution will be challenging due to the complexity of the set of admissible 
parameters.

6  Stochastic Regularity ‑ Pointwise Moments

In this section we consider pointwise moments of a subordinated GRF L. In particular, 
we derive conditions which ensure the existence of pointwise p-th moments of the sub-
ordinated GRF L defined by L(x) ∶= W(l1(x1),… , ld(xd)) , for x = (x1,… , xd) ∈ [0, � ]d.

Obviously, in order to guarantee the existence of moments of the random variable 
L(x) , we have to impose conditions on the GRF W and the subordinators l1,… , ld . The 
following theorem gives a better insight into the interaction between the underlying 
GRF and the stochastic regularity of the subordinators and presents coupled regularity 
conditions on the tail behaviour of both components of the random field.

Theorem  6.1 We assume that W is a centered and continuous GRF on ℝd
+
 with covari-

ance function qW ∶ ℝ
d
+
×ℝ

d
+
→ ℝ . Further, we assume that there exist a positive num-

ber N ∈ ℕ , coefficients {cj, j = 1,… ,N} ⊂ [0,+∞) and d-dimensional exponents 
{𝛼(j), j = 1,… ,N} ⊂ ℝ

d
+
 such that the pointwise variance function �2

W
 of W satisfies

Here, we use the notation z� = z
�1
1
⋅ ⋯ ⋅ z

�d
d

 for z = (z1,… , zd) ∈ ℝ
d
+
 and � = (�

1

,… , �
d
)

∈ ℝ
d

+
 . We consider a fixed point x ∈ [0, � ]d and assume that the densities f x1

1
,… , f

xd
d

 of the 
evaluated processes l1(x1),… , ld(xd) fulfill

with positive decay rates {�i, i = 1,… , d} . Here, the constants C and K are independent 
of z but may depend on the evaluation point x = (x1,… , xd) and �i may depend on xi , for 
i = 1,… , d . We define the number

Then, the random variable L(x) admits a p-th moment for p ∈ [1, a) , i.e. L(x) ∈ L
p(Ω;ℝ) 

for p ∈ [1, a).

Proof Let Z ∼ N(0, �2) be a real-valued, centered, normally distributed random variable 
with variance 𝜎2 > 0 . It follows by Eq. (18) in Winkelbauer (2012) that the p-th absolute 
moment of Z admits the form �(|Z|p) = Cp�

p, for all p > −1 , with a constant Cp depending 
on p. Let p ≥ 1 be a fixed number. We use Lemma 4.1 to calculate

argmin
�
‖q̃L − Cemp‖∗ ��� admissible tuples (𝜎2, 𝛾1, 𝛾2, 𝜈ext, qW )

�

(2)�W (z) = qW (z, z)
1∕2 ≤

N∑
j=1

cjz
�(j) , for z1,… , zd ≥ 0.

(3)f
xi
i
(z) ≤ C|z|−�i , for z ≥ K and i = 1,… , d,

a ∶= min{(�i − 1)∕�(j)

i
|| i = 1,… , d, j = 1,… ,N, �(j)

i
≠ 0}.
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with

for (x�
1
,… , x�

d
) ∈ ℝ

d
+
 . Hence, we obtain

Next, we use the tail estmations (2) and (3), Hölder’s inequality and the independence of 
the subordinators to calculate

It remains to show that all the integrals Ij
i
 are finite. For i ∈ {1,… , d} and j ∈ {1,… ,N} 

with �(j)

i
= 0 we have Ij

i
= 1 . If �(j)

i
≠ 0 it holds

where the integral in the last step is finite since p𝛼(j)

i
− 𝜂i < −1 for all i ∈ {1,… , d} and 

j ∈ {1,… ,N} with �(j)

i
≠ 0 .   ◻

We close this section with three remarks on the assumptions and possible extensions 
of Theorem 6.1.

Remark 6.2 The assumption given by Eq. (2) is, for example, fulfilled for the d-dimensional 
Brownian sheet with N = 1 , c1 = 1 and �(1) = (1∕2,… , 1∕2) ∈ ℝ

d
+
 . Condition (2) also 

accomodates the GRFs we considered in the Lévy-Khinchin formula (see Theorem 4.6 and 
Assumption 4.4) with N = d , c1 = ⋯ = cd = 1 and 𝛼(j) = 1∕2 ⋅ êj for j = 1,… , d , where êj 
is the j-th unit vector in ℝd . Further, this assumption is fulfilled for any stationary GRF W. 
Indeed, in case of a stationary GRF the assumption is satisfied for �(1) = (�, 0,… , 0) for 
any 𝜀 > 0 and, hence, Theorem 6.1 yields that every moment of the corresponding evalu-
ated subordinated GRF exists, independently of the specific choice of the subordinators. 
This is consistent with Remark 4.8. The assumption on the Lévy subordinators in Eq. (3) is 
natural and can be verified easily in many cases, see also (Barth and Stein 2018b, Assump-
tion 3.7 and Remark 3.8). For example, if for some non-negative integer n ∈ ℕ , the n-th 
derivative of the characteristic function �l(xi)

(⋅) is integrable over ℝ , then Eq. (3) holds with 
�i = n , K = 0 and C =

1

2�
∫ +∞

−∞
| dn
dtn

�l(xi)
(t)| dt (cf. (Hughett 1998, Lemma 12)).

�(|L(x)|p) = �(|W(l1(x1),… , ld(xd))|p) = �(m(l1(x1),… , ld(xd))),

m(x�
1
,… , x�

d
) ∶= �(|W(x�

1
,… , x�

d
)|p) = Cp�

p

W
(x�

1
,… , x�

d
),

�(|L(x)|p) = Cp�
(
�p

W
(l1(x1),… , ld(xd))

)
.

𝔼(|L(x)|p) = Cp𝔼
(
�p

W
(l1(x1),… , ld(xd)

)

≤ Cp �
ℝ

d
+

( N∑
j=1

cjz
�(j)
)p

f
x1
1
(z1)… f

xd
d
(zd)d(z1,… , zd)

≤ C(N, p)

N∑
j=1

c
p

j

d∏
i=1

�
+∞

0

z
p�(j)

i

i
f
xi
i
(zi)dzi

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶I

j

i

.

I
j

i
=
(
�

K

0

+�
+∞

K

)
z
p𝛼(j)

i

i
f
xi
i
(zi)dzi

≤ Kp𝛼(j)
i + C �

+∞

K

z
p𝛼(j)

i
−𝜂i

i
dzi < +∞,
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Remark 6.3 We point out that the statement of Theorem 6.1 remains valid if we consider 
Lévy distributions with discrete probability distribution which satisfy a discrete version 
of (3): If the GRF W satisfies (2) and the evaluated discrete subordinators l1(x1),… , ld(xd) 
satisfy

then we obtain that �(|L(x1,… , xd)|p) < ∞ for p ∈ [1, a) with the real number a defined in 
Theorem 6.1.

Remark 6.4 For the pointwise existence of moments given by Theorem 6.1, it is not neces-
sary to restrict the subordinating processes to the class of Lévy subordinators. More gener-
ally, one could consider a GRF W satisfying (2) and general Lévy processes l1,… , ld satis-
fying (3) for |z| ≥ K . In this case, Theorem 6.1 still holds for the random field L defined by 
L(x) ∶= W(|l1(x1)|,… , |ld(xd)|) , for x = (x1,… , xd) ∈ [0, � ]d.

7  Numerical Examples

In the following, we present numerical experiments on the theoretical results given in this 
paper. The goal of this section is to use the knowledge on theoretical properties of the subordi-
nated GRF to investigate existing numerical methods for the approximation of pointwise dis-
tributions (Subsection 7.1) as well as methods to verify or disprove the existence of moments 
of a random variable (Subsection 7.2). The numerical methods may also be useful for a fitting 
of random fields to existing data in applications. All our numerical experiments have been 
performed with MATLAB.

7.1  Experiments on the Lévy‑Khinchin Formula

The Lévy-Khinchin-type formula (Theorem 4.6) allows access to the pointwise distribution of 
a subordinated GRF which motivates the investigation of numerical methods to approximate 
the pointwise distribution. To be more precise, we use Corollary 4.7 to obtain a pointwise 
distributional representation of a subordinated GRF as the sum of one-dimensional Lévy pro-
cesses with transformed Lévy triplets. We use this representation to investigate the perfor-
mance of different methods to approximate the distribution of Lévy processes.

Assume L = (W(l1(x), l2(y)), (x, y) ∈ [0, 1]2) is a subordinated GRF where the GRF W 
satisfies Assumption 4.4 and the two subordinators l1 and l2 are characterized by the Lévy 
triplets (�k, 0, �k) for k = 1, 2 . It follows by Corollary 4.7 that L admits the pointwise distribu-
tional representation

for (x, y) ∈ [0, 1]2 . Here, the processes l̃k on [0, 1] are independent Lévy processes with tri-
plets (0, �2�k, �

#
k
) , for k = 1, 2 , in the sense of the one-dimensional Lévy-Khinchin formula 

(see Theorem 2.1) and the Lévy measure �#
k
 is defined by

(4)f
xi
i
(k) = ℙ(li(xi) = k) ≤ C|k|−�i , for k ≥ K and i ∈ {1,… , d},

(5)L(x, y)
D
=l̃1(x) + l̃2(y),

�#
k
([a, b]) ∶= ∫

∞

0 ∫
b

a

1√
2��2t

exp

�
−

x2

2�2t

�
dx �k(dt),
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a, b ∈ ℝ and k = 1, 2 . We choose specific spatial points and use two different methods to 
approximate the distribution of the Lévy processes on the right hand side of (5): the com-
pound Poisson approximation (CPA) (see (Schoutens 2003, Section 8.2.1)) and the Fourier 
inversion method for Lévy processes (see Gil-Pelaez (1951) and Barth and Stein (2018b)) 
which allows for a direct approximation of the density of the right hand side of (5). In order 
to investigate the performance of these two approaches, the corresponding results are then 
compared with samples of the subordinated GRF on the left hand side of Eq. (5).

7.1.1  Compound Poisson Approximation

We recall that a Gamma(aG, bG) process lG has independent Gamma-distributed incre-
ments and lG(t) follows a Gamma(aG ⋅ t, bG) distribution. In our first example we choose 
Gamma(4, 12) processes to subordinate the GRF W defined by W(x, y) =

√
x + y W̃(x, y) , 

for (x, y) ∈ ℝ
2
+
 , where W̃ is a Matérn-1.5-GRF with pointwise standard deviation � = 2 

(see Remark 4.5). We fix the evaluation point (x, y) = (1, 1) and use the CPA method to 
obtain samples of the Lévy process on the right hand side of (5) which can then be com-
pared with samples of the subordinated GRF. Figure 2 (left and middle) shows the corre-
sponding histograms for 10.000 samples of each distribution.

We observe an accurate fit of the samples generated by the different approaches: the 
first histogram, corresponding to the exact sampling of the subordinated GRF, displays the 
same characteristics as the histogram generated by CPA, which shows that the CPA method 
is appropriate to simulate the distribution of the right hand side of Eq. (5).

7.1.2  Fourier Inversion Method

The second approach is to approximate the density function of the right hand side of (5) by 
the Fourier inversion (FI) method (see Gil-Pelaez (1951) and Barth and Stein (2018b)) and 
compare it with samples of the subordinated GRF. Figure 3 illustrates the results for this 
approach where we used the evaluation point (x, y) = (1, 1) , the same GRF as in Subsec-
tion 7.1.1, Gamma(4, 12) subordinators and 100.000 samples of the subordinated GRF.

As one can see in Fig. 3, the approximated density of the right hand side of (5) per-
fectly matches the pointwise distribution of the subordinated GRF. We want to confirm 
this observation by a Kolmogorov-Smirnov-Test (see for example (Pestman 2009, Section 
VII.4)). Figure 4 illustrates how the empirical CDF, obtained by sampling the subordinated 
GRF, converges to the target CDF which is approximated by the Fourier inversion method 
using Eq. (5). A Kolmogorov-Smirnov-test with 10.000 samples and a level of significance 
of 5% is passed.

Fig. 2  Samples of the subordinated GRF W(l
1

(1), l
2

(1)) (left), the sum of the corresponding transformed 
Lévy processes l̃

1

(1) + l̃
2

(1) generated by the CPA method (middle) and both histograms in one plot (right)
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In the next experiment we use a modified subordinator, which results in a less smooth 
pointwise density of the subordinated GRF. We repeat the experiment with Gamma(0.5, 10) 
subordinators where the GRF, the evaluation point and the sample size remain unchanged. 
Figure 5 shows 100.000 samples of the subordinated GRF and the density of the process 
given by the right hand side of Eq. (5) approximated via the Fourier Inversion method.

As in the first experiment, the results given by Fig.  5 indicate that the approximated 
density of the right hand side of (5) matches the pointwise distribution of the subordinated 
GRF. Figure  6 illustrates how the empirical CDF, obtained by sampling of the subordi-
nated GRF, converges to the approximated target CDF of the right hand side of Eq. (5), 
which is computed by the Fourier inversion method. A Kolmogorov-Smirnov-test with a 
level of significance of 5% is passed.

7.2  Pointwise Moments

Theorem 6.1 guarantees the existence of pointwise moments of the subordinated GRF if 
the GRF and the corresponding subordinators satisfy certain conditions. In the following 
numerical experiments, we investigate the results of different statistical methods to inves-
tigate numerically the existence of pointwise moments of a certain order in the specific 
situation of the subordinated Gaussian random field. We set d = 2 and assume W to be a 

Fig. 3  Samples of 
Gamma(4, 12)-subordinated 
GRF and approximated density 
(FI)

Fig. 4  Approximated target CDF (FI) vs. empirical CDF using 100 (left), 1.000 (middle) and 10.000 (right) 
samples of the subordinated GRF with Gamma(4, 12) subordinators
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Brownian sheet on ℝ2
+
 . Further, we use Lévy processes with different stochastic regularity - 

in terms of the existence of moments - to subordinate the GRF W.

7.2.1  Statistical Methods to Test the Existence of Moments of a Random Variable

The existence of moments of a specific distribution is one of the most frequently formu-
lated assumptions in statistical applications. For example, already the strong law of large 
numbers assumes finiteness of the first moment of the corresponding random variable. 
Nevertheless, in the literature only few statistical methods exist to verify or disprove the 
existence of moments, given a specific sample of random variables (see e.g. Mandelbrot 
(2012); Hill (1975); Ng and Yau (2018); Fedotenkov (2013a, 2014, 2013b)). One of the 
earlier methods to verify the existence of moments of a distribution was proposed in 1963 
by Mandelbrot (see Mandelbrot (2012) and Cont (2001)). It is based on the simple observa-
tion that the estimated (sample-)moments will converge to a certain value for an increasing 
sample size if the theoretical moment exists. On the other side, if the theoretical moment 
does not exist, the estimated moment will diverge or behave unstable when the sample 
size increases. However, this quite intuitive method is rather heuristic and depends highly 
on the experience of the researcher (see also Fedotenkov (2013b)). Another popular direct 
way to investigate the existence of moments of a certain distribution is the sample-based 

Fig. 5  Samples of 
Gamma(0.5, 10)-subordinated 
GRF and approximated density 
(FI)

Fig. 6  Approximated target CDF (FI) vs. empirical CDF using 100 (left), 1.000 (middle) and 10.000 (right) 
samples of the subordinated GRF with Gamma(0.5, 10) subordinators
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estimation of a decay rate � for the corresponding density function proposed by Hill in Hill 
(1975). However, the Hill-estimator requires a parameter k > 0 which specifies the sample 
values which are considered as the tail of the distribution and it turned out that the Hill-
estimator is very sensitive to the choice of this parameter k. Further, the method makes the 
quite restrictive assumption that the underlying distribution is of Pareto-type (see Ng and 
Yau (2018); Fedotenkov (2013b, 2014, 2013a)). In 2013, Fedotenkov proposed a bootstrap 
test for the existence of moments of a given distribution (see Fedotenkov (2013b)). The 
test performs well for specific distributions, however, its accuracy deteriorates fast when 
moments of higher order are considered (see also Fedotenkov (2014)). Recently, Ng and 
Yau proposed another sample-based bootstrap test for the existence of moments which 
outperforms the previously mentioned methods for many distributions (see Ng and Yau 
(2018)). The test is based on a result from bootstrap asymptotic theory which states that the 
m out of n bootstrap sample mean (see Bickel et al. (1997)) converges weakly to a normal 
distribution. For a detailed description of the test statistic and further theoretical investiga-
tions we refer the interested reader to Ng and Yau (2018).

Based on these observations, we investigate the results of direct moment estimation via 
Monte Carlo (MC) and the bootstrap test proposed by Ng and Yau to analyze the existence 
of (pointwise) moments of the subordinated GRF.

For our numerical examples we choose three different Lévy distributions to subordi-
nate the Brownian sheet W: a Poisson distribution, a Gamma distribution and a Student-t 
distribution. Therefore, we use a discrete and a continuous distribution where all moments 
are finite and a continuous distribution, which only admits a limited number of moments. 
Hence, we consider three fundamentally different situations. In all three experiments, we 
consider the evaluation point x = (x1, x2) = (1, 1) ∈ ℝ

2
+
 for the subordinated GRF L. Note 

that the two-dimensional Brownian sheet satisfies Eq. (2) in Theorem  6.1 with N = 1 , 
c1 = 1 and �(1) = (1∕2, 1∕2).

7.2.2  Poisson‑subordinated Brownian sheet

In this example, we use Poisson(3) processes to subordinate the two-dimensional Brownian 
sheet. It is easy to verify that condition (4) is satisfied for any 𝜂i > 0 , i = 1, 2 , since point 
evaluations of a Poisson process are Poisson distributed. Theorem 6.1 implies the existence 
of the p-th moment of the evaluated field L(1, 1) for any p < ∞ (see Remark 6.3). We esti-
mate the p-th moment for p ∈ {4, 6, 8} by a MC-estimation using M samples of the evalu-
ated GRF L(1, 1) for different values of M ∈ ℕ , i.e.

where (L(i)(1, 1), i ≥ 1) are i.i.d. samples of the evaluated field L(1,  1). As explained in 
Subsection 7.2.1, the MC-estimator EM(|L(1, 1)|p) is expected to converge for M → ∞ if 
the p-th moment exists and one expects unstable behaviour if this is not the case. Figure 7 
shows the development of the MC-estimator EM(|L(1, 1)|p) for the p-th moment as a func-
tion of the number of samples M. For every moment, we take 5 independent MC-runs to 
validate that they converge to the same value.

�(|L(1, 1)|p) ≈ EM(|L(1, 1)|p) = 1

M

M∑
i=1

|L(i)(1, 1)|p,
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As expected, Fig. 7 shows a stable convergence of the MC-estimator for a growing num-
ber of samples for every considered moment. Further, the different independent MC-runs 
converge to the same value - the theoretical p-th moment for p ∈ {4, 6, 8}.

In the next step, we perform the bootstrap test (see Subsection  7.2.1 and Ng and 
Yau (2018)). We test the existence of the p-th moment for p ∈ {1, 2, 3, 4, 5, 6, 7, 8} using 
M = 107 samples of the subordinated evaluated GRF L(1, 1). Hence, the null and alter-
native hypothesis are given by

for the different values of p. We choose the significance level �s = 1% and perform 100 
independent test runs. Figure 8 shows the proportion of acceptance of the null hypothesis 
in the 100 test runs as a function of the considered moment p ∈ {1, 2, 3, 4, 5, 6, 7, 8}.

As we see in Fig. 8, the bootstrap test accepts the null hypothesis H0 in almost every 
test run for every considered moment p ∈ {1, 2, 3, 4, 5, 6, 7, 8} which is in line with our 
expectatations since all these moments exist. We conclude that both approaches, the MC 
moment estimation and the bootstrap test, perform as expected in this experiment.

H0 ∶ �(|L(1, 1)|p) < +∞ vs. H1 ∶ �(|L(1, 1)|p) = +∞,

Fig. 7  Five independent realizations of the MC-estimator EM(|L(1, 1)|p) ≈ �(|L(1, 1)|p) as a function of 
the sample numbers M with a Poisson(3)-subordinated Brownian sheet; p = 4 (left), p = 6 (middle), p = 8 
(right)

Fig. 8  Results for 100 independ-
ent runs of the bootstrap test for 
the existence of the p-th moment 
using Poisson(3) processes to 
subordinate the Brownian sheet
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7.2.3  Gamma‑subordinated Brownian sheet

In our second numerical example we consider Gamma processes to subordinate the Brown-
ian sheet. We recall that, for aG, bG > 0 , a Gamma(aG, bG)-distributed random variable 
admits the density function

where Γ(⋅) denotes the Gamma function. A Gamma process (l(t))t≥0 has independent 
Gamma distributed increments and l(t) follows a Gamma(aG ⋅ t, bG)-distribution for t > 0 . 
Therefore, condition (3) holds for any 𝜂i > 0 , for i = 1, 2 and, hence, Theorem 6.1 again 
implies the existence of every moment, i.e. �(|L(1, 1)|p) < ∞ for any p ≥ 1 . We choose 
aG = 4 , bG = 10 and estimate the p-th moment of L(1, 1) with p ∈ {4, 6, 8} by a MC-esti-
mation using a growing number of samples M ∈ ℕ . Figure 9 shows the development of the 
MC-estimator EM(|L(1, 1)|p) for the p-th moment as a function of the number of samples 
M. As in the first experiment, we take 5 independent MC-runs to validate the convergence 
to a unique value. In line with our expectations, the results show a stable convergence of 
the MC-estimations for the different moments of this subordinated GRF.

In this experiment we again perform the bootstrap test for the existence of the p-th 
moment for p ∈ {1, 2, 3, 4, 5, 6, 7, 8} using M = 107 samples of the subordinated evaluated 
GRF L(1, 1). Hence, the null and alternative hypothesis are given by

for the different values of p. We choose the significance level �s = 1% and perform 100 
independent test runs. Figure 10 shows the proportion of acceptance of the null hypothesis 
in the 100 test runs as a function of the considered moment p ∈ {1, 2, 3, 4, 5, 6, 7, 8}.

As in the first experiment, the test results meet our expectations, since almost every test 
run accepts the null hypothesis for any moment p ∈ {1, 2, 3, 4, 5, 6, 7, 8}.

7.2.4  Student t‑subordinated Browinan Sheet

In our last experiment we consider a Lévy process where the pointwise distribution only 
admits a finite number of moments. The Student’s t-distribution with three degress of free-
dom admits the density function

x ↦
b
aG
G

Γ(aG)
xaG−1 exp(−xbG), for x > 0,

H0 ∶ �(|L(1, 1)|p) < +∞ vs. H1 ∶ �(|L(1, 1)|p) = +∞,

Fig. 9  Five independent realizations of the MC-estimator EM(|L(1, 1)|p) ≈ �(|L(1, 1)|p) as a function of the 
sample numbers M with a Gamma(4, 10)-subordinated Brownian sheet; p = 4 (left), p = 6 (middle), p = 8 
(right)
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It follows by (Kelker (1971), Theorem 3) that a Student-t distributed random variable with 
three degrees of freedom is infinitely divisible. Hence, we can define Lévy processes lj , for 
j = 1, 2 , such that lj(1) follows a Student-t distribution with three degrees of freedom (see 
Sato (2013, Theorem 7.10)). Using these processes and the Brownian sheet W, we consider 
the subordinated GRF L(x1, x2) ∶= W(|l1(x1)|, |l2(x2)|) for (x1, x2) ∈ [0,T1] × [0, T2] (see 
Remark 6.4). For our numerical experiment we again evaluate the field at (x1, x2) = (1, 1) . 
Using (6) we obtain

Therefore, condition (3) is satisfied for �i = 4 , for i = 1, 2 , and it is violated for any 𝜂i > 4 
(see also Remark 6.4). Since the Brownian sheet satisfies condition (2) with N = 1 , c1 = 1 
and �(1) = (1∕2, 1∕2) , Theorem 6.1 yields that �(|L(1, 1)|p) < ∞ for p < 6 and we expect 
that this boundary is sharp, i.e. we expect that �(|L(1, 1)|p) = ∞ for p ≥ 6.

We estimate the p-th moment for p ∈ {5, 6, 8} with the MC-estimator EM(|L(1, 1)|p) with 
growing sample number M ∈ ℕ . In Fig. 11 we see the development of the MC-estimator 

(6)ft(x) =
Γ(2)√

3�Γ(3∕2)

�
1 +

x2

3

�−2

, for x ∈ ℝ.

ft(x) ≤ C|x|−4, for x ∈ ℝ.

Fig. 10  Results for 100 inde-
pendent runs of the bootstrap 
test for the existence of the p-th 
moment using Gamma(4,10) 
processes to subordinate the 
Brownian sheet

Fig. 11  Five independent realizations of the MC-estimator EM(|L(1, 1)|p) ≈ �(|L(1, 1)|p) as a function of 
the sample numbers M with a Student-t-subordinated Brownian sheet; p = 5 (left), p = 6 (middle), p = 8 
(right)
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for the p-th moment as a function of the number of samples. For every moment, we take 
5 independent MC-runs. The results indicate a convergence of the MC-estimations of the 
p-th moment for p = 5 : in this case the estimation stabilizes with growning sample size 
and all 5 independent MC-estimations seem to converge to a unique value. However, for 
the higher moments p = 6 and p = 8 , we see upward breakouts and instable behaviour of 
the corresponding MC-estimator for increasing sample sizes. Further, the 5 independent 
MC-runs do not indicate a convergence to a unique value. For all the considered moments 
p ∈ {5, 6, 8} , these results are in line with our expectations, since the p-th moment of the 
evaluated subordinated GRF L(1, 1) admits a p-th moment for p < 6 and this boundary is 
sharp (see Theorem 6.1).

We perform the bootstrap test for the existence of the p-th moment for 
p ∈ {1, 2, 3, 4, 4.5, 5, 5.2, 5.4, 5.6, 5.8, 6, 6.5, 7, 8} using M = 107 samples of the subordi-
nated GRF L(1, 1). Hence, the null and alternative hypothesis are again given by

for the different values of p. We choose the significance level �s = 1% and perform 100 
independent test runs. Figure 12 shows the proportion of acceptance of the null hypothesis 
in the 100 test runs as a function of the considered moment p and the test statistic values 
for the 100 test runs.

In all of the 100 test runs the null hypothesis is accepted for p ∈ {1, 2, 3, 4, 4.5, 5} . 
Further, in almost all of the 100 test runs H0 is rejected for the cases p ∈ {6, 6.5, 7, 8} , 
which is absolutely in line with the theoretical results for this specific choice of the 
subordinated GRF. Only for p ∈ (5, 6) , the test rejects the null hypothesis in some of the 
test runs although the theoretical moment exists. Overall, the test results for the exist-
ence of moments of the Student-t-subordinated GRF match our expectations based on 
Theorem 6.1.
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Fig. 12  Results for 100 independent runs of the bootstrap test for the existence of the p-th moment using 
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 (left), test statistic values 
for the test runs (right)
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