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Abstract
In the failure dependent proportional hazard model, it is assumed that identical components
work jointly in a system. At the moments of consecutive component failures the hazard rates
of still operating components can change abruptly due to a change of the load acting on each
component. The modification of the hazard rate consists in multiplying the original rate by a
positive constant factor. Under the knowledge of the system structure and parameters of the
failure dependent proportional hazard model, we determine tight lower and upper bounds on
the expected differences between the system and component lifetimes, measured in various
scale units based on the central absolute moments of the component lifetime. The results
are specified for the systems with unimodal Samaniego signatures.

Keywords Coherent system · Failure dependent proportional hazard model ·
Generalized order statistics · Samaniego signature · Sharp bound

Mathematics Subject Classification (2010) Primary: 62N05 · Secondary: 60E15 · 62G30

� Mariusz Bieniek
mariusz.bieniek@umcs.lublin.pl

Marco Burkschat
marco.burkschat@rwth-aachen.de

Tomasz Rychlik
trychlik@impan.pl

1 Institute of Mathematics, Maria Curie Skłodowska University, Pl. Marii Curie Skłodowskiej 1,
20-031 Lublin, Poland

2 Institute of Statistics, RWTH Aachen University, D-52056 Aachen, Germany
3 Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00656 Warsaw, Poland
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1 Introduction

We consider an arbitrarily fixed coherent system composed of n elements with a structure
function ϕ : {0, 1}n �→ {0, 1}. It has the Samaniego structural signature s = (s1, . . . , sn) ∈
[0, 1]n whose coordinates are determined as follows

si = 1
(

n
i−1

)
∑

∑n
j=1 xj =n−i+1

ϕ(x1, . . . xn) − 1
(
n
i

)
∑

∑n
j=1 xj =n−i

ϕ(x1, . . . xn), i = 1, . . . , n. (1)

The notion of the signature was introduced in Samaniego (1985), and formula (1) is due to
Boland (2001) (see also Marichal et al. 2011).

We assume that nonnegative random variables T1, . . . , Tn are the lifetimes of the system
components, and their joint distribution satisfies conditions of the failure dependent propor-
tional hazard model (see, e.g., Hollander and Peña 1995; Aki and Hirano 1997; Burkschat
2009; Navarro and Burkschat 2011). It follows that T1, . . . , Tn are exchangeable and the
respective order statistics T1:n, . . . , Tn:n satisfy assumptions of the generalized order statis-
tics model proposed by Kamps (1995a) (see also Kamps 1995b, 2016) with some baseline
distribution function F and a vector of positive parameters γ = (γ1, . . . , γn). Note that we
obtain the same joint distribution of T1:n, . . . , Tn:n if we replace F and γ = (γ1, . . . , γn)

with Fα = 1 − (1 − F)α and γ α = ( γ1
α

, . . . ,
γn

α

)
for some α > 0. For convenience of inter-

pretation we choose the model parameters so that γ1 = n. Then the baseline distribution
function F represents the lifetime distribution of a component which operates under optimal
conditions without outer stress acting on it. The stress that working components undergo
after consecutive failures of other components is described by means of the parameters
γ1, . . . , γn (see, e.g., Kamps 1995a; Cramer and Kamps 2001; Cramer 2016).

The marginal distribution function of consecutive component failure times Tr:n can be
written as Gγ ,r ◦ F , r = 1, . . . , n, where Gγ ,r is the distribution function of the rth gen-
eralized order statistic with the standard uniform baseline distribution. It depends on the
first r coordinates of the parameter vector γ by means of a complicated formula which
strongly depends on the multiplicities of parameter values. Respective expressions can be
found in Cramer and Kamps (2003). Exchangeability of the component lifetimes in the fail-
ure dependent proportional hazard model implies that the common distribution function of
every component is the uniform mixture of the distribution functions of order statistics

H1(t) = 1

n

n∑

r=1

P(Tr:n ≤ t) = 1

n

n∑

r=1

Gγ ,r (F (t)) = G̃γ (F (t)) (2)

(see Rychlik 1993). By the same reason, the distribution function of the system lifetime is
the convex combination of order statistics distribution functions

H(t) =
n∑

r=1

srP(Tr:n ≤ t) =
n∑

r=1

srGγ ,r (F (t)) = Gγ ,s(F (t)), (3)

where the occurring coefficients coincide with the elements of the Samaniego signature
vector (see Navarro et al. 2008, and Marichal et al. 2011). Formula (3) is called Samaniego
representation, because it was first presented in Samaniego (1985) under the restriction to
i.i.d. component lifetimes with a continuous parent distribution.
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The purpose of our paper is to evaluate the expected lifetime of the system ET with
fixed structure ϕ working in given circumstances represented by the parameter vector
γ = (γ1, . . . , γn) when the baseline distribution function F of the component lifetime
is unknown. In the following, we always assume that F and therefore also H1 is non-
degenerate. Moreover, for any distribution function F we denote by F−1 the right-continuos
version of the corresponding quantile function. We compare ET with the mean value of
the single component lifetime μ1 = ET1. The difference is gauged in the scale units
based on central absolute moments of component lifetime σ1(p) = (E|T1 − ET1|p)1/p

of various orders p ≥ 1 under the conditions that they are finite. Moreover, distributions
attaining derived bounds, with a support in the non-negative real numbers, are given. For
the parent distributions with finite support, we also consider the scale measure σ1(∞) =
max{H−1

1 (1)−μ1, μ1 −H−1
1 (0)} being the distance of the mean from the furthest point of

the support. For the comparison of ET with the mean of the underlying distribution func-
tion F in the case of k-out-of-n systems, which reduces to the derivation of bounds for
single generalized order statistics, the reader is referred to Cramer et al. (2002, 2004) and
Goroncy (2014).

The paper is organized as follows. In Section 2 we describe general results. In Section 3,
we deliver more specific evaluations for the systems with unimodal signatures, and present
exemplary numerical evaluation for k-out-of-n systems working under a practically justified
load-sharing regime.

2 Main Results

We observe that every distribution function Gγ ,r is a differentiable, strictly increasing
function on [0, 1] that maps the interval onto itself. The properties are shared by the con-
vex combinations G̃γ and Gγ ,s whose derivatives we denote by g̃γ and gγ ,s, respectively.
Obviously, if gγ ,r denotes the density corresponding to Gγ ,r , then

gγ ,s(u) =
n∑

r=1

srgγ ,r (u) and g̃γ (u) = 1

n

n∑

r=1

gγ ,r (u). (4)

Moreover, the inverses G̃−1
γ and G−1

γ ,s are well-defined functions from [0, 1] onto [0, 1], and

have positive derivatives 1
g̃γ ◦G̃−1

γ

and 1
gγ ,s◦G−1

γ ,s
, respectively.

Theorem 1 Suppose that the system signature s = (s1, . . . , sn), and the parameters of the
failure dependent proportional hazard model γ = (γ1, . . . , γn) are fixed. Let hγ ,s, hγ ,s :
[0, 1] �→ [0, 1] denote the derivatives of the smallest concave majorant and the greatest
convex minorant of Gγ ,s ◦ G̃−1

γ , respectively. The functions are monotone, continuous, and
bounded density functions supported on [0, 1]. Moreover, for every fixed 1 < p < ∞, and
for every distribution function H1 of the component lifetime T1 such that E|T1|p < ∞ we
have

− ∞ < bγ ,s(p) = −
[∫ 1

0

∣∣hγ ,s(x) − hγ ,s(cp)
∣∣

p
p−1 dx

] p−1
p

≤ ET − μ1

σ1(p)
≤ Bγ ,s(p) =

[∫ 1

0

∣
∣∣hγ ,s(x) − hγ ,s(cp)

∣
∣∣

p
p−1

dx

] p−1
p

< +∞, (5)
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where μ1 = ET1 and σ1(p) = (E|T1 − ET1|p)1/p , and cp, cp ∈ (0, 1) are the solutions to
equations

∫ c

0
[hγ ,s(c) − hγ ,s(x)]1/(p−1)dx =

∫ 1

c

[hγ ,s(x) − hγ ,s(c)]1/(p−1)dx,

∫ c

0
[hγ ,s(c) − hγ ,s(x)]1/(p−1)dx =

∫ 1

c

[hγ ,s(x) − hγ ,s(c)]1/(p−1)dx, (6)

respectively. Furthermore, if Gγ ,s(x) > G̃γ (x) (Gγ ,s(x) < G̃γ (x), respectively), for some
0 ≤ x ≤ 1, then the lower (upper, respectively) bound is attained by the distribution
functions H 1 (H 1, respectively) satisfying

H
−1
1 (x) − μ1

σ1(p)
=
∣∣∣
∣∣
hγ ,s(x) − hγ ,s(cp)

−bγ ,s(p)

∣∣∣
∣∣

1/(p−1)

sgn{hγ ,s(cp) − hγ ,s(x)},

provided that

μ1 + σ1(p)

(
hγ ,s(0) − hγ ,s(cp)

−bγ ,s(p)

)1/(p−1)

≥ 0,

and

H−1
1 (x) − μ1

σ1(p)
=
∣∣
∣∣
hγ ,s(x) − hγ ,s(cp)

Bγ ,s(p)

∣∣
∣∣

1/(p−1)

sgn{hγ ,s(x) − hγ ,s(cp)}, (7)

provided that

μ1 − σ1(p)

(
hγ ,s(cp) − hγ ,s(0)

Bγ ,s(p)

)1/(p−1)

≥ 0, (8)

respectively.

Proof The actual component lifetime distribution function under the failure dependent pro-
portional hazard regime has representation (2), where F is the baseline distribution function
of the generalized order statistics model. Accordingly, the expectation and the pth absolute
central moment take on the forms

μ1 = ET1 =
∫ ∞

0
x G̃γ (F (dx)) =

∫ 1

0
F−1(G̃−1

γ (x)) dx, (9)

σ
p

1 (p) = E|T1 − μ1|p =
∫ ∞

0
|x − μ1|pG̃γ (F (dx))

=
∫ 1

0
|F−1(G̃−1

γ (x)) − μ1|pdx, (10)

respectively. By Eq. 3, the expectation of the system lifetime for the system with signature
s can be written as

ET =
∫ ∞

0
x Gγ ,s(G̃

−1
γ (G̃γ (F (dx)))) =

∫ 1

0
F−1(G̃−1

γ (x))Gγ ,s(G̃
−1
γ (dx))

=
∫ 1

0
F−1(G̃−1

γ (x))
gγ ,s(G̃

−1
γ (x))

g̃γ (G̃−1
γ (x))

dx. (11)
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Since
gγ ,s(G̃

−1
γ (x))

g̃γ (G̃−1
γ (x))

is the density function of distribution function Gγ ,s(G̃
−1
γ (x)) supported

on [0, 1], we have clearly

ET1 =
∫ 1

0
μ1

gγ ,s(G̃
−1
γ (x))

g̃γ (G̃−1
γ (x))

dx. (12)

Also, by Eq. 9, for any c ∈ R

∫ 1

0
c[F−1(G̃−1

γ (x)) − μ1] dx = 0. (13)

Combining (11), (12) and (13), we obtain

ET − ET1 =
∫ 1

0
[F−1(G̃−1

γ (x)) − μ1]
[

gγ ,s(G̃
−1
γ (x))

g̃γ (G̃−1
γ (x))

− c

]

dx (14)

for arbitrary real c.
We now use formula (14) for proving the upper bound in Eq. 5 and conditions of its

attainability. Since the first factor in the integral of Eq. 14 is non-decreasing by assumption,
we can write

ET − ET1 ≤
∫ 1

0
[F−1(G̃−1

γ (x)) − μ1]
[
hγ ,s(x) − c

]
dx, (15)

because hγ ,s(x) is the derivative of the greatest convex minorant H γ ,s(x), say, of the

antiderivative Gγ ,s(G̃
−1
γ (x)) of

gγ ,s(G̃
−1
γ (x))

g̃γ (G̃−1
γ (x))

(see, e.g., Moriguti 1953; Rychlik 2001). By

definition and monotonicity of Gγ ,s(G̃
−1
γ (x)), the derivative hγ ,s(x) of the greatest con-

vex minorant is non-decreasing and non-negative. It satisfies
∫ 1

0 hγ ,s(x)dx = H γ ,s(1) −
H γ ,s(0) = Gγ ,s(G̃

−1
γ (1)) − Gγ ,s(G̃

−1
γ (0)) = 1. The greatest convex minorant coincides

with Gγ ,s(G̃
−1
γ (x)) on some subintervals of [0, 1], and is linear on the others, but each lin-

ear part is tangent to Gγ ,s(G̃
−1
γ (x)) at the respective interval end-points. This implies that

the derivative hγ ,s(x) is continuous. We finally check that it is bounded as well. Note that

the original density function
gγ ,s(G̃

−1
γ (x))

g̃γ (G̃−1
γ (x))

is bounded, because by Eq. 4 we have

gγ ,s(x)

g̃γ (x)
≤ n max

1≤r≤n
sr , 0 < x < 1.

The property is shared by hγ ,s(x), because it is equal to
gγ ,s(G̃

−1
γ (x))

g̃γ (G̃−1
γ (x))

on the intervals where

H γ ,s(x) = Gγ ,s(G̃
−1
γ (x)), and to

Gγ ,s(G̃
−1
γ (b)) − Gγ ,s(G̃

−1
γ (a))

b − a
≤ sup

a<x<b

gγ ,s(G̃
−1
γ (x))

g̃γ (G̃−1
γ (x))

on each interval (a, b), say, such that H γ ,s(x) < Gγ ,s(G̃
−1
γ (x)) there.

Observe that the left-hand side of Eq. 6 is continuous in c, and monotonously non-
decreasing from 0 at 0 to a finite value at 1. The right-hand side is continuously
non-increasing from

∫ 1
0 h

1/(p−1)
γ ,s (x)dx < ∞ at c = 0 to 0 at c = 1. Accordingly, there

exists a non-empty, possibly degenerate interval consisting of solutions to Eq. 6. Plugging
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c = hγ ,s(cp) with any cp that solves (6) into (15), and then applying the Hölder inequality
we get

ET − ET1 ≤
(∫ 1

0
|F−1(G̃−1

γ (x)) − μ1|pdx

) 1
p
(∫ 1

0

∣∣∣hγ ,s(x) − hγ ,s(cp)

∣∣∣
p

p−1
dx

) p−1
p

,

(16)
which is equivalent to the upper evaluation in Eq. 5 by Eq. 10.

For some parameters γ and signatures s, it may happen that Gγ ,s(x) ≥ G̃γ (x) and so
Gγ ,s(G̃

−1
γ (x)) ≥ x for all 0 ≤ x ≤ 1. Then H γ ,s(x) = x and hγ ,s(x) = 1 if 0 ≤ x ≤ 1.

Equality (6) is satisfied for any 0 ≤ c ≤ 1, and, in consequence, Bγ ,s(p) = 0 for every
1 < p < ∞. We do not analyze here if these zero bounds are optimal.

Now we check that Eq. 7 with (8) determine the conditions for attainability of the bound
when Gγ ,s(x) < G̃γ (x) for some 0 < x < 1 so that hγ ,s(x) is not a constant func-

tion. The equality in (15) is achieved when H−1
1 (x) = F−1(G̃−1

γ (x)) is constant on every
interval where the greatest convex minorant H γ ,s(x) differs from (i.e., is smaller than) the

antiderivative Gγ ,s(G̃
−1
γ (x)) (see Moriguti 1953; or Rychlik 2001, Lemma 3, p. 34). The

minorant is linear on these intervals, and its derivative hγ ,s(x) is constant there. Relation (7)

guarantees constancy of H−1
1 (x) on these intervals. The equality in the Hölder inequality

(16) holds when H−1
1 (x)−μ1 and

∣∣
∣hγ ,s(x) − hγ ,s(cp)

∣∣
∣
1/(p−1)

sgn{hγ ,s(x)−hγ ,s(cp)} are

proportional with a nonnegative proportionality coefficient α, and here α = σ1(p)

B
1/(p−1)
γ ,s (p)

> 0,

as desired. It remains to show that Eqs. 7 and 8 define the quantile function of a lifetime
distribution with assumed moments. Firstly, H−1

1 is a nondecreasing function by Eq. 7 and
non-negative by Eq. 8. The respective distribution function has the expectation equal to μ1,
when (7) integrates over (0, 1) to 0, which is guaranteed by condition (6). It has the pth
absolute central moment σ1(p) which follows from the equations

∫ 1

0

∣∣∣
∣∣
H−1

1 (x) − μ1

σ1(p)

∣∣∣
∣∣

p

dx =
∫ 1

0

∣
∣∣∣
hγ ,s(x) − hγ ,s(cp)

Bγ ,s(p)

∣
∣∣∣

p/(p−1)

dx = 1.

The proof for the lower bounds is analogous.

For p = 2, relations hγ ,s(c2) = hγ ,s(c2) = 1 hold, and all the formulas of Theorem 1
simplify significantly. In particular, we have

bγ ,s(2) = −
[∫ 1

0
h

2
γ ,s(x)dx − 1

]1/2

,

Bγ ,s(2) =
[∫ 1

0
h2

γ ,s(x)dx − 1

]1/2

. (17)

The extreme cases p = 1 and p = ∞ are treated separately.

Theorem 2 Under the assumptions and notation of Theorem 1, for p = 1 and every
distribution function of component lifetime T1 with finite expectation μ1, we get

bγ ,s(1) = −hγ ,s(0) − hγ ,s(1)

2
≤ ET − μ1

σ1(1)
≤ Bγ ,s(1) = hγ ,s(1) − hγ ,s(0)

2
, (18)

where σ1(1) denotes the mean absolute deviation from the mean of T1.
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If Gγ ,s(x) > G̃γ (x) (Gγ ,s(x) < G̃γ (x), respectively) for some 0 ≤ x ≤ 1, then the

lower (upper, respectively) bound is non-zero and optimal. In particular, when λ(h
−1
γ ,s({0}))

and λ(h
−1
γ ,s({1})) (λ(h−1

γ ,s({0})) and λ(h−1
γ ,s({1})), respectively), with λ denoting the Lebes-

gue measure on the real line, are positive, then the lower (upper) bound is attained by
three-point distribution

P

⎛

⎝T1 = μ1 − σ1(1)

2λ(h
−1
γ ,s({0}))

⎞

⎠ = λ(h
−1
γ ,s({0})),

P (T1 = μ1) = λ(h
−1
γ ,s((0, 1))),

P

⎛

⎝T1 = μ1 + σ1(1)

2λ(h
−1
γ ,s({1}))

⎞

⎠ = λ(h
−1
γ ,s({1})),

when μ1 − σ1(1)

2λ(h
−1
γ ,s({0})) ≥ 0, and

P

(

T1 = μ1 − σ1(1)

2λ(h−1
γ ,s({0}))

)

= λ(h−1
γ ,s({0})),

P (T1 = μ1) = λ(h−1
γ ,s((0, 1))),

P

(

T1 = μ1 + σ1(1)

2λ(h−1
γ ,s({1}))

)

= λ(h−1
γ ,s({1})),

when μ1 − σ1(1)

2λ(h−1
γ ,s({0})) ≥ 0, respectively. If any of these sets has the Lebesgue measure

zero, then the bound is attained in the limit when we shift probability mass ε > 0 to all
corresponding probabilities, and let ε tend to 0.

Observe that in cases when h
−1
γ ,s({0}) and h−1

γ ,s({0}) have Lebesgue measures zero, the
approximations proposed in the last statement of Theorem 2 impose increasing restrictions
σ1(1) ≤ 2μ1ε on the relation between the dispersion and the mean of T1.

Proof We focus on upper bounds, because arguments for deriving lower ones are similar.
Recalling (15), we get

ET − ET1 ≤
∫ 1

0
[F−1(G̃−1

γ (x)) − μ1]
[
hγ ,s(x) − c

]
dx

≤ sup
0≤x≤1

|hγ ,s(x) − c|
∫ 1

0
|F−1(G̃−1

γ (x)) − μ1|dx

= σ1(1) sup
0≤x≤1

|hγ ,s(x) − c| (19)

for every c ∈ R. Since

sup
0≤x≤1

|hγ ,s(x) − c| = sup0≤x≤1 max{hγ ,s(x) − c, c − hγ ,s(x)}
= max{hγ ,s(1) − c, c − hγ ,s(0)},

the supremum is minimal when c = 1
2 [hγ ,s(1) + hγ ,s(0)], and it amounts to 1

2 [hγ ,s(1) −
hγ ,s(0)]. This proves our upper estimate in Eq. 18.
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Determining the attainability conditions, we omit the case when Gγ ,s(x) ≥ G̃γ (x) for
all 0 ≤ x ≤ 1 which leads to Bγ ,s(1) = 0. In the opposite case, we have hγ ,s(0) < hγ ,s(1).
Suppose first that hγ ,s(x) = hγ ,s(0) for some x > 0 and hγ ,s(x) = hγ ,s(1) for some x < 1.

Then we get the equality in the latter inequality of Eq. 19 with c = 1
2 [hγ ,s(1) + hγ ,s(0)] iff

H−1
1 (x) − μ1 = F−1(G̃−1

γ (x)) − μ1

⎧
⎨

⎩

≤ 0, if hγ ,s(x) = hγ ,s(0),

= 0, if hγ ,s(0) < hγ ,s(x) < hγ ,s(1),

≥ 0, if hγ ,s(x) = hγ ,s(1).

For hγ ,s(x) = hγ ,s(0) and hγ ,s(x) = hγ ,s(1) on two non-degenerate intervals, it is possible

that H γ ,s(x) < Gγ ,s(G̃
−1
γ (x)) on their interiors. In order to get the equality in the first

inequality of Eq. 19, we require that H−1
1 is constant there. The respective distribution is

non-degenerate with mean μ1 if the two constants are non-zero. Relations

H−1
1 (x) − μ1 =

⎧
⎨

⎩

−a, if hγ ,s(x) = hγ ,s(0),

0, if hγ ,s(0) < hγ ,s(x) < hγ ,s(1),

b, if hγ ,s(x) = hγ ,s(1),

for some a, b > 0 combined with the moment constraints imply that a = σ1(1)

2λ(h−1
γ ,s({0})) and

b = σ1(1)

2λ(h−1
γ ,s({1})) . The component lifetime is non-negative if μ1 ≥ a.

Suppose now that hγ ,s(x) is strictly increasing in some neighborhoods of 0 and 1. Take
ε > 0 sufficiently small so that the intervals (0, ε) and (1 − ε, 1) are contained in these
neighborhoods. Define distribution functions H1,ε(x) = G̃γ (Fε(x)) such that the respective
quantile functions satisfy

H−1
1,ε (x) − μ1 =

⎧
⎨

⎩

− σ1(1)
2ε

, 0 < x ≤ ε,

0, ε < x ≤ 1 − ε,
σ1(1)

2ε
, 1 − ε ≤ x < 1.

They have common expectation μ1 and mean absolute deviation from the mean σ1(1).
Moreover,

1

σ1(1)

∫ 1

0
[H−1

1,ε (x) − μ1]
[
hγ ,s(x) − hγ ,s(1) + hγ ,s(0)

2

]
dx

= 1

2ε

{∫ ε

0

[
hγ ,s(1) + hγ ,s(0)

2
− hγ ,s(x)

]
dx

+
∫ 1

1−ε

[
hγ ,s(x) − hγ ,s(1) + hγ ,s(0)

2

]
dx

}

→ hγ ,s(1) − hγ ,s(0)

2

as ε → 0, by boundedness and continuity of hγ ,s. The interval (ε, 1 − ε) where each H−1
1,ε

is constant and equal to μ1 contains all the possible subintervals of (0, 1) where hγ ,s is

constant and H γ ,s < Gγ ,s ◦ G̃−1
γ . This implies that for every sufficiently small ε the first

inequality in Eq. 19 becomes equality.
The attainability proof in the cases when hγ ,s is constant on either of the neighborhoods

of 0 and 1, and is strictly increasing on the other is much the same, and therefore we omit it
here.
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Theorem 3 Under the assumptions and notation of Theorem 1, for p = ∞ and all bounded
component lifetime distributions we have

bγ ,s(∞) = −
[

1 − 2H γ ,s

(
1

2

)]
≤ ET − μ1

σ1(∞)
≤ Bγ ,s(∞) = 1 − 2H γ ,s

(
1

2

)
, (20)

where μ1 = ET1 and σ1(∞) = ess sup|T1 − μ1|. If Gγ ,s(x) > G̃γ (x) (Gγ ,s(x) < G̃γ (x),
respectively) for some 0 ≤ x ≤ 1, then the lower (upper, respectively) bound is non-zero
and optimal.

The upper bound is attained by the following discrete distributions. If hγ ,s (0) <

hγ ,s

(
1
2

)
< hγ ,s (1), then the equality in the latter inequality in Eq. 20 holds when

P (T1 = μ1 − σ1(∞)) = λ

({
hγ ,s(x) < hγ ,s

(
1

2

)})
,

P

⎛

⎝T1 = μ1 + σ1(∞)
λ
({

hγ ,s(x) < hγ ,s

(
1
2

)})
− λ

({
hγ ,s(x) > hγ ,s

(
1
2

)})

λ
({

hγ ,s(x) = hγ ,s

(
1
2

)})

⎞

⎠

= λ

({
hγ ,s(x) = hγ ,s

(
1

2

)})
,

P (T1 = μ1 + σ1(∞)) = λ

({
hγ ,s(x) > hγ ,s

(
1

2

)})
(21)

(note that if
{
hγ ,s(x) = hγ ,s

(
1
2

)}
consists only of the single point 1

2 , then the denominator

in the formula describing the middle support point vanishes, but so do the numerator and the

probability value, and this line can be simply dropped). If hγ ,s (0) = hγ ,s

(
1
2

)
< hγ ,s (1),

then the equality holds if

P

⎛

⎝T1 = μ1−σ1(∞)
λ
({

hγ ,s(x) > hγ ,s (0)
})

λ
({

hγ ,s(x) = hγ ,s (0)
})

⎞

⎠ = λ
({

hγ ,s(x) = hγ ,s (0)
})

,

P (T1 = μ1 + σ1(∞)) = λ
({

hγ ,s(x) > hγ ,s (0)
})

. (22)

If hγ ,s (0) < hγ ,s

(
1
2

)
= hγ ,s (1), then the equality is attained when

P (T1 = μ1 − σ1(∞)) = λ
({

hγ ,s(x) < hγ ,s (1)
})

,

P

⎛

⎝T1 = μ1+σ1(∞)
λ
({

hγ ,s(x) < hγ ,s (1)
})

λ
({

hγ ,s(x) = hγ ,s (1)
})

⎞

⎠ = λ
({

hγ ,s(x) = hγ ,s (1)
})

. (23)

The conditions for nonnegativity of component lifetimes T1 defined above are μ1 ≥
σ1(∞)

λ
({

hγ ,s(x)>hγ ,s(0)
})

λ
({

hγ ,s(x)=hγ ,s(0)
}) in case (22), and μ1 ≥ σ1(∞) for Eqs. 21 and 23.

In order to describe the lower bound attainability conditions, it suffices to replace hγ ,s

by hγ ,s, and reverse the inequalities between them in the previous paragraph.
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Proof Again, we confine ourselves to considering positive upper bounds only under the
condition Gγ ,s � G̃γ . For every c ∈ R

∫ 1

0
[F−1(G̃−1

γ (x)) − μ1]
[
hγ ,s(x) − c

]
dx

≤ sup
0≤x≤1

|F−1(G̃−1
γ (x)) − μ1|

∫ 1

0
|hγ ,s(x) − c|dx,

and the integral in the second line is minimized at c = hγ ,s

(
1
2

)
, because

∫ 1

0

∣∣∣
∣hγ ,s(x) − hγ ,s

(
1

2

)∣∣∣
∣ dx

=
∫ 1/2

0

[
hγ ,s

(
1

2

)
− hγ ,s(x)

]
dx +

∫ 1

1/2

[
hγ ,s(x) − hγ ,s

(
1

2

)]
dx

=
∫ 1/2

0
[c − hγ ,s(x)] dx +

∫ 1

1/2
[hγ ,s(x) − c] dx

≤
∫ 1

0

∣∣
∣hγ ,s(x) − c

∣∣
∣ dx.

For the choice c = hγ ,s

(
1
2

)
, we have

∫ 1

0
[H−1

1 (x) − μ1]
[
hγ ,s(x) − hγ ,s

(
1

2

)]
dx

≤ σ1(∞)

∫ 1

0

∣
∣∣∣hγ ,s(x) − hγ ,s

(
1

2

)∣∣∣∣ dx = σ1(∞)

[
1 − 2H γ ,s

(
1

2

)]
. (24)

We get the equality in Eq. 24 if H−1
1 (x) − μ1 = −σ1(∞) when hγ ,s(x) < hγ ,s

(
1
2

)
, and

H−1
1 (x) − μ1 = +σ1(∞) when hγ ,s(x) > hγ ,s

(
1
2

)
. On the set

{
hγ ,s(x) = hγ ,s

(
1
2

)}
,

the only restriction is that the function in nondecreasing and ranges over the interval
[−σ1(∞), σ1(∞)]. However, in order to get equality in Eq. 15, H−1

1 (x) should be con-
stant there. Summing up, the upper bound in Eq. 20 is attained if H−1

1 (x) − μ1 is equal
to −σ1(∞), a ∈ [−σ1(∞), σ1(∞)], and σ1(∞) on the sets where hγ ,s(x) is less than,

equal to, and greater than hγ ,s

(
1
2

)
, respectively. There are three possibilities in general

hγ ,s (0) < hγ ,s

(
1
2

)
< hγ ,s (1), hγ ,s (0) = hγ ,s

(
1
2

)
< hγ ,s (1) and hγ ,s (0) < hγ ,s

(
1
2

)
=

hγ ,s (1). So it may happen that the sets
{
hγ ,s(x) < hγ ,s

(
1
2

)}
and

{
hγ ,s(x) > hγ ,s

(
1
2

)}

are empty, and
{
hγ ,s(x) = hγ ,s

(
1
2

)}
is degenerate. Combining these requirements with

the first moment condition
∫ 1

0 [H−1
1 (x) − μ1]dx = 0, by simple calculations we arrive at

formulas (21)–(23).

The attainability conditions in Theorems 1–3 can be also expressed in terms of distri-
bution functions F of the nominal component lifetime. To this end it suffices to apply
transformation F = G̃−1

γ ◦ H1. We also notice that we obtain zero upper bounds for all

1 ≤ p ≤ ∞ when Gγ ,s ≥ G̃γ . This means that for any nominal distribution function
F of the component lifetime, the system lifetime T is stochastically less than the actual

182 Methodology and Computing in Applied Probability (2020) 22:173–189



component lifetime, and inequality ET ≤ ET1 is evident. Similarly Gγ ,s ≤ G̃γ always
implies ET ≥ ET1. Even a minor violation of these stochastic orderings between Gγ ,s

and G̃γ implies that we obtain nontrivial positive upper bounds, and negative lower ones,
respectively.

3 Unimodal Signatures

In order to evaluate the bounds in Theorems 1, 2 and 3, derivatives of the smallest concave
majorant and the greatest convex minorant of the distribution function Gγ ,s ◦G̃−1

γ should be
determined. For corresponding unimodal density functions, there is a well-known procedure
to obtain these derivatives (see, e.g., Moriguti 1953; Rychlik 2001). Namely, if g : [0, 1] →
[0, ∞) is any unimodal density function with the corresponding distribution function G,
then the derivative of the greatest convex minorant is obtained as follows. If g is decreasing
or g(0) ≥ 1, then g(x) = 1 for x ∈ [0, 1]. Otherwise, the derivative is given by

g(x) =
{

g(x), for 0 ≤ x < u∗,
g(u∗), for u∗ ≤ x ≤ 1.

(25)

If g is increasing, then u∗ = 1. Otherwise, 0 < u∗ < 1 is the unique solution to the
so–called Moriguti equation

g(u) = 1 − G(u)

1 − u
.

The derivative of the smallest concave majorant can be derived similarly. If g is increasing
or g(1) ≥ 1, then g(x) = 1 for x ∈ [0, 1]. Otherwise, the derivative has the form

g(x) =
{

g(u∗), for 0 ≤ x < u∗,
g(x), for u∗ ≤ x ≤ 1.

(26)

If g is decreasing, then u∗ = 0. Otherwise, u∗ coincides with the unique solution in (0, 1) to

g(u) = G(u)

u
.

The next lemma shows that unimodality of the signature is sufficient to get unimodal-
ity of the density. The assumption is not very restrictive, because coherent systems with
non-unimodal signatures are very rare. An example of a system of size 5 with bimodal sig-
nature was presented in Jasiński et al. (2009), and the construction was extended to higher
dimensions by Bieniek and Burkschat (2018). In the proof, we apply a characterization of
unimodality based on sign change behavior (cf., e.g., Marshall and Olkin 2007, proof of
Proposition B.2., p. 99).

Theorem 4 If the signature s = (s1, . . . , sn) is unimodal, i.e., there exists 1 ≤ k ≤ n such
that

s1 ≤ · · · ≤ sk, sk ≥ · · · ≥ sn,

then the density function
gγ ,s◦G̃−1

γ

g̃γ ◦G̃−1
γ

of the distribution function Gγ ,s ◦ G̃−1
γ is also unimodal,

i.e., there exists a mode m ∈ [0, 1] such that gγ ,s◦G̃−1
γ

g̃γ ◦G̃−1
γ

is increasing on (0,m) and decreasing

on (m, 1).
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Proof Recall that the density function
gγ ,s◦G̃−1

γ

g̃γ ◦G̃−1
γ

is positive and continuous on (0, 1) (cf.

Cramer et al. 2004). Moreover, the density is a bounded function on (0, 1) (see the proof of

Theorem 1). Therefore,
gγ ,s◦G̃−1

γ

g̃γ ◦G̃−1
γ

defines a non-negative, continuous (and bounded) function

on the interval [0, 1]. Clearly, it is unimodal iff the function g = gγ ,s
g̃γ

is unimodal. Let

Ac = {x ∈ [0, 1] : g(x) ≥ c}, c ≥ 0.

Observe that g is unimodal on [0, 1] iff Ac is an interval (possibly empty or degenerate) in
[0, 1] for every c ∈ [0, ∞). Every element of the set

M =
⋂

c≥0,Ac 
=∅
Ac = Amax{f (x):x∈[0,1]}

can be chosen as mode m. Moreover, the condition on the sets Ac holds iff

g(x) − c changes sign at most twice for every c ∈ [0, ∞)

and, if there are two sign changes, then the sequence must be − + −. (27)

Equivalently, we can consider gγ ,s(x)− cg̃γ (x) instead of g(x)− c in Eq. 27. Due to Eqs. 2
and 3, it follows that

gγ ,s(x) − cg̃γ (x) =
n∑

r=1

(
sr − c

n

)
gγ ,r (x), x ∈ (0, 1),

where gγ ,r denotes the density function of the rth uniform generalized order statistic. Since
the signature s is unimodal, for every c ≥ 0 there are at most two sign changes in the
sequence (s1 − c

n
, . . . , sn − c

n
) and, if there are exactly two changes, then the pattern is

−+−. Thus, the variation diminishing property of the densities of uniform generalized order
statistics (see Bieniek 2007) yields that condition (27) is satisfied. Consequently, g = gγ ,s

g̃γ

is unimodal.

Corollary 1 If the sequence s1, . . . , sn is increasing (decreasing), then the density function
gγ ,s◦G̃−1

γ

g̃γ ◦G̃−1
γ

is also increasing (decreasing) on (0, 1).

Proof The statement can be proven analogously to Theorem 4 by noting that the function
g = gγ ,s

g̃γ
is increasing (decreasing) iff the following condition holds: g(x) − c changes sign

at most once for every c ∈ [0,∞) and, if there is a sign change, then the sequence must be
− + (+−).

For coherent systems with two or more components, the density function
gγ ,s◦G̃−1

γ

g̃γ ◦G̃−1
γ

cannot

be a constant function on an interval. This follows from the next lemma, because every
coherent system with n ≥ 2 components has a signature vector with s1 = 0 or sn = 0 (see
Miziuła and Rychlik 2015, Remark 3).

Lemma 1 Let s = (s1, . . . , sn) be a vector with non-negative entries and s1 +· · ·+ sn = 1.

If s 
= ( 1
n
, . . . , 1

n
), then the density function

gγ ,s◦G̃−1
γ

g̃γ ◦G̃−1
γ

is not constant on any subinterval of

(0, 1).
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Proof The proof proceeds by contradiction. Assume that there exists an open interval I ⊂
(0, 1) and a constant c > 0 such that

gγ ,s(x)

g̃γ (x)
= c, x ∈ I .

We conclude that

0 = gγ ,s(x) − cg̃γ (x) =
n∑

r=1

(
sr − c

n

)
gγ ,r (x), x ∈ I .

This violates Lemma 2 of Bieniek (2007) which yields that the number of zeroes of the
function gγ ,s − cg̃γ in (0, 1) does not exceed n − 1, so it must be finite.

The following theorem yields values of the considered density at the boundaries of its
domain. Note that the limit in x = 1 can be also explicitly derived for arbitrary γ1, . . . , γn >

0 (see Bieniek 2007, Lemma 3, Burkschat and Navarro 2013, Lemma 2.2).

Theorem 5 Let hγ ,s = gγ ,s◦G̃−1
γ

g̃γ ◦G̃−1
γ

. Then

hγ ,s(0) = lim
x→0+ hγ ,s(x) = ns1

and, if γ1 ≥ · · · ≥ γn,
hγ ,s(1) = lim

x→1− hγ ,s(x) = nsn.

Proof By applying L’Hôpital’s rule, we obtain for 1 ≤ r < k ≤ n (cf. Burkschat and
Navarro 2013, Lemma 2.2)

lim
u→0+

gγ ,k(u)

gγ ,r (u)
= 0

and, if γ1 ≥ · · · ≥ γn,

lim
u→1−

gγ ,r (u)

gγ ,k(u)
= 0.

In particular, we get then

hγ ,s(0) = lim
u→0+

gγ ,s(u)/gγ ,1(u)

g̃γ (u)/gγ ,1(u)
= s1

1
n

and

hγ ,s(1) = lim
u→1−

gγ ,s(u)/gγ ,n(u)

g̃γ (u)/gγ ,n(u)
= sn

1
n

.

This yields the assertion.

Remark 1 Theorem 4, Theorem 5 and Lemma 1 yield that the density function
gγ ,s◦G̃−1

γ

g̃γ ◦G̃−1
γ

is

strictly unimodal, i.e., there exists a modem ∈ (0, 1) such that
gγ ,s◦G̃−1

γ

g̃γ ◦G̃−1
γ

is strictly increasing

on (0,m) and strictly decreasing on (m, 1), in the case of a coherent system with γ1 ≥ · · · ≥
γn and unimodal signature vector s = (s1, . . . , sn), where s1 = 0 and sn = 0.

We close the paper with exemplary numerical evaluations of the bounds derived in
Section 2 for some specific coherent system.
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First assume that the density
gγ ,s◦G̃−1

γ

g̃γ ◦G̃−1
γ

is strictly unimodal. Then the Moriguti equation

takes on the form
gγ ,s ◦ G̃−1

γ (u)

g̃γ ◦ G̃−1
γ (u)

= 1 − Gγ ,s ◦ G̃−1
γ (u)

1 − u
. (28)

Equivalently, putting u = G̃γ (y) for y ∈ [0, 1], we obtain

gγ ,s(y)

g̃γ (y)
= 1 − Gγ ,s(y)

1 − G̃γ (y)
. (29)

By Lemma 5 of Bieniek (2008) we have

1 − Gγ ,r (y) = (1 − y)

r∑

j=1

1

γj

gγ ,j (y),

so that an easy manipulation yields

1 − Gγ ,s(y) = (1 − y)

n∑

j=1

( n∑

r=j

sr

)
1

γj

gγ ,j (y).

In particular, putting sr = 1
n

, 1 ≤ r ≤ n, we get

1 − G̃γ (y) = 1 − y

n

n∑

j=1

n − j + 1

γj

gγ ,j (y).

Therefore the Moriguti equation (29) turns into

∑n
j=1 sj gγ ,j (y)

∑n
j=1 gγ ,j (y)

=
∑n

j=1

(∑n
r=j sr

)
1
γj

gγ ,j (y)

∑n
j=1

n−j+1
γj

gγ ,j (y)
.

Under the assumption of strict unimodality of the corresponding density this equation has
the unique root y∗ ∈ (0, 1).

Now we consider a situation where the (constant) overall load on an n-component sys-
tem is evenly distributed among all still operating units. This load is described by means of
constant parameters γr = n, r = 1, . . . , n, of the generalized order statistics model. Then,
at the rth stage between the (r − 1)st and rth failure, the individual load on the intact com-
ponents is αr = n/(n − r + 1) (see, e.g., Balakrishnan et al. 2011, Example 1 or Burkschat
and Navarro 2013, Remark 2.3). In particular, the failure times can be also interpreted as
consecutive rth values of n-records (see Dziubdziela and Kopociński 1976; Kamps 1995a;
). Furthermore, in this setting we consider k-out-of-n:F systems with s given by sk = 1 and
sr = 0 for r 
= k.

If k = 1, then the signature and the corresponding density are decreasing (see Corol-
lary 1), and so the derivative of the greatest convex minorant is just constant equal to 1.
Therefore the corresponding upper bounds from Theorems 1, 2 and 3 amount to 0. If k = n,
then the signature and the corresponding density are increasing, so that the derivative of the
greatest convex minorant is equal to the original density.

If 2 ≤ k ≤ n − 1, then the signature satisfies the condition from Remark 1 and the
Moriguti equation takes on the simple form

gγ ,k(y)
∑n

j=1 gγ ,j (y)
=

∑k
j=1 gγ ,j (y)

∑n
j=1(n − j + 1)gγ ,j (y)

, (30)
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where

gγ ,r (y) = nr

(r − 1)! (1 − y)n−1 [− ln(1 − y)]r−1 , y ∈ (0, 1).

Note that Eq. 30 is in fact a polynomial equation with respect to z = − log(1 − y). It has a
unique root y∗ ∈ (0, 1) which is determined numerically. Then u∗ = G̃γ (y∗) is the unique

solution to Eq. 28. Denoting hγ ,s = gγ ,s◦G̃−1
γ

g̃γ ◦G̃−1
γ

for 2 ≤ k < n we have by Eq. 25

hγ ,s(x) =
{

hγ ,s(x), for 0 ≤ x < u∗,
hγ ,s(u∗), for u∗ ≤ x ≤ 1.

For k = n we simply have hγ ,s = hγ ,s, so that we put u∗ = 1 in this case. By Eq. 17 this
easily implies that for 2 ≤ k ≤ n

Bγ ,s(2) =
[∫ y∗

0

(gγ ,s(y))2

g̃γ (y)
dy + gγ ,s(y∗)

g̃γ (y∗)
(
1 − Gγ ,s(y∗)

) − 1

]1/2

.

Moreover, for 2 ≤ k ≤ n by Eqs. 18 and 20,

Bγ ,s(1) = 1

2

gγ ,s(y∗)
g̃γ (y∗)

,

Bγ ,s(∞) =
⎧
⎨

⎩

1 − 2Gγ ,s ◦ G̃−1
γ

(
1
2

)
, if G̃γ (y∗) > 1

2 ,
gγ ,s(y∗)
g̃γ (y∗)

− 1, if G̃γ (y∗) ≤ 1
2 .

Applying the last three formulae we derive numerical values of upper bounds corresponding
to k-out-of-n systems in the load sharing setup with n = 10 and k = 2, . . . , 10. They are
presented in Table 1.

The formulae for calculating corresponding lower bounds are more complicated. For

the parallel system with k = n, density function hγ ,s = gγ ,s◦G̃−1
γ

g̃γ ◦G̃−1
γ

is increasing so that

hγ ,s(u) = 1, 0 < u < 1, and respective bounds of Theorems 1–3 are zero. For 2 ≤ k ≤ n−1
the breaking point of Eq. 26 is u∗ = G̃γ (y∗), where 0 < y∗ < 1 uniquely solves

[

1 − (1 − y)10
k−1∑

i=0

[−10 ln(1 − x)]i
i!

]
9∑

i=0

[−10 ln(1 − x)]i
i!

=
[

10 − (1 − y)10
9∑

i=0

(10 − i)
[−10 ln(1 − x)]i

i!

]
[−10 ln(1 − x)]k−1

(k − 1)! ,

and u∗ = y∗ = 0 for k = 1. Then for 1 ≤ k ≤ n − 1 we obtain

bγ ,s(1) = −1

2

gγ ,s(y∗)
g̃γ (y∗)

,

bγ ,s(2) = −
[

gγ ,s(y∗)
g̃γ (y∗)

Gγ ,s(y∗) +
∫ 1

y∗

(gγ ,s(y))2

g̃γ (y)
dy − 1

]1/2

,

bγ ,s(∞) =
⎧
⎨

⎩
2Gγ ,s ◦ G̃−1

γ

(
1
2

)
− 1, if G̃γ (y∗) < 1

2 ,
gγ ,s(y∗)
g̃γ (y∗) − 1, if G̃γ (y∗) ≥ 1

2 .

187Methodology and Computing in Applied Probability (2020) 22:173–189



Table 1 Numerical values of bγ ,s(p) and Bγ ,s(p) with p = 1, 2 and ∞ for the load–sharing k-out-of-10:F
systems

k bγ ,s(1) Bγ ,s(1) bγ ,s(2) Bγ ,s(2) bγ ,s(∞) Bγ ,s(∞)

1 -5 0 -2.0000 0 -0.9934 0

2 -1.4921 0.5027 -1.1668 0.0595 -0.9207 0.0054

3 -0.9713 0.5196 -0.8065 0.1725 -0.7545 0.0393

4 -0.7383 0.5502 -0.5574 0.2817 -0.4764 0.1003

5 -0.6095 0.5949 -0.3577 0.3897 -0.2190 0.1899

6 -0.5376 0.6596 -0.1906 0.5027 -0.0752 0.3191

7 -0.5057 0.7588 -0.0620 0.6288 -0.0113 0.5176

8 -0.5-2.4·10−5 0.9372 -0.0028 0.7816 -4.95·10−5 0.8166

9 -0.5-4.9·10−27 1.3807 -1.53·10−14 0.9849 -9.98·10−27 0.9071

10 0 5 0 1.2688 0 0.9567

Acknowledgements The authors thank to the anonymous referee for mny valuable comments which
helped in preparation of the final version of the paper. The first and third authors were supported by National
Science Centre of Poland under grant 2015/19/B/ST1/03100.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

Aki S, Hirano K (1997) Lifetime distributions of consecutive-k-out-of-n:F systems. Nonlinear Anal 30:555–
562

Balakrishnan N, Beutner E, Kamps U (2011) Modeling parameters of a load-sharing system through link
functions in sequential order statistics models and associated inference. IEEE Trans Reliab TR-60:605–
611

Bieniek M (2007) Variation diminishing property of densities of uniform generalized order statistics. Metrika
65:297–309

Bieniek M (2008) Projection bounds on expectations of generalized order statistics from DD and DDA
families. J Statist Plann Inference 138:971–981

Bieniek M, Burkschat M (2018) On unimodality of the lifetime distribution of coherent systems with failure-
dependent component lifetimes. J Appl Probab 55:473–487

Boland P (2001) Signatures of indirect majority systems. J Appl Probab 38:597–603
Burkschat M (2009) Systems with failure-dependent lifetimes of components. J Appl Probab 46:1052–1072
Burkschat M, Navarro J (2013) Dynamic signatures of coherent systems based on sequential order statistics.

J Appl Probab 50:272–287
Cramer E (2016) Sequential order statistics. Wiley StatsRef: Statistics Reference Online. 1–7
Cramer E, Kamps U (2001) Sequential k-out-of-n systems. In: Balakrishnan N, Rao CR (eds) Handbook of

statistics - advances in reliability, vol 20. Elsevier, Amsterdam, pp 301-372
Cramer E, Kamps U (2003) Marginal distributions of sequential and generalized order statistics. Metrika

58:293–310
Cramer E, Kamps U, Rychlik T (2002) Evaluations of expected generalized order statistics in various scale

units. Appl Math 29:285–295

188 Methodology and Computing in Applied Probability (2020) 22:173–189

http://creativecommons.org/licenses/by/4.0/


Cramer E, Kamps U, Rychlik T (2004) Unimodality of uniform generalized order statistics, with applications
to mean bounds. Ann Inst Statist Math 56:183–192
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