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Abstract
Classic chronic diseases progression models are built by gauging the movement from the
disease free state, to the preclinical (asymptomatic) one, in which the disease is there but
has not manifested itself through clinical symptoms, after spending an amount of time the
case then progresses to the symptomatic state. The progression is modelled by assuming
that the time spent in the disease free and the asymptomatic states are random variables fol-
lowing specified distributions. Estimating the parameters of these random variables leads
to better planning of screening programs as well as allowing the correction of the lead time
bias (apparent increase in survival observed purely due to early detection). However, as
classical approaches have shown to be sensitive to the chosen distributions and the under-
lying assumptions, we propose a new approach in which we model disease progression as
a gamma degradation process with random starting point (onset). We derive the probabili-
ties of cases getting detected by screens and minimize the distance between observed and
calculated distributions to get estimates of the parameters of the gamma process, screening
sensitivity, sojourn time and lead time. We investigate the properties of the proposed model
by simulations.

Keywords Disease progression models · Gamma process · Sojourn time · Lead time bias ·
Sensitivity

Mathematics Subject Classification (2010) 60K10 · 62P10 · 62B10

1 Introduction

The natural progression model proposed by Zelen and Feinleib (1969) is a three state model.
Progression starts from being disease free (Sf ), then one moves into the preclinical state
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(Sp), in which one has the disease but it has not yet manifested itself through clinical symp-
toms. The progression ends from our point of view when symptoms appear and one reaches
the clinical state (Sc) (Zelen and Feinleib 1969).

Screening programs are organized aiming for early detection of diseases in hopes of
improving survival. However, early detection automatically means that the survival of cases
that were diagnosed by screens is longer than the survival of cases that were diagnosed by
clinical symptoms (Sc). In Fig. 1 one can see case A (in black) of which the disease was
detected early, and case B (in grey) which was detected after showing symptoms. Although
both cases become onset and are deceased at the same time, case A will appear to have
survived longer simply because its survival is recorded from the first date of diagnosis. This
apparent increase in survival which is observed purely due to early detection is called lead
time bias (Gordis 2008).

The estimation of the sojourn time, which is the amount of time spent in the preclinical
state (Sp) allows correcting the lead time bias as well as the evaluation of existing programs
and optimizing future ones. Sojourn time thus governs the movement between Sp and Sc.
For gauging the movement between Sf and Sp , we define the preclinical intensity as the
probability of moving from Sf into Sp during (t + dt).

The classical approach for modelling the process (Wu et al. 2005) is by assuming that
both sojourn time and the preclinical intensity are random variables of which the parameters
are to be estimated. The sensitivity is given a functional form (e.g. logistic form) with some
parameters. Thus one can determine the probability of a case to be detected by a screen or
during an interval between screens by symptoms in terms of the parameters. Subsequently
a likelihood function can be formulated and maximized in order to get parameter estimates,
see e.g. Hijazy and Zempléni (2020).

However, there is a lot of discrepancy between results in the literature, for instance an
entry-exit model into and out of Sp is used by Duffy et al. (1995), who applied their model to
the Swedish two-county study of breast cancer, the resulting estimate for the mean sojourn
time is 2.3 years. On the other hand, Weedon-Fekjaer et al. (2005) obtained their estimates
through weighted non-linear least-square regression using a three step Markov chain model,
applying their method to the Norwegian Breast Cancer Screening Program (NBCSP), they
estimated the mean sojourn time to be 6.1 years for those aged between [50,59] and 7.9
years for those between [60,69]. These differences are most likely caused by the underlying
assumptions while building the model, as these can have a crucial effect on the estimates.
To deal with this discrepancy, more information has to be incorporated into such models.
Namely, we chose to include a measure of sickness or degradation. The measure of sickness
on diagnosis should provide some information about the preclinical time, e.g. in breast

Fig. 1 Apparent increase in survival due to early detection
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cancer, a case detected with a large tumor is likely to have been preclinical for a long time.
In other words, integrating the tumor size at diagnosis into the model forms an additional
constraint and deals with the discrepancies between the results. Nonetheless, in order to
incorporate tumor size into the model, one has to specify the rate of growth.

Very early results by Collins et al. (1956) and Schwartz (1961) proposed simple linear
exponential growth, introducing the notion of doubling time, that is the time needed for a
tumor to double its size. Using an exponential growth is still by far the most popular in
the literature. However, Laird (1964) found that exponential growth of tumors is realistic
only in cases where tumors were observed for relatively brief periods. Moreover, when
tumor growth was followed for a sufficiently extensive period of time, the results showed
that nearly all tumors grow more and more slowly as the tumor got larger, opposing the
constant specific growth rate that would be expected for simple exponential growth. Norton
(1988) suggested a Gompertz function in which successive doublings occur at increasingly
longer intervals. Figure 2 shows the decelerating rate of Gompertzian growth beside an
exponentially growing tumor of constant rate.

Speer et al. (1984) proposed modelling by a more generalized approach using the Gom-
pertzian kinetics. They included the noisiness in the growth process, i.e. they assumed that
from time to time, in a random fashion, a spontaneous change occurs in the growth rate.

Although it seems that there is no general consensus about the shape of tumor growth,
it looks like a logistic or a Gompertz growth shape is more likely than an exponential one.
Besides, it seems that the growth process has some randomness and the growth rate is not
constant. These properties led us to use the gamma process, since the expected value of the
gamma process is given by the product of the shape and the scale. We used the Gompertz
function as the shape of a gamma process as it was proposed by Norton (1988). As a result,
in our model, tumors grow in gamma distributed increments with an expected Gompertz
growth (see Fig. 3).

Since its introduction by Abdel-Hameed (1975) the gamma process has been extensively
used in the literature to describe the stochastic and monotone degradation accumulating over
time. The gamma process is very tractable and has nice properties, besides, the process is
flexible in the sense that multiple functional forms of the shape can be easily adapted. This
enabled us to establish the distributions of detected tumor sizes on screen, which in turn
allows the use of classical estimation methods.

The paper is organized as follows: in Section 2 we lay the setup of the model, derive the
distributions of the sojourn time, lead time and the distributions on screens. In Section 3
we apply the model on simulated data and show the results. In Section 4 we state some
concluding remarks, possible extensions of the model as well as its limitations.
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Fig. 2 Gompertizian and exponential growths and rates of growth (grey)
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Fig. 3 Overview of the model for m1 = 5, m2 = 0.2, β = 2, μ = 3.86 s = 0.293, λ = 8, ξ = 0.25,
b0 = −2.5 and b1 = 3.5 with 3 screens, the increments of the gamma process were simulated on monthly
intervals. The random threshold as well as the size dependent sensitivity can be observed

2 Model

Gamma processes have been identified as the main way to model degradation phenomena.
A non-stationary gamma process can model degradation when there is some temporal vari-
ability in the degradation phenomenon. For a shape parameter η(t) (time dependent) and a
scale parameter β, the marginal distribution of a non-stationary gamma process Yt at time t

assuming that the process starts from 0 at t = 0 is the gamma distribution, namely:

fYt (y) = 1

Γ (η(t))βη(t)
yη(t)−1 exp(−y/β) , y > 0.

where η(t) is a non-negative, monotone increasing function for t ≥ 0 and η(0) = 0. Recall
that one says that (Yt )t≥0 is a non-stationary gamma process if:

– The increments of the gamma process in the interval (t, t + h) denoted by ΔY(t, h) =
Yt+h −Yt , t > 0, h > 0 are independent random variables over disjoint time intervals.

– Each increment ΔY(t, h) follows a gamma distribution with constant scale parameter
and time-varying shape parameter Δη(t, h) = η(t + h) − η(t) for all t and h. The
density of the increments is given by:

fΔY(t,h)(y) = 1

Γ (Δη(t, h))βΔη(t,h)
yΔη(t,h)−1 exp(−y/β), y > 0. (1)

Now suppose that the tumor growth is a gamma process Yt with a time dependent shape
parameter η(t) = m1(1− exp(−m2t)) (Norton 1988) and a constant scale parameter β. For
a tumor becoming onset at age tp > 0 with size 0, denote by X(tp, tp, t1) = Yt1−tp , t1 ≥ tp
the tumor size at age t1. Similarly, let X(tp, t1, t2) = Yt2−tp − Yt1−tp , t2 ≥ t1 ≥ tp denote
the increments from age t1 till t2 for a tumor becoming onset at tp . Then, for a given tp the
density of X(tp, t1, t2) is given by fX(tp,t1,t2)(x) = fΔY(t1−tp,t2−t1)(x).

As the exact onset of the disease is unknown, the preclinical intensity is assumed to be
a random variable independent of the tumor growth. The distribution is chosen to be log-
normal LN(μ, s2) sub-density, meaning that it is the density multiplied by the lifetime risk,
as not everyone in the population is affected by the disease. The choice of the lognormal
distribution is based on the results of Lee and Zelen (1998) who found that the transition
probability of breast cancer to the preclinical state is right skewed with a heavy tail, the log-
normal distribution has similar properties. Denote by tp the age in which the case moves
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into Sp, and by r the life time risk of breast cancer, the density of the preclinical intensity is
then given by:

wTp(tp) = r

tps
√
2π

exp

(
− ln(tp − μ)2

2s2

)
, tp > 0.

Now consider a breast cancer screening program consisting of K screens with fixed
inter-screening time (time between two consecutive screens) Δ, suppose that the first screen
takes place when a patient is aged t0, Denote by τi = t0 + (i − 1)Δ the time of the ith

screen. Moreover, assume that the sensitivity of the screen has a logistic form depending on
the tumor size. This is motivated by the results of Michaelson et al. (2003) who determined
estimates of the sizes at which breast cancers become detectable on mammographic and
clinical grounds, showing that smaller tumors are very hard to detect, other factors include
the density of the breast, age and others. Keeping our approach simple, we will only use the
tumor size, namely, let us define the sensitivity as:

Λ(x) = 1

1 + exp(−b0 − b1x)
, x ≥ 0.

where b0 and b1 are parameters to be estimated and x is the tumor size. Since the logistic
function takes values between 0 and 1 and is monotonically increasing in x, it is suitable for
modelling sensitivity. The parameter b0 determines the location of the curve while b1 is the
growth rate or the steepness of the curve.

Furthermore, suppose that progression into the clinical state Sc happens when the tumor
size reaches a critical size denoted by C independent from the growth process, in other
words, the patient’s tumor size has reached a level in which it is noticed or causes symptoms.
Assume that C is a gamma distributed random variable with shape λ and scale ξ , where
λ and ξ are parameters to be estimated. Figure 3 shows some paths of the gamma process
for the parameter values which will be used throughout the paper (Scenario 1). A tumor
becomes onset at a random time tp triggering the growth of a tumor, which then grows as a
gamma process till it is either detected by a screen or by reaching its critical threshold (show-
ing symptoms). The aim is to establish the distribution of the size of detected tumors on
screens and then use suitable estimation methods for the parameter governing the process.

2.1 Sojourn Time

As we defined the sojourn time as the amount of time spent in the preclinical state Sp, it is
then the amount of time before hitting the critical tumor size C. Denote by Xt the marginal
distribution of the tumor size t time after the onset (X(tp, tp, t + tp)) and consider the
stopping time TC = inf{t ≥ 0; Xt ≥ C}, which is just the sojourn time with cdf FTC

. Note
that for some parametrizations, there could be a positive probability that TC is infinite. In
these cases, the distribution of TC will not be a proper one and consequently the expected
value and the variance of Tc are undefined. Nonetheless, after the parameters are estimated,
one may truncate the distribution to get finite estimates of the mean and variance of cases
with finite sojourn time as shown in Section 2.3. The cdf of the sojourn time may be derived
using the law of total probability, namely:

FTC
(t) = 1 − P(TC ≥ t) = 1 −

∫ ∞

0
P(TC ≥ t |C = x) · fC(x)dx.
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and as the process is increasing, P(Tc ≥ t |C = x) = P(Xt < x). When C is gamma
distributed, a closed form for the cdf was derived by Paroissin and Salami (2014):

FTC
(t) = Γ (ηt + λ)

Γ (λ + 1)Γ (ηt )

(
1 + β

ξ

)−ηt
(
1 + ξ

β

)−λ

2F1

(
1, ηt + λ, λ + 1,

β

ξ + β

)
.

where 2F1 is the generalized hypergeometric function of order (2,1) (Gradshteyn and
Ryzhik 1965), note that pFq is given by:

pFq(a1, · · · , ap; b1, · · · , bq; z) =
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

zk

k! .

where (a)k is the Pochammer symbol defined as (a)k = Γ (a + k)/Γ (k). Assuming that η

is differentiable, then the derivative of FTC
is given by:

fTC
(t) = η′

t

Γ (ηt + λ)

Γ (λ + 1)Γ (ηt )

(
β

β + ξ

)λ (
ξ

β + ξ

)ηt
[
(ψ(ηt + λ) − ψ(ηt )

− log

(
β + ξ

ξ

)
2F1

(
1, η + λ, λ + 1,

β

ξ + β

)

+ β

ξ + β

1

λ + 1
F

2:2,1
2:1,0

(
ηt+λ+1,2:1,ηt ;1
2,λ+2:ηt+1;−;

β

β + ξ
,

β

β + ξ

)]
.

where ψ is the digamma function and F
2:2,1
2:1,0 is the Kampé de Fériet function (Ancarani and

Gasaneo 2009).

2.2 Distribution of the Tumor Sizes on Screens

Next, the distribution of screened cases has to be established. Note that we will be dealing
with subdensities, since not all cases will move to the preclincal state and not all preclinical
cases are detected. In other words, we will be establishing the subdensity of the sizes of
detected tumors on screens. That being said, we also need to consider that an individual
participating in screen i means that the individual has not shown symptoms yet. This means
that the subdensity is derived under the condition that the individual did not hit the critical
threshold yet. Starting with the first screen, the subdensity is built up from those who have
progressed to the preclinical state Sp before τ1, did not move into the clinical state before
τ1, and were screened positively.

Since the random threshold, the onset, and the process are assumed independent, for
a given preclinical age tp the conditional subdensity of screened tumor sizes on the first
screen is obtained by the density of the increments in (tp, τ ) weighted by the sensitivity
Λ(x) as it was screened positively and by the probability of not hitting the threshold before
τ1. Consequently, the conditional subdensity is then given by:

fτ1|tp (x) = fX(tp,tp,τ1)(x) · Λ(x) · P(x < C). (2)

The full subdensity is derived by applying the law of total probability to Eq. 2, however,
as the participants in screen τ1 have not yet become clinical, the subdensity needs to be
adjusted by the probability of a case not becoming clinical before τ1, therefore we have:

fτ1(x) = Λ(x) · P(x < C) ·
∫ τ1
0 w(tp) · fX(tp,tp,τ1)(x) dtp

1 − ∫ τ1
0 w(tp)FTC

(τ1 − tp) dtp
. (3)

The subdensity of screened tumor sizes on the second screen is derived in a similar fashion,
though we need to consider two parts of the subdensity separately. The first part corresponds
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to those who have moved into Sp during (τ1, τ2) and the second is for those who moved to
Sp before τ1. Denote by fτj ,(τi ,τi+1) the contribution of cases developing between (τi , τi+1)

to the subdensity on τj . Starting with the first part of the the subdensity fτ2,(τ1,τ2), that is
built from cases becoming preclinical between τ1 and τ2, not becoming clinical before τ2
and then screened positively:

fτ2,(τ1,τ2)(x) = Λ(x) · P(x < C) ·
∫ τ2
τ1

w(tp) · fX(tp,tp,τ2)(x) dtp

1 − ∫ τ2
τ1

w(tp)FTC
(τ2 − tp) dtp

.

The second part fτ2,(0,τ1) corresponds to those who have moved to Sp before τ1, their
disease was not detected by the first screen and stayed in the preclinical state till τ2 when
they were finally screened positively. Therefore:

fτ2,(0,τ1)(x) = P(x < C) · Λ(x) ·
∫ τ1

0

∫ x

0
w(tp) · fX(tp,tp,τ1)(x1) · (1 − Λ(x1))

fX(tp,τ1,τ2)(x − x1) · dx1 dtp · 1

1 − ∫ τ1
0 w(tp)FTC

(τ2 − tp) dtp
.

As a result, the subdensity of screened tumor sizes on the second screen is

fτ2(x) = fτ2,(0,τ1)(x) + fτ2,(τ1,τ2)(x).

In general, the subdensity on screen i can be derived following the same logic, dividing
the time-line into disjoint intervals (0, τ1), (τ1, τ2), · · · , (τi−1, τi). Thus, it is given by the
sum of the contributions. Namely:

fτi
(x) = fτi ,(0,τ1)(x) +

∑
2≤j≤i

fτi ,(τj−1,τj )(x),

where fτi ,(τj−1,τj )(x) is given by:

fτi ,(τj−1,τj )(x) =
∫ τj

τj−1

∫ x

0

∫ x

xj

· · ·
∫ x

xi−1

[
w(tp)fX(tp,tp,τj )(xj ) · (1 − Λ(xj ))·

fX(tp,τj ,τj+1)(xj+1 − xj ) · (1 − Λ(xj+1)) · · ·
fX(tp,τi−1,τi )(x − xi−1) ·
· dxi−1 · · · dxj+1 dxj dtp

] · Λ(x) · P(x < C)

1 − ∫ τj

τj−1
w(tp)FTC

(τi − tp) dtp
. (4)

Note that the distribution of interval cases is derived in a similar manner. Interval cases are
defined as those who progress into Sc between two screens, namely, these are ones who
reach the critical threshold between screens (see Fig. 3). However, we chose not use them
in the current model as data between screens is not always available.

2.3 Estimation of Parameters

Under the current setup, the parameters to be estimated are those for the sensitivity (b0
and b1), those for the preclinical intensity (μ and s), the parameters controlling the gamma
process (m1, m2 and β) and the random threshold parameters λ and ξ .

However, as the integrals in expression (4) do not have a closed form, numerical integra-
tion must be used. But as multidimensional numerical integration is slow and calculating the
full likelihood means computing these integrals for all the sample elements and parameters,
that would not be computationally feasible. Thus, we suggest using the so called minimal
divergence estimators instead. These estimators are based on dividing the sample space
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into intervals and minimizing the divergence between observed and expected distributions,
therefore limiting the number of integrals that need to be computed.

From a theoretical point of view, if we have a set of observations X , grouping them into
{A1, · · ·AM } defines a discrete statistical model in which the expected probabilities of Ai

are denoted by qi(θ) = Pθ(Ai) for i = 1 · · ·M and let p̂i = ni/n be the relative frequency
of Ai , i = 1 · · ·M . For fixed (n1, · · · , nM) the likelihood is:

Pθ (N1 = n1, · · · , NM = nM) = n!
n1! · · · nM !q1(θ)n1 · · · qM(θ)nM .

Therefore, the log-likelihood can be written as:

logPθ(N1 = n1, · · · , NM = nM) = log
n!

n1! · · · nM ! + n

M∑
i=1

ni

n
log(qi)

= log
n!

n1! · · · nM ! + n

M∑
i=1

(p̂i log

(
qi

p̂i

)
+ p̂i log(p̂i))

= −nDK-L(P̂ ,Q(θ)) + l. (5)

where P̂ = (p̂1, · · · , p̂M), Q(θ) = (q1(θ), · · · qM(θ)), DK-L is the Kullback-Leibler diver-

gence (Kullback and Leibler 1951) DKullback(P̂ , Q(θ)) = −∑M
i=1 p̂i log

(
qi

p̂i

)
and l is a

constant in θ . Then to estimate θ by the discrete model maximum-likelihood estimator is
equivalent to minimize the Kullback-Leibler divergence.

However, the Kullback-Leibler divergence is not the unique divergence measure, one can
choose θ̂ as the estimator which solves the following:

D(P̂ ,Q(θ̂)) = inf
θ∈Θ

D(P̂ ,Q(θ)).

With D being a divergence measure for our discrete model. Some of the other divergence
measures include the chi-squared divergence, Hellinger divergence , Burbea– Rao diver-
gence (Burbea and Rao 1982) and several others. Minimum divergence estimators are quite
popular in the literature, especially when the likelihood has a complex form. Asymptotic
properties of these estimators and comparisons to the maximum likelihood estimator are
also studied in the literature, see Broniatowski (2014), Jimenz and Shao (2001), and many
others. We decided to use the χ2 measure as it is well known and easy to interpret. Recall
that the χ2 divergence is defined as:

χ2(P̂ , Q(θ)) = n

M∑
i=1

(p̂i(θ) − qi(θ))2

qi(θ)
.

Translating this to our setup, binning the observations on screens into intervals leads to
a similar discrete model. One way to carry this out is by grouping the observations on each
screen into intervals with approximately equal frequencies. Formally, let us introduce some
notations: denote by M the chosen number of intervals, denote the resulting intervals on
screen j by Yi,j i = 1 · · ·M , j = 1 · · ·K . Let Nj the number of participants in the j th

screen and denote by p̂i,j = nYi,j
/Nj the observed relative frequency of Yi,j . Introduce

qi,j (θ) as the probability of having a tumor size in Yi,j on the j th screen i.e. qi,j (θ) =∫
Yi,j

fτj
(x)dx. Furthermore, denote by Y0,j the number of cases who participated in screen
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j but no tumor was detected (q0,j (θ) = 1−∑M
i=1 qi,j (θ)). The divergence to be minimized

is then:

d2 =
K∑

j=1

Nj

M∑
i=0

(p̂i,j (θ) − qi,j (θ))2

qi,j (θ)
. (6)

Note that if the model is to be applied to a data set with different ages at program entry,
one can extend (6) by summing over the ages at program start t0. On the other hand, if data
about interval cases is available, one can further extend the model by including the distance
between expected and observed interval cases, therefore using all the available data.

Having the parameters estimated, the main aim is to calculate the sojourn time distribu-
tion, however, under some parametrizations of the process, there is a positive probability
that the tumor will never reach the critical threshold C. In other words, the tumor would
never become symptomatic. As a result, the expected value of the sojourn time will be math-
ematically infinite. In fact, a serious concern around screening programs is that they may
cause overdiagnosis. Overdiagnosis is the diagnosis of a medical condition that would never
have caused any symptoms or problems. Reported estimates of breast cancer overdiagnosis
range from 0% to 54% (Elmore and Fletcher 2012).

Therefore, after the parameters are estimated, one can compute the probability of never
showing symptoms by P(NS) = 1 − FTC

(∞). If this probability is positive, then one has
to truncate the distribution of the sojourn time to get estimates for the mean and variance.
The truncation is done at the maximum realistic value of the sojourn time (Q). The adjusted
distribution is then given by:

F ′
TC

(t) =
{

FTC
(t)

FTC
(Q)

if t < Q

1 if t ≥ Q
(7)

The expected value and the variance of the sojourn time are then directly obtainable even if η
is not differentiable using E[TC] = ∫ ∞

0 (1−F ′
TC

(t))dt and E(T 2
C) = 2

∫ ∞
0 t (1−F ′

TC
(t)) dt .

Note that the truncation is done to get finite expected values and is not incorporated into the
model.

2.4 Lead Time

Lead time bias in the current framework is the amount of time that a screened case would
have needed to show symptoms. Specifically, it is the unobservable future time needed to
exceed C. From a reliability point of view, lead time is the remaining preclinical lifetime
till the degradation reaches C. For a given threshold C = c, onset tp and size at detection
xτ . The conditional survivor function of the lead time R is given by the probability that the
tumor size will not exceed c in time tr after the screen τ as:

Rτ (tr |xτ , tp, c ) = P {X(tp, τ, τ + tr ) ≤ c − xτ }.

To release the condition on tp , we need to get the the conditional density of tp|Xτ = xτ

denoted by w′(tp|xτ ) which is obtainable by Bayes law. Namely:

w′(tp|xτ ) = w(tp)fX(tp,tp,τ )(xτ )∫ τ

0 w(y)fX(y,y,τ )(xτ )dy
(0 < tp < τ).
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Note that a detected tumor of size xτ means that the threshold C must be larger than xτ .
Taking all of that into account gives:

R(tr |xτ ) =
∫ τ

0

∫ ∞
xτ

w′(tp|xτ )P {X(tp, τ, τ + tr ) ≤ c − xτ }fC(c)dcdtp

P (C > xτ )
.

As the lead time is directly related to the sojourn time, a similar truncation to (7) is needed
to get finite values. In other words, the lead time will be computed given that detected cases
are not overdiagnosed. A favorable outcome of our approach is that one is able to estimate
the expected value and the variance of the lead time based on the tumor size at detection xτ .
Lead time bias is corrected by deducting the expected lead time from the overall survival of
a screened patient.

3 Applications

In order to check the performance of the model, simulations were carried out by discretizing
the time-line into h-sized intervals. Movement into the preclinical state is simulated by a
Bernoulli random variable with probability ph = ∫ th

th−1
w(tp)dtp where th−1 and th are the

boundaries for the h-sized interval. When the Bernoulli (ph) gives a success, the gamma
process is then simulated starting from (th−1 + th)/2. A patient in a screen if it did not reach
the critical threshold C or if it is still disease free. Note that the threshold is simulated by
a gamma random variable and the screens are simulated using a Bernoulli random variable
with probability Λ(x). The simulator is initiated under the assumption that all cases were
disease free B years before the first screen (occurring when cases are 50 years old), where
B is the maximum feasible value of the sojourn time. Patients which show symptoms before
the first screen are discarded. The simulator is run until the desired number of participants
on the first screen N is reached.

The preclinical intensity parameters used in simulations are u = 3.86 and s = 0.293,
these values result in an average preclinical age of 50 and a standard deviation of 15, the
risk r is set to one for the sake of getting more preclinical cases. Parameters for the critical
threshold are defined as λ = 8 and ξ = 0.25 resulting in an average critical size of 2 cm
and a variance of 0.5.

That being said, the first aim is to study the performance of the model for different
number of participants combined with different number of intervals (M) on screens. For
that purpose, we simulated Scenario 1, the defined process parameters in this scenario are:
m1 = 5, m2 = 0.2 and β = 2 resulting in a mean sojourn time of 2.15 years (truncated
at 20 years). The defined values for sensitivity are b0 = −2.5 and b1 = 3.5. We decided
to simulate 3 screening programs for a single age group (t0 = 50) with different number
of participants: N = 10000, N = 50000 and N = 200000. 50 datasets were generated for
each of the programs, the model was run for M = 5, 10, 20, 30 and 40 on each dataset.

The second aim is to check the performance of the model under different setups, for that
purpose, we simulated Scenario 2 with N = 50000. This scenario was simulated to mimic
extremely aggressive growth with m1 = 10, m2 = 1 and β = 2.5 resulting in an adjusted
mean sojourn time of 0.144 years (truncated at 2 years). The defined sensitivity parameters
are b0 = 1.5 and b1 = 3 leading to a larger probability of detection for smaller tumors
combined with a steeper increase in the sensitivity as tumor size increases. The model is
run on each dataset (N=50000) for the different values of M and the results are presented in
Table 2. Plots of the sojourn time cdf and screening sensitivity are shown in Fig. 5.
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From a practical point of view, the critical threshold parameters λ and ξ are usually
known. Estimates of these parameters can be directly obtained by applying maximum like-
lihood to symptomatic cases who never participated in a screen. Likewise, the parameters
controlling the preclinical intensity for breast cancer are also given in terms of age-specific
incidence rates (see Lee and Zelen (1998)). Employing this, we decided to fix preclini-
cal intensity and critical threshold parameters, leaving only the parameters controlling the
process and the sensitivity to be estimated θ = (m1,m2, β, b0, b1). We binned the mea-
surements on screens into M = 5, 10, 20, 30, 40 intervals with almost equal frequencies.
The numerical integration is implemented using the statistical software R by the function
suave from the package cubature, suave implements a Monte Carlo algorithm for multidi-
mensional numerical integration by importance sampling combined with a globally adaptive
subdivision strategy (Hahn 2005). The minimization of the distance is done using the func-
tion optim. The mean of the estimates resulting from the 50 datasets and their standard
deviations are displayed in Table 1.

Starting with the first scenario, the tumor size densities on the first and second screens
for N = 10000 and N = 200000 are displayed in Fig. 4. Note that the number of detected
cases on the first screen is 8516 in the large program and 417 for the small one. Whereas on
the second screen the number of detected cases is 3731 and 186 respectively. It is noticed
that the resulting densities have many irregularities, additionally we could observe that the
tumor size on the second screen is denser around its peak. This is natural since larger cases
either were detected on the first screen or reached the threshold during the inter-screening

Table 1 Results for different sample sizes at first screen (N ) and number of intervals (M) for Scenario 1:
m1 = 5,m2 = 0.2, β = 2, b0 = −2.5, b1 = 3.5

Parameter Actual value Mean SD Mean SD Mean SD Mean SD Mean SD

M = 5 M = 10 M = 20 M = 30 M = 40

N=200000

m1 5 4.977 0.476 4.965 0.444 5.025 0.38 5.031 0.29 5.019 0.289

m2 0.2 0.197 0.014 0.202 0.014 0.199 0.009 0.2 0.011 0.199 0.015

β 2 2.052 0.554 1.997 0.3 1.998 0.228 1.999 0.202 2.014 0.216

b0 −2.5 −2.347 0.738 −2.481 0.323 −2.49 0.259 −2.515 0.162 −2.484 0.151

b1 3.5 3.596 0.752 3.514 0.159 3.54 0.181 3.485 0.143 3.463 0.142

N=50000

m1 5 5.136 0.942 5.093 0.616 5.078 0.519 5.089 0.541 5.009 0.49

m2 0.2 0.21 0.048 0.196 0.044 0.198 0.035 0.199 0.028 0.197 0.027

β 2 2.124 0.683 2.08 0.539 2.093 0.433 2.024 0.486 2.01 0.506

b0 −2.5 −2.482 0.915 −2.427 0.589 −2.406 0.511 −2.58 0.352 −2.414 0.391

b1 3.5 3.334 0.601 3.449 0.624 3.366 0.372 3.439 0.271 3.491 0.238

N=10000

m1 5 5.058 1.867 5.08 1.637 4.936 1.18 5.051 0.923 5.019 0.872

m2 0.2 0.195 0.07 0.206 0.067 0.202 0.055 0.201 0.06 0.212 0.056

β 2 1.811 0.938 1.93 0.698 1.978 0.55 2.062 0.472 1.92 0.513

b0 −2.5 −2.581 0.985 −2.501 0.835 −2.244 0.685 −2.099 0.741 −2.51 0.744

b1 3.5 −3.456 0.672 −3.64 0.632 −3.474 0.551 −3.561 0.443 3.436 0.415
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Fig. 4 Density of the tumor size on the first and the second screen for scenario 1: m1 = 5,m2 = 0.2, β =
2, b0 = −2.5, b1 = 3.5

interval. Nonetheless, even the small sample seems to be very informative, although some
irregularities in the density are noticed.

From the first block of Table 1 where N = 200000, it is noticed that the model performs
really well and is nearly unbiased even for M = 5. We observed a decrease in the standard
deviations with the increase of M , however there is no significant decrease beyond M=30.
Moving to the second block, the estimates are good although with higher standard devia-
tions. Additionally, we still observe an increase in the precision with the increase of M . In
the third block, where N = 10000 it is noticed that the standard deviations are much larger.
This is caused by the irregularities in the densities for the small sample size, nonetheless,
the model still gives acceptable estimates.

Furthermore, we have noticed that there is a strong correlation between the elements of θ ,
the strongest positive correlation was found between b0 and m2 (its value for N = 200000
and M = 40 was 0.753). Recall that m2 controls the process rate to reach m1, and b0
controls the location of the curve, in other words, b0 adjusts the weight of the process on a
screen. Decreasing b0 means less weight on smaller tumors, the model adjusts to this by a
smaller rate m2 and vice versa. The strongest negative correlation was found to be between
the scale of the process β and m1 (for N = 200000 and M = 40 it was -0.724), both of
which control the expected value and the variance of the process, so to preserve the balance
for decreasing values of β the values for m1 are increased and vice versa.

Moving on to the results of Scenario 2 displayed in Table 2, it seems that there is a small
bias combined with large standard deviations. We observed a large variation in sensitivity
estimates (b0 and b1). This is likely due to the sharp decrease of the number of screened

Table 2 Scenario 2 results for N = 50000 and number of intervals M

M = 5 M = 10 M = 20 M = 30 M = 40

Parameter Actual value Mean SD Mean SD Mean SD Mean SD Mean SD

m1 10 9.77 1.706 10.153 0.775 9.872 0.587 9.978 0.714 9.828 0.725

m2 1 0.996 0.302 1.029 0.246 1.035 0.24 1.016 0.228 1.011 0.207

β 2.5 2.631 1.015 2.61 0.69 2.533 0.699 2.412 0.586 2.381 0.525

b0 −1.5 −1.613 1.264 −1.525 1.196 −1.453 1.039 −1.63 0.813 −1.692 0.803

b1 3 2.847 1.238 2.945 0.921 2.773 0.746 3.108 0.955 2.943 0.979
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Fig. 5 Plots for the sojourn time (top), sensitivity (bottom) for N = 50000 and M = 20 for the two scenarios

cases in this scenario. In fact, under a very short sojourn time, the chances for a case to reach
a screen before becoming symptomatic are quite slim. As a result, only around 208 cases
are detected on the first screen. Nonetheless, the resulting average sojourn time distribution
seen in the top right part of Fig. 5 is very close to the actual one. The same is true for the
sensitivity, however it is noticed that on average, the estimated sensitivity is slightly higher
than the actual one.

After estimating the parameters, we calculated the lead time for cases detected on the
first screen (aged 50), and had a tumor of size 1 cm on detection. After truncating the lead
time distribution, the resulting expected lead time bias is 1.849 years for scenario 1 (and
0.165 years for scenario 2). This shows the magnitude of the bias caused by early detection,
as a screened case with a tumor of size 1 cm would appear to have survived 1.849 years
more than a symptomatic with the same onset and date of death. The implications of this
are very serious, as any administered treatments after screening might falsely appear to be
effective due to the prolonged survival. Furthermore, it is clearly beneficial to link lead time
bias with the tumor size on detection, as the tumor size gives an indication for the duration
of which the tumor size was asymptomatic, therefore giving information of how much more
time it needs to show symptoms.

4 Concluding Remarks

Although the proposed model is somewhat computationally expensive, it proves to be an
accurate and a powerful tool to use with degradation processes triggered at a random onset.
The model is very flexible, as one is free to choose e.g the form of η. There is definitely
room for further research, the extended gamma process can also be used (Guida et al. 2012)
if the mean over variance ratio is not constant. Moreover, it is also possible to use the
transformed gamma process (Giorgio et al. 2018) if damage accumulates gradually over
time in a sequence of tiny increments in which the degradation increments over disjoint time
intervals are not independent.

One more advantage of using the gamma process-based approach is that with some mod-
ifications, one is able to incorporate a process with random covariates as in (Lawless and
Crowder 2004). For instance, if one wishes to investigate the effect of age on tumor growth,
adding a covariate corresponding to age in the shape of the process should do the trick.

On the other hand, one main limitation for focusing on tumor size as a degradation mea-
sure is that the approach is limited to study solid cancers. Besides, some types of cancer are
expressed through multiple tumors and are not restricted to a single primary one. However,

253



Methodology and Computing in Applied Probability (2021) 23:241–255

it might be possible to find a proper measure of degradation on diagnosis in case of other
degenerative diseases.
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