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Abstract In recent years subordinated processes have been widely considered in the liter-
ature. These processes not only have wide applications but also have interesting theoretical
properties. In this paper we consider fractional Brownian motion (FBM) time-changed by
two processes, tempered stable and inverse tempered stable. We present main properties
of the subordinated FBM such as long range dependence and associated fractional partial
differential equations for the probability density functions. Moreover, we present how to
simulate both subordinated processes.
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1 Introduction

In the recent years subordinated processes have been widely considered in the literature.
In general, a subordinated process is constructed by taking superposition of two indepen-
dent stochastic systems. The evolution of time in the external process is replaced by a
non-decreasing stochastic process, called subordinator. Due to this fact, subodinators can
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be treated as the “operational time”. The resulting subordinated processes very often retain
important properties of the external process, however certain characteristics might change.
The idea of subordination was introduced in 1949 by Bochner (1949, 1955). The the-
ory of subordinated processes is also explored in details in Sato (1999). The subordinated
processes have found many interesting applications, for example in finance (Clark 1973),
physics (Nezhadhaghighi et al. 2011), ecology (Scher et al. 2002) and hydrology (Doukhan
et al. 2003).

In this paper we consider the fractional Brownian motion (FBM) time-changed by two
processes, tempered stable and inverse tempered stable. The FBM is a classical long-range
dependent and self-similar process used for description of so-called anomalous diffusion
phenomena. The tempered stable Lévy process is strongly related to stable Lévy process,
i.e. process with stationary independent increments with stable distribution. The stable pro-
cesses are very often considered in the literature (Fristedt 1977). However, due to the infinite
second moments (except the Gaussian case), their applications require usage of advanced
mathematical methods. The tempered stable processes possess many properties of stable
systems however their second moments are finite and classical methods of analysis can be
applied here. The inverse processes in recent years have been considered by many authors
(Wytomariska 2013). The interest of those processes is related to the fact that time-changed
processes delayed by inverse subordinators are strongly related to the continuous time
random walk model, the second classical model used for description of anomalous diffu-
sion phenomena (Stanislavsky et al. 2014). The most often used subordinator is the stable
one, however in the literature one can find examples of others (Magdziarz 2009), see also
Barndorff-Nielsen et al. (2001).

In this paper we consider first the tempered stable and inverse tempered stable processes.
We present their main properties such as moments asymptotic behaviors and associated
fractional partial differential equations for their probability density functions. Next, we con-
sider the FBM time-changed by two mentioned systems, i.e. tempered stable and inverse
tempered stable. We compare main characteristics of time-changed FBM with the equiva-
lent characteristics of classical FBM. The main attention is paid to long range dependence
property of new time-change processes and the associated fractional partial differential
equations for probability density functions. We also present the procedure of simulating
both subordinated processes.

1.1 Tempered Stable Subordinator

Before we introduce the tempered stable subordinator (TSS) it is worth mentioning the
class of stable processes. Stable distributions belong to an important class of probability
distributions. These distributions possess heavy tails and have many intriguing mathemat-
ical properties. Stable distributions are characterized by four parameters: stability index
a € (0,2], skewness parameter § € [—1, 1], scale parameter ¢ > 0 and shift parame-
ter © € R. The formal definition of stable distribution one can find in Samorodnitsky and
Taqqu (1994). We only mention, stable distributions are infinitely divisible and hence also
provide a rich class of Lévy processes also called stable (or a-stable) Lévy processes. These

processes are self-similar i.e. for an «-stable process D, (), it follows {D,(ct),t > 0} £

{cl/ “Dy(t),t > 0} for ¢ > 0, where £ denotes equality of finite dimensional distribu-
tions. Despite having interesting properties the applications of these processes are limited
due to non-finiteness of second order moments (except the Gaussian case). To overcome
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these limitations tempered stable processes are introduced (Rosiriski 2007). Tempered sta-
ble processes are infinitely divisible, have exponentially decaying tail probabilities and have
all moments finite. As mentioned in Section 1, subordinator is a process that can replace
the time of other stochastic process and is a non-decreasing and non-negative Lévy pro-
cess. Thus the tempered stable subordinator (TSS) is the non-decreasing and non-negative
tempered stable Lévy process. Similarly, the a-stable subordinator is a non-decreasing and
non-negative «-stable Lévy process.

Let fy(x,t) be the density function of an «-stable subordinator D (¢). In this case the
stability parameter « € (0, 1), the skewness B = 1 and shift © = 0. In our analysis we
assume the scale parameter o = 1. The integral form of the probability density function
(PDF) is given by Kumar and Vellaisamy (2015)

1 [ X @
falx, 1) = —/ e eIV ST gin(ty® sinar)dy. €))
7 Jo

Let L, ,(g(x,1)) = g(u,t) be the Laplace transform (LT) of g with respect to space
variable x. Then

fulu, 1) =E(e Py = /00 e fo(x, Ddx = e (2)
0

Let Sy «(?) be the TSS with index o € (0, 1) and tempering parameter A > 0. Note that
TSS are obtained by exponential tempering in the distributions of stable processes (Rosifski
2007). TSS Sy« (¢) has density function (Rosifiski 2007)

fral,t) =e £ (x,0), A>0, ac(0,1). 3)

Using Eqgs. 2 and 3, the LT of f; «(x, t) is given by

o0
ﬂ,a(uy t) — f eiuxf)\”a(.x, t)dx — e*t((u+)»)f¥7)ha)' (4)
0

It is worthwhile to mention that for A = 0, TSS reduces to «-stable subordinator and for
o = 1/2, a-stable subodiantor is also called 1/2-stable subordinator (or Lévy subordinator)
(see e.g. Applebaum 2009). Next, the asymptotic forms of the moments of TSS Sy ,(¢) are
presented, which will be used further in establishing the LRD property of the FBM time-
changed by the TSS. First we provide a formula to calculate the fractional order moments
for a positive random variable by using its LT. Next we use this formula to calculate the
fractional order moments of TSS S, «(¢). Note that for a positive random variable X with
Laplace transform f (u), it follows

o0 dn -
p—1
fo AL

o0 di’l
= / d—[Eeﬂ‘X]u”fldu
o du"

00 gn
=k [/ d [eiux]”pild“] (by Fubini theorem)
0 u"

o0
= (-1"E |:X"/ e_”Xup_ldu]
0

= (=D"T(PEX""7), &)
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where I'(p) is the gamma function. Using Eq. 5, the g-th order moment of X, where
q € (n — 1, n) for some integer n, is given by
(_l)n 0o gn
I'mn—gq) Jy du®
Note that by using the above formula, we can explicitly calculate the fractional order

moments of TSS ), () which for given 7 is a positive random variable. Thus for g > 0, it
leads to the following result.

E(X?) = [F )" du. (©6)

Proposition 1 For g > 0, the asymptotic behavior of q-th order moments of TSS Sy «(t) is
given by

E(Sya (1) ~ (@r*~'1)7, as 1 — oo, %)

Proof We prove this result in two parts. For fractional ¢ and integer ¢ different approaches
are used. For 0 < g < 1, using Eq. 6, it follows

E(S, a([))q — i = i [e—t((u+/\)a_/\a)] u 9du
’ Fd—q)Jo du
Olte‘”“a [ee)

= - w4+ ) et gy
I'd—gq) Jo

By choosing f(u) = (u + A)* and g(u) = (u + W21y it follows
o — 1)re—2
+ ( )

2' u2+

f) =A% +ar*u

o0
FO)+ ) au P,
k=0

where f(0) = A%, a9 = ar? g = a(e — 1)X“‘2/2! and S = 1. Further,
(@ — D(a —2)2%73
2!

gw) = A7 4 (@ — DA 2T + W24

00
— Z bkuk+y—] ,
k=0

where by = A%~!, by = (@ — DA*"% and y = 1 — ¢. Using Laplace-Erdelyi theorem (see
Appendix A), we have

(e e]
at Ck

E(S) o) ~ —— rk+1-qg)——, 8
(Sh.a (1) m_q)]; kt1=9) ®)

where ci in terms of coefficients ay and by is given by

g L=y
% = ~TEnp Dby < ; );B,/’,i(ahaz, L aj—il), &)

0 j=0 i=0 0

and B j,i are the partial (or incomplete) ordinary Bell polynomials (Andrews 1998) (see
Appendix A). For large ¢ the dominating term is the first one in the series given in Eq. 8,
which leads to,

E(Sy.a@)? ~ coat?, (10
where ¢y = ¢4~ 1p2@=D,
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Similarly, for a general ¢ € (n — 1, n) we have

E(SA oz(t))q = ﬂ = ﬂ I:e—t((u-kk)“—)»a):l un_l_qdu
' 'n—q)Jo du"
75
~ % I D e gy
n—q
o' t"
~ r(TZF(kJFn q) H,, —
~ O{nd(]tq,

where d,, has similar form as in Eq. 9 and dp = (A&~ ha—nyn@=1) Next for integer n the
n-th order moment of the S (?) is established. Denoting ¥ (1) = ((—u + 1)% — A%) ¢, the

n-th order cumulant «,, = %w(u) lu=0 is given by
kn=(—D"la(@—D@—=2) (@ —n+ DHA*"t. (1D

In particular, for Sy 4(#), we have k1 = E(S) (1)) = a1t and kp = Var(S) () =
(1 — @)A*~2¢. Further, the n-th order moment satisfies (Rota and Shen 2000; Smith 1995)

n
E(Sa(®)' = Y Bui(ki, 62, Knkt1)
~ (k)" = (@A), as 1 — oo,

where B, \ are partial (or incomplete) exponential Bell polynomials (see Appendix A). [

Next, we provide the fractional partial differential equation (FPDE) governed by the
density of the TSS and leads to the following result.

Proposition 2 The density f o(x, t) satisfies

9 9 1/a
P Jra(x, 1) = </\“ - *) Jra(x, 1) = Afaa(x, 1) —86(x) fre(0,8).  (12)
by at

Proof Note that

9 1/a B
<}‘a - g) f)\,a(u 1)

< )( 1/ ()M ’—fm(u 1)

A fa S (@) (1 +5) 1)
j=0

= (1) frau. 1)
= (4foa@, 0 = £a(0.0) + fr.a(0 0+ fralw, ).

The result follows by application of invert LT to both sides. O
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1.2 Inverse Tempered Stable Subordinator

Let E; «(¢) be the right continuous inverse of tempered stable process S, «(¢), defined by
E)o@)=inf{y >0: Sy o(y) > 1}, t>0. (13)
The process E) o(t) is called inverse tempered stable (ITS) subordinator. A driftless sub-

ordinator D(¢) with Lévy measure mp and density function f has the Lévy-Khinchin
representation (Bertoin 1996)

o
/ e " fpr(x)dx = e 1Y) a4
0

where ~
Ypu) = / (1 —e"mp(dy), u >0, (15)
0

is called the Laplace exponent. The Lévy measure density corresponding to a tempered
stable subordinator is given by Cont and Tankov (2003)
—Ax
ce
T[S)“a(l/i) = W, C > 0, u > 0,

which satisfies the condition fooo 7, .o()du = oo. The sample paths of Sy o(f) (@ €
(0, 1), A > 0) are strictly increasing with jumps and hence the sample paths of E} (¢) are
almost surely continuous and are constant over the intervals where Sy (¢) have jumps. Let
Lis(g(x,1)) = g(x,s) be the Laplace transform (LT) of g with respect to time variable
t. Using Meerschaert and Scheffler (2008), the LT of the density £, « (x, t) of Ej o(¢) with
respect to the time variable 7 is given by

- 1 o o
hra(x, ) = < ((s + 1)% — 1) e (VT2 (16)

The density function %, o (x, f) can be obtained by inverting the LT in Eq. 16 using the
complex-inversion formula with the help of a key-hole contour. Alternatively,

P(Era(t) < %) = P(Sra(x) = 1
- / Fra(y. x)dy
t

o0 o
= / eI L (v, x)dy

t

1 Rl —(Atw)y A%x—xw?® cosam : o
— e Ye sin(xw® sinam)dwdy
y w=0

T Jy=s
—At —wt

€ /oo e’ ex()\"‘—w"‘ oS aTr)
T Jo Atw

Taking derivatives in both sides with respect to x yields the density function of E; 4 (¢), that

1S
e—)\t+)\°‘x 00 e—tw—xw“ cos
hyox,t) = /
’ 4 0 A 4+ w

x [A% sin(xw® sinaw) + w® sin(ar — xw® sinaw)|dw.  (17)

sin(xw® sin o )dw.

Using the identity from Abramowitz and Stegun (1972), namely

VT o—a7/ D)
NG

o0 2
/ e " cos(au)du = (18)
0 2
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and by substituting A = 0 and « = 1/2 in Eq. 17, it follows

2
hoajar 1) = Z e, (19)

Observe that the density of inverse 1/2-stable subordinator given in Eq. 19 is same as density
of |B(t)|, where B(t) is standard Brownian motion.

Next we obtain the FPDE governed by the PDF of ITS subordinator. The Riemann-
Liouville (RL) fractional derivative of order 8 for a function f is given by Gorenflo and
Mainardi (1997)

dam f(®)
darm [F(m )f() (t—7)B+1-m df] ,m—1< IB <m,
), B=m.

First we find the governing equation of the density of Ej o(¢). In order to do so, we
need to introduce the Laplace transform of shifted fractional RL derivative given by Beghin
(2015)

P
58O = (20)

L {(c—l— %) f(x, t)} =(c+8)'LAfx, D} — (4" f(x,0), s>0. (21)

In the further analysis we will use the generalized Mittag-Leffler function, therefore we
introduce it here. The generalized Mittag-Leffler function, introduced by Prabhakar (1971),
is defined by

o0 (]‘) Zn
M’ = ——n 22
rq@ Zr(pn—i-q)n! @2)
where p, g, r € Cwith R(g) > Oand (r), = L {f(t)") is Pochhammer symbol. When r = 1,

it reduces to Mittag-Leffler function. Further,

(ro 1
@ T
We will use the following result in next proposition. We remind that the function F(s) =

C ;,,p;aq), has the inverse LT (Monje et al. 2010)

M}, ,(0) = (23)

LTF@$)] =17""M),  (—at?). (24)

Proposition 3 The density function h;,_o(x, t) satisfies

ox
with hj o (x,0) = §(x).

9 3\ o 1o l—a
—he(x, 1) =— A+5 Moo (X, 1) + A7y o (x, 1) — 17" M7 (=A0)8(x) (25)

Proof Using Eq. 16, note that
- 1 o o
hia(x,8) == ((s + 1)* =A%) e EFV=2D,
s
which implies

ii_lx,a(x, ) = =l + 2% = A%y o (x, 5)

0x

= —[(s + M) 0 (x,8) = (s + 1)y g (x, 0)] — (s + 1) hy g (x, 0)
+A“}_z,\,a(x, s).
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Taking the inverse LT on both sides and using Eq. 21, we get

ihm(x, H=— (x + 3) By a(x, 1) — L7 [<s + x)“*'] 8(x) + A%hy g (x,1). (26)
0x at

Bytakingp=1,g=1—-0«o,r =1 —«a and a = A, we have from Eq. 24

[sta-o-a-e = | 1
M| =L ———— | =tT"M[ 7% (—)1). )
(sT + 1)1 [(s+x)lfa] EMy 2 (24D @7

The result follows by using Eqgs. 26 and 27. O

Taking A = 0 in Eq. 25 and using Eq. 23, it follows

o —o

a a t
= - 2
8xh0,a(xvt) 5@ ho,a(x, 1) I a)S(x), (28)

with ho o (x, 0) = 8(x), which is the equation satisfied by the density of inverse «—stable
subordiantor. Note that this result complements the result obtained in Meerschaert and
Straka (2013). Next we complement the result presented in Proposition 3 which involves a
first order partial derivative in space variable with an analogs time derivative equation for
the density of the ITS subordinator.

Proposition 4 The density function h;_o(x, t) satisfies the following equation

1/«
ihx,a(x, 1) = (?»"‘ - i) haa(x, 1) — Ay o (x, 1) +8(1)8(x). (29)
at ox ’

with hy o (x,0) = 6(x).

Proof We will prove this by the Laplace transform technique

9 1/a B [e¢] 1/0[ Va—j 1 d/ « a
_ — —_1)/ = _ 0 x((sH)*=2%)
(xa—8x> Fra(,s) =3 (j. )(x“) (1~ (5 1) =) e

x/
=0

1 a_zayom (1 _; ;
i ((S +)L)a_)tot) ef)c((er)L) —A )Z( /05) ()\.a)l/a J ((S _'_)L)a_)La)J

s =

0 J

_ l ((s i )L)a_)\a) efx((.erA)O’f)n"‘) (1/‘05))» ((S-i—)u)a - 1)

s i=0 J A%

1 _ SN — A (5+)\)a 1
=< ((s+1)% —2%) = ((FRT=20, <7m

— ((S _’_)L)ot_ka) efx((s+l)°’7)n”‘)+)hl ((s_i_}h)a_)ha) e*X((S«H»)“*)»“)_
N

Inverting the LT yields Eq. 29. O
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Next, the asymptotic behavior of the moments of the ITS subordinator is discussed. Let
M, (t) =E(E) «())?, g > 0, be the g-th order moment of E; ,(¢). Then the LT of M, (t)

satisfies
00 o o0 d
0 0 0 Y

= q/ e (/ Y P(E) o(t) > y)dy> dt
0 0
q/ yi! (/ e P(Spa(y) < t)dt> dy
0 0
4 / yi-! < / et fsm(y)(t)dt) dy
s Jo 0

o0
g/ Yl Y5O gy - r'(l+gq) -~
§ 0 s (\IJS)».& (S))

1\71q (s)

where W, ,(s) = (s +1)% — A%,

An application of Tauberian Theorem (see e.g. Bertoin 1996, p.10), which relates the
asymptotic behavior of a function to its Laplace transform, yields following asymptotic
behavior of M, (1)

' +q)

M A
q(1) ”th,)»>0, ast — 00

rd+q) ,qa _
1_(lJrth)t , A=0, ast— o0.

9% ast — 0,
(30)

2 FBM Delayed by Tempered Stable Subordinator

In this section we introduce the process which arises after changing the time in a fractional
Brownian motion by tempered stable subordinator. The new process is called subordinated
FBM. First, the FBM and its basic properties are introduced to reuse them in later part of the
paper. The FBM was introduced by Kolmogorov (Mandelbrot and Ness 1968; Kolmogoroff
1940) and very often is treated as an extension of the classical Brownian motion. Most of
the properties of FBM are characterized by the self-similarity exponent H, called Hurst
exponent. For any 0 < H < 1 the FBM with index H is a mean-zero Gaussian process
By (¢) with the following representation (Mandelbrot and Ness 1968; Teuerle et al. 2013)

BH(z)zf ((t—u)i“/z—(—u)i’*”z)dB(u), >0, 31

—00
where B(t) is the Brownian motion and (x); = max(x, 0). It is worth mentioning, the
process exhibits subdiffusive dynamics for H < 1/2 and superdiffusive one for H > 1/2.
For each t, EBy (t) = 0, EB%(t) = >/ and its PDF is given by

1 — L2
N 2mwtH

As it was mentioned, the FBM has H-self similarity property, which means for all ¢ > 0
the following holds

fBr(x) = x €R. 32)

{Bu(ct), t =0} = (" By(1), t >0). 33)
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One should remember that the fractional Gaussian noise, defined as the increments of FBM,
by(n) = Bg(n+ 1) — Bg(n) forn = 0, 1, ..., is time-correlated stationary process with
covariance function

1
Cov(by (0). b (m) = Ebr Qb ) = 5 (0 4+ 1 + (= ) —202").
Moreover, the Laplace transform of Bg () is given by

E (e—uBH(f)> — e—%uthH, t>0. (34)

The FBM time changed by the TSS S;,  (¢) is defined by
X(1) = Bu (S« (), (35)

under the assumption that By (¢) and S), o (¢) are independent. In the following sections, the
distributional properties of FBM time changed by the TSS are discussed. We establish the
long-range dependence (LRD) of the process X (#) and obtain the FPDE corresponding to
its PDF.

2.1 Asymptotic Moments

It is well known that for a standard random variable Z and for ¢ > 0 the following holds

241+
BiZ|Y = /=T (Tq> =¢,. (36)

For 0 < g < 1, using independence of By (f) and S) (¢) and the self-similarity property
of FBM, it follows,

H
,a

EIX (1|7 = ES], (OE|Bp (1|7

cqESI T (1) ~ cq(an®™ Dyttt a5 1 — oo, (37)

where constant ¢, is given in Eq. 36.
2.2 Long-Range-Dependence
In this section we discuss the covariance and LRD behavior of process X (7). Note that,

a finite variance stationary process Z(¢) is said to have LRD property (Cont and Tankov
2003), if Y 2 vk = 00, where

vk = Cov(Z(t), Z(t + k)).

In the following definition we give the equivalent definition for a non-stationary process
Z(t).
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Definition 1 Lets > 0 be fixed and ¢ > s. Then process Z(¢) is said to have LRD property
if

Corr(Z(s), Z(t)) ~ c(s)t_d, ast — oo, (38)
where c(s) is a constant depending on s and d € (0, 1).

The process X (¢) is not stationary and hence the definition 1 is used to establish the
LRD. For fixed s and large z, it follows

E(X(1)X (5)) = % [IEXz(t) +EX2(s) — E(X(t) — X(s))z]
1
=2 [E (B ($1.0))” +E (Bu(S1.a(s))” — E (Bu(S,.alt = 5))’]
1
= SEBu (1) [E (S0 )™ +E($.0@)™" —E(Spalt =)™
~ % I:(a)hozfl)ZHtZH +E(Sx,a(s))2H — (@AY H (- S)ZH:I
- %(am—l)“’ﬂ” (ZH; +E($1.0@) 17 4+ 0072)

~ Hs(aA®~12H 2H-1,
Using Eq. 37, it follows that
Corr(X (1), X(s)) ~ Hs'"#t#~1 ast — o0. (39)
Thus the following proposition holds.

Proposition 5 The process X (t) defined in Eq. 35 has LRD property for all H € (0, 1) in
sense of Definition 1.

2.3 Partial Differential Equations Connection

In this section the associated fractional-type partial differential equation for one dimensional
PDF of the process (35) is obtained.

Proposition 6 The density p(x,t) fort > 0 of the process X (t) defined in Eq. 35 satisfies
the following equation

8\ /e 5 92
Ap(x, 1) — <k°‘ - 5) px, 1) = Ht ’“@p(x, ) (40)

with initial and boundary conditions

px,0) =68(x)
limyej o0 p(, 1) = 0 1)
lirn|x|%oo %p(x’ 1) =0.
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Proof First let us observe that the initial and boundary conditions (41) are satisfied
immediately since they hold for PDF of By (¢).

82
HPP —p(x,1)

o0
32
H*P = — / P, 2) fira(z, 1) dz

ax2 9x2
0
o0
a n
= | =P, 2 fralz, t)dz
0z
0
r 0
= [Pl (x,2) fralz, t)]i?—fp’,&(x,z)afzfx,a(z, 1) dz
0

= [by the condition that f(¢,0) = 0 forz > 0]

% 9 1/«
_/ —Afra(z, 1) — ()\a + 5) fra(z, )] dz
0

= [by Proposition 2]

o 9 1/a
= Ap(x,t) — (A - E) px,1).

3 FBM Delayed by Inverse Tempered Stable Subordinator

Many real time-series exhibit constant time periods behavior i.e. the time-series remains at
the same level for some intervals and also have characteristics similar to Gaussian processes
although they are not Gaussian. Therefore there is need to consider new classes of systems
to model these kinds of empirical behavior. Motivated by this fact, in this section we discuss
the FBM time changed by the ITS subordinator E; (¢), defined in Eq. 13. This process is
defined by

Y(t) = Bu(Ey (1)), (42)

where the processes By (t) and Ej ,(f) are assumed to be independent.
3.1 Asymptotic Moments

As in the previous case, we discuss the properties of the one-dimensional distribution of the
process Y (¢) defined in Eq. 42. Using, Egs. 30, 42 and self-similarity of FBM, it follows

H
,a

ElY(0)Y = EE} ,(OE[Bu (1|

¢, \aH(1—a)
i SR W}

alH
qu(1+qH)tqHa A=0 (43)
I(l+qgHa) T

as t — oo, where ¢, is defined in Eq. 36.
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3.2 Long-Range-Dependence

In this section we discuss the covariance and LRD behavior of process Y (¢) defined in
Eq. 42. The covariance structure for time-changed FBM is discussed in Mijena (2014). An
explicit asymptotic behavior for covariance structure of Y () is provided here which helps
in establishing the LRD property of the process Y (¢).

For s < ¢, the covariance function of Y (¢) is given by (see Theorem 3.1. Mijena 2014)

E (Y (5)Y (1)) = Map(s) + 2H /0 Man1(t — y)dMy (),

where M, (¢) is the g-th order moment of E} (t). For fixed s and large ¢, using Eq. 30, it
follows

N
/ Myp—1(t — y)dM;(y)
0
LQH-1)(1-0) ps -
— /
Nw/(; (t=y M;(y)dy
3 QH-1)(1-a)

T T eH-D)
3 @H-1)(1-a)

(t — )My (s)

N 2H-1
pReT7Y t Mi(s).

Thus E (Y ()Y (1)) ~ Map(s) + 2H 5 2H=1 3, (5). For A > 0, using Eq. 43, it
gives

Corr(Y (s), Y (1)) ~ o2 s=H ) 2HU=) pp ()t ™ 4 2 A 127 2H g=H pgy () T

ast — oo. Hence, the following result holds.

Proposition 7 The process Y (t) has the LRD property for all H € (0, 1) in sense of
definition 1.

3.3 Partial Differential Equations Connection

Similarly as in Proposition 6, an analogous version of associated shifted fractional partial
differential equation for the PDF of the process Y (¢) defined in Eq. 42 is discussed here.

Proposition 8 The density g(x,t) of the process Y (t) defined in Eq. 42 satisfies the
following equation

0 o 82
(A + —) g, 1) = A%g(x, 1) + 17 OMT% (—Aand(x) = HI* ' —g(x,1), 1 > 0,

31‘ 11—« axz
(44)
with initial and boundary conditions
g(x,0) =48(x)
limjy| 500 g(x,1) =0 (45)

limyx| o0 7y g (¥, 1) = 0.

Proof Again the conditions (45) are satisfied for the density of fractional Brownian motion
By (t), now the proof of Eq. 44 follows the same lines presented in Proposition 6. O
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4 Simulations

In this section we discuss simulation procedures for both processes X (¢) and Y (¢) defined
in the previous sections.

4.1 FBM Delayed by Tempered Stable Subordinator

The simulation procedures for sample paths (or trajectories) of subordinated processes have
been widely described in the literature, for example FBM time-changed by gamma subordi-
nator is discussed in Kozubowski et al. (2006) and FBM time-changed by Inverse Gaussian
subordinator is analyzed in Wytomariska et al. (2016).

The main idea is to simulate independent trajectories of the subordinator Sy 4(¢) and
the FBM By (t). By taking their superposition we obtain the trajectory of the process X (¢)
defined in Eq. 35.

The procedure of simulation of FBM is described in details for example in Teuerle et al.
(2013) therefore we refer the reader to this bibliography position.

In next step we simulate the trajectory of Sy o(¢), that is a process of independent
stationary increments having tempered stable distribution. The algorithm of simulation
of tempered stable random variables has been described in Baeumer and Meerschaert
(2010). We divide the interval [0, T] into sub-intervals of length § where the increments
Spa+8)—Sxa@),t =0,6,28,..., T —6 have tempered stable distribution with Laplace
transform E (e #(Sra(+9)=Sia(0)) = =8(w+M* =A%) We simulate [T /5] independent ran-
dom variables from this distribution. Finally, the trajectory of Sy ,(#) is obtained as the
cumulative sum of the increments.

Finally, by taking superposition of trajectories of By (f) and S (¢) we obtain approxi-
mated trajectory of process X (¢). The exemplary trajectories of the process X (¢) obtained
by using the described procedure are presented in Fig. 1.

o=05A=0.1,H=0.3
20 T T

_10 I I I I
0 0.2 0.4 0.6 0.8 1

a=05A=01,H=0.7
50 T T

~100 L L L L
0 0.2 0.4 0.6 0.8 1

t

Fig. 1 The exemplary trajectories of the process X (¢) for H = 0.3 (top panel) and H = 0.7 (bottom panel)
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a=051=0.1,H=0.3

15 T T

a=0.51=01,H=07
100 T T

Fig. 2 The exemplary trajectories of the process Y (¢) for H = 0.3 (top panel) and H = 0.7 (bottom panel)

4.2 FBM Delayed by Inverse Tempered Stable Subordinator

The idea of simulation of Y (¢) process is similar as presented above. It is also based on the
simulation of independent trajectories of FBM and the process E; o (#) which is an inverse
to the tempered stable process S (). In order to simulate the approximate trajectory of
the inverse tempered stable subordinator first we need to define E} , with the step length §
in the following way

Ejpas(t) = (min{n € N: 83 o(6n) >t} —1)8, n=1,2,...,

where Sy 4 (6n) is the value of tempered stable subordinator S ,(¢) evaluated at én, which
can be simulated by using the method presented above. Observe that trajectory E} o(¢) has
increments of length § at random time instants governed by process S «(7) and therefore
E) o.5(t) is approximation of operational time. Finally, the trajectory of the process Y ()
is obtained as the superposition of FBM, for which the simulation procedure is mentioned
above, and the process E; o (). The exemplary trajectories of the process Y (¢) obtained by
using described procedure are presented in Fig. 2. We observe here the constant time periods
characteristic for processes delayed by inverse subordinators.

5 Conclusions

In this paper we have considered the FBM delayed by tempered stable and inverse tem-
pered stable subordinators. The tempered stable process in the literature is considered as
the extension of the popular stable process. The main advantage of the tempered stable
systems is that they posses many properties of stable systems however they have all finite
moments therefore the classical methods of their analysis can be applied. The subordinated
processes are especially useful in modeling of anomalous diffusion phenomena. In this
paper we have compared the main properties of time-changed FBM. The special attention
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is paid to long-range dependence property and form of fractional partial differential equa-
tion for probability density function of analyzed systems. The theoretical part of the paper
is enriched by simulation procedures description.
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Appendix A
Laplace-Erdelyi Theorem

Consider the integral

b
1) = / O g(x)dx,
a

where (a, b) is a real (finite or infinite) interval. Further, 7 is large positive and the functions
f and g are continuous. Suppose f have a single minima at x = a and functions f and g
are such that

fo)~ f@+Y ajx—a)y*F, g>0

j=0
and
o0
gx) ~ ij(x —a)/tr-1 y > 0.
j=0
Then, the asymptotic expansion of the integral I (¢) is given by
> n+ C
I(t) ~eT@ON"T <Ty> W (46)

n=0
where ¢, is given by

tn = (n+y>/ﬂ Zb” ] Z(

where B i are the partial (or incomplete) ordinary Bell polynomials (Andrews 1998).

n+y

> [l(a15a27"' ,aj—i+1)7
0

Partial Exponential Bell Polynomials

The partial (or incomplete) exponential Bell polynomials are a triangular array of polyno-
mials given by

X1\J1 /x2\ ]2 Xn—k+1 Jn—kt1
il W~ eepmrert] )M ) R (=) M

where the sum is taken over the sequences satisfying

ittt jukrr =k j1+2p+3j3+ -+ 0 —k+1jui—ty1=n,
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where ji, jo2, j3, ..., Ju—k+1 are non-negative integers. Further, the sum

n
Buy(xi, ..., %n) = ) Bug(x1, X2, ..., Xn k1)
k=1

is called the n-th complete exponential Bell polynomial.
Partial Ordinary Bell Polynomial

The partial ordinary Bell polynomial is given by

N k! . .
— J1,J2 L Jn—ktl
By (x1,x2, ..., Xp—ga1) = Z TR jn—k+1!x1 Xy X
where the sum runs over all sequences ji, j2, j3, - , ju—k+1 Of non-negative integers such
that
ht+jpt+t k1 =k j1+2pp+ -+ @ —k+Djuty1 =n
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