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Abstract
This article investigates the valuation of annuity guarantees under a regime-switching model 
when the dynamics of the underlying stock price follow a self-exciting switching jump-diffusion 
process. In this framework, we add a jump component to a regime-switching geometric Brown-
ian for large shocks on the stock price. The intensity of shock arrivals is a Hawkes process 
modulated by a continuous time hidden Markov chain with a finite number of states. The inter-
est rate used for discounting is stochastic and correlated to the stock market. In an incomplete 
market, we define an equivalent martingale measure to price a variable annuity contract that 
guarantees a minimum living or death benefit. Under this equivalent martingale measure, we 
propose closed-form approximation formulas using the inverse Fourier transform technique. A 
numerical implementation highlights the impact of self-exciting jumps and economic regimes 
on the valuation of guarantees.

Keywords  Variable annuity · Self-exciting · Hidden markov chain · Fourier transform

1  Introduction

Over the past decade, the design of life insurance products has been progressively adapted 
to customer needs, from classic pure endowments, death deferred capital or unit-linked 
insurance products to variable annuities (VAs). A variable annuity is a unit-linked annu-
ity product with guarantees or riders, which are mainly living and death benefits. Such a 
product allows for the allocation of savings to either a pre- or post-retirement investment 
strategy, as it guarantees lifetime income or death capital and protects VA holders from 
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market downturns. In addition to these advantages, the popularity of VAs stems from the 
fact that they are indirect tax-deferred investments. Unlike in the United States, where sales 
volumes of VAs amounts to more than $20 billion per quarter1, in Europe the VA market 
is still expanding according to the annual reports of major European VA issuers. However, 
due to rider features of VAs, any VA issuer faces various risks, including financial, mortal-
ity or longevity and surrender risk. Furthermore, the low or negative interest rates environ-
ment, the interconnection of the markets and the interplay between risks are features that 
make the fair valuation of life insurance contracts with guarantees challenging.

The pricing of life insurance contracts with guarantees has been a topic of research 
interest for many years. Brennan and Schwartz (1976,  1979) and Boyle and Schwartz 
(1977) made important contributions to the academic understanding of the pricing of 
equity-linked products and life insurance policies using the modern option price theory. 
According to Milvesky and Posner (2001) and Milvesky and Salisbury (2006) research, 
various annuities are priced under the assumption of a constant interest rate and a geo-
metric Brownian motion to model the underlying stock price. Considering the same set-
ting, Baueret  al. (2008) extended the work of Milvesky and Salisbury (2006) by incor-
porating policyholder behavior. Considering stochastic interest rates, Lin and Tan (2003) 
and Kijima and Wong (2007) proposed a valuation approach for equity-indexed annuities. 
To insure that VA contracts remain profitable for the policyholder and the issuer, Bernard 
et al. (2014), Cui et al. (2017), Bernard and Moenig (2019) and Landriault et al. (2021) 
incorporated different fee structures into the pricing framework. In addition to the pricing 
issue associated with the financial approach, researchers have also investigated the fair val-
uation of equity-linked insurance with regard to the level of solvency capital required (see 
e.g., Hardy (2003); Barbarin and Devolder (2005) and Feng and Volkmer (2012)). Using 
simulation or analytical methods where financial models permit, they analyzed liabilities 
for equity-linked insurance contracts and determined the fair values of parameters of these 
contracts using risk measures. The present article applies a risk-neutral pricing approach 
to VAs with minimum death and minimum life guarantees. An overview of other equity-
linked life insurance policies is provided by Hardy (2003) and Bacinello et  al. (2011). 
For VAs with minimum death and life guarantees, a benefit is paid either at the time of 
death or upon the maturity of the contract. This benefit is capped due to a guaranteed rate 
and depends on the performance of the underlying investment fund. Hence, VA holders 
receive at least the guaranteed amount during periods of crisis and earn additional expected 
income in periods of economic growth due to the good performance of investment funds. 
In contrast, as observed during the credit crunch that occured between October 2007 and 
March 2009, the main VA issuers incurred large losses. These losses were explained with 
reference to rising guarantee values, the collapse of earnings from mutual fund fees, nega-
tive hedging results and exploding hedging costs. As VAs offer protection of capital during 
periods of recession and provide an additional returns in conjunction with growth to their 
holders, incorporating switches in economic regimes into the VAs valuation framework is 
thus a good way of reducing the risk of losses for VA issuers.

In the finance literature, Goldfeld and Quandt (1973) developed the regime-switching 
technique. Hamilton (1989) popularized this technique in economics and econometrics. In 
finance, regime-switching models are based on the simple and natural notion that the eco-
nomic environment is not stable but subject to regular changes at certain non-predictable 

1  According to the Insured Retirement Institute. https://​www.​myiri​online.​org/​newsr​oom/​newsr​oom-​detail-​
view/​iri-​issues-​second-​quart​er-​2019-​annui​ty-​sales-​report
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stopping times. Various authors in the field of actuarial science have explored the use 
of regime-switching models in a continuous-time Markov switching framework. With-
out intending to present an exhaustive list, we refer to Hardy (2001), Siu (2005) Lin 
et al. (2009), Hainaut (2014), Fan et al. (2015) and Ignatieva et al. (2016). The common 
point of these articles is the use of diffusion processes modulated by a continuous-time 
Markov chain to model the interest rate and/or the reference risky asset. To the best of 
our knowledge, self-exciting jump-diffusion processes modulated by a continuous time 
hidden Markov chain have not been explored in the valuation framework of equity-linked 
life insurance contracts such as VAs. The literature on switching jump-diffusion is less 
abundant. For instance, Hainaut and Colwell (2016) extend the framework of Siu (2005) 
by using Markov regime-switching jump diffusion models. Fan et al. (2015) price annuity 
guarantees under double regime-switching models in which the underlying stock price was 
modulated by a Markov chain and its jump part depends on the number of state changes 
recorded. Hainaut and Moraux (2018) showed that the self-excitation property of the 
Hawkes process combined with regime-switching models enables one to better reproduce 
the dynamics of financial markets. In this framework, the features of shocks are modulated 
by economic cycles. The authors’ empirical analysis of the S&P 500, reveals that self-
excited jumps occur mainly during economic recessions and nearly disappear in periods of 
economic growth. The present article considers the setting of Hainaut and Moraux (2018) 
which integrated specific features of stock price dynamics such as jumps, heavy-tails of the 
return’s distribution, the time-varying volatility, the regime-switching and, for option price, 
implied volatility smiles.

In the cited articles, the interest rates used for discounting cash flows are mostly consid-
ered constant. This assumption seems unrealistic for VAs, as potential increases in interest 
rates could have adverse effects on their commitments, mainly due to declining asset val-
ues. The literature features many stochastic interest rates models (e.g., Hull-White model 
(1990), Cox-Ingersoll-Ross (CIR) model (1985), Vasicek model (1977)) that allow for the 
replication of interest rate features such as time consistency, negativity, mean revertion, 
time-varying volatility and the clustering effect. Without losing generality, we consider 
a Hull-White model correlated to the stock price model. As VAs are long-term commit-
ments, under the real measure, we fit the interest rate model using the Kalman filter (1960) 
to reflect the long-term trend.

This article proposes an integrated framework for the valuation of VAs that guarantee a 
minimum benefit in case of death or life. Our work makes four contributions to the actu-
arial literature. First, this work introduces self-exciting switching jump-diffusion (SESJD) 
models into the standard pricing framework of VAs. Second, we design a valuation frame-
work with a stochastic interest rate model correlated to the stock price process, and from 
a management perspective, we consider a portfolio consisting of a bond and a risky asset 
as the reference investment fund. Third, we define an equivalent martingale measure and 
derive an approximate closed-form expression for the pricing of VAs that guarantee a 
minimum living and death benefit. Finally, we present the detailed procedure used for the 
econometric calibration of our models based on the filtering technique.

The remainder of this article is structured as follows: in Section 2, we specify the hidden 
Markov chain model, the SESJD model and the interest rates model. Thereafter, we define 
a Radon Nikodym density for our equivalent martingale pricing measure. Under this pric-
ing measure we find the dynamics of the investment portfolio and the moment generating 
function of the couple formed by the cumulated short-rate and the portfolio price. We con-
clude this section with a pricing formula of a European call option written on the invest-
ment portfolio obtained by an inverse Fourier transform. In Section 3, we specify our VA 
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contract, and based on this contract, we provide an approximate closed-form expression of 
its price. In Section 4, we first discuss about the calibration of our models in the real world 
and then present a numerical implementation of our valuation framework, focusing on the 
impact of VA features.

2 � The Financial Risk

We consider a complete probability space (Ω, F, ℙ) equipped with a filtration 
{
Ft

}
t≥0 that is 

generated by a continuous Markov chain and other processes we specify hereafter. Here, the 
probability measure ℙ on (Ω, F) denotes the real world probability measure. The time set is 
T = [0, T∗] , where T∗ < ∞ is the final trading date. We consider a financial market in which 
security prices are adapted to the subfiltration 

(
Ht

)
t≥0 . Throughout this paper, the economy is 

categorized into N states or regimes indexed by a set of integers N ∶= {1, 2, ...,N} . The 
information about the state of economy over time, is carried by a (continuous) hidden Markov 
chain � (t) taking values from a set of unit vectors E =

{
e1, e2, ..., eN

}
 , where 

ej = (0, ..., 0, 1, 0, ...0)⊤ with 1 at the jth position. The natural filtration generated by {� (t)}t≥0 
is denoted by 

{
Gt

}
t≥0 , where Gt = �(� (s) ∶ s ∈ T, s ≤ t) . The generator of � (t) is an N × N 

matrix Q0 ∶=
[
qi,j

]
i,j=1,2,...,N

 , whose elements satisfy the following standard conditions:

Each qi,j for i ≠ j is the instantaneous transition rate from state i to state j, while 
−qi,i =

∑N

j≠i,j=1 qi,j > 0 is the instantaneous exit rate from state i. Hence,

The matrix of transition probabilities over the time interval [t, s] is denoted as P(t, s) and 
is defined by:

where for 1 ≤ i, j ≤ N , pi,j(t, s) is the probability that the chain switches from state i at 
time t to state j at time s. Moreover, the probability that the chain is in state i at time s 
denoted by pi(s) depends upon the initial probabilities pk(0) and the transition probabilities 
pk,i(0, s) , where k = 1, 2, ...,N . pi(s) is defined as follows:

From the semi-martingale representation theorem for � (t) provided by Elliott et al. (2005) 
and given that Gt is the filtration of � (t) , we can write � (t) as the sum of a Gt predictable-
adapted process and of a Gt martingale increment process, {M(t)}t≥0:

qi,j ≥ 0, ∀i ≠ j, and

N∑
j=1

qi,j = 0, ∀i ∈ N.

lim
Δ→0

P
(
� (t + Δ) = ej ∣ � (t) = ei

)
Δ

=qi,j,

lim
Δ→0

1 − P
(
� (t + Δ) = ei ∣ � (t) = ei

)
Δ

= − qi,i.

P(t, s) =
(
pi,j(t, s)

)
1≤i,j≤N = exp

(
Q0(s − t)

)
, s ≥ t,

pi(s) = P
(
� (s) = ei

)
=

N∑
k=1

pk(0)pk,i(0, s), for all 1 ≤ i ≤ N.
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In this market, investors purchase three assets: cash, bonds and a stock. The price of this 
risky asset over time is a process (S(t))t≥0 modulated by the Markov chain. We assume that 
the insurer invests the premium from the VA contract in a portfolio of bonds and stocks. The 
process (S(t))t≥0 follows a modified version of the stock price model proposed by Hainaut and 
Moraux (2018) in which the instantaneous return is the sum of a drift, Brownian motions and 
a compensated jump process:

We assume that the instantaneous average growth rate �(t) of the stock and the Brownian vol-
atility �(t) are modulated by the Markov chain � (t) . In detail, 𝜇(t) = 𝜁 (t)⊤𝜇̄ and 𝜎(t) = 𝜁 (t)⊤𝜎̄ , 
where 𝜇̄ =

(
𝜇̄1, 𝜇̄2, ..., 𝜇̄N

)⊤
∈ ℝN

+
 and 𝜎̄ =

(
𝜎̄1, 𝜎̄2, ..., 𝜎̄N

)⊤
∈ ℝN

+
 . Wr(t) and WS(t) are two 

independent Brownian motions, and � is the correlation coefficient between the short rate and the 
stock price. The amplitude of shocks Ji are i.i.d. random double exponential variables (DEJ) with 
density �(z) on ℝ . Further details about the jump size distribution and moments are provided in 
Appendix A. It is important to note that most of the results presented in this work are applicable 
to any other jump size distributions that enables both negative and positive jumps. The counting 
process (N(t))t≥0 with intensity (�(t))t≥0 counts the number of observed shocks independent of 
their amplitude up to time t. To replicate the clustering of shocks observed in stocks markets, the 
intensity is stochastic and defined as follows :

or in terms of stochastic differential equation (SDE) by :

where � ≥ 0 is the speed of reversion, L(t) =
∑N(t)

i=1
��Ji�� enables to increase the intensity 

�(t) of �|J| when a jump occurs. The long-run level �(t) is modulated by the Markov chain 
� (t) : 𝜂(t) = 𝜁 (t)⊤𝜂̄ , where 𝜂̄ =

(
𝜂̄1, 𝜂̄2, ..., 𝜂̄N

)⊤
∈ ℝN

+
 . The information about this counting 

process is contained in the subfiltration H . Hainaut and Moraux (2018) derive from their 
proposition 2.1 that conditionally to H0 the expectation of �(t) converges when t tends to 
infinity only if the speed of mean reversion is larger than ��(|J|) . In the calibration section, 
this stability condition ensures that the number of shocks hitting the stock price process 
S(t) does not explode as the maturity increases.

To preserve the analytical tractability, we assume that the risk-free rate (r(t))t≥0 is not mod-
ulated by the Markov chain and satisfies, under ℙ this SDE:

where the level of mean reversion �ℙ(t) is a process, ar ≥ 0 is the speed of mean-reversion 
and �r ≥ 0 is the volatility of the interest rates market. In order to price bonds, we define a 
risk neutral measure. However, the market is incomplete due to regime switches and jumps. 

(1)𝜁 (t) = 𝜁 (0) + ∫
t

0

Q⊤
0
𝜁 (s)ds +M(t).

(2)

dS(t)

S(t−)
= �(t)dt + ��(t)dWr(t) +

√
1 − �2�(t)dWS(t)

+ d

�
N(t)�
i=1

�
eJi − 1

��
− �(t)�

�
eJ − 1

�
dt.

�(t) = �(0) − � ∫
t

0

e�(s−t)(�(0) − �(s))ds + ∫
t

0

�e�(s−t)dLs,

(3)d�(t) = �(�(t) − �(t))dt + �dL(t),

(4)dr(t) =
(
�ℙ(t) − arr(t)

)
dt + �rdWr(t),
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The risk-neutral measure derived under the martingale condition is not unique, which is 
also the case with the price of a given product in this market. Different equivalent meas-
ures such as the Esscher transform measure, the minimal entropy measure or the variance-
optimal measure, could be used, but, in this paper, we do not discuss the selection criteria 
of an equivalent martingale measure. Instead, we consider that the equivalent martingale 
measure ℚ of ℙ with the Radon Nykodym density defined by:

where 𝜃S(t) = 𝜁 (t)⊤𝜃̄S , �r ∈ ℝ and 𝜃̄S ∈ ℝN . Using the Itô’s differentiation rule, we find 
that dΛ(t) = −�r�rdWr(t) − �(t)�S(t)dWS(t) . Then, as Λ(t) is an F -martingale under the 
probability measure ℙ and �(Λ(t)) = 1 , our equivalent measure ℚ is well-defined. If �r is a 
constant and �S(t) is such that

then the discounted price process of the risky asset exp
(
− ∫ t

0
r(u)du

)
S(t) is a F -martin-

gale under the probability measure ℚ . Under this risk neutral measure, (S(t))t∈T and (r(t))t∈T 
satisfy the following SDEs :

where the processes 
(
Wℚ

r
(t)
)
t∈T

 and 
(
Wℚ

S
(t)
)
t∈T

 are two Brownian motions under ℚ such 
that:

�ℚ(t) = �ℙ(t) − �2
r
�r is a deterministic function of the time, where −�r�r is the interest 

rate’s risk price. We note that the market price of risk −�S(t)�(t) in our framework depends 
on the state of the economy and the instantaneous short rate. For the sake of simplicity, we 
assume that the distribution of the hidden Markov chain � and the modulated jump process 
(�,N) remain unchanged after the measure change from ℙ to ℚ . Thus, the semimartingale 
representation of the hidden Markov chain in Equation (1) still holds.

In this setting, asset prices are valued as the sum of their expected discounted cash 
flows under the risk-neutral measure. From Equation (7), the short-rate follows a Hull-
White process (1990) under ℚ . The price of a zero-coupon bond at time t with maturity 
T is given by:

(5)
Λ(t) =

dℚ

dℙ

||||Ft

=∶ exp

(
−
1

2 ∫
t

0

(
�2
r
�2
r
+ �2(u)�2

S
(u)

)
du

−∫
t

0

�r�rdWr(u) − ∫
t

0

�(u)�S(u)dWS(u)

)

(6)�S(t) =
�(t) − r(t) − ��r�r�(t)√

1 − �2�2(t)
,

(7)dr(t) =
(
�ℚ(t) − arr(t)

)
dt + �rdW

ℚ

r
(t),

(8)

dS(t)

S(t−)
= r(t)dt + ��(t)dWℚ

r
(t) +

√
1 − �2�(t)dWℚ

S
(t)

+ d

�
N(t)�
i=1

�
eJi − 1

��
− �(t)𝔼

�
eJ − 1

�
dt,

Wℚ

r
(t) = Wr(t) + �r�rt,

Wℚ

S
(t) = WS(t) + ∫

t

0

�(u)�S(u)du.
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where

and

with f M(0, t) the instantaneous forward rate observed at time 0. From Equation (9), we 
have the SDE of this zero coupon bond :

It follows that −�r�2
r
Br(t,T) represents the instantaneous risk premium for an invest-

ment in such a zero-coupon bond.
The equations obtained under the measure ℚ are used later to value the portfolio in 

which the insurer invests the unique premium. Composed of a zero coupon bond and a 
risky asset, the value of this portfolio denoted by V(t) at time t is defined as follows :

where �S is the proportion of the premium invested in the risky asset. Without loss of gen-
erality, we assume that our portfolio is self-financed and continuously re-balanced in order 
to keep this proportion constant over the time. Under the risk neutral measure from Equa-
tion (13) the log-return of the investment portfolio X(t) ∶= ln

V(t)

V(0)
 satisfies the following 

SDE :

We conclude this section with a proposition used to price our VA contract. To price 
embedded options in the VA, we need the moment generating function (mgf) of the 
bivariate random variable 

(∫ s

t
r(u)du,X(s)

)
 given the filtration Ft with t ≤ s.

Proposition 1  The mgf Mt,s

r,X
 of the pair of random variables 

(∫ s

t
r(u)du,X(s)

)
 given the fil-

tration Ft with 𝜔̄ =
(
𝜔1,𝜔2

)
∈ ℂ2

−
 and t ≤ s is equal to :

(9)ZC(t, T) = 𝔼
ℚ

[
e− ∫ T

t
r(s)ds ∣ Ft

]
= e−A

r(t,T)−Br(t,T)r(t),

(10)Br(t, T) =
1

ar

(
1 − e−ar(T−t)

)
,

(11)Ar(t, T) = ∫
T

t

f M(0, s)ds − f M(0, t)Br(t,T) +
�2
r

4ar

(
1 − e−2art

)
Br(t, T)2,

(12)
dZC(t,T)

ZC(t−, T)
= r(t)dt − �rB

r(t, T)dWℚ

r
(t).

(13)
dV(t)

V(t−)
= �S

dS(t)

S(t−)
+
(
1 − �S

)dZC(t,T)
ZC(t−, T)

,

(14)

dX(t) =
�
r(t) + �S

�
1 − �S

�
��(t)�rB

r(t,T) −
1

2
�2
S
�2(t)

�
dt

−
�
1

2

�
1 − �S

�2
�2
r
(Br(t, T))2 + �S�(t)𝔼

�
eJ − 1

��
dt

+
�
�S��(t) −

�
1 − �S

�
�rB

r(t,T)
�
dWℚ

r
(t)

+ �S

√
1 − �2�(t)dWℚ

S
(t) + ln

�
1 + �S

�
eJ − 1

��
dN(t).
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where Ã(⋅) is a vector of N functions, and the function C(⋅) satisfy the terminal value prob-
lems’ partial differential equations (PDEs) system:

with g ∶ (x,C) ⟼ e�2 ln (1+�S(e
x−1))+C�|x| , a real valued bivariate function,

D1 = 𝜔S𝜌𝜎̄ −
(
1 − 𝜔S

)
𝜎rB

r(t, T) , D2 =
(
�2 + �1

)
Br(t, s) , C(𝜔̄, s, s) = 0 and 

Ã(𝜔̄, s, s) = 1ℝN .

Proof  In Appendix B

Note that while the PDE system (16) does not admit an analytical solution, a numerical 
solutions can be found using a numerical method. The joint distribution of 

(∫ s

t
r(u)du,X(s)

)
 

defined by this mgf allows us to price by Fourier transform inversion, a European put option 
written on the portfolio value V with maturity T and strike V(t)ek . Let pT (k) be the value of 
this European put option and � the joint density of 

(∫ s

t
r(u)du,X(s)

)
 under ℚ . Thus,

This European put option is not square integrable since pT tends to infinity instead of zero 
when the log strike k tends to +∞ . To obtain a square integrable function, we consider the 
modified put option price:

where 𝛼 > 0 is chosen such that p̄T is a square-integrable function. Then the Fourier trans-
form of p̄T exists and is defined by

and, by inverse Fourier transform, the option price is obtained numerically using the fol-
lowing equation :

(15)

M
t,s

r,X

(
𝜔1,𝜔2

)
= 𝔼

ℚ

(
e𝜔1 ∫ s

t
r(u)du+𝜔2X(s) ∣ Ft

)

=

(
V(t)

V(0)

)𝜔2

𝜁⊤(t)Ã(𝜔̄, t, s)

× exp
((
𝜔2 + 𝜔1

)
Br(t, s)r(t) + C(𝜔̄, t, s)𝜆(t)

)
,

(16)

{
0 =

𝜕Ã(𝜔̄,t,s)

𝜕t
+
(
diag(D(𝜔̄, t, s)) + Q0

)
Ã(𝜔̄, t, s)

0 = Ct − 𝜔2𝜔S𝔼
ℚ
(
eJ − 1

)
− 𝛽C + 𝔼ℚ(g(J,C)) − 1

D(𝜔̄, t, s) = −
𝜔2

2

(
1 − 𝜔2

)(
D2

1
+ 𝜔2

S

(
1 − 𝜌2

)
𝜎̄2
)
+ 𝜃ℚ(t)D2 +

1

2
𝜎2
r
D2

2

+ 𝜔2𝜎rD1D2 + 𝛽𝜂̄C,

(17)pT (k) = V(t)∫
k

−∞ ∫
+∞

−∞

e−y1
(
ek − ey2

)
�
(
y1, y2

)
dy1dy2.

(18)p̄T (k) ∶= exp (−𝛼k)pT (k),

(19)F
(
p̄T
)
(v) = ∫

+∞

−∞

eivkp̄T (k)dk,

(20)pT (k) =
e𝛼k

𝜋 ∫
+∞

0

e−ivkF
(
p̄T
)
(v)dv.
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Applying Simpson’s rule to the integral in Equation (20), we approximate put options 
prices in the following proposition:

Proposition 2  Let M be the number of steps used in the discrete Fourier transform and 
Δk =

2kmax

M
 the step of discretization. Let us denote �j =

1

3

(
3 + (−1)j − 1{j=1}

)
 , Δv =

2�

MΔk

 
and vj = (j − 1)Δv . The value of pT (k) at points kj = −kmax + (j − 1)Δk is approximated by

for all j = 1, ...,M and any 𝛼 > 0 such that Mt,T

r,X
(−1, 1 − 𝛼) < +∞ . This last relation can 

be computed with a fast Fourier transform algorithm.

Proof  In Appendix D

In the next section, we consider several of the different forms of VA contract and price 
them within our modelling framework.

3 � Valuation of the Variable Annuity

3.1 � Definitions

The VA contract valued under our models setting consists of a guaranteed minimum accu-
mulation benefit (GMAB) and guaranteed minimum death benefit (GMDB). Any holder of 
this VA contract pays a unique premium Π > 0 in exchange for benefits that depend on the 
return of the investment portfolio. The policy charges fees for management expenses such 
as the mortality fee, administrative costs, management fees and other fees linked to the 
contract riders. These fees are charged annually to the account value of the VA contract. If 
we denote by � the proportional fee rate applied to the account value in order to recover the 
cost of all the options, then the account value A satisfies the following SDE:

where its initial value A(0) is equal to the unique premium Π . Let � ≥ 0 be the guaranteed 
interest rate used to reassess the premium during the lifetime of the VA contract. Our VA 
contract provides a minimum guaranteed benefit in case of death and a lump sum payment 
upon expiry. If withdrawal and surrender are not allowed during the contract’s lifetime, 
benefits are defined as follows

•	 GMDB: In case of death prior to the stated maturity T, the insurer pays the maximum 
between the account value and a guaranteed amount. At the death time 𝜏d, t < 𝜏d ≤ T  , 
the benefit is bD

(
�d
)
= max

{
A
(
�d
)
,G

(
�d
)}

 , where G(0) ∈ (0,Π] and the common 
guaranteed amount G

(
�d
)
 on the market is

–	 either the roll-up of the premium at the guaranteed interest rate, called the roll-up 
guaranteed 

(21)pT
(
kj
)
≈

2V(t)e�kj

MΔk

M∑
l=1

�le
−

2�i

M
(j−1)(l−1)

(−1)l−1
M

t,T

r,X

(
−1, 1 − � + ivl

)

�2 − � − v2
l
+ i(−2� + 1)vl

.

(22)
dA(t)

A(t−)
=

dV(t)

V(t−)
− �dt,
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–	 or the highest account value recorded every year before the death, called the ratchet 
guaranteed, 

•	 GMAB: At expiry date T (typically the end of the accumulation period), the insured, 
if alive, receives the maximum between the policy account value and the guaranteed 
amount. The benefit is 

 where the guaranteed amount G(T) is expressed similarly as in the death case 24.
The fair proportional fee rate � is the solution of the following equation:

where L(t,T ,�) denotes the total liabilities of the insurer at time t. This total liability is the 
net of the proportional fee � which is deducted from the investment fund value.

3.2 � Valuation

The theorem of asset pricing and the linearity of the expectation allow us to define the total 
liabilities of the insurer at time t toward an insured aged x at time t as follows:

where t and T are integers. LD(t, T ,�) and LL(t, T ,�) are respectively the present values of 
the death benefit and of the survival benefit at time t. These quantities are evaluated under 
the assumption that mortality risk is independent from financial risks. We also assume that 
individuals die at the end of the year and that the death benefit is paid at the end of the 
death year. This latter assumption is arguable but can be adapted according to the terms of 
the contract. The death liability in Equation (27) is then given by:

where t + 1, t + 2, ...,T  are the possible dates of payment of death benefits until the matu-
rity T, whereas the life liability LL(t, T ,�) , is given by:

(23)G
(
�d
)
= G(t)e�(�d−t),

(24)G
�
�d
�
= max

j∈{1,⋯,⌊�d⌋}
(G(t),A(t + j)).

(25)bL(T) = max {A(T),G(T)}

(26)Π ∶=L(t,T ,�),

(27)
L(t, T ,𝜑) ∶= 𝔼

ℚ

(
e− ∫ 𝜏d

t
r(u)du1{𝜏d<T}bD

(
𝜏d
)
+ e− ∫ T

t
r(u)du1{𝜏d>T}bL(T)

)

= LD(t, T ,𝜑) + LL(t, T ,𝜑),

(28)

LD(t,T ,𝜑) = 𝔼
ℚ

(
e− ∫ 𝜏d

t
r(u)du1{𝜏d<T}bD

(
𝜏d
)
∣ Ft

)

=

T−t−1∑
j=0

jpx+tqx+t+j𝔼
ℚ

(
e− ∫ t+j+1

t
r(u)dubD(t + j + 1) ∣ Ft

)
,

(29)
LL(t, T ,𝜑) = 𝔼

ℚ

(
e− ∫ T

t
r(u)du1{𝜏d>T}bL(T) ∣ Ft

)

=T px+t𝔼
ℚ

(
e− ∫ T

t
r(u)dubL(T) ∣ Ft

)
,
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where the life benefit bL(T) = max {A(T),G(T)} changes according to the two type of the 
guaranteed amount considered hereafter:

•	 Roll-up guaranteed In this case, the guaranteed amount G(T) satisfies Equation (23) 
and the life benefit is the maximum between a random variable and a constant. This 
life benefit can be rewritten as a function of the payoff of a put option and enables us 
to simplify the life liability formula as follows:

where pT (t) is the price of a European put option with maturity T and strike G(0)
A(0)

e(�+�)T . 
Recall that the initial account value A(0) equals Π and the initial amount guaranteed G(0) is 
in the interval (0,Π] . From Equation (31), the insurer commitment of a GMAB is then 
hedgeable by investing in cash and a put option.

•	 Annual ratchet guaranteed The life benefit is the highest account value A recorded 
every year until the maturity T. Since the account value at any time depends on the 
state of the chain, the property of the independence of increments does not hold. 
While we can not deduce a closed-form expression in this case, the life liability for a 
guaranteed annual ratchet:

can be evaluated using the Monte Carlo approach.
In addition to the life liability, the death liability 28 can be rewrite as a weighted sum 

of life commitments in this way :

(30)

LL(t,T ,�) =T px+t𝔼
ℚ

(
e− ∫ T

t
r(u)du max

{
A(T),G(t)e�(T−t)

}
∣ Ft

)

=T px+t𝔼
ℚ

(
e− ∫ T

t
r(u)du

(
A(t)eX(T)−X(t)−�(T−t)

+
(
G(t)e�(T−t) − A(t)eX(T)−X(t)−�(T−t)

)
+

)
∣ Ft

)

=T px+t𝔼
ℚ

(
e− ∫ T

t
r(u)du

(
A(0)eX(T)−�T

+
(
G(0)e�T − A(0)eX(T)−�T

)
+

)
∣ Ft

)

=T px+te
−�TA(0)

(
𝔼
ℚ

(
e− ∫ T

t
r(u)du+X(T) ∣ Ft

)

+ 𝔼
ℚ

(
e− ∫ T

t
r(u)du

(
G(0)

A(0)
e(�+�)T − eX(T)

)

+

∣ Ft

))

=T px+tA(0)e
−�T

(
M

t,T

r,X
(−1, 1) + pT (t)

)
.

(31)
LL(t, T ,�) =T px+t𝔼

ℚ

(
e− ∫ T

t
r(u)du

×max

{
A(T), max

j∈{1,⋯,T−t−1}
{G(t),A(t + j)}

}
∣ Ft

)
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It follows that for a roll-up guaranteed, the death liability

is also hedgeable by investing in cash and in put options with different maturities.

4 � Numerical Emplementation

This section is divided into four subsections. The first subsection presents the mortality 
rate model and its estimated parameters, while the second subsection details the economet-
ric calibration of our interest rate model via the Kalman filter approach. The third subsec-
tion presents the estimation procedure of our stock models when the hidden Markov chain 
� has three states: e1 for “boom” or “trend up”, e2 for “recession” or “trend down” and e3 
for “crisis” or “trend sidway”. Finally, we perform a sensitivity analysis to highlight the 
impact of self-exciting jumps and economic regimes on the valuation of the VA defined in 
the previous section.

4.1 � Estimation of the Mortality Rate

The mortality rate model follows the Gompertz Makeham distribution (Gompertz (2003), 
Makeham (1860)). This setting enables one to derive a closed-form expression of the sur-
vival probability. For an individual aged x at time zero, the mortality rate �(x) is given by:

where a� is the mortality rate due to accidents and b�cx� is the term related to the ageing. 
The chosen parameters in Table 1 maximize the likelihood function when we consider the 

(32)

LD(t, T ,�) =

T−t−1∑
j=0

jpx+tqx+j
j+1px+t

j+1px+t
𝔼
ℚ

(
e− ∫ t+j+1

t (ru+�u)dubL(t + j + 1) ∣ Ft

)

=

T−t−1∑
j=0

(
jpx+t

j+1px+t
− 1

)
LL(t, t + j + 1,�).

(33)
LD(t,T ,�) =A(0)

T−t−1∑
j=0

(
jpx+t

j+1px+t
− 1

)
t+j+1px+te

−�(t+j+1)

×
(
M

t,t+j+1

r,X
(−1, 1) + pt+j+1(t)

)
.

(34)�(x) = a� + b�c
x
�
, a� = − ln

(
s�
)
, b� = − ln

(
g�
)
ln
(
cx
�

)
,

Table 1   The Gompertz 
Makeham parameters for 
both sexes Belgian mortality 
table, obtained by likelihood 
maximization

s� 0.9995465
g� 0.9998611
c� 1.106383
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mortality tables for both sexes provided by the Belgian regulator.2 The national regulator 
for life annuities and death products recommends these mortality tables as a baseline.

If �d denotes the death time, we evaluate the survival probability of an individual aged x 
at time zero as follows :

4.2 � Econometric Calibration of the Short Rates Model

As VAs are long-term commitments, we fit the interest rate model under the real measure 
ℙ using the Kalman filter (1960) to reflect the long-term trend. The speed of mean rever-
sion and volatility found in this method are next used under the risk neutral condition. 
We believe these parameters better reflect the long-term trend than those we could obtain 
by fitting the model to, for example swaptions. Our estimation procedure is divided into 
two steps and based on a time series of daily ECB yield bonds3 data from September 6, 
2004, to April 16, 2020 for 10 maturities. Instead of using the overnight rate as a proxy for 
the short-term rate, in the first step we use the Kalman filter approach (1960) to guess its 
dynamics for the time series of daily ECB bond yields. Babbs and Nowman (1999) adopted 
a similar approach. Let 

{
t1,⋯ , t3991

}
 be the set of times at which we observe these yield 

bonds curves. Table 2 summarizes the descriptive statistics of the yield bonds.
The bond price ZC(t, T) (9) is the exponential of an affine function in r(t) : 

−Ar(t,T) − r(t)Br(t, T) , where functions Ar and Br are defined in Equation (11) and (10) 
respectively. Therefore, the observable spot rate or yield bond R(t,T) = −

ln (ZC(t,T))

T−t
 is an 

affine function. We consider a linear Kalman filter. The measurement equation is defined 
as follows :

where R
(
tk
)
=
(
R
(
tk, tk + �i

))
1≤i≤10 is the vector of yield bond for different maturities, and 

z
(
tk
)
=
(

Br(tk ,tk+�i)
�i

)
1≤i≤10 and d

(
tk
)
=
(

Ar(tk ,tk+�i)
�i

)
1≤i≤10 are vectors derived from the price 

of zero-coupon bonds. �i ∈ {1, 2, ..., 10} is the maturity of the considered bond. The �
(
tk
)
 

are the measurement errors assumed normally distributed with a covariance matrix 
H = diag

(
h1,⋯ , h10

)
 . Note that the variance of the measurement errors depends on 

(35)𝜖px = P
(
𝜏d > 𝜖

)
= e− ∫ 𝜖

0
𝜇(x+u)du, ∀𝜖 ≥ 0.

(36)R
(
tk
)
= z

(
tk
)
r
(
tk
)
+ d

(
tk
)
+ �

(
tk
)

�
(
tk
)
∼ N(0,H)

Table 2   Descriptive statistics of the yield bonds in percent, from September 6, 2004, to April 16, 2020

Maturity 1 2 3 4 5 6 7 8 9 10

Mean 0.84 0.97 1.13 1.31 1.48 1.65 1.81 1.95 2.08 2.19
Std. dev. 1.59 1.61 1.63 1.62 1.61 1.61 1.6 1.59 1.59 1.58
Min -0.91 -0.97 -1. -1.01 -0.996 -0.97 -0.93 -0.89 -0.87 -0.82
Max 4.53 4.71 4.73 4.73 4.73 4.72 4.73 4.74 4.76 4.78

2  The Belgian mortality tables for both sexes are available via the following link http://​www.​ejust​ice.​just.​
fgov.​be/​eli/​arrete/​2013/​01/​29/​20130​11073/​justel
3  Source: http://​sdw.​ecb.​europa.​eu/​browse.​do?​node=​96911​26
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maturities. For a step size Δ =
1

365
 , we have 3991 values of bond yields for each maturity 

�i . Moreover, the transition equation of the state variable r according to this step size is 
given by

where

Let us define by Θ =
{
ar, �r, �r, �

ℙ, h1,⋯ , h10
}
 the set of parameters of the short-rate 

model including the parameter from the distribution of measurement errors. We assume 
that error terms of the measurement and the transition equations are not correlated. The 
distribution of r

(
tk
)
 then depends only on the value of r

(
tk−1

)
 , while the distribution of 

R
(
tk
)
 depends only on r

(
tk−1

)
 . With the Kalman filter, we can guess the unobservable val-

ues r
(
tk
)
 and estimate the filtering error. The likelihood function of the log likelihood for 

the observations R
(
t1
)
,⋯ ,R

(
t3991

)
 is

where p
(
R
(
tk
)
∣ Htk−1

)
 is the conditional distribution of R

(
tk
)
 given the information set, H 

at time tk−1 . p
(
R
(
t1
))

 is the initial distribution of R
(
t1
)
 assumed as the stationary distribu-

tion of the instantaneous spot rate r
(
t1
)
∼ N

(
f
(
t1
)
r(0) + g

(
t1
)
,
�2
r

2ar

)
 . We find an estimate 

Θ̂ of Θ by maximizing the log likelihood in Equation (38).
In the second step, we estimate the mean reversion level �ℚ in the short-rate model such 

that we fit the initial forward curve. For this purpose, we assume that the initial forward 
curve follows a Nelson-Siegel parametric curve (1987). The Nelson-Siegel model is a par-
simonious model of yield curves widely used in practice to replicate at best the initial term 
structure of interest rates. Thus, we define the initial forward rate as follows:

where z1, z2, z3 and 𝛼 > 0 are fixed real numbers. Next, we deduce a closed form of the 
moving target at time s > 0:

Given the estimated values of ar , �r and �r , we find z1, z2, z3 and 𝛼 > 0 that minimize 
the mean square error between the observed yield curve as of April 16, 2020, and the 
model yield curve where the mean reversion level satisfies Equation (40).

(37)r
(
tk
)
= f

(
tk
)
r
(
tk−1

)
+ g

(
tk
)
+ w

(
tk
)

f
(
tk
)
= e−arΔ,

g
(
tk
)
= �ℙBr

(
tk−1, tk

)
,

w
(
tk
)
∼ N

(
0,

�2
r

2ar

(
1 − e−2arΔ

))
.

(38)

l3991 ∶= ln L
(
R
(
t1
)
,⋯ ,R

(
t3991

)
;Θ
)

= ln p
(
R
(
t1
))

+

3991∑
k=2

ln p
(
R
(
tk
)
∣ Htk−1

)
,

(39)f M(0, s) = z1 + z2e
−𝛼s + z3se

−𝛼s, s > 0

(40)
�ℚ(s) =arz1 +

�2
r

2ar
+
(
z3 +

(
ar − �

)
z2
)
e−�s +

(
ar − �

)
z3se

−�s

−
�2
r

2ar
e−2ars.
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Table 3 contains estimated parameters of the short-rate model and the estimated vari-
ances of measurement errors per maturity based on the estimation procedure described 
previously.

Figure  1 compares the observed yield curve as of April 16, 2020, to the yield curve 
obtained from the Hull-White model where the initial forward curve follows a Nelson-
Siegel model with the estimated parameters in Table 3.

4.3 � Econometric Calibration of the Stock Price Model

This subsection describes the procedure for estimating the SESJD model from a time 
series. This estimation procedure is divided into three steps. In the first step, an estimation 
of the switching-diffusion part is done with a Hamilton filter. The second and third steps 
involve detecting jumps with the peak over threshold (POT) and estimating parameters of 
the switching Hawkes intensity �(t) by log-likelihood maximization. Hainaut and Moraux 
(2018) go beyond this procedure by using their results as the initial set of parameters of a 
particle Markov chain Monte Carlo (PMCMC). However, in terms of log likelihood, there 
is no significant difference between these two procedures. We choose the POT procedure 
because it is less time consuming than the PMCMC procedure. The following paragraphs 
present, in detail, each step of our estimation procedure.

Table 3   In the left side, the 
estimated parameters of the 
short-rate model. In the right 
side, the estimated variance of 
the measurement errors

ar 1.61% �r 5.06%

�r 0.69% r0 −0.65%

z1 −1.07% z2 0.42%

z3 −0.75% � 1.51
h1 0.33% h2 0.15%

h3 0% h4 0.13%

h5 0.23% h6 0.32%

h7 0.39% h8 0.45%

h9 0.51% h10 0.55%

Fig. 1   The observed yield curve 
as of April 16, 2020, and the 
yield curve derived from the 
Hull-White model where the 
initial forward curve follows a 
Nelson-Siegel model with the 
estimated parameters in Table 3
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Let us denote by y =
{
y
(
t1
)
, ..., y

(
tm
)}

 the time series of log returns of Euronext 100, 
measured at times t1, ..., tm and equally spaced by a lag Δ of one day of trading:

We first estimate a switching geometric Brownian motion (SGBM) process with the 
Hamilton filter developed by Hamilton (1989). In fact, the Kalman filter previously used 
for the Hull-White process has been extended by Hamilton to the case where the unob-
servable state variable is a Markov chain � (t) and where we need the probabilities that 
the chain will be in each state at a given time. The vector of probabilities of being at 
time tj in a certain state is computed recursively as follows:

where the initial vector �0 is defined such that the chain starts with its stationary dis-
tribution which is the eigen vector of the matrix PΔ associated to the eigen value equal 
to 1. f

(
y
(
tj
))

 is the vector of Gaussian density for y
(
tj
)
 in each of the N regimes, and 

PΔ = exp
(
Q0Δ

)
 is the daily matrix of transition probabilities. Note that in Equation (42), 

∗ stands for the Hadamard product. Using the vectors of probabilities, the Hamilton filter’s 
algorithm allows us to derive the following log-likelihood function for the m observations 
of the log return:

By maximizing the log-likelihood in Equation (43), we obtain (as displayed in 
Table 4) the estimated parameters of the SGBM process. The SESJD process extends 
the SGBM process by having a modified jump part driven by the hidden Markov chain. 
Given the state of the chain, we expect that this jump component captures the effect of 
rare events on the stock prices. To detect jumps, we apply the POT procedure in the 
second step.

We assume that it is likely that a jump will occur when the vector y
(
tj
)
− 𝜇̃ML

(
tj
)
Δ is 

above or below some thresholds. These thresholds are defined by:

(41)y
(
tj
)
= ln

(
S
(
tj
)

S
(
tj−1

)
)

j = 1, ...,m.

(42)𝜋j+1 =

f
(
y
(
tj
))

∗
(
𝜋⊤
j
PΔ

)
⟨
f
(
y
(
tj
))

∗
(
𝜋⊤
j
PΔ

)
, 1ℝN

⟩ ,

(43)lnL
(
y
(
t1
)
, ..., y

(
tm
))

=

m∑
j=1

ln
⟨
f
(
y
(
tj
))
,
(
𝜋⊤
j
PΔ

)⟩
.

Table 4   Parameters of a 
switching geometric Brownian 
motion, fitted with the Hamilton 
filter to the Euronext 100 time 
series

𝜎̄1 9.45% 𝜇̄1 26.62%

𝜎̄2 19.89% 𝜇̄2 −6.908%

𝜎̄3 47.78% 𝜇̄3 −82.90%(
pij(0, 1 day)

)
i,j=1,2,3

state 1 state 2 state 3

state 1 0.9587 0.0413 0.0000
state 2 0.0074 0.9585 0.0343
state 3 0.0000 0.0300 0.9700
Log.Lik. 12749.41 AIC −25474.82

BIC −25399.31
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where 𝜇̃ML
(
tj
)
 is the drift of the SGBM in the most likely state obtained by the Hamilton 

filter, 𝜎̊ is the standard deviation of the whole sample and Φ−1
(
�1
)
 and Φ−1

(
�2
)
 are respec-

tively the �1 and �2 percentiles of the standard normal distribution. These percentiles are 
such that y

(
tj
)
− 𝜇̃ML

(
tj
)
Δ follows a Gaussian distribution when we consider the sample 

without jumps or the values of log returns limited to Φ−1
(
�1
)
 and Φ−1

(
�2
)
:

The thresholds obtained by solving the Equation (44) are presented in Fig. 2, where 
the robustness of our choice is checked with the Jarque Bera test. Figure 2 enables us 
to link the upper or lower values of the log return to specific events, such as the credit 
crunch that occured between 2007 and 2009, the European sovereign debt crisis that 
occured between late 2009 and 2012 and the current COVID-19 crisis.

Furthermore, the POT procedure enables us to distinguish positive from negative 
jumps in the historical Euronext 100 prices, as in Fig.  3. Regarding our observation 
period, there are often negative jumps on the Euronext 100 as a result of the negative 
effects of crises.

Once jumps are detected, the distribution of the return on the Euronext 100 prices is 
approximated by 𝜇̃ML

(
tj
)
Δ + Jj when there is a jump at tj . Otherwise, the return on the 

stock is normally distributed as

√
Δ𝜎̊Φ−1

�
𝛼k
�
, k = 1, 2

(44)�1, �2 = arg min
sample without jumps

(
(Skewness)2 + (Kurtosis − 3)2

)
.

Fig. 2   The historical log return of the Euronext 100 and the thresholds between which the log return fol-
lows a Gaussian distribution. The historical log-return of the Euronext 100 prices is over the thresholds 
mainly during crises such as the credit crunch between 2007 and 2009, the European sovereign debt crisis 
between late 2009 and 2012 and currently the COVID-19 crisis
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where 𝜌̂ is the sample correlation between the Euronext 100 prices and the Eonia rates 
taken as the risk-free rate proxy. �ML

(
tj
)
 is the standard deviation at the most likely state 

obtained from the Hamilton filter procedure. We then estimate the jump parameters �− , �+ 
and p by maximizing the log likelihood of the jump probability density function for the log 
return observations where jumps occur. It follows that :

The values found are reported in Table 5. The upward exponential jumps are less likely 
with a probability of 36% , but the average size of positive shocks 1

�+
 is higher than that of 

negative shocks − 1

�−
 .

𝜇̃ML
�
tj
�
Δ + 𝜎ML

�
tj
��

𝜌̂ +
√
1 − 𝜌̂2

�
W(Δ),

𝜌−, 𝜌+, p = argmax

m∑
j=1

ln 𝜈
(
y
(
tj
)
− 𝜇̃ML

(
tj
)
Δ ∣ 𝜌−, 𝜌+, p

)
1{jump at tj}.

Fig. 3   The filtered jumps in the historical Euronext 100 prices. There are mainly negative jumps on the 
Euronext 100 prices over our observation period

Table 5   Estimated parameters of 
the SESJD obtained based on the 
log return Euronext 100 time

𝜎̄1 8.924% 𝜇̄1 26.62%

𝜎̄2 16.49% 𝜇̄2 −6.908%

𝜎̄3 18.76% 𝜇̄3 −82.90%

𝜂̄1 2.59 � 15.12
𝜂̄2 11.03 � 30.09
𝜂̄3 44.82 p 0.36
�+ 31.87 �− −36.07

Log.Lik. 13125.87 AIC −26227.73

BIC −26152.22
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In the last step, we estimate the intensity parameters �(t) . From Equation (3), over a time 
interval of length Δ , the variation of the intensity is given by

We then find the estimated parameters of the intensity in Table 5 by log likelihood max-
imization as follows:

In Figure 4, the upper graph depicts the average reversion level of the intensity and 
the filtered intensity obtained based on the historical Euronext 100 prices. We observe 
high jump intensities during crisis periods such as the credit crunch of 2008, the Euro-
pean sovereign debt crisis that occured between late 2009 and 2012 and the current 
COVID-19 crisis. During these periods, there is a large spread between jump intensi-
ties and the average reversion levels. As expected, during periods of economic growth 
this spread is close to zero, as is the jump intensity. Another feature is the clustering of 
peaks due to the self-excitation property. In the bottom graph in Figure 4, we draw the 
filtered state in the case of the SGBM process and the SESJD process. Their filtered 
state paths seem to be the same, but, during the credit crunch of 2008, the SGBM filter 
later detects the crisis regime, and this crisis regime lasts for a shorter period than with 
the SESJD filter.

Δ�
(
tj
)
= �

(
�ML

(
tj−1

)
− �

(
tj−1

))
Δ + �Jj1{jump at tj}.

𝛽, 𝛾 , 𝜂̄ = argmax

m∑
j=1

ln 𝜈
(
y
(
tj
)
∣ 𝜌−, 𝜌+, p

)
1{jump at tj}.

Fig. 4   The upper graph depicts the filtered intensities of the SESJD process, while the lower graph depicts 
the filtered states of both the SESJD and SGBM processes
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4.4 � Numerical Analysis

In this subsection, we price the value of a VA specified in Table 6 and study the impact of our 
setting on this price. The choice of a guaranteed rate � equal to zero is motivated by the low 
interest rate level with a spot rate r(0) = −0.65% as of April 16, 2020. The following analysis 
considers an insured 40-year-old person, who paid a unique premium of €1 for a GMAB and 
GMDB contract. To evaluate this contract, we consider the initial guaranteed amount G(0) 
equal to the premium and we find the fair fee rate � solution of the Equation (26).

Figure 5 presents the fair fee rate � for different contract maturities. From the top left 
graph, the fair fee rate is not a strict monotonous function of the investment proportion in 
stock �S , while the fair fee rate is a decreasing function of the contract maturity. The 

Table 6   Specification of variable 
annuity contract

Insured age (x) 40 years guaranteed rate ( �) 0%

Premium ( Π) 1 Maturity (T) {1, 2, ..., 20}

Fig. 5   Fair fee rate � of the GMAB and GMDB contract when we consider the roll-up guaranteed base. The 
guaranteed rate � is assumed equal to zero, while the unique premium A(0) is assumed equal to the initial 
guaranteed amount G(0) . The other parameters used are in Tables 4 and 5. Given the financial environment 
as of April 16, 2020, long term contract and a partial investment in risky asset allow to reduce the fair fee 
rate. For long-term contract, the SESJD model leads to a fair fee rate higher than the one from SGBM 
model
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GMAB and GMDB contract is then interesting for long term contract and a small invest-
ment in the Euronext 100. This is explained by positive yields on long term bonds and the 
cost of investment in risky assets. The top right graph and the bottom graphs compare the 
fair fee rates obtained using the SESJD model to those from the SGBM model for three 
investment scenarios, where the proportions invested in the Euronext 100 are �S = 5% , 
10% and 15% , respectively. For higher maturities, these graphs show that the SESJD model 
leads to more fees than the SGBM model. This is due to the jump component, which allows 
one to modulate the Euronext 100 volatility according to the economic regime. To analyze 
the effect of the jump component, the upper graph of Fig. 6 depicts the fair fee rates when 

Fig. 6   Impact of the self-excitation parameters on the fair fee rate and the liability of a GMAB and GMDB 
contract. From the top graph, the fair fee rate is shifted up when the exponential jump parameters �− and �+ 
decrease and create more self-excitation, whereas the bottom graph shows that the liability is shifted down 
when the initial arrival rate of shocks 𝜆(0) = 𝜁 (0)⊤𝜂̄ increases as we consider the initial regime � (0) = e

1
 to 

e
3
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we invest 10% in the Euronext 100, let other parameters go unchanged and successively 
vary the double exponential jump parameters �− and �+ . Recall that expectations of posi-
tive and negatives jumps are respectively equal to 1

�−
 and 1

�+
 . Divide, respectively, �− and �+ 

by 10 to increase the probability of observing large downward and upward exponential 
jumps, which cause more self-excitation. From the upper graph in Fig. 6, we conclude that 
the fair fee rate � increases with the level of self-excitation. The lower graph depicts, for a 
3% fee rate, the liability when the initial arrival rate of shocks 𝜆(0) = 𝜁 (0)⊤𝜂̄ changes given 
the regime � (0) = e1 to e3 . In regime 3, which corresponds to a depressed economic con-
text, the liability decreases dramatically with maturity due to an initial arrival rate of 
shocks higher than in regimes 1 and 2.

Figure 5 also reveals the difficulties of offering higher guarantees in a negative inter-
est rate environment. From this figure, the fair fee rates range from 12% to 0.7% when we 
consider a guaranteed rate � equal to zero and an initial guaranteed amount G(0) equal to 
the unique premium. To reduce the fee rate and make the contract attractive despite low 
interest rates, a review of the guaranteed amount is considered. Figure 7 shows that the 
fair fee rate � decreases as G(0) goes down. The negative yields in the market constrain to 
charge more as the guaranteed amount is higher. For short term contracts, the reduction of 
the initial guaranteed amount significantly reduces the fair fee rate � due to the uncertainty 
horizon.

Table 7   Liability of the GMAB and GMDB contract when we consider the annual ratchet guaranteed. For 
each maturity T, we consider the fair fee rate � found in roll-up guaranteed base. The liability in the roll-up 
guaranteed base is then equal to unique premium Π = 1 . The liability in the annual ratchet guaranteed base 
obtained by Monte Carlo is higher than in roll-up guaranteed base due to the cost of additional options

T 5 10 15 20

� (%) 2.57 1.26 0.88 0.71
L(t,T ,�) 1.05 1.10 1.16 1.22

Fig. 7   Impact of the initial guar-
anteed amount G(0) on the fee 
rate � for the GMAB and GMDB 
contract. We consider the roll-up 
guaranteed base with a guaran-
teed rate � = 0% and a proportion 
invested in the Euronext 100 
�
S
= 10% ; the other parameters 

used are presented in Tables 4 
and 5. Given the market condi-
tion as of April 16, 2020, where 
the spot rate r(0) = −0.65% , 
reducing the initial guaranteed 
amount allows one to reduce the 
fair fee rate �
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For the sake of comparison between roll-up guaranteed and the annual ratchet guaran-
teed, we compute, using the Monte Carlo approach, the liability of the GMAB and GMDB 
contract for a maturity T = 5, 10, 15, 20 and the corresponding fair fee rate found in the 
roll-up guaranteed. The results presented in Table 7 show that the liability in the annual 
ratchet guaranteed base is higher than in the roll-up guaranteed base due to the cost of 
additional options.

We conclude this numerical analysis with a study of the impact of the correlation 
between the stock market and the yield curve. We assume a 40-year-old insured person 
underwriting a 20-year GMAB and GMDB contract with a 1.5% fee rate and consider 
that 10% of the contract premium is invested in the Euronext 100. Figure 8 shows the 
impact of the correlation between interest rates and stock prices. In a context of low 
interest rates, this correlation has a small impact on liabilities, even if, from Equation 
(6), the market price of risk increases with the correlation � . In contrast, we observe that 
the value of liabilities decreases as Eonia rates and Euronext 100 prices are correlated.

5 � Conclusions

In this article, we combined regime-switching and self-excitation features to model the under-
lying investment fund price of VA contracts with a minimum death and accumulated life ben-
efit. This underlying investment fund is a portfolio of a bond and a risky asset correlated to 
the interest rate. Despite the dependency on the chain and the correlation between the stock 
and the interest rate process, we rewrote the commitment of such a VA issuer with a roll-up 
guaranteed base as a linear combination of put option prices. For other guaranteed bases, the 
dependency on the chain requires the use of the Monte Carlo approach.

This article presented a detailed economic calibration of our models based on the histori-
cal data of the Eonia rates and the Euronext 100 prices from September 06, 2004, to April 

Fig. 8   Influence of the correlation between Eonia rates and Euronext 100 prices on the liability of a 20 
years GMAB and GMDB contract with a 1.5% fee rate, with 10% of the premium being invested in the 
Euronext 100. Based on our data, the value of the liability decreases as Eonia rates and Euronext 100 prices 
are correlated
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16, 2020. The estimated parameters found for the SGBM and the SESJD processes enable 
us to draw three conclusions. First, ignoring the self-excitation modulated by the Markov 
chain leads to an underestimation of the fair fee rate of the VA contract. The features of the 
SESJD process are thus recommended, as they allow one to not only consider the economic 
regime, but also to capture random shocks in the stock market and to scale their amplitude 
given the regime. Second, in a low interest rate environment, reducing the guarantee allows 
one to decrease the fair fee rate. Finally, the GMAB and GMDB contracts are sensitive to the 
economic regime and the self-excitation level.

From a broader perspective, the article calls for consideration of other guarantees such as 
the surrender benefit or the withdrawal benefit. From a practical perspective, it would be inter-
esting to extend this work to the valuation of a large portfolio of VA contracts based on risk 
measures.

Appendix

Appendix A

The probability function (pdf) v(z) is defined by the three parameters �+ ∈ ℝ+ , �− ∈ ℝ− and 
p ∈ (0, 1) :

where p and (1 − p) are respectively the probabilities of observing upward and downward 
exponential jumps.

The average sizes of positive and negative shocks are equal to 1
�+

 and 1
�−

 . The expectation of 
Ji is the weighted sum of the expected average jumps:

In later developments, the moment-generating function for the sum of the Ji and of its abso-
lute value is needed. We define it as follows:

under the condition that 
(
z1 + z2

)
< 𝜌+ and 

(
z1 + z2

)
> 𝜌− . In particular,

Appendix B

If we note f (t, s, r(t), �(t),X(t), � (t)) = 𝔼ℚ

(
e�1 ∫ s

t
r(u)du+�2X(s) ∣ Ft

)
 , f is the solution for an 

Ito’s equation for the semi-martingale. Let A the infinitesimal generator of (r(t), �(t),X(t), � (t)) . 
By definition, this infinitesimal generator equals

v(z) = p𝜌+e−𝜌
+z1{z≥0} − (1 − p)𝜌−e−𝜌

−z1{z<0},

�
(
Ji
)
= p

1

�+
+ (1 − p)

1

�−
.

�J

(
z1, z2

)
∶= �

(
ez1J+z2|J|

)

= p
�+

�+ −
(
z1 + z2

) + (1 − p)
�−

�− −
(
z1 − z2

) ,

�
(
eJ − 1

)
= p

�+

�+ − 1
+ (1 − p)

�−

�− − 1
− 1.
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With enough regularity we have:

Since f (t, s, r(t), �(t),X(t), � (t)) is the solution of an Ito’s equation for the semi- 
martingale, if � (t) = ei, i ∈ N  , then:

4Assume that f is an exponential affine function of r(t) , �(t) and X(t):

where 𝜔̄ =
(
𝜔1,𝜔2

)
 . A

(
𝜔̄, t, s, ei

)
 for i ∈ N  , B(𝜔̄, t, s) and C(𝜔̄, t, s) are time dependent 

functions. Since f (s, s, r(s), �(s),X(s), � (s)) = e�2X(s) we have the following terminal condi-
tion A

(
𝜔̄, s, s, ei

)
= 0 for i ∈ N  , B(𝜔̄, s, s) = 0 and C(𝜔̄, s, s) = 0 . We can simplify the two 

last terms of Equation (46) as follows:

where g ∶ (x,C) ⟼ e�2 ln (1+�S(e
x−1))+C�|x| is a real valued bivariate function. As shown in 

Appendix C, this function admits a closed-form expression when �2 = 1 . Since 
qii = −

∑
j≠i,j∈N

qi,j , the last term becomes:

lim
u→t

𝔼ℚ
(
f (u, s, r(u), �(u),X(u), � (u)) ∣ Ft

)
− f (t, s, r(t), �(t),X(t), � (t))

u − t
.

(45)Af (t, s, r(t), �(t),X(t), � (t)) = −�1r(t)f (t, s, r(t), �(t),X(t), � (t)).

(46)

−𝜔1r(t)f = fX
(
r(t) − 𝜔S𝜆(t)𝔼

ℚ
(
eJ − 1

)

−
1

2

((
𝜔S𝜌𝜎̄i −

(
1 − 𝜔S

)
𝜎rB

r(t, T)
)2

+ 𝜔2
S

(
1 − 𝜌2

)
𝜎̄2
i

))
+ ft

+
(
𝜃ℚ(t) − arr(t)

)
fr +

1

2
𝜎2
r
frr − 𝜎r

(
1 − 𝜔S

)
𝜎rB

r(t, T)frX

+ 𝜎r𝜔S𝜌𝜎̄ifrX +
1

2

((
𝜔S𝜌𝜎̄i −

(
1 − 𝜔S

)
𝜎rB

r(t, T)
)2)

fXX

+
1

2
𝜔2
S

(
1 − 𝜌2

)
𝜎̄2
i
fXX + 𝛽

(
𝜂̄i − 𝜆(t)

)
f𝜆 + 𝜆(t)

× �
+∞

−∞

(
f
(
t, s, r(t), 𝜆(t) + 𝛾|z|,X(t) + ln

(
1 + 𝜔S(e

z − 1)
)
, ei

)
− f (⋅)

)
v(dz)

+

N∑
j≠i

qi,j
(
f
(
t, s, r(t), 𝜆(t),X(t), ej

)
− f

(
t, s, r(t), 𝜆(t),X(t), ei

))
.

(47)
f
(
t, s, r(t), 𝜆(t),X(t), ei

)
= exp

(
A
(
𝜔̄, t, s, ei

)
+ B(𝜔̄, t, s)r(t)

+ C(𝜔̄, t, s)𝜆(t) + 𝜔2X(t)

)
,

∫
+∞

−∞

(
f
(
t, s, r(t), �(t) + �|z|,X(t) + ln

(
1 + �S(e

z − 1)
)
, ei

)
− f (⋅)

)
v(dz) =

f
(
t, s, r(t), �(t),X(t), ei

)(
𝔼
ℚ(g(J,C)) − 1

)

4  In this article we simplify the notation of partial derivatives as follows �f
�t

= f
t
 , �f
�r

= f
r
 , �

2
f

�r2
= f

rr
...
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Then, from Equation (46), we derive this PDEs system:

Let Ã(𝜔̄, t, s) =
(
eA(𝜔̄,t,s,e1), ..., eA(𝜔̄,t,s,eN)

)
 be a vector of functions. Then, the first equation 

of the System (48) has the following matrix form:

where D(𝜔̄, t, s) is a vector of functions defined by

We complete the proof of this proposition with the solution of the second equation of the 
PDEs system (48):

Appendix C

For a real-valued function C(⋅) and �2 = 1 , if g ∶ (x,C) ⟼ e�2 ln (1+�S(e
x−1))+C�|x|

∑
j≠i,j∈N

qi,j
(
f
(
t, s, r(t), �(t),X(t), ej

)
− f

(
t, s, r(t), �(t),X(t), ei

))
=

∑
j∈N

qi,jf
(
t, s, r(t), �(t),X(t), ej

)
.

(48)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 = At + 𝜃ℚ(t)B +
1

2
𝜎2
r
B2 + 𝜎r

�
𝜔S𝜌𝜎̄i −

�
1 − 𝜔S

�
𝜎rB

r(t,T)
�
𝜔2B

−
𝜔2

2

��
𝜔S𝜌𝜎̄i −

�
1 − 𝜔S

�
𝜎rB

r(t, T)
�2

+ 𝜔2
S

�
1 − 𝜌2

�
𝜎̄2
i

�

+
𝜔2
2

2

��
𝜔S𝜌𝜎̄i −

�
1 − 𝜔S

�
𝜎rB

r(t, T)
�2

+ 𝜔2
S

�
1 − 𝜌2

�
𝜎̄2
i

�
+ 𝛽𝜂̄iC

+
∑

j∈N qi,j exp
�
A
�
𝜔̄, t, s, ej

�
− A

�
𝜔̄, t, s, ei

��
for i ∈ N

0 = Bt − arB + 𝜔2 + 𝜔1

0 = Ct − 𝜔2𝜔S𝔼
ℚ
�
eJ − 1

�
− 𝛽C + 𝔼ℚ(g(J,C)) − 1

𝜕Ã(𝜔̄, t, s)

𝜕t
+
(
diag(D(𝜔̄, t, s)) + Q0

)
Ã(𝜔̄, t, s) = 0,

D(𝜔̄, t, s) = −
𝜔2

2

((
𝜔S𝜌𝜎̄ −

(
1 − 𝜔S

)
𝜎rB

r(t, T)
)2

+ 𝜔2
S

(
1 − 𝜌2

)
𝜎̄2
)

+ 𝜃ℚ(t)B +
1

2
𝜎2
r
B2 + 𝜎r

(
𝜔S𝜌𝜎̄ −

(
1 − 𝜔S

)
𝜎rB

r(t, T)
)
𝜔2B

+
𝜔2
2

2

((
𝜔S𝜌𝜎̄ −

(
1 − 𝜔S

)
𝜎rB

r(t,T)
)2

+ 𝜔2
S

(
1 − 𝜌2

)
𝜎̄2
)
+ 𝛽𝜂̄C.

B(𝜔̄, t, s) =
(
𝜔2 + 𝜔1

)
Br(t, s).

𝔼
ℚ(g(J,C)) = 𝔼

ℚ

(
eln (1+𝜔S(eJ−1))+C(𝜔̄,t,s)𝛾|J|

)

= 𝔼
ℚ
((
1 + 𝜔S

(
eJ − 1

))
eC(𝜔̄,t,s)𝛾|J|

)

=
(
1 − 𝜔S

)
𝜓J(0, 𝛾C(𝜔̄, t, s)) + 𝜔S𝜓J(1, 𝛾C(𝜔̄, t, s)).
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Appendix D

Using Simpson’s rule, we approximate the integral in Equation (20) as follows :

where �l =
1

3

(
3 + (−1)j − 1{j=1}

)
 . The Fourier transform of the modified put option 

F
(
p̄T
)(
vl
)
 is determined as follows:

From Equation (19), F
(
p̄T
)
(0) should be finite, and � is non-negative. It follows that 

the put option price is well-defined for any 𝛼 > 0 such that Mt,T

r,X
(−1, 1 − 𝛼) < +∞.

In contrast, for kj = −kmax + (j − 1)Δk , Δk =
2kmax

M
 , Δv =

2�

MΔk

 and vl = (l − 1)Δv , the 
product vlkj is equal to

and

Equations (50) and (52) to (49) allow us to end this proof.
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