
https://doi.org/10.1007/s11009-018-9670-z

An Efficient Algorithm for Bayesian Nearest Neighbours

Giuseppe Nuti1

Accepted: 3 September 2018 /
© The Author(s) 2018

Abstract
K-Nearest Neighbours (k-NN) is a popular classification and regression algorithm, yet one
of its main limitations is the difficulty in choosing the number of neighbours. We present
a Bayesian algorithm to compute the posterior probability distribution for k given a tar-
get point within a data-set, efficiently and without the use of Markov Chain Monte Carlo
(MCMC) methods or simulation—alongside an exact solution for distributions within the
exponential family. The central idea is that data points around our target are generated by the
same probability distribution, extending outwards over the appropriate, though unknown,
number of neighbours. Once the data is projected onto a distance metric of choice, we can
transform the choice of k into a change-point detection problem, for which there is an effi-
cient solution: we recursively compute the probability of the last change-point as we move
towards our target, and thus de facto compute the posterior probability distribution over k.
Applying this approach to both a classification and a regression UCI data-sets, we compare
favourably and, most importantly, by removing the need for simulation, we are able to com-
pute the posterior probability of k exactly and rapidly. As an example, the computational
time for the Ripley data-set is a few milliseconds compared to a few hours when using a
MCMC approach.

Keywords K-nearest neighbour · Non-parametric classification · Bayesian classification

Mathematics Subject Classification (2010) 62F15 Bayesian Inference · 60G25 Prediction
Theory

1 Introduction & RelatedWork

Various authors have explored the idea of Bayesian k-NN algorithms, e.g. Cucala et al. (2008),
Guo and Chakraborty (2010), and originally (Holmes and Adams 2002). The simplicity and
elegance of k-NN lends itself, at least intuitively, to a Bayesian setting where the aim is to allow
the number of neighbours to vary depending on the data (as highlighted in Ghosh (2006)).

Primarily at UBS Securities LLC, 1285 Ave. of the Americas, New York, NY 10019

� Giuseppe Nuti
ucacnut@ucl.ac.uk

1 Department of Computer Science, University College London, Gower Street, London,
WC1E 6BT, UK

Methodology and Computing in Applied Probability (2019) 21:1251–1258

Received: 21 August 2017 /
Published online: 27 September 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s11009-018-9670-z&domain=pdf
http://orcid.org/0000-0001-8864-318X
mailto: ucacnut@ucl.ac.uk


Practically all of the work has relied on Markov Chain Monte-Carlo methods in some form
or other; the use of simulation circumvents the need to model the full joint probability
distribution of the data and the number of neighbours for any target. In an attempt to avoid
the use of simulation, the authors in Ji and Friel (2013) have approximated the likelihood
function, albeit at the expense of accuracy and portability to regression problems. More
recently, as an alternative approach, the idea of hubness is explored in Tomasev et al. (2011).

In a somewhat distinct branch of Bayesian statistics, numerous studies have focused on
estimating change-point probabilities for data where the generating process is presumed to
vary over time. Initial works were focused on partition analysis for the entire data-set, often
using MCMC simulation: Smith (1975), Stephens (1994), Green (1995) (which, interest-
ingly, is loosely connected with the computational complexity of estimating the posterior
probability of k using approaches based on simulation). Yet it was not until the authors in
Prescott Adams and MacKay (2007) presented an on-line version of Bayesian change-point
estimation (with an O(n) computational complexity), that change-point problems become
easily estimated.

As discussed in detail by Manocha and Girolami (2007), a probabilistic view of k in
nearest neighbour algorithms outperforms standard cross-validation approaches, though
practitioners often avoid the probabilistic approach due to its reliance on MCMC methods
of estimation. By using the algorithm presented in Prescott Adams and MacKay (2007)
applied to the data ordered by distance to our target coordinates, we can compute the exact
probability distribution for k specific to our target point.

2 Efficient Bayesian Nearest Neighbour

The idea of calibrating the number of neighbours to the data is centered around the notion
that, within the appropriate neighbourhood, data points are similar, or, in other words, they
are generated by the same process. It is indeed our goal to determine howmany k neighbours
represent such appropriate neighbourhood.

2.1 Data Generating Process

If we order the data using a distance measure of choice with respect to a target point, we
have transformed our assumption into the idea that the data-generating process is shared for
the first k points closets to the target. As such, moving from the most distant point towards
our target, the underlying process generating the data can vary with a known probability
and, when a change occurs, such process is drawn from a known prior distribution. We aim
to determine the probability of such change-point having occurred at the various intervals
between neighbours — once we have reached our target datum.

This formulation is equivalent to the change-point analysis in Prescott Adams and
MacKay (2007): we can recursively keep track of the historical change-point probability
until we reach the target point. The resulting probability of a change-point having occurred
at k points from our target is indeed the probability of k being the correct number of
neighbours.

2.1.1 A Simple Example

As a simple two dimensional classification problem, imagine we have the data depicted in
Fig. 1, with the respective order, based on the Euclidean distance, shown below in Fig. 2.

Methodology and Computing in Applied Probability (2019) 21:1251–12581252



Fig. 1 Two-class data example;
k = 5 is most probably the
correct chocie for target point (I)
and any choice of k ≥ 10 will
likely result in a
misclassification, whilst the
picture is less obvious for target
point (II)

In this case, the appropriate number of neighbours for target point (I) is five. An alter-
native way to view the choice of k is to order the data-points by their distance to the
target point (Fig. 2, below the x-axis). We note the prior probability of each k (before
seeing any of the data) as the dotted line, which is just a geometric distribution with
pγ = 0.05. To compute the posterior probability for k (solid blue line in Fig. 2), we can
start from the rightmost point and move towards our target: i.e. the probability that the
data-generating process has changed (assuming a Beta prior probability for the data gen-
eration with parameters B(α = 10., β = 10). and a probability of a change-point occurring
in between any two neighbours of pγ = 0.05, i.e. our prior on the number of neigh-
bours is k = 20). Conversely, we are not as convinced of the appropriate k for target
(II), as we can see form the posterior the distribution which is giving a rather mixed
view.

Note that the choice of Beta distribution is the standard conjugate prior for the parameters
of a binary random variable. The choice of pγ = 0.05 is a key part of this approach. Specific
to this example, we are implicitly assuming that the data will vary as we move away from
our target point with a probability of 0.05. In other words, the hazard function is memoryless
— with our prior for the expected number of neighbours set to 1

pγ
= 20.

Fig. 2 Probability distribution for nearest neighbour count (with the data ordered by Euclidean distance
below x-axis). The prior probability is updated into the posterior probability by observing how the data will
impact our choice of k neighbours for the target (I) on the left and the target (II) on the right

Methodology and Computing in Applied Probability (2019) 21:1251–1258 1253



2.2 Algorithm

The first step is to represent the data into an ordered list driven by the distance from our
target point1. If we define the target point as xτ , we order all of the available training data
as x0, ..., xτ−1 (defined as �x0:τ−1) with x0 being the most distant point from our target.
We assume that the data xt is i.i.d. over a partition ρ from some probability distribution
P(xt |ηρ), where ηρ represents the parameters of the data-generating distribution. Finally,
we assume that for all of the partitions, ηρ is also i.i.d from a known prior distribution
(where ρ = 1, ..., n and n ≤ τ ). Now we are ready to use the algorithm presented in Prescott
Adams and MacKay (2007), applied to the projected data2.

Our objective is to compute the probability of each number of neighbours once we have
reached our target point: p(kτ=i|�x0,...,τ−1) ∀i = 0, ..., τ − 1 with τ − 1 total data points.
Note that the subscript τ in kτ indicates that we are representing the appropriate number of
neighbours from the viewpoint of xτ , i.e. the target point. Starting from the point farthest
away, and initializing the probability of a change-point having occurred before the initial
point to 1.0, we set the initial conditions3:

p(k0 = 0) = 1.0 (1)

η0 = ηprior (2)

Firstly, we note that, as we observe a new datum, moving closer to our target, the number of
neighbours kt within the same partition can either increase by one, with probability 1− pγ ,
or terminate in favour of a nascent partition.

p(kt |kt−1) =
⎧
⎨

⎩

pγ if kt = 0
1 − pγ if kt = kt−1 + 1
0 otherwise

(3)

A key advantage of the algorithm in Prescott Adams and MacKay (2007) is that we can
recursively compute the probability over the number of neighbours, p(kt ), by keeping track
of the joint probability of each k and the data: p(kt−1, x0, ..., xt−1), as we observe a new
datum, xt alongside the predictive probability of xt for a given number of neighbours, πt =
p(xt |kt−1, ηt−1).

p(kt = kt−1 + 1, x0, ..., xt ) = p(kt−1, x0, ..., xt−1) πt pγ (4)

p(kt = 0, x0, ..., xt ) =
∑

kt−1

p(kt−1, x0, ..., xt−1) π0 (1 − pγ ) (5)

Finally, we define the notation ηρ � xt to indicate that we update the distribution parameters
for ηρ with the datum xt using standard Bayesian updating rules4 (see Fink (1997) for
conjugate prior updating within the exponential family).

1We can use any valid distance metric to produce such ordered list.
2We note that the technique in Prescott Adams and MacKay (2007) does introduce a slight approximation
error, evident mainly for short run lengths. Alas, computing the exact posterior would increase the complexity
of the algorithm to O(n2).
3Covered in more detail in the implementation notes.
4As a simple example, let’s assume we are updating the probability of a Bernoulli distribution, e.g. a coin
toss, with a prior of α = 50 for heads and β = 50 for tails (where η = {α, β} defined as a total of 100
pseudo-observations and a prior probability p(H) = 0.5). If we then observe a new datum x = tails, the
η� x operation will update the parameters to α′ = 50 and β ′ = 51, for a posterior predictive distribution of
p(H) = 0.49505.

Methodology and Computing in Applied Probability (2019) 21:1251–12581254



2.2.1 Implementation Notes

(a) The hazard function need not be constant; pγ = f (). can, interestingly, depend on
distance between points, or the current run-length (i.e. not memory-less), etc.;

Algorithm 1 Efficient bayesian k-NN algorithm

Initialize the data:
x0, ..., xτ−1 ← ordered data for target point τ

Initialize change-point variables:
p(k0 = 0) ← 1.0
η0 ← ηprior

for t ← 0, τ − 1 do
Observe next variable xt

for i ← 0, t do
Compute predictive probability:

πi = p(xt |kt−1 = i, ηi)

Compute growth probabilities:
p(kt = kt−1 + 1, �x0:t ) = p(kt−1, �x0:t−1) πt pγ

end for
Compute change-point probability:

p(kt = 0, �x0:t ) =∑
kt−1

p(kt−1, �x0:t−1) π0 (1 − pγ )

Compute evidence:
p(�x0:t ) = ∑

kt
p(kt , �x0:t )

for i ← 0, t do
Compute probability of k:

p(kt = i|�x0:t ) = p(kt = i,�x0:t )
p(�x0:t )

Update distributions:
ηi � xt

end for
end for
return p(kτ |�x0:τ−1) ∀kτ ∈ {0, ..., τ }

(b) Initializing the change-point probability: we do not have to set it to 1.0 before the first
data-point. To speed up the analysis, we can start the algorithm m points away from
our target point (where m can be set so that the prior probability of a change-point
having occurred before m falls below a preset threshold, and m 	 n). In this case, and
as an alternative, we can initialize the probability of a change-point before m with the
prior distribution for pγ .

(c) The Bayesian update defined as ’�’ can generally be computed efficiently for dis-
tributions in the exponential family. Other, possibly more complex, distribution may
require a quadrature or simulation approach.

(d) For large data-sets, we resort to applying a log transform the joint probabilities in order
to maintain numerical stability.

Methodology and Computing in Applied Probability (2019) 21:1251–1258 1255



Fig. 3 Ripley’s traning data (left) and test data (right)

3 Results

In order to critically appraise this approach, we benchmark our analysis to the ubiquitous
Ripley data-set for classification (Fig. 3), and, as for a regression problem, to the Nuclear
Power Plant output in Kaya et al. (2012). The comparison is made against results obtained
using the global optimal number of neighbours (as a manual process). In other words, we
compare this approach against the best choice of k when applied to all of the training data
points. The key idea here is indeed that the optimal k varies depending on the specific target
point within the same data-set.5

In addition to the a prediction based on various k values (weighted by their likelihood),
we now have a measure of certainty regarding our prediction. In Fig. 4 we present the
probability of classification computed using the training data.

The MCMC-based Bayesian analysis in Cucala et al. (2008) achieved a misclassification
rate of 0.087, which is, not surprisingly, similar to our result. We also note the similarity
between our Fig. 4 and the one presented in such study. Indeed, we are not proposing the
idea of a Bayesian approach to estimating the number of neighbours, but an efficient method
to do so. Using this algorithm, the time to compute the posterior distribution over k for a test
point within the Ripley data-set averaged three milliseconds per test point (for a standard
PC), compared to 50,000 paths used in the MCMC implementation in Cucala et al. (2008).
Notably, our approach results in the local Bayesian analysis of k, i.e. specific to the data
point being queried, as opposed to the global analysis for the MCMC approach.

Finally, on the right column in Table 1 we show how, by switching the prior from a
Beta distribution in the classification problem with the Normal distribution (as we only
assumed the mean to be unknown), we can obtain improved results for the Power Plant
Output data. An interesting observation is that, if we plot the maximum posterior probability of
the data w.r.t. the absolute error (in Fig. 5), we can observe the ultimate limitation of k-NN algo-
rithms. Data points with a large absolute error have clearly a very small probability of occurring,
despite the fact that we are displaying themaximum likelihood across all possible k’s; in other
words, these are true outliers with respect to the distance measure that we have chosen6.

5Data and descriptions for both data-sets are available the at UCI Machine Learning Repository (http://www.
ics.uci.edu)
6From an intuitive standpoint, we expect a plot of the maximum probability of the data across all values of
k to present outliers as having very low probability; this would indicate that the point is indeed dissimilar to
any grouping of neighbours for the chosen distance measure. In practice, a true outlier will have maximum
probability for k = 0, i.e. when it belongs to the uninformed prior as its the distribution with the largest
variance, hence large absolute errors in Fig. 5 converge onto a single line.

Methodology and Computing in Applied Probability (2019) 21:1251–12581256

http://www.ics.uci.edu
http://www.ics.uci.edu


Fig. 4 Probability of
classification using Ripley’s
traning data

Table 1 Comparison of the global optimal k neighbours versus the algorithm presented here: misclassifica-
tion rate for Ripley data and average absolute error for Power Plant Output data

Algorithm Ripley (Misclassification) Power plant (Avg. Abs. Error)

k-NN (manual k search) 0.13 3.6

Bayesian k-NN 0.09 2.9

Fig. 5 Maximum probability for
200 samples of realized test data
across all possible k neighbours
(Power Plant Output data)

Methodology and Computing in Applied Probability (2019) 21:1251–1258 1257



4 Conclusive Remarks

We have presented an efficient algorithm to compute a Bayesian analysis over the number
of neighbours in k-NN algorithms, applicable to classification and regression, which does
not rely on MCMC simulation. This yields both superior predictions and a full probabilistic
view of k. Yet the biggest challenge for k-NN algorithms is likely to be within the choice
of the distance measure and differentiated input scaling (as highlighted in Weinberger and
Saul 2009). Certainly for multidimensional problems, the challenge lies in ordering the
neighbours correctly with respect to their proximity to our target point, which in turn is
driven by the coordinate transform we apply to compute the distance measure. An efficient
Bayesian approach in understanding such scaling aspect may well be possible.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

Cucala L, Marin J-M, Robert C, Titterington M (2008) A Bayesian reassessment of nearest-neighbour
classification ArXiv e-prints

Fink D (1997) A compendium of conjugate priors
Ghosh AK (2006) On optimum choice of k in nearest neighbor classification. Comput Stat Data Anal

50(11):3113–3123
Green PJ (1995) Reversible jump markov chain monte carlo computation and bayesian model determination.

Biometrika 82(4):711
Guo R, Chakraborty S (2010) Bayesian adaptive nearest neighbor. Stat Anal Data Min 3(2):92–105
Holmes CC, Adams NM (2002) A probabilistic nearest neighbour method for statistical pattern recognition.

J Royal Stat Soc Ser B (Stat Methodol) 64(2):295–306
Ji WY, Friel N (2013) Efficient estimation of the number of neighbours in probabilistic K nearest neighbour

classification. CoRR, arXiv:1305.1002
Kaya H, Tüfekci P, Gürgen FS (2012) Local and global learning methods for predicting power of a com-

bined gas & steam turbine. In: International conference on emerging trends in computer and electronics
engineering (ICETCEE 2012), Dubai

Manocha S, Girolami MA (2007) An empirical analysis of the probabilistic k-nearest neighbour classifier.
Pattern Recogn Lett 28(13):1818–1824

Prescott Adams R, MacKay DJC (2007) Bayesian Online Changepoint Detection. ArXiv e-prints
Smith AFM (1975) A bayesian approach to inference about a change-point in a sequence of random variables.

Biometrika 62(2):407–416
Stephens DA (1994) Bayesian retrospective multiple-changepoint identification. J Royal Stat Soc Ser C

(Appl Stat) 43(1):159–178
Tomasev N, Radovanović M, Mladenić D, Ivanović M (2011) A probabilistic approach to nearest-neighbor

classification: Naive hubness bayesian knn. In: Proceedings of the 20th ACM International Conference
on Information and Knowledge Management, CIKM ’11. ACM, New York, pp 2173–2176

Weinberger KQ, Saul LK (2009) Distance metric learning for large margin nearest neighbor classification. J
Mach Learn Res 10:207–244

Methodology and Computing in Applied Probability (2019) 21:1251–12581258

http://creativecommons.org/licenses/by/4.0/
http://arXiv.org/abs/1305.1002

	An Efficient Algorithm for Bayesian Nearest Neighbours
	Abstract
	Abstract
	Introduction & Related Work[10pc]Please check if the affiliation is captured and presented correctly.
	Efficient Bayesian Nearest Neighbour
	Data Generating Process
	A Simple Example

	Algorithm
	Implementation Notes


	Results
	Conclusive Remarks
	References




