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Abstract
Interaction Information is one of the most promising interaction strength measures with
many desirable properties. However, its use for interaction detection was hindered by the
fact that apart from the simple case of overall independence, asymptotic distribution of
its estimate has not been known. In the paper we provide asymptotic distributions of its
empirical versions which are needed for formal testing of interactions. We prove that for
three-dimensional nominal vector normalized empirical interaction information converges
to the normal law unless the distribution coincides with its Kirkwood approximation. In the
opposite case the convergence is to the distribution of weighted centred chi square random
variables. This case is of special importance as it roughly corresponds to interaction infor-
mation being zero and the asymptotic distribution can be used for construction of formal
tests for interaction detection. The result generalizes result in Han (Inf Control 46(1):26–45
1980) for the case when all coordinate random variables are independent. The derivation
relies on studying structure of covariance matrix of asymptotic distribution and its eigenval-
ues. For the case of 3 × 3 × 2 contingency table corresponding to study of two interacting
Single Nucleotide Polymorphisms (SNPs) for prediction of binary outcome, we provide
complete description of the asymptotic law and construct approximate critical regions for
testing of interactions when two SNPs are possibly dependent. We show in numerical exper-
iments that the test based on the derived asymptotic distribution is easy to implement and
yields actual significance levels consistently closer to the nominal ones than the test based
on chi square reference distribution.
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1 Introduction

Detection of interactions between explanatory variables occurring when predicting a
response is an research issue of a fundamental importance which attracted widespread inter-
est. This is due to recognition of the fact that frequently in natural sciences finding the main
effects of predictors is not sufficient to explain their overall effect. When two predictors are
considered, which is the case we focus on in the paper, one frequently observes their syner-
getic effect when their joint influence is larger than a sum of the individual effects. In the
opposite case, one of the predictors may inhibit the effect of the other meaning that they
together affect the response less strongly than the sum of their main effects would indicate.
In particular, it may happen that neither of predictors influences individually the response
(e.g. occurrence of a certain disease) but jointly they enhance or inhibit occurrence of its
certain values. The premier example is detection of gene-gene or gene-environment inter-
actions sought after in Genome Wide Association Studies (GWAS), see e.g. Cordell (2002,
2009.) In the case of a binary response the most popular approach to quantify strength of
interaction is a method based on a general methodology due to R. Fisher which consists in
fitting a logistic model and testing whether some of the coefficients corresponding to inter-
action terms are nonzero (see e.g. Agresti 2003). Many other measures have been proposed
and there is no general agreement which one reflects adequately biochemical or physiolog-
ical interaction between genes. However, one of indices which has gained popularity is an
entropy-based Interaction Information (II ) measure defined in Section 2. This is due to its
intuitive definition and the fact that it is a nonparametric measure, thus its interpretation
does not depend on any parametric model, which has to fit the data at hand. It is now rou-
tinely used in GWAS, see e.g Moore et al. (2006) or Chanda et al. (2008), Sucheston et al.
(2010), where AMBIANCE package based on II is described. Moreover, it has been shown
formally in Mielniczuk and Teisseyre (2018) by introduction of a partial order on a set of
interaction measures, that in many situations Information Interaction is more discriminative
than logistic interaction, in particular there may exist nontrivial interactions detected by II

in additive logistic regression model which does not contain logistic interactions.
Besides a direct use for detecting of interactions, Interaction Information is widely used

in related contexts such as variable selection based on mutual information, where many cri-
terion functions used for selection take interactions into account. We mention e.g. CIFE
criterion (cf Lin and Tang 2006) used in greedy selection which for a given candidate pre-
dictor is defined as a sum of its mutual information with the response and all information
interactions between the candidate and already chosen variables. Many similar methods
involving II are reviewed in Brown et al. (2012), see also Meyer et al. (2008).

One of the problems which hindered wider use of II in interaction detection is that
statistical properties of its sample counterparts were not fully understood. In particular the
asymptotic distribution of the plug-in estimate of II , called Î I further on, was not known
for the general case when II vanishes and thus it was not possible to construct correct
rejection regions for such test. In practice, chi square distribution with appropriate number
of degrees of freedom is used relying on the result due to Han (cf. Han 1980) who derived
asymptotic distribution of II under the assumption of overall independence. This however
may lead to a large number of false signals when the pertaining test is employed as the
overall independence is only a very special situation when II vanishes. In particular, when
one would like to test H0 against the inhibition effect H1 : II < 0, test based on chi
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square reference distribution is intuitively inadequate, as such distribution is supported on
positive half-line whereas the left tail of Î I extends to negative values, resulting in too large
critical thresholds. It was also noticed that when dependence between predictors is large
then sampling distribution of Î I deviates strongly from chi square distribution.

The present paper attempts to partially solve this problem when both predictors and the
response are nominal variables by deriving the explicit form of asymptotic distribution of
Î I under more general scenario than in Han (1980) which allows for the dependence of
predictors. The derivation is algebraic in nature and relies on studying structure of some
matrices related to the asymptotic distribution and its eigenvalues. Situation of dependent
predictors occurs frequently, e.g. in Genome Wide Associations Studies when dependence
of SNPs (linkage disequilibrium) in close proximity is due to crossing-over mechanism and
recent methods try to accommodate it (Duggal et al. 2008). It is shown in Theorem 2 that in
the case when the underlying distribution is different from its Kirkwood approximation, for
a sample consisting of n elements, the asymptotic distribution of n1/2(Î I − II ) is approx-
imately normal. In the opposite case, which includes the situation when both predictors
are independent of the response, the distribution of 2nÎ I is close to a certain weighted chi
square distribution (cf. Section 3.2). For cases of special interest in GWAS studies, when
predictors assume three values, the weights of the distribution are determined and the appro-
priate test is proposed. It is shown by simulations that for the proposed test of independence
between predictors and the response actual significance levels (type I errors) are much closer
to the nominal ones than significance levels for the test based on chi square distribution. In
order to illustrate this point we give below actual significance levels when distribution of
two predictors pertains to Clayton copula discussed in Section 4 with parameter θ reflecting
dependence and predictors are independent of the binary response. Proposed tests denoted

W( ˆ̄λ1,
ˆ̄λ2) and Z(�̂) pertain to asymptotic distribution of Î I derived in the paper and its

approximation, respectively. They are discussed in Section 4. Chi square test is based on
reference chi square distribution with 4 degrees of freedom and nominal significance level
α = 0.05. We see that the difference between actual and nominal levels is much smaller for
the proposed tests than for chi square test (Table 1).

The paper is organized as follows. In Section 2 we introduce some information-theoretic
concepts and discuss delta method which is the main technical tool to derive the distribution
of Î I . In Sections 3.1 and 3.2 we discuss convergence to normal and weighted chi square
laws and reprove Han’s result using considered approach. In Section 3.3 we characterize
asymptotic law for the case when both predictors assume three values. In Section 4 we intro-
duce resulting test for interaction detection and check its actual levels for several trivariate
distributions. Investigation of the power of the proposed test is left for a future research.

Table 1 Actual significance
levels of considered test statistics
for H0 : (X1, X2) ⊥ Y,

H1 : II < 0 with Clayton copula
for n = 1000, P (Y = 1) = 0.95,
α = 0.05

θ W( ˆ̄λ1,
ˆ̄λ2) Z(�̂) χ2

4

–0.5 0.100 0.094 0.164

1.0 0.049 0.046 0.084

10.0 0.119 0.110 0.325

100.0 0.076 0.072 0.247
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2 Preliminaries

2.1 Definitions and Notation

We will consider three-dimensional nominal variable (X1, X2, Y ) with distribution P =
PX1,X2,Y such that X1, X2 and Y have correspondingly nX1 , nX2 and nY possible values. Let
N = nX1×nX2×nY . We purposefully denote the third coordinate as Y and not X3 in order to
underline the fact that in presented applications two first coordinates correspond to the val-
ues of explanatory variables (e.g. Single Nucleotide Polymorphisms (SNPs)) which we use
to predict the value of Y . We will denote by pijk probability P(X1 = xi, X2 = xj , Y = yk).
Accordingly, with a slight abuse of notion, pij , pik, pjk will denote corresponding bivari-
ate probabilities i.e. pij = P(X1 = xi, X2 = xj ) and pi, pj , pk marginal probabilities
i.e. pj = P(X2 = xj ). We stress that the distributions of X1 and X2 may differ. We will
use shorthand notation p for (pijk), (pij ) or (pi) depending on the context and throughout
assume that all pijk are positive.

We assume that we observe n independent samples from P and denote by nijk number of
samples with a particular value (xi, xj , yk). Then vector (nijk) has multinomial distribution
Mult (n, p), where p is N dimensional vector of probabilities. Let p̂ijk = nijk/n.

2.2 Interaction Information

First we recall some concepts developed in Information Theory. Entropy of P is defined as

H(X1, X2, Y ) = −
∑
i,j,k

pijk ln pijk = −E ln P(X1, X2, Y ),

with H(X1, X2) and H(X1) defined accordingly. Also, we consider Mutual Information
which is a measure quantifying the amount of information obtained about one random
variable due to the knowledge of the other random variable. It is defined as

I (X1, X2) :=
∑
i,j

pij log

(
pij

pipj

)
(1)

and thus can be regarded as measure of association for a pair of discrete variables. It deter-
mines how different the joint distribution is from the product of factored marginal distribu-
tions. More specifically, it is equal to Kullback-Leibler (KL) divergence KL(PX1,X2 ||PX1 ×
PX2) between these two distributions

I (X1, X2) = KL(PX1,X2 ||PX1 × PX2) = EX2KL(PX1|X2 ||PX1)

and can be also interpreted as averaged KL divergence between conditional distribution
PX1|X2 and PX1 . The conditional Mutual Information is

I (X1, X2|Y ) :=
∑

k

pk

∑
i,j

p(i, j |k) log

(
p(i, j |k)

p(i|k)p(j |k)

)
= EX2,Y KL(PX1|X2,Y ||PX1|Y ).

Note that the conditional Mutual Information is Mutual Information of X1 and X2 given Y

averaged over values of Y . In the same vain as above I (X1; X2|Y ) can be interpreted as the
expected decrease of amount of uncertainty of (X1, X2) when Y is known. The conditional
Mutual Information is equal zero if and only if predictors are conditionally independent
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given the outcome Y . Analogously to Eq. 1, we define the Mutual Information between a
pair (X1, X2) and Y as

I [(X1, X2), Y ] :=
∑
i,j,k

pijk log

(
pijk

pijpk

)
= EY KL(PX1,X2|Y ||PX1,X2). (2)

The main object of interest here, namely Interaction Information (II ) (McGill 1954;
Fano 1961) is defined as

II (X1;X2; Y ) := I [(X1, X2), Y ] − I (X1, Y ) − I (X2, Y ). (3)

It follows from the above definition that II can be interpreted as a part of Mutual Informa-
tion of (X1, X2) and Y which is due solely to interaction between X1 and X2 in predicting
Y i.e. the part of I [(X1, X2); Y ] which remains after subtraction of individual informations
between Y and X1 and Y and X2. In other words, II is obtained by removing the main
effects from the term describing the overall dependence between Y and the pair (X1, X2).
Below we discuss some properties of II , which will be used to prove our main results in
the next section. Standard representation of II (X1;X2; Y ) is

II (X1;X2; Y ) = −H(X1, X2, Y ) + H(X1, X2) + H(X1, Y ) + H(X2, Y )

− H(X1) − H(X2) − H(Y), (4)

which also shows that II (X1; X2; Y ) is symmetric. It is known that II is closely related to
so-called Kirkwood superposition approximation (Matsuda 2000; Mielniczuk and Teisseyre
2018) defined as distribution PK corresponding to mass function

pK
ijk = pijpikpjk

pipjpk

, (5)

where the upper index K stands for Kirkwood. Namely, it follows from Eq. 4 that the
Interaction Information can be written using Kullback-Leibler divergence between the joint
distribution of X1, X2, Y and its Kirkwood superposition approximation:

II (X1;X2; Y ) = KL(PX1,X2,Y ||PK) =
∑
i,j,k

pijk log

(
pijk

pK
ijk

)
. (6)

Note that Kirkwood approximation is non-normalized i.e. it is not necessarily probability
distribution. We define η = ∑

i,j,k pK
ijk to be the normalizing constant for PK . The second

important property of the Interaction Information is

II (X1; X2; Y ) = I (X1, X2|Y ) − I (X1, X2), (7)

which indicates that II measures the influence of a variable Y on the amount of informa-
tion shared between X1 and X2. In other words it quantifies how much Y influences the
dependence between X1 and X2.

Observe that it follows from Eq. 7 that II in contrast to the Mutual Information can
be either positive or negative. Positive value of II indicates that interactions between X1
and X2 enhance prediction of Y whereas negative values indicate that interactions dimin-
ish or inhibit such prediction. In other words, the conditional dependence is stronger than
the unconditional one. The negative value of II indicates that Y weakens or inhibits the
dependence between X1 and X2. For more detailed discussion and examples of positive and
negative II we refer to Mielniczuk and Teisseyre (2018).
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Empirical versions of the introduced quantities are defined as their plug-in variants. In
particular, we have

Ĥ (X1) = −
∑

i

p̂i ln p̂i

Î (X1, X2) =
∑
i,j

p̂ij ln
p̂ij

p̂i p̂j

Î [(X1, X2), Y ] =
∑
i,j,k

p̂ijk ln
p̂ijk

p̂ij p̂k

,

where p̂ijk = nijk/n and p̂ij and p̂i , p̂j are defined analogously. Moreover,

Î I (X1; X2; Y ) = Î [(X1, X2), Y ] − Î (X1, Y ) − Î (X2, Y ). (8)

Note that n(p̂1, . . . , p̂nX1
) has multinomial distribution Mult (n, (p1, . . . , pnX1

)) and anal-
ogous property holds for n(p̂11, . . . , p̂nX1 nX2

). This allows us to to use a particular version
of delta method stated in Theorem 1. Asymptotic distribution of empirical version of II has
been derived by Han in his paper (Han 1980) for a special case when II vanishes, namely
when all variables X1, X2 and Y are independent. The distribution is is chi-square with
(nX1 −1)(nX2 −1)(nY −1) degrees of freedom. However, this case is too restrictive for test-
ing purposes when we would like to allow for dependence between predictors X1 and X2.
No significant progress has been made in this direction since Han’s seminal paper. The main
technical difficulty in deriving the distribution of Î I is that its distribution does not follow
directly from knowledge of asymptotic distributions of the terms on the rhs of Eq. 8 due
to dependence between them. In the paper, we prove that if distribution of (X1, X2, Y ) is
different from its Kirkwood approximation, the limiting distribution of Î I is normal. In the
case when these distributions coincide, the asymptotic distribution, obtained for different
normalization of Î I coincides with distribution of sum of weighted chi square variables.

Finally, we note that modifications of II are used for interaction detection. For exam-
ple, the measure defined as Kullback-Leibler divergence from normalized Kirkwood
superposition approximation P̃K = PK/η equals

KA(X1; X2; Y ) := KL(PX1,X2,Y ||P̃K) = II (X1;X2; Y ) + log(η) (9)

can be used as a measure of interaction strength (Wan et al. 2010; Mielniczuk and
Rdzanowski 2017).

2.3 Delta Method

Recall that N = nX1 × nX2 × nY . We present here an useful method for determining
asymptotic distribution of a certain function of cell frequencies f (p̂) where p̂ = (p̂ijk) =
(p̂1, . . . , p̂N ) is a vector of frequencies pertaining to multinomial distribution Mult (n, p).
It is based on the following Taylor expansion

n1/2(f (p̂) − f (p)) = Df (p)′n1/2(p̂ − p) + 1

2
n1/2(p̂ − p)′D2f (p)(p̂ − p) + rn, (10)

where Df (p) and D2f (p) denote the first and the second derivative at p and rn is the
remainder term. The asymptotic distribution of n1/2(p̂− p) is multivariate normal N(0,�)

with covariance matrix � = (�
i′j ′k′
ijk ), where �

i′j ′k′
ijk = −pijkpi′j ′k′ + pijkI ((i, j, k) =

(i′, j ′, k′)). Under appropriate conditions it is shown that the first term of the expansion
determines the asymptotic law, which in this case is zero mean normal with a certain
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variance σ 2. When σ 2 equals 0, the second term determines the law after increasing nor-
malisation from n1/2 to n. The formal result is as follows (see e.g. Agresti 2003 for part (i),

with (ii) being an obvious extension of (i). Let
d→ denote convergence in distribution and

I (A) is the indicator function of event A.

Theorem 1 (i) Assume that f : RN → R is continuously differentiable in the
neighbourhood of p = (pijk) = (p1, . . . , pN). Then

n1/2(f (p̂) − f (p))
d→ N(0, σ 2), (11)

when n → ∞, where

σ 2 =
∑
i,j,k

( ∂f

∂pijk

)2
pijk −

( ∑
i,j,k

∂f

∂pijk

pijk

)2
(12)

(ii) If σ 2 in Eq. 12 is 0 and f is is twice continuously differentiable in the neighbourhood
of p, then

2n(f (p̂) − f (p))
d→ W′D2f (p)W. (13)

whereW has N -dimensional N(0,�) distribution.

Note that the variance in Eq. 12 coincides with the variance of random variable which
takes value ∂f/∂pi with probability pi . Let H = D2f (p). Observe that the distribution of
the limit in Eq. 13 can be determined by writing W = �1/2Z, where Z is N -dimensional
N(0, IN) distribution. Then the asymptotic distribution of 2n(f (p̂) − f (p)) is

Z′�1/2H�1/2Z =
N∑

i=1

λi(x′
iZ)2 (14)

in view of spectral decomposition (see e.g. Schott 1997, p. 95) of �1/2H�1/2 =∑N
i=1 λixix′

i , where xi and λi are eigenvectors and corresponding eigenvalues of
�1/2H�1/2 or equivalently H�. As xi are orthonormal, random variables x′

iZ are indepen-
dent and N(0, 1) distributed, thus the distribution in Eq. 14 equals distribution of a sum
of weighted centred chi square variables, which we will call weighted centred chi square
distribution.

3 Main Results

3.1 Convergence to Normal Law

We begin by studying n1/2-convergence of Î I and determine when for this normalisation
the corresponding limiting normal law is non-degenerate. The equivalent condition is given in
terms of probability vector p = (pijk). We recall that mass function of PK is defined in Eq. 5.

Theorem 2 We have (i)

n1/2(Î I − II )
d→ N(0, σ 2

II ), (15)
where

σ 2
II =

∑
i,j,k

pijk ln2 pijk

pK
ijk

− II 2(X1, X2, Y ) = Var

(
ln

p(X1, X2, Y )

pK(X1, X2, Y )

)
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(ii) σ 2
II equals 0 if and only if P = PK .

Proof Note that in view of Eq. 8 the function f (p) pertaining to II is

f (p) =
∑
i,j,k

pijk ln(pijk/pijpk) −
∑
i,k

pik ln(pik/pipk) −
∑
j,k

pjk ln(pjk/pjpk). (16)

Denote the first term in the above decomposition by f1(p) = ∑
i,j,k pijk ln(pijk/pijpk)

and note that
∂f1(p)

∂pijk

= ln
pijk

pijpk

− 1

This follows from differentiating all summands involving pijk that is being functions
of pij , pij ′ , pi′j or pk . Similarly the derivative of the second term in Eq. 16 equals
− ln(pik/pipk) + 1 and the derivative of the third is analogous with i replaced by j . Then

wijk = ∂f (p)

∂pijk

= ln
pijk

pijpk

− ln
pik

pipk

− ln
pjk

pjpk

+ 1 (17)

and thus (12) equals ∑
i,j,k

w2
ijkpijk − (

∑
i,j,k

wijkpijk)
2

which coincides with σ 2
II .

In order to prove (ii) note that σ 2
II = 0 is equivalent to pijk/p

K
ijk ≡ C. We show that

C = 1. Indeed, summing over k we have

pij = Cpij

pipj

∑
k

pikpjk

pk

and thus (pij > 0)

pipj = C
∑

k

pikpjk

pk

.

summing over j we thus have

pi = C
∑

k

∑
j

pikpjk

pk

= Cpi

and thus C = 1.

Remark 1 Note that that P = PK is a stronger condition than II = 0 and both are
equivalent when normalizing constant η of Kirkwood approximation does not exceed 1 (cf
Mielniczuk and Teisseyre 2018). It is also shown there that P = PK implies that P is so-
called perfect distribution (cf Darroch 1974). In particular, we have that when (X1, X2) are
independent of Y then P = PK and σ 2

II = 0. Note that the case when II = 0 and σ 2
II > 0

is possible. This makes behaviour of Î I when II = 0 quite intricate as both n−1/2 and
n−1-convergence rates are possible.

The situation when σ 2
II = 0 is studied in detail in the next section.

3.2 Convergence toWeighted Chi Square Distribution

In view of Theorem 1 and Eq. 14 when P = PK we have that

2nÎ I →
N∑

i=1

λiZ
2
i ,
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where Zi are independent N(0, 1) random variables and λi are eigenvalues of H�, where
� and H are defined in Section 2.3. Thus asymptotically 2nÎ I is distributed as weighted
centred chi-square distribution. We now study the structure of H� in more detail. For any
matrix A with row and column indices in {1, . . . , nX1}×{1, . . . , nX2}×{1, . . . , nY } we will

denote by A
i′j ′k′
ijk its element with row index equal to ijk and column index i′j ′k′. In order

to keep the notation consistent Bij will be denoted by B
j
i . We consider first H = D2f (p),

where f (p) = f ((pijk)) is given in Eq. 16. Let

H
i′j ′k′
ijk = ∂2f (p)

∂pijk∂pi′j ′k′
.

Lemma 1

H
i′j ′k′
ijk = 1 − ∑

s⊆z
(−1)|s|

ps
= I (i=i′)

pi
+ I (j=j ′)

pj
+ I (k=k′)

pk

− I (i=i′,j=j ′)
pij

− I (i=i′,k=k′)
pik

− I (j=j ′,k=k′)
pjk

+ I (i=i′,j=j ′,k=k′)
pijk

,

where z = ({i} ∩ {i′}) ∪ ({j} ∩ {j ′}) ∪ ({k} ∩ {k′}), |s| denotes number of elements of
s and inclusion s ⊆ z is meant for each index i, j and k separately. This can be directly
checked by differentiating (17).

Lemma 2 Matrix M := H� has the following form:

M
i′j ′k′
ijk = −pi′j ′k′

∑
s⊆z

(−1)|s|

ps

.

Proof Recall that �
i′j ′k′
ijk = pi′j ′k′I (i′ = i′, j ′ = j ′, k′ = k′) − pijkpi′j ′k′ . Using the

previous lemma we have

M
i′j ′k′
ijk =

∑
i′′,j ′′,k′′

H
i′′j ′′k′′
ijk �

i′j ′k′
i′′j ′′k′′ =

∑
i′′,j ′′,k′′

( I (i = i′′)
pi

+ I (j = j ′′)
pj

+ I (k = k′′)
pk

− I (i = i′′, j = j ′′)
pij

− I (i = i′′, k = k′′)
pik

− I (j = j ′′, k = k′′)
pjk

+ I (i = i′′, j = j ′′, k = k′′)
pijk

)
· (pi′j ′k′I (i′ = i′′, j ′ = j ′′, k′ = k′′) − pi′j ′k′pi′′j ′′k′′ ) =

= pi′j ′k′ ·
( I (i = i′)

pi

+ I (j = j ′)
pj

+ I (k = k′)
pk

− I (i = i′, j = j ′)
pij

− I (i = i′, k = k′)
pik

− I (j = j ′, k = k′)
pjk

+ I (i = i′, j = j ′, k = k′)
pijk

)
− pi′j ′k′

( ∑
j ′′,k′′

pij ′′k′′

pi

+
∑
i′′,k′′

pi′′jk′′

pj

+
∑
i′′,j ′′

pi′′j ′′k
pk

−
∑
k′′

pijk′′

pij

−
∑
j ′′

pij ′′k
pik

−
∑
i′′

pi′′jk

pjk

+ pijk

pijk

)

= pi′j ′k′
(

−
∑
s⊆z

(−1)|s|

ps

+ 1
)

− pi′j ′k′ = −pi′j ′k′
∑
s⊆z

(−1)|s|

ps

.
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Lemma 3 We have
tr(M) = (nX1 − 1)(nX2 − 1)(nY − 1)

Proof

tr(M) =
∑
i,j,k

M
ijk
ijk = −

∑
i,j,k

pijk

(
1 − 1

pi

− 1

pj

− 1

pk

+ 1

pik

+ 1

pjk

+ 1

pij

− 1

pijk

)
= −

∑
i,j,k

pijk +
∑

i

1

pi

∑
j,k

pijk +
∑
j

1

pj

∑
i,k

pijk +
∑

k

1

pk

∑
i,j

pijk −
∑
i,j

1

pij

∑
k

pijk

−
∑
i,k

1

pik

∑
j

pijk −
∑
j,k

1

pjk

∑
i

pijk +
∑
i,j,k

pijk

pijk

= −1+nX1+nX2+nY −nX1nX2−nX1nY −nX2nY +nX1nX2nY = (nX1−1)(nX2−1)(nY −1)

From now on we will assume that (X1, X2) and Y are independent. The next lemma
states the representation of M as a Kronecker product of two matrices (for the definition of
Kronecker product and its properties we refer to Schott 1997).

Lemma 4 If (X1, X2) and Y are independent, then

M = D ⊗ C,

where ⊗ is Kronecker product,

Ck′
k = −pk′

∑
s⊆{k}∩{k′}

(−1)|s|

ps

,

D
i′j ′
ij = pi′j ′

∑
s⊆({i}∩{i′})∪({j}∩{j ′})

(−1)|s|

ps

.

Proof Independence of (X1, X2) and Y implies that:∑
s⊆z

(−1)|s|

ps

= 1 − I (i=i′)
pi

− I (j=j ′)
pj

− I (k=k′)
pk

+ I (i=i′)I (k=k′)
pipk

+ I (j=j ′)I (k=k′)
pj pk

+ I (i=i′)I (j=j ′)
pij

− I (i=i′)I (j=j ′)I (k=k′)
pij pk

=
(

1 − I (k=k′)
pk

)(
1 − I (i=i′)

pi
− I (j=j ′)

pj
+ I (i=i′,j=j ′)

pij

)
= ∑

s⊆{k}∩{k′}
(−1)|s|

ps

∑
s⊆({i}∩{i′})∪({j}∩{j ′})

(−1)|s|
ps

.

This ends the proof.

Lemma 5 The following properties of C hold:

(i) C is idempotent matrix, i.e. C2 = C.
(ii) λ1(C) = . . . = λnY −1(C) = 1, λnY

(C) = 0.

300



Methodology and Computing in Applied Probability (2021) 23:291–315

Proof Denote locally in the proof P(Y = yi) by p(yi) , i = 0, . . . , nY − 1.

C =

⎛⎜⎜⎜⎝
1 − p(y0) −p(y1) . . . −p(ynY −1)

−p(y0) 1 − p(y1) . . . −p(ynY −1)
...

...
. . .

...
−p(y0) −p(y1) . . . 1 − p(ynY −1)

⎞⎟⎟⎟⎠ = InY
− 1nY

pT
nY

,

where InY
∈ R

nY ×nY is identity matrix, 1nY
∈ R

nY ×1 is the vector of 1’s, pnY
=

(p(y0), . . . , p(ynY −1))
T . We observe that pT

nY
1nY

= 1 and thus we have: (InY
− C)2 =

1nY
(pT

nY
1nY

)pT
nY

= 1nY
pT

nY
= InY

− C. This means that InY
− C is idempotent and

consequently, C is idempotent. To prove (ii), note that tr(C) = nY − 1 and 1nY
is an eigen-

vector with eigenvalue λnY
(C) = 0. As C is idempotent this means that λ1(C) = . . . =

λnY −1(C) = 1, λnY
(C) = 0.

We now show that the proved properties imply Han’s theorem (cf Han 1980).

Theorem 3 If X1, X2, Y are all independent, then:

2nÎ I
d→ χ2

(nX1 −1)(nX2 −1)(nY −1).

Proof It is enough to show that M is idempotent since then from Lemma 3 it follows that
it has (nX1 − 1)(nX2 − 1)(nY − 1) eigenvalues equal 1 and remaining ones are 0. Thus
the asymptotic distribution of 2nÎ I is χ2

(nX1 −1)(nX2 −1)(nY −1), as PK = P in the case of

independent variables and thus σ 2
II = 0. Analogously, as in the proof of Lemma 4, we

observe that:

M
i′j ′k′
ijk = −pi′pj ′pk′

(
1 − I (i = i′)

pi

)(
1 − I (j = j ′)

pj

)(
1 − I (k = k′)

pk

)
.

This means, that M = A ⊗ B ⊗ C, where:

Ai′
i = −pi′

(
1 − I (i = i′)

pi

)
,

B
j ′
j = −pj ′

(
1 − I (j = j ′)

pj

)
,

and C is defined in Lemma 5. From the proof of Lemma 5 we know that A,B,C are
idempotent. Hence from the mixed-product property of Kronecker product it follows that:

M2 = (A ⊗ B ⊗ C)(A ⊗ B ⊗ C) = (A2) ⊗ (B2) ⊗ (C2) = A ⊗ B ⊗ C = M.

Thus M is idempotent.

Lemma 6 Matrix D defined in Lemma 4 has at least 1 eigenvalue equal 0 and at least
(nX1 − 1)(nX2 − 1) eigenvalues equal 1.
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Proof Eigenvector for the eigenvalue 0 is 1nX1 nX2
, as for each row of D indexed by i, j we

have: ∑
i′,j ′

D
i′j ′
ij = ∑

i′,j ′
pi′j ′

∑
s⊆({i}∩{i′})∪({j}∩{j ′})

(−1)|s|
ps

= ∑
i′,j ′

pi′j ′
(

1 − I (i=i′)
pi

− I (j=j ′)
pj

+ I (i=i′,j=j ′)
pij

)
= ∑

i′,j ′
pi′j ′ − ∑

j ′
pij ′ 1

pi
− ∑

i′
pi′j

1
pj

+ 1 = 1 − 1 − 1 + 1 = 0.

Moreover, for any i0, j0, such that i0 �= nX1 , j0 �= nX2 we define the vector α = (αij ):

αij = I (i = i0, j =j0)

pi0j0

− I (i = i0, j =nX2)

pi0nX2

− I (i =nX1 , j = j0)

pnX1 j0

+ I (i =nX1 , j = nX2)

pnX1 nX2

.

We show that α is an eigenvector of D corresponding to eigenvalue 1. Indeed, observe that∑
i′,j ′

αi′j ′Di′j ′
ij = 1 − I (i = i0)

pi0

− I (j = j0)

pj0

+ I (i = i0, j = j0)

pi0j0

− 1 + I (i = i0)

pi0

+ I (j = nX2)

pnX2

− I (i = i0, j = nX2)

pi0nX2

−1+ I (i = nX1)

pnX1

+ I (j = j0)

pj0

− I (i = nX1 , j = j0)

pnX1 j0

+1

− I (i = nX1)

pnX1

− I (j = nX2)

pnX2

+ I (i = nX1 , j = nX2)

pnX1 nX2

= I (i = i0, j = j0)

pi0j0

− I (i = i0, j = nX2)

pi0nX2

− I (i = nX1 , j = j0)

pnX1 j0

+ I (i = nX1 , j = nX2)

pnX1 nX2

= αij .

Thus α is an eigenvector of D. Since there are (nX1 − 1)(nX2 − 1) such vectors for different
i0, j0 and they are linearly independent, the lemma is proved.

3.3 Special Cases

We state now the result which is the main conclusion of the paper.

Theorem 4 Let nX1 = nX2 = 3, nY ≥ 2 and (X1, X2) be independent of Y . Then:

2nÎ I
d→ W,

where:

W = T1 + λ5(M)(T2 − T3) + λ7(M)(T4 − T5),

T1 ∼ χ2
4(nY −1), T2, T3, T4, T5 ∼ χ2

nY −1,

T1, T2, T3, T4, T5 are all independent, λ5(M) = λ5(D), λ7(M) = λ7(D) and D is the matrix
defined in Lemma 4.

Proof From the Lemma 4 we know that M = D ⊗C, thus eigenvalues of M have the form
λ(M) = λ(D)λ(C). Thus from the Lemmas 5 and 7 it follows that:

λl·nX1 nX2 +m(M) =
{

λm(D) l ∈ {0, . . . , nY − 2}, m ∈ {1, . . . , nX1nX2}
0 l = nY − 1, m ∈ {1, . . . , nX1nX2}.
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Note that in this case P = PK, this means that using the delta method we obtain: 2nÎ I
d→

W, where

W =
nX1 nX2 nY∑

i=1

λi(M)Z2
i =

nX1 nX2 (nY −1)∑
i=1

λi(M)Z2
i

and (Zi)i are independent standard normal random variables. Note that 1 is an eigenvalue
of multiplicity (nX1 − 1)(nX2 − 1)(nY − 1) = 4(nY − 1) and 0, λ5(D), −λ5(D), λ7(D) and
−λ7(D) have all multiplicity nY − 1. Now we define:

Fj =
nY −1∑
k=1

Z(k−1)nX1 nX2 +j ∼ χ2
nY −1 for j ∈ {1, . . . , nX1nX2},

T1 = F1 + F2 + F3 + F4 ∼ χ2
4(nY −1), Tk = Fk+3 for k = 2, 3, 4, 5. We do not need to

define T6, as λ9(D) = 0. This ends the proof.

In the special case when Y is binary i.e nY = 2 we have W = T1 + λ5(D)(Z2
1 − Z2

2) +
λ7(D)(Z2

3 − Z2
4) where T1∼ χ2

4 and Z1, . . . , Z4 are independent N(0, 1) random variables
independent of T1.

Corollary 1 Let nX1 , nX2 ∈ {2, 3} and nX1 = 2 or nX2 = 2. Let nY ≥ 2 and (X1, X2) be
independent of Y . Then:

2nÎ I
d→ W,

where:
W = T1 + √

H1(T2 − T3),

T1 ∼ χ2
(nX1 −1)(nX2 −1)(nY −1), T2, T3 ∼ χ2

nY −1

and T1, T2 and T3 are independent.

We discuss now the case when nX1 = nX2 = 3 and nY equals 2 which corresponds to an
important case of two SNPs interacting with an binary outcome. We will show that in this
case, or more generally, when Y admits nY values, the distribution of Y can be explicitly
described.

Lemma 7 Let nX1 = nX2 = 3,

H1 =
∑
i,j

p2
ij

pipj

− 1 =
∑
i,j

(pij − pipj )
2

pipj

,

H2 =
∑

i,j,i′,j ′

pijpij ′pi′j ′pi′j
pipjpi′pj ′

− 1.

Then the eigenvalues of matrix D ∈ R
9×9 are as follows: λ1(D) = . . . = λ4(D) = 1,

λ9(D) = 0, λ5(D) = −λ6(D), λ7(D) = −λ8(D), and

λ2
5(D) = H1 + √

�

2
, λ2

7(D) = H1 − √
�

2
, (18)

where � = 2H2 − H 2
1 . If X1, X2 and Y are independent then λ5(D) = . . . = λ9(D) = 0.

Technical proof of the lemma is moved to the Appendix.

Remark 2 (i) Note that all eigenvalues λi(D) are real as they are eigenvalues of the sym-
metric matrix �1/2H�1/2, thus it follows that � ≥ 0. We also remark that � may be 0
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for dependent X1, X2 as it happens for X1 = X2 having any nondegenerate distribution
on {1, 2, 3} since then H1 = H2 = 2. Furthermore, for arbitrary nX1 and nX2 from the
inequality

H1 ≤
∑
i,j

pijpi

pipj

− 1 =
∑
j

1 − 1 = nX2 − 1

it follows that H1 ≤ min(nX1 , nX2)−1 and the upper bound is attained. The same inequality
holds for H2. Besides, from the Jensen inequality we have

I (X1, X2) =
∑
i,j

pij ln

(
pij

pipj

)
≤ ln

⎛⎝∑
i,j

p2
ij

pipj

⎞⎠ = ln(H1 + 1).

(ii) Moreover, observe that H2 defined in the last Lemma can be represented as

H2 =
∑

i,j,i′,j ′

(pij − pipj )(pij ′ − pipj ′)(pi′j − pi′pj )(pi′j ′ − pi′pj ′)

pipjpi′pj ′

Note also that H1 equals chi square index of the distribution of (X1, X2).

By using the same method as for Lemma 7, we obtain

Corollary 2 The following statements hold:

(i) For (nX1 , nX2) = (3, 2) or (nX1 , nX2) = (2, 3) : λ1(D) = λ2(D) = 1, λ5(D) =
λ6(D) = 0, λ3(D) = √

H1, λ4(D) = −√
H1.

(ii) For nX1 = nX2 = 2 : λ1(D) = 1, λ4(D) = 0, λ2(D) = √
H1, λ3(D) = −√

H1.

Remark 3 We stress that in Theorem 3 the response Y can take one of an arbitrary number
of discrete values, thus the result is applicable e.g. to multiclass classification problems. For
the case when X1 or X2 admit more than 3 values we note that matrix D defined in Lemma
4 has at least (nX1 − 1)(nX2 − 1) eigenvalues equal to 1 and one equal to 0. Thus in order to
determine the distribution of W we need to compute nX1 +nX2 −2 remaining eigenvalues of
D. In view of the proof of the lemma this would involve determining nX1 +nX2 −2 powers of
D which is computationally challenging for larger values of nXi

. However, as a polynomial
Q (cf Eq. 21) has in general case every second coefficient equal to 0, we conjecture that
explicit formulae for λi should be calculable for nX1 + nX2 ≤ 10. The alternative method
of determining distribution of W using permutations is described in Remark 4.

4 Numerical Experiments

In the following we apply Theorem 4 to construct test for the hypothesis that (X1, Y1) are
independent of Y :

H0 : (X1, X2) ⊥ Y

against two-sided alternative
H1 : II �= 0

Note that it follows from the discussion in Section 2.2 that H0 implies II = 0 and thus
the null and the alternative hypotheses describe disjoint events. Such set-up is useful in
cases when a researcher focuses on detection of interaction between explanatory variables
in predicting the response and not on their main effects. We remark that it would be also
desirable to develop tests for a broader null hypotheses H

(1)
0 : II = 0 (no interaction),
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or H
(2)
0 : X1 ⊥ Y &X2 ⊥ Y & II = 0 (no interaction and no main effects), but the

asymptotic distributions of Î I under such null hypotheses are intractable. Note that H0
allows for dependence of explanatory variables which is a common case e.g. in Genome
Wide Association Studies (GWAS).

To fix ideas, we consider here the case of a binary response Y i.e. the case when nY = 2.
We consider the test with critical region

C = {Î I : 2nÎ I < Wα/2 or 2nÎ I > W1−α/2}, (19)

where Wα/2 is an quantile of order α for distribution W defined in Theorem 4, that is we
reject H0 when the observed value Î I belongs to C. It follows from Theorem 4 that such
test has asymptotic significance level α. We investigate how the quantiles needed in test
construction can be approximated and in consequence how well actual significance levels
pertaining to asymptotic quantiles correspond to nominal ones. We also consider an analo-
gous test based on χ2

4 approximation frequently used in GWAS (cf. e.g. Chanda et al. 2008
and Wan et al. 2010). We note that the asymptotic distribution of 2nÎ I is χ2

4 only under
assumption that all three variables X1, X2 and Y are independent. This is very restrictive and
the null hypothesis above is is much more general. We will show in the following that using
χ2

4 distribution instead of distribution of W leads to significant increase of false rejections
under H0, especially in the case when two-sided alternative is considered.

Table 2 Quantiles of different test statistics for normal copula

Reference distribution θ Quantile order

0.025 0.05 0.95 0.975

χ2
4 – 0.4844 0.7107 9.4877 11.1433

W(λ̄1, λ̄2)

0.0

0.4844 0.7107 9.4877 11.1433

W( ˆ̄λ1,
ˆ̄λ2) 0.4713 0.7031 9.4901 11.1449

Z(�) 0.4844 0.7107 9.4877 11.1433

Z(�̂) 0.4747 0.7027 9.4918 11.1467

W(λ̄1, λ̄2)

0.3

0.3107 0.6020 9.5351 11.1918

W( ˆ̄λ1,
ˆ̄λ2) 0.3002 0.5956 9.5382 11.1951

Z(�) 0.3428 0.5948 9.5466 11.1936

Z(�̂) 0.3340 0.5877 9.5502 11.1968

W(λ̄1, λ̄2)

0.5

0.0004 0.4154 9.6318 11.2938

W( ˆ̄λ1,
ˆ̄λ2) –0.0089 0.4101 9.6351 11.2972

Z(�) 0.0767 0.3786 9.6577 11.2909

Z(�̂) 0.0687 0.3721 9.6612 11.2939

W(λ̄1, λ̄2)

0.7

–0.5460 0.0819 9.8142 11.4900

W( ˆ̄λ1,
ˆ̄λ2) –0.5506 0.0788 9.8164 11.4926

Z(�) –0.3812 0.0100 9.8535 11.4688

Z(�̂) –0.3858 0.0063 9.8556 11.4709

W(λ̄1, λ̄2)

0.9

–1.5503 –0.6177 10.2204 11.9410

W( ˆ̄λ1,
ˆ̄λ2) –1.5499 –0.6172 10.2208 11.9416

Z(�) –1.2806 –0.7077 10.2649 11.8670

Z(�̂) –1.2806 –0.7077 10.2651 11.8673
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4.1 Approximation of Distribution of W

In the following we denote by W the limiting distribution in Theorem 4. Note that for the
3 × 3 × 2 case W is parametrized by λ5 and λ7 i.e. W = W(λ5, λ7), where λ5, λ7 are
given by Eq. 18. In order to simplify the notation we let λ̄1 := λ5 and λ̄2 := λ7. Thus

for testing purposes W(λ̄1, λ̄2) is approximated by W( ˆ̄λ1,
ˆ̄λ2), where ˆ̄λi are the plug-in

estimators of λ̄i based on Eq. 18. The values of quantiles of W( ˆ̄λ1,
ˆ̄λ2) can be numerically

calculated using R package distr or Python package Pacal. The differences between
the results are minor and the results presented below are obtained with the aid of distr.
We checked that for sample sizes larger than 100 and when the fixed type of dependence is
considered (and thus λ̄1 and λ̄2 are fixed), quantiles of order 0.95 and 0.975 as well as 0.025

and 0.05 of W(λ̄1, λ̄2) are very well approximated by quantiles of W( ˆ̄λ1,
ˆ̄λ2). In Table 2

below we show how expected values of quantiles W( ˆ̄λ1,
ˆ̄λ2) compare with quantiles of

W(λ̄1, λ̄2) when distribution of (X1, X2) is given by normal copula discussed below for n =
1000, P (Y = 1) = 0.9 and number of repetitions L = 1000. Parameter θ corresponds to
correlation coefficient. The analogous results for Clayton copula with parameter θ discussed
in Section 4.2 are given in Table 3. Thus, despite more complicated form of distribution
of W(λ̄1, λ̄2) than chi square distribution approximation of its quantiles does not pose any
computational difficulties.

Moreover, it is known that distributions of weighted chi square random variables can be
adequately approximated by αχ2

d + β, where χ2
d is generalized chi square distribution with

d ∈ R+ and parameters α, d and β are chosen to match three first moments of W(λ̄1, λ̄2)

Table 3 Quantiles of different test statistics for Clayton copula

Reference distribution θ Quantile order

0.025 0.05 0.95 0.975

χ2
4 – 0.4844 0.7107 9.4877 11.1433

W(λ̄1, λ̄2)

-0.5

0.0006 0.4162 9.6329 11.2949

W( ˆ̄λ1,
ˆ̄λ2) –0.0077 0.4114 9.6356 11.2978

Z(�) 0.0744 0.3767 9.6587 11.2917

Z(�̂) 0.0675 0.3712 9.6616 11.2944

W(λ̄1, λ̄2)

1

–0.0788 0.3731 9.6603 11.3242

W( ˆ̄λ1,
ˆ̄λ2) –0.0859 0.3690 9.6626 11.3267

Z(�) 0.0036 0.3195 9.6885 11.3183

Z(�̂) –0.0018 0.3151 9.6909 11.3205

W(λ̄1, λ̄2)

10

–2.2559 –1.1236 10.5610 12.3365

W( ˆ̄λ1,
ˆ̄λ2) –2.2606 –1.1270 10.5636 12.3397

Z(�) –1.9447 –1.2367 10.5979 12.2079

Z(�̂) –1.9493 –1.2404 10.6004 12.2106

W(λ̄1, λ̄2)

100

–3.1107 –1.7543 11.0131 12.8741

W( ˆ̄λ1,
ˆ̄λ2) –3.1108 –1.7544 11.0131 12.8742

Z(�) –2.7525 –1.8822 11.0387 12.6769

Z(�̂) –2.7526 –1.8823 11.0387 12.6769
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(see Zhang 2005). It follows from formulas (5) in Zhang’s paper that in the case considered
here when the first four non-zero eigenvalues are 1 and remaining four form two symmetric
pairs ±λ̄i , the approximating distribution depends only on � = λ̄2

1 + λ̄2
2 and thus it is called

Z(�). Analogously, plug-in version of Z(�) is denoted by Z(�̂). It will follow that for
purposes of approximating critical region C quantiles of Z(�̂) can be used instead that of

W( ˆ̄λ1,
ˆ̄λ2) (see Tables 2 and 3) which also contains values of quantiles of corresponding

Z(�) and averaged values of quantiles of Z(�̂)). The only exception is when left tail is
considered and the dependence is strong (see e.g. the results in Table 2 for quantiles of order
0.025 and 0.05 and θ = 0.9).

When W(λ̄1, λ̄2) is compared with χ2
4 distribution we see that in the case of normal

copula mainly the left tails differ when the dependence becomes strong. In the case of
Clayton copula both tails of these two distribution are significantly different when θ is large.

Remark 4 When X1 or X2 admit more than three values we established that distribution of
W coincides with distribution of weighted sum of independent chi squares with weights λi .
As λis are unknown the distribution of W can be alternatively approximated using permuta-
tion method. This would involve calculation of L permutations of the original sample with
(X1, X2) being permuted. Then as obtained samples satisfy null hypothesis H0 the empir-
ical distribution of values Î I 1, . . . , Î IL will approximate that of W . A main problem with
this approach is that as we are actually interested in quantiles Wα/2 and W1−α/2 we would
need large number of permuted sampled to approximate them precisely which is computati-
nally demanding for larger n (for discussion of this in the context of testing for conditional
independence see e.g. Tsamardinos and Borboudakis 2010). The way to circumvent this
problem would be to approximate permutation distribution using weighted chi square dis-
tribution which would involve only estimation of moments and would require significantly
smaller number of permutations. This problem will be the subject of of future research.

4.2 DependenceModels of (X1, X2)

In order to check how dependence between X1 and X2 affects the asymptotic distribution W

and the way it influences actual significance levels of the tests based on Î I we investigated
discretized versions of four distributions pertaining to popular copulas. Copula C is defined
as a bivariate function defined on the unit square which satisfies

F(x1, x2) = C(F1(x1), F2(x2)), (20)

where F is a distribution function corresponding to PX1,X2 and F1 and F2 are the corre-
sponding marginal distribution functions. Here we consider normal copula together with
Clayton, Gumbel and Frank copulas. They are described in standard reference texts (see
e.g. Nelsen 2006), here it suffices to state that they are all parametrized by a parameter θ ,
which in case of discretized normal copula corresponds to correlation coefficient of origi-
nal normal variables. We assume that X1 and X2 take one of the values 1,2 or 3, P(X1 =
1) = 0.25, P (X1 = 2) = 0.5, P (X1 = 3) = 0.25 and X2

d= X1. Thus the marginals satisfy
Hardy-Weinberg hypothesis with p = q = 0.5. The distribution function given in Eq. 20 is
then discretized to atoms (i, j) with i, j = 1, 2, 3 e.g. P(X1 = 1, X2 = 1) = C(0.75, 0.25),
P(X1 = 2, X2 = 1) = C(0.75, 0.25) − C(0.25, 0.25) and so on. Binary response Y is
generated independently from (X1, X2) and such that P(Y = 0) = 0.05. In genetic appli-
cations P(Y = 0) may correspond to prevalence of a disease. Thus H0 : II = 0 is satisfied.

307



Methodology and Computing in Applied Probability (2021) 23:291–315

We also consider the following joint distributions of (X1, X2) (which we call later circular
distribution and quasi-diagonal distribution, respectively), given by the matrices:⎡⎣ P(X1 = 1, X2 = 1) P (X1 = 1, X2 = 2) P (X1 = 1, X2 = 3)

P (X1 = 2, X2 = 1) P (X1 = 2, X2 = 2) P (X1 = 2, X2 = 3)

P (X1 = 3, X2 = 1) P (X1 = 3, X2 = 2) P (X1 = 3, X2 = 3)

⎤⎦
=

⎡⎣ 1
8 − θ

2 θ 1
8 − θ

2
θ 1

2 − 2θ θ
1
8 − θ

2 θ 1
8 − θ

2

⎤⎦ ,

for θ ∈
(

0, 1
4

)
, and

⎡⎣ P(X1 = 1, X2 = 1) P (X1 = 1, X2 = 2) P (X1 = 1, X2 = 3)

P (X1 = 2, X2 = 1) P (X1 = 2, X2 = 2) P (X1 = 2, X2 = 3)

P (X1 = 3, X2 = 1) P (X1 = 3, X2 = 2) P (X1 = 3, X2 = 3)

⎤⎦
=

⎡⎣ rθ rq rq

rq r2θ rq

rq rq rθ

⎤⎦ ,

for θ ∈
(

0, 1
8

)
, where r = (2(

√
θ(θ + 1) − θ))−1, q = −3θ+√

θ(θ+1)
4 .

Fig. 1 Behaviour of λ5 = λ̄1 and λ7 = λ̄2 for different copulas
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It turns out that λ̄1 and λ̄2 behave very differently as a function of θ for considered
copulas and two introduced distributions (see Fig. 1). Recall that the difference between
their squared values is described by

√
� = λ̄2

1 − λ̄2
2.

We also show in Fig. 2 how parameter θ influences dependence between X1 and X2
measured by their mutual information. Note that dependence of X1 and X2 corresponds to
linkage disequilibrium which is of interest in genetics.

Moreover Fig. 3 shows the the discrepancies between the true distribution and its two
approximations for quasi-diagonal copula. It is worthwhile to compare this figure and the
corresponding panel in Fig. 4 for this distribution to see the influence of the lack of fit
on actual type I error. It can be also seen that that the approximation of the empirical dis-
tribution by the asymptotic distribution is the least accurate for the strongest dependence
between predictors (θ = 0.12 Fig. 2).

4.3 Actual Significance Levels

Below we present analysis how significance levels of the test based on Î I differ from the

nominal levels when the reference distribution is either W( ˆ̄λ1,
ˆ̄λ2) or χ2

4 . The figures below
are based on L = 1000 repetitions, for each repetition critical values for critical region C in

Eq. 19 were calculated based on W( ˆ̄λ1,
ˆ̄λ2) distribution. Nominal level was set at α = 0.05.

It follows from the figures that the proposed test based on W( ˆ̄λ1,
ˆ̄λ2) distribution yields

actual levels of significance much closer to the nominal one than the test based on χ2
4 distri-

bution. This is due to mainly to much better approximation of the left tail of the distribution

of Î I , which extends to the negative values, by the left tail of W( ˆ̄λ1,
ˆ̄λ2). In contrast the

Fig. 2 Behaviour of I (X1, X2) for different copulas
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Fig. 3 Quasi-diagonal copula - comparison of empirical density of 2nÎ I with the densities of χ2
4 and

W(λ̄1, λ̄2) for n = 4000 and P(Y = 1) = 0.95

distribution χ2 is supported on positive part of a real line and it yields poor approxima-
tion of lower quantiles of distribution of Î I . Upper quantiles of Î I are moderately well
approximated by that of χ2 and this explains why for one sided alternative H1 : II > 0
the differences between nominal level based on χ2

4 approximation and actual leveles are
often smaller (cf Mielniczuk and Rdzanowski 2017). In contrast, for two-sided tests approx-
imation of both lower and upper quantiles plays significant role and then test based on chi
square approximation performs poorly. We note that in all the cases considered actual sig-
nificance levels for chi square tests were larger than for the proposed test and larger than
the nominal level 0.05. Thus when the power of these tests is compared this would lead to
an erroneous conclusion that the chi square test is more powerful, which is solely due to
the lack of control of the significance level. We also note there are cases when the proposed
test, although it performs better than chi square test is still much too liberal even for large
sample sizes: see e.g. the case of normal copula for θ = 0.7 and quasi-diagonal distribution
for θ = 0.09. These cases correspond to situations when dependence between X1 and X2
becomes strong and this affects the speed with which distribution of 2nÎ I converges to the
asymptotic distribution. In general, the control of significance level is more accurate when
the asymptotic distribution is close to chi square distribution. This include the cases of weak
linkage disequilibrium and the cases when both λ1 and λ2 are close to 1.
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Fig. 4 Percent of rejections of H0 : II = 0, when (X1, X2) and Y are independent for different copulas
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Table 4 Computation times (in milliseconds) of interaction tests for (X1, X2) corresponding to normal
copula with ρ = 0.5

Method\n 100 500 1000 5000 10000 100000

W( ˆ̄λ1,
ˆ̄λ2) 90.76 90.81 91.16 93.46 96.2 147.62

χ2
4 2.73 2.97 3.25 5.48 8.24 59.83

Z(�̂) 3.15 3.39 3.68 5.9 8.63 59.03

Entries are medians of times based on 100 repetitions

We note that computational cost of calculating Î I is O(ny + n) = O(n), where O(n)

stems from calculating p̂ijk . Calculation of quantiles of W( ˆ̄λ1,
ˆ̄λ2) takes time O(1) which

does not depend on N . Table 4 shows computation times for testing H0 for normal copula

with ρ = 0.5. Note that although calculation of W( ˆ̄λ1,
ˆ̄λ2) takes from 35 to 3 times longer

then that of χ2
4 test depending on a sample size, the times for χ2

4 and Z(�̂) which is approx-

imation W( ˆ̄λ1,
ˆ̄λ2 of are comparable. We also note that the ratio of computing times for the

proposed test and χ2
4 diminishes with the sample size and is less than 3 for n = 105. Our

experiments also indicate that the times depend only insignificantly on dependence of two
predictors.

4.4 Analysis of a Real-World Data Set

We perform an analysis of a real data set on pancreatic cancer considered in Tan et al.
(2008) downloaded from the addrees (SNPsyn 2011). The data consist of 208 observations
(121 cases (Y = 1) and 87 controls (Y = 0)) with values of 901 SNPs. We chose pre-
dictors with at least two values (there are 499 such predictors in the data set) and consider
all K = 499 · 498/2 = 124251 pairs. We have applied all three discussed two-sided tests
for all pairs and α = 0.05 with Bonferroni correction resulting in an individual level of

significance 0.05/K = 4.03 × 10−7. It turns out that W( ˆ̄λ1,
ˆ̄λ2) test detects 77 signifi-

cant interactions, whereas chi square test detected 24283 and Z(�̂) test 21289 interactions.

Table 5 Top ten pairs discovered by W( ˆ̄λ1,
ˆ̄λ2) test for pancreatic cancer data set

X1 X2 Î I Adj. p-value ×104

rs3217922 rs3771527 –0.0140 0.146

rs1131854 rs7374 0.1215 0.694

rs1061282 rs3771527 –0.0100 0.844

rs1045485 rs3128 –0.0148 1.653

rs3128 rs3217922 –0.0086 1.917

rs1045485 rs2429467 –0.0127 2.660

rs14804 rs7201 0.1135 3.502

rs1045485 rs3773606 –0.0116 5.253

rs2429467 rs3217922 –0.0062 6.765

rs1058213 rs6115 0.1089 8.569

The last column gives adjusted p-value times 104
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Much larger number of the detected interactions in the last two cases stems from the fact
that majority of the interactions discovered is negative and their values due to positive sup-
port of chi square were considered significant in the case of χ2 square test. The similar
phenomenon occurs for Z(�̂). Thus majority of negative interactions discovered by those

two tests is likely to be spurious. This suggests that using W( ˆ̄λ1,
ˆ̄λ2) for negative interac-

tions will have much smaller false discovery rate. Table 5 shows 10 of the most significant
pairs with 7 of them being negative. Note that the most significant pair has negative inter-
action. Three the highest ranked pairs with positive interactions occupy three first places in
ranking with respect to p-values when one sided alternative II > 0 is considered.

5 Conclusions

We have derived asymptotic distributions of interaction information for general trivariate
nominal distribution (X1, X2, Y ) as shown that it is weighted chi square distribution and
have determined it weights in the case when (X1, X2) are independent of binary Y and both
X1 and X2 have at most three values. We have shown numerically that using quantiles of
asymptotic distribution W with estimated parameters yields actual significance level con-
sistently much closer to nominal ones than in the case when quantiles of χ2

4 distribution are
used. This is especially pronounced in the case of two-sided alternative due to significant
difference between left tails of χ2

4 and W(λ̄1, λ̄2). This can lead to much larger fraction of
false rejections than expected when χ2

4 based test is used. Putting it differently, one may
detect many spurious interactions which do not actually exist. On the negative side, con-
vergence of 2nÎ I to W(λ̄1, λ̄2) can be slow even for large n. We observed such behaviour
mainly in situations when dependence between X1 and X2 becomes strong. Thus we rec-
ommend using the proposed test with critical value base on quantiles of W with estimated
parameters when the dependence of both predictors, measured e.g. by their mutual infor-
mation is not too strong. On the computational side, despite more complicated form of
asymptotic distribution then in the case of overall independence construction of a critical
region does not pose any significant hurdles.
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Appendix

Below we prove Lemma 7.

Proof From the previous lemma we know that λ1(D) = . . . = λ4(D) = 1, λ9(D) = 0.
By lengthy calculations we obtain a sequence of the following equalities:

D2 = D + Z,
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D3 = D + Z + ZD,

D4 = D + Z + 2ZD + Z2,

where Z = (Z
i′j ′
ij ) and:

Z
i′j ′
ij = pi′j ′

( pi′j
pi′pj

+ pij ′

pipj ′
− 2

)
,

tr(Z) = 2
∑
i,j

p2
ij

pipj

− 2 = 2H1,

tr(ZD) = −tr(Z),

tr(Z2) = −4 + 2
∑

i,j,i′,j ′

pijpi′jpi′j ′pij ′

pipjpi′pj ′
+ 2

∑
i,j

p2
ij

pipj

= 2H1 + 2H2,

tr(D) = (nX1 − 1)(nX2 − 1) = 4,

tr(D2) = tr(D)+tr(Z) = (nX1 −1)(nX2 −1)+2
∑
i,j

p2
ij

pipj

−2 = 2+2
∑
i,j

p2
ij

pipj

= 4+2H1,

tr(D3) = tr(D) = (nX1 − 1)(nX2 − 1) = 4,

tr(D4) = (nX1 − 1)(nX2 − 1) − 2 + 2
∑

i,j,i′,j ′

pijpi′jpi′j ′pij ′

pipjpi′pj ′
= 2 + 2

∑
i,j,i′,j ′

pijpi′jpi′j ′pij ′

pipjpi′pj ′

= 4 + 2H2.

Note that e.g. tr(D) = (nX1 − 1)(nX2 − 1) follows from Lemmas 3-5 as it follows from
Lemma 4 that tr(M) = −tr(C) · tr(D) and tr(M) = (nX1 − 1)(nX2 − 1)(nY − 1) and
tr(D) = 1−nY . As trace of square matrix is sum of its eigenvalues from the above equalities
it follows that: ⎧⎪⎪⎨⎪⎪⎩

λ5(D) + λ6(D) + λ7(D) + λ8(D) = 0,

λ2
5(D) + λ2

6(D) + λ2
7(D) + λ2

8(D) = 2H1,

λ3
5(D) + λ3

6(D) + λ3
7(D) + λ3

8(D) = 0,

λ4
5(D) + λ4

6(D) + λ4
7(D) + λ4

8(D) = 2H2.

From the Newton-Girard identities we obtain:∑
5≤i1<i2≤8

λi1(D)λi2(D) = −H1,

∑
5≤i1<i2<i3≤8

λi1(D)λi2(D)λi3(D) = 0,

λ5(D)λ6(D)λ7(D)λ8(D) = 1

2
H 2

1 − 1

2
H2.

This means that λ5(D), λ6(D), λ7(D), λ8(D) are the roots of the polynomial:

Q(x) = x4 − H1x
2 + 1

2
H 2

1 − 1

2
H2. (21)

Note that in view of its definition H1 ≥ 0 and if X1 and X2 are independent then H1 =
H2 = � = 0. From this the lemma follows.
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