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Abstract This paper is concerned with exact results for the final outcome of stochastic
SIR (susceptible → infective → recovered) epidemics among a closed, finite and homo-
geneously mixing population. The factorial moments of the number of initial susceptibles
who ultimately avoid infection by such an epidemic are shown to be intimately related to
the concept of a susceptibility set. This connection leads to simple, probabilistically illumi-
nating proofs of exact results concerning the total size and severity of collective Reed–Frost
epidemic processes, in terms of Gontcharoff polynomials, first obtained in a series of papers
by Claude Lefèvre and Philippe Picard. The proofs extend easily to include general final
state random variables defined on SIR epidemics, and also to multitype epidemics.
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1 Introduction

One of Claude Lefèvre’s main contributions to epidemic theory is concerned with exact
results for the final outcome of stochastic SIR (susceptible → infective → recovered) epi-
demics among a closed, finite populations. An SIR epidemic is one in which there are three
types of individuals, namely susceptibles, infectives and recovered. If a susceptible indi-
vidual is contacted by an infective then it too becomes an infective and remains so for a
(possibly random) period of time, called its infectious period, after which it recovers and is
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immune to further infection. An epidemic is started by some individuals becoming infec-
tive and ends when there is no infective present in the population. The total size of such an
epidemic is the number of initial susceptibles who ultimately become infected. The sever-
ity of the epidemic is the sum of the infectious periods of all individuals infected during
the course of the epidemic, including the initial infectives. The distribution of total size and
severity has received considerable attention in the literature; see Lefèvre (1990) for a brief
review of work prior to 1990.

Together with Philippe Picard, Claude Lefèvre introduced in Picard and Lefèvre (1990)
an extension of the ordinary Reed–Frost model (see Bailey 1975, Chapters 8 and 14), called
the collective Reed–Frost epidemic process. As described in Lefèvre and Picard (1995), for
many commonly-studied SIR models, the total size and severity has the same distribution
as that of an appropriate collective Reed–Frost process. Moreover, by exploiting a non-
standard family of polynomials first introduced by Gontcharoff (1937), a unified analysis of
the total size and severity of collective Reed–Frost epidemics was developed in Picard and
Lefèvre (1990), which both generalised a number of previous results and obtained them in
a more systematic fashion.

The method of the analysis in Picard and Lefèvre (1990) is as follows. First, a suitable
family of martingales is defined on the epidemic process. Then, an optional stopping theo-
rem is used to derive a set of equations satisfied by expectations of certain functions of total
size and severity. Finally, Gontcharoff polynomials are used to derive an expression for the
joint generating function Laplace transform of total size and severity. Thus, Gontcharoff
polynomials are used purely as a tool and they are not given any probabilistic interpreta-
tion. For a class of epidemic models that admit a Sellke construction (Sellke 1983), Ball and
O’Neill (1999) use direct probabilistic arguments which highlight the connection between
the total size distribution and Gontcharoff polynomials. However, they do not give a prob-
abilistic interpretation to the Gontcharoff polynomials and lengthy conditioning arguments
are required unless the model is ordinary Reed–Frost.

The notion of general final state random variables for SIR epidemics was introduced
in Ball and O’Neill (1999). These random variables are sums over all individuals infected
during the course of the epidemic of random quantities of interest associated with an indi-
vidual, so one example is the severity of an epidemic. The random quantities may be
vector-valued. The joint generating function Laplace transform of the total size and gen-
eral final state random variables is derived in Ball and O’Neill (1999) for models that
admit a Sellke construction, though generally the resulting expression is not amenable
for calculation as it is in terms of expectations of complicated functions of random vari-
ables. Following lengthy algebra, more explicit results are derived in Ball and O’Neill
(1999) when the tolerances in the Sellke construction follow an exponential distribution,
in which case the model can also be viewed as a special case of the collective Reed–Frost
process.

Many stochastic SIR epidemic models, including collective Reed–Frost processes, admit
a random graph representation (see, for example, Ball 1983 and Barbour and Mollison
1990), in which for any ordered pair of individuals, i and j say, a directed edge from i to j

is present if and only if i will try to infect j if i becomes infected. (The infection will fail if
j has previously been infected.) Given such a graph and any subset A of individuals in the
population, the susceptibility set SA ofA is defined to be set of individuals j ∈ Ac such that
if j is infected then at least one member ofAwill ultimately become infected (see Section 3.1).
Thus j ∈ SA if and only if there is a chain of directed edges from j to a member of A.
In this paper it is shown that for collective Reed–Frost processes there is a straightforward
connection between the distribution of the size of SA and factorial moments of the number
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of susceptibles remaining at the end of an epidemic, which leads to simple, probabilistically
illuminiating derivations of exact results concerning the distribution of total size, severity
and general final state random variables.

The paper is structured as follows. A brief background to symmetric sampling proce-
dures, Gontcharoff polynomials and collective Reed–Frost epidemics is given in Section 2.
The final outcome of collective Reed–Frost epidemics is considered in Section 3. The prob-
ability mass function for the size of a susceptibility set is shown in Section 3.1 to have a
simple representation in terms of Gontcharoff polynomials, which is used in Section 3.2
to derive expressions for the factorial moments and probability generating function of the
number of survivors of an epidemic. (The number of survivors of an epidemic is the number
of susceptibles remaining at the end of the epidemic, i.e. the difference between the initial
number of susceptibles and the total size, so the probability generating function of the total
size is obtained easily from that of the number of survivors.) A simple relationship between
the probability generating function of number of survivors and the joint generating function
Laplace transform of the number of survivors and severity is proved in Section 3.3 and then
used to determine the latter. The final outcome results are extended to the case when initial
and non-initial infectives follow different probabilistic laws in Section 3.4. The derivation
of the joint generating function Laplace transform of the number of survivors and severity
extends easily to that of the number of survivors and general final state random variables.
This is outlined in Section 3.5, where the flexibility afforded by the framework of general
final state random variables is illustrated by using it to analyse two extensions of the collec-
tive Reed–Frost process considered in Picard and Lefèvre (1990), namely epidemics with
several types of infectives, in Section 3.5.1, and epidemics in which infectives have different
degrees of infectiousness during various stages of their infectious period, in Section 3.5.2.

Most of the results of Section 3 are derived for an extended version of the collective
Reed–Frost model, in which individuals can also be infected from outside of the population.
The arguments of Section 3 extend easily and naturally to multitype collective Reed–Frost
processes (Picard and Lefèvre 1990), in which the population is partitioned into several
groups that are homogeneous but different from each other, with results being expressed in
terms of an extension of Gontcharoff polynomials to several variables given in Lefèvre and
Picard (1990). This extension is outlined in Section 4.

2 Background

2.1 Symmetric Sampling Procedures

This subsection contains a summary of results concerning symmetric sampling procedures,
which are required in the sequel. The summary is based on Section 1 of Martin-Löf (1986),
which should be consulted for further detail.

Consider a fixed finite population N = {1, 2, . . . , N} of size N . Let X be a random
subset of N and let X = |X | denote the size of X . For A ⊆ N , let pA = P(X = A)

and rA = P(X ⊇ A). A symmetric sampling procedure is one in which for all A ⊆ N ,
pA depends only on the size, |A| = a, of A, so pA = pa/

(
N
a

)
, where pa = P(X = a). It

follows that rA also depends only on a, so one can write rA = ra . Note that

ra =
N∑

b=a

pb

(
N − a

b − a

)
/

(
N

b

)
(a = 0, 1, . . . , N) (2.1)

Methodol Comput Appl Probab (2019) 21:401–421 403



and the Möbius inversion formula yields

pa =
(

N

a

) N∑

b=a

(−1)b−a

(
N − a

b − a

)
rb (a = 0, 1, . . . , N). (2.2)

For s, k ∈ Z+, let s[k] = s(s−1) . . . (s−k+1) denote a falling factorial, with the convention
s[0] = 1. Then it follows using (2.2) that

E[X[k]] = N[k]rk (k = 0, 1, . . . , N). (2.3)

Note that if X is a symmetric sampling procedure on N and C is a fixed subset of N
with |C| = c then X ′ = X ∩ C is a symmetric sampling procedure on C, with r ′

a = ra
(a = 0, 1, . . . , c).

2.2 Gontcharoff Polynomials

Let U = u0, u1, . . . be a given sequence of real numbers. The Gontcharoff polynomials
attached to U , viz. G0(x | U),G1(x | U), . . . , where x ∈ R, are defined recursively by

n∑

i=0

n[i]un−i
i Gi(x | U) = xn (n = 0, 1, . . . ). (2.4)

Thus, for i ∈ Z+, Gi(x | U) is a polynomial of degree i. The following properties of
Gontcharoff polynomials, required in the sequel, are proved in Lefèvre and Picard (1990),
Section 2.

Property 2.1 For i, j ∈ Z+,
G

(j)
i (uj | U) = δij ,

where G
(j)
i (x | U) denotes the j th derivative of Gi(x | U), and δij = 1 if i = j and 0 if

i �= j .

Property 2.2 For 0 ≤ j ≤ i,

G
(j)
i (x | U) = Gi−j (x | EjU),

where EjU is the sequence uj , uj+1, . . . .

Note that G(j)
i (x | U) = 0 for j > i.

Property 2.3 For a ∈ R,

Gi(ax | aU) = aiGi(x | U) (i = 0, 1, . . . ),

where aU denotes the sequence au0, au1, . . . .

2.3 Collective Reed–Frost Epidemics

Picard and Lefèvre (1990) introduced the following collective Reed–Frost epidemic process
as a model for the spread of an infectious disease among a closed, homogeneously mixing
population partitioned into three types of individuals, viz susceptibles, infectives and recov-
ered. The epidemic evolves in discrete time t = 0, 1, . . . . It is convenient to suppose that
the unit of time corresponds to the (assumed constant) latent period of an infective and that
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the infectious period of an infective is reduced to a single point in time. For t = 0, 1, . . . ,
let Xt and Yt denote respectively the numbers of susceptibles and infectives present at time
t , and suppose that (X0, Y0) = (n, m). For k = 1, 2, . . . , let qk be the probability that any
given infective fails to contact anyone in any given set of k susceptibles, where contact is
interpreted as being sufficient to transmit the disease, and let q0 = 1. (Note that the model
assumes that qk is the same for all infectives and for all subsets of k susceptibles.) Then the
qks induce a symmetric sampling procedure for determining the susceptibles who are con-
tacted by a given infective. Different infectives make contacts independently of each other.
It follows that {(Xt , Yt ); t = 0, 1, . . . } is a Markov chain, where, for t = 0, 1, . . . , the
random variable Xt+1 is given by the number of the Xt susceptibles at time t who avoid
contact with any of the Yt infectives and Yt+1 = Xt − Xt+1. The epidemic stops as soon as
there is no infective present in the population.

Note that by the observation at the end of Section 2.1, there is no need to restrict attention
to susceptibles when defining the qks. Instead, one can consider for each infective, indepen-
dent symmetric sampling procedures, induced by the same qks, defined on the population
of n + m − 1 individuals excluding that infective. Such a formulation gives the generalized
Reed–Frost process introduced by Martin-Löf (1986), so the two models are equivalent.

There is a well known connection between SIR epidemic models and random graphs.
For the above generalized Reed–Frost process consider the directed graph on the set V of
N = n + m vertices, labelled 1, 2, . . . , N , corresponding to the n + m individuals in the
population, in which for i �= j there is a directed edge from i to j if and only if j belongs
to the set of individuals contacted by i. (More precisely, for each i ∈ V , independently
realise a symmetric sampling procedure, Xi say, on V \{i} induced by the qks to determine
who i will try to infect if it becomes infected. Then for i �= j there is a directed edge
from i to j if and only if j ∈ Xi .) For distinct i, j ∈ V write i � j if and only if
there is a chain of directed edges from i to j . Let S0 and I0 denote the sets of vertices
corresponding to the initial susceptibles and initial infectives, respectively. Then the set of
initial susceptibles who are ultimately infected by the epidemic is given by {i ∈ S0 : j � i

for some j ∈ I0}. Note that this set does not depend on the times of the contacts. Thus
if attention is restricted to the final outcome of the epidemic, the collective Reed–Frost
epidemic process can be used to study epidemic models in which the contacts of an infective
do not all occur simultaneously, a fact first noted in a slightly different setting by Ludwig
(1975) and explored in more detail in Pellis et al. (2008).

Before proceeding some special cases of collective Reed–Frost epidemics are outlined.

1. The ordinary Reed–Frost model (see e.g. Bailey 1975, Chapters 8 and 14). In this model
a given infective contacts susceptibles independently, each with probability p = 1− q.
Thus qk = qk (k = 0, 1, . . . ).

2. Extended general epidemic (see e.g. Ludwig 1975 or Ball 1986). Suppose that infectives
have independent and identically distributed infectious periods, each distributed accord-
ing to a random variable TI having Laplace transform φ(θ) = E[exp(−θTI )] (θ ≥ 0),
during which a given infective contacts a given susceptible at the points of a homoge-
neous Poisson process with rate β. All the contact processes are mutually independent
and independent of the infectious periods. Then qk = φ(kβ) (k = 0, 1, . . . ).

3. General stochastic epidemic (see e.g. Bailey 1975, Chapter 6). This is obtained by
setting TI to follow an exponential distribution with mean γ −1, so
qk = γ /(γ + kβ) (k = 0, 1, . . . ).

4. Direct epidemic process (Gertsbakh 1977; Jaworski 1999). In this model each individ-
ual makes zero contacts with probability q or precisely one contact, with an individual
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chosen uniformly at random from the other N − 1 individuals in the population, with
probability 1− q. Thus qk = q + (1− q)(N − 1− k)/(N − 1) (k = 0, 1, . . . , N − 1).

Consider the above collective Reed–Frost epidemic and suppose that infectives have
independent and identically distributed infectious periods. Fix attention on a given infective.
Let TI denote its infectious period and for k = 1, 2, . . . , let Ak be the event that the given
infective fails to infect anyone in a given set of k susceptibles. Let qk(θ) = E[e−θTI 1Ak

]
(k = 1, 2, . . . ), where 1Ak

denotes the indicator function of the event Ak , and let q0(θ) =
E[e−θTI ]. Let N∗ denote the total size of the epidemic, i.e. the number of initial suscepti-
bles that are ultimately infected, let S = n − N∗ be the number of initial susceptibles who
survive the epidemic, and let TA denote the severity of the epidemic, i.e. the sum of the
infectious periods of all the m + N∗ infectives in the epidemic. Let

φn,m(x, θ) = E[xS exp(−θTA)] (x ∈ R, θ ∈ R+)

be the joint generating function Laplace transform of (S, TA). Then Picard and Lefèvre
(1990) showed that

φn,m(x, θ) =
n∑

i=0

n[i](qi(θ))n+m−iGi(x | U(θ)), (2.5)

where the sequence U(θ) is given by uk(θ) = qk(θ) (k = 0, 1, . . . ).

2.4 Collective Reed–Frost Epidemic with Outside Infection

Addy et al. (1991) generalised the extended general epidemic (see special case 2, above) to
incorporate outside infection. Specifically, they assumed that each of the n initial suscepti-
bles has probability π of avoiding infection from outside the population during the course
of the epidemic, independently of other susceptibles in the population. This generalisation
has proved to be very fruitful in analysing the asymptotic final outcome of epidemics among
a community of households (see, for example, Ball et al. 1997). The collective Reed–Frost
epidemic can be generalised in a similar fashion. For k = 1, 2, . . . , n, let πk be the proba-
bility that everyone in any given set of k initial susceptibles avoids infection from outside
the population during the course of the epidemic (note that this probability is assumed to
be the same for all such sets) and let π0 = 1. Suppose also that the external and inter-
nal infection processes are independent. Let φ̃n,m(x, θ) = E[xS exp(−θTA)] be the joint
generating function Laplace transform of (S, TA) for the collective Reed–Frost epidemic
with outside infection. Then, conditioning on the number of initial susceptibles who avoid
outside infection and using (2.5) yields, after a little algebra, that

φ̃n,m(x, θ) =
n∑

i=0

n[i](qi(θ))n+m−iπiGi(x | U(θ)), (2.6)

cf. Ball et al. (1997).
The similarity between (2.5) and (2.6), and in particular the way the πis enter (2.6),

suggest that the Gontcharoff polynomials Gi(x | U(θ)) (i = 0, 1, . . . ) admit a probabilistic
interpretation in terms of the underlying epidemic process. In this paper, a proof of (2.5)
is given which exploits such a probabilistic interpretation for the Gontcharoff polynomials
and clarifies the origin of (2.6).
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3 Final Outcome of Collective Reed–Frost Epidemic with Outside
Infection

3.1 Susceptibility Sets

Consider the random graph representation of the collective Reed–Frost epidemic, without
outside infection, given in Section 2.3. For A ⊆ V , define the susceptibility set SA of A

by SA = {j ∈ V \A : j � i for some i ∈ A}, with the convention S∅ ≡ ∅. Note that if
A ⊆ S0, so A consists entirely of initial susceptibles, then A avoids infection (i.e. nobody
in A is ultimately infected) if and only if SA ∩ I0 = ∅, hence the terminology. (In the
context of epidemic processes on digraphs of random mappings, SA is referred to as the set
of all predecessors of A, see e.g. Jaworski 1999.)

Let SA = ∣
∣SA

∣
∣ denote the size of SA. Suppose that |A| = j , where 0 ≤ j ≤ N ,

let k = ∣∣V \A∣∣ = N − j and write Pjk(SA = �) for the probability that SA is of size �

(� = 0, 1, . . . , k). The following lemma is required in the sequel. An equivalent result for
the special case of the extended general epidemic model is given in Ball and Neal (2002),
Lemma 3.1, but not in terms of Gontcharoff polynomials.

Lemma 3.1 For j, k = 0, 1, . . . ,

Pjk(SA = �) = k[�]G�(1 | EjU)qk−�
j+� (� = 0, 1, . . . , k), (3.1)

where the sequence U is given by uk = qk (k = 0, 1, . . . ).

Proof For the purpose of this proof only, label the elements of V \A, 1, 2, . . . , k. For i =
1, 2, . . . , k, let i denote the set {1, 2, . . . , i} and let 0 denote the empty set. Note that, by
symmetry and in obvious notation,

Pjk(SA = �) =
(

k

�

)
Pjk(SA = �) (k = 0, 1, . . . ; � = 0, 1, . . . , k) (3.2)

and that, by first considering the susceptibility set of A amongst the individuals 1, 2, . . . , �,

Pjk(SA = �) = Pj�(SA = �)qk−�
j+� (k = 0, 1, . . . ; � = 0, 1, . . . , k). (3.3)

Now
∑k

�=0 Pjk(SA = �) = 1, so using (3.2) and (3.3),

k∑

�=0

k[�]qk−�
j+�Pj�(SA = �)/�! = 1 (k = 0, 1, . . . ).

Thus, directly from the definition (2.4) of Gontcharoff polynomials,

Pj�(SA = �)/�! = G�(1 | EjU),

and Lemma 3.1 follows, using (3.2) and (3.3).

Remark 3.1 Note that, after suitable change of notation, the expression (3.1) for the prob-
ability mass function of the size of the susceptibility set SA is identical to the probability
mass function of the total size of the nonstationary Reed–Frost epidemic defined in Lefèvre
and Picard (2005); see equation (2.5) of that paper. In that model, susceptibles may be
viewed as being exposed to infectives sequentially and, for k = 1, 2, . . . , the probability
that any given susceptible avoids infection from the first k infectives that it is exposed to is
denoted by q̌k . (This probability is denoted by πk in Lefèvre and Picard (2005).) Let q̌0 = 1.
A realisation of the total size of a nonstationary Reed–Frost epidemic can be obtained by
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first constructing a realisation of the directed random graph of the collective Reed–Frost
epidemic having qk = q̌k (k = 0, 1, . . . ) and then reversing the direction of all of the edges
in that graph. The resulting graph is then interpreted in the usual fashion; i.e. for i �= j , if
i is infected then it will try to infect j if and only if there is a directed edge from i to j .
Observe that if A denotes the set of initial infectives in the nonstationary Reed–Frost epi-
demic, then the set susceptibles that are ultimately infected in that epidemic is given by the
susceptibility set of A in the collective Reed–Frost epidemic, which explains why the two
mass functions are the same.

3.2 Total Size

Consider the collective Reed–Frost epidemic with outside infection, defined in Section 2.4.
Suppose that initially there are m infectives and n susceptibles and let S be the number of
initial susceptibles that ultimately remain uninfected.

Proposition 3.1 For j = 0, 1, . . . ,

E[S[j ]] =
n∑

i=0

n[i]qn+m−i
i πiG

(j)
i (1 | U), (3.4)

where U is given by uk = qk (k = 0, 1, . . . ).

Proof Fix j ∈ {1, 2, . . . , n} and let A be any fixed set of j initial susceptibles. Then by (2.3)

E[S[j ]] = n[j ]P(A avoids infection). (3.5)

Now

P(A avoids infection) = E[P(A avoids infection | SA)]

=
n+m−j∑

�=0

Pj,n+m−j (SA = �)P(A avoids infection | SA = �). (3.6)

Suppose that SA = �. NowA avoids infection if and only ifSA∩I0 = ∅ and all the j+�

individuals in A ∪ SA avoid outside infection. Clearly, SA ∩ I0 �= ∅ if � > n − j , whilst
if l ≤ n − j , SA can be chosen in

(
n+m−j

�

)
ways, all equally likely, of which

(
n−j

�

)
satisfy

SA ∩ I0 = ∅. Thus, since the internal and external infection processes are independent,

P(A avoids infection | SA = �)

=
{

π�+j

(
n−j

�

)
/
(
n+m−j

�

)
(� = 0, 1, . . . , n − j),

0 (� = n − j + 1, n − j + 2, . . . , n + m − j).

Hence,

E[S[j ]] = n[j ]
n−j∑

�=0

Pj,n+m−j (|SA| = �)π�+j

(
n − j

�

)
/

(
n + m − j

�

)

=
n∑

i=j

n[i]qn+m−i
i πiGi−j (1 | EjU),

using (3.1) and the substitution i = � + j . Equation 3.4 follows using Property 2.2 and
noting that G(j)

i (1 | U) = 0 if i < j .
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The case j = 0 is immediate, using Property 2.1. Finally, both sides of (3.4) are clearly
zero if j > n.

Remark 3.2 Observe from (3.1) that, after using Property 2.2, the Gontcharoff polynomials
appearing in the expression (3.4) for E[S[j ]] admit the simple probabilistic interpretation

G
(j)
i (1 | U) = Pj,i−j (SA = i − j)/(i − j)! (i ≥ j ), from which it is immediate that

G
(j)
i (1 | U) ≥ 0 (i ≥ j ), with strict inequality unless q1 = 1 (i.e. infection is impossible),

cf. Gani and Shanbhag (1974).

Remark 3.3 In the proof of Proposition 3.1, the probability that A avoids infection can
instead be calculated by letting SA be the susceptibility set of A among the initial suscepti-
bles (i.e. with V replaced by S0) and noting that, given SA = �, the set A avoids infection
if and only if all of the j + � individuals in A∪SA avoid outside infection and are not con-
tacted by any of the m initial infectives, which happens with probability π�+j q

m
�+j . Thus

(3.6) may be replaced by

P(A avoids infection) =
n−j∑

�=0

Pj,n−j (SA = �)π�+j q
m
�+j (3.7)

and (3.4) follows using (3.1) and (3.5).

Let f̃n,m(x) = E[xS] (x ∈ R) be the probability generating function of S.

Corollary 3.1 For n, m = 0, 1, . . . ,

f̃n,m(x) =
n∑

i=0

n[i]qn+m−i
i πiGi(x | U) (x ∈ R).

Proof The Taylor expansion of f̃n,m(x) about x = 1 gives

f̃n,m(x) =
∞∑

j=0

(x − 1)j

j ! f̃
(j)
n,m(x) =

∞∑

j=0

(x − 1)j

j ! E[S[j ]]

=
∞∑

j=0

(x − 1)j

j !
n∑

i=0

n[i]qn+m−i
i πiG

(j)
i (1 | U)

=
n∑

i=0

n[i]qn+m−i
i πi

∞∑

j=0

(x − 1)j

j ! G
(j)
i (1 | U)

=
n∑

i=0

n[i]qn+m−i
i πiGi(x | U),

where the third equality follows using Proposition 3.1.

3.3 Total Size and Severity

Let Q denote the sequence qk (k = 0, 1, . . . ) and write the probability generating function
f̃n,m(x) as f̃n,m(x;Q) to show explicitly its dependence on Q. Let fn,m(x) = fn,m(x; Q)

denote the corresponding probability generating function for the model without outside
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infection. The following observation provides a simple way of determining the joint
generating function Laplace transform φ̃n,m(x, θ).

Lemma 3.2 For n, m = 0, 1, . . . ,

φ̃n,m(x, θ) = (q0(θ))n+mf̃n,m(x/q0(θ); Q̃(θ)) (θ ∈ R+), (3.8)

where Q̃(θ) denotes the sequence given by q̃k(θ) = qk(θ)/q0(θ) (k = 0, 1, . . . ).

Proof Consider first the model without outside infection and fix θ ≥ 0. Suppose that m ≥ 1
and consider the random graph representation of the epidemic. Fix on one of the initial
infectives. Let TI and Z denote respectively the infectious period of and the number of
directed edges emanating from the chosen infective. Conditioning on (TI , Z) yields

φn,m(x, θ) =
n∑

k=0

E[e−θTI 1{Z=k}]φn−k,m+k−1(x, θ). (3.9)

Let p(n)
k (θ) = E[e−θTI 1{Z=k}]/q0(θ) (n = 0, 1, . . . ; k = 0, 1, . . . , n) and ψn,m(x, θ) =

φn,m(x, θ)/(q0(θ))n+m. Then (3.9) implies that ψn,m(x, θ) (n, m = 0, 1, . . . ) are deter-
mined by

ψn,m(x, θ) = ∑n
k=0 p

(n)
k (θ)ψn−k,m+k−1(x, θ) (n = 0, 1, . . . ; m = 1, 2, . . . ),

ψ0,m(x, θ) = 1 (m = 0, 1, . . . ) and
ψn,0(x, θ) = (x/q0(θ))n (n = 0, 1, . . . ).

⎫
⎬

⎭

(3.10)
Note that p

(n)
k (θ) (k = 0, 1, . . . , n) is the probability mass function of the number

of objects that are not sampled in the symmetric sampling procedure induced by q̃k(θ)

(k = 0, 1, . . . , n). A similar conditioning argument shows that fn,m(x) = fn,m(x; Q(0))
(n, m = 0, 1, . . . ) are determined by

fn,m(x) = ∑n
k=0 p

(n)
k (0)fn−k,m+k−1(x) (n = 0, 1, . . . ; m = 1, 2, . . . ),

f0,m(x) = 1 (m = 0, 1, . . . ) and
fn,0(x) = xn (n = 0, 1, . . . ).

⎫
⎬

⎭
(3.11)

It follows from (3.10) and (3.11) that

φn,m(x, θ) = fn,m(x/q0(θ); Q̃(θ)) (n, m = 0, 1, . . . ),

since the solutions of (3.10) and (3.11) are unique, so Lemma 3.2 holds for collective Reed–
Frost epidemics without outside infection. The result for the model with outside infection
follows by first conditioning on the number of initial susceptibles who avoid infection
from outside the population and then using the proven result for the model without outside
infection.

Theorem 3.1 For n, m = 0, 1, . . . ,

φ̃n,m(x, θ) =
n∑

i=0

n[i](qi(θ))n+m−iπiGi(x | U(θ)) (x ∈ R, θ ∈ R+),

where U(θ) is given by uk(θ) = qk(θ) (k = 0, 1, . . . ).
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Proof By Lemma 3.2 and Corollary 3.1

φ̃n,m(x, θ) = (q0(θ))n+m
n∑

i=0

n[i](q̃i (θ))n+m−iπiGi(x/q0(θ) | U(θ)/q0(θ))

and the result follows using Property 2.3.

Corollary 3.2 For n, m = 0, 1, . . . and θ ≥ 0,

E[S[k](qk(θ))S exp(−θTA)] = (qk(θ))n+mπkn[k] (k = 0, 1, . . . , n). (3.12)

Proof Let φ̃(k)
n,m(x, θ) denote the kth partial derivative of φ̃n,m(x, θ) with respect to x. Then,

for k = 0, 1, . . . , n,

E[S[k](qk(θ))S exp(−θTA)] = (qk(θ))kφ̃(k)
n,m(qk(θ), θ)

= (qk(θ))n+mπkn[k],

using Theorem 3.1 and Property 2.1.

Remark 3.4 Setting θ = 0 in (3.12) yields a triangular system of equations for the total
size distribution of the epidemic. This system was first obtained for the general stochastic
epidemic by Whittle (1955), using an algebraic argument. Subsequently, it has been derived
for several other special cases of the present model by a number of authors, using a variety
of methods.

Remark 3.5 Setting k = 0 in (3.12) yields a Wald’s identity for the epidemic, cf. Ball
(1986), Theorem 2.1, Picard and Lefèvre (1990), Corollary 3.2, and Addy et al. (1991),
Theorem 1. For the collective Reed–Frost epidemic without outside infection, Picard and
Lefèvre (1990) derive (3.12) by applying the optional stopping theorem to a suitable fam-
ily of martingales defined on the epidemic process and then use an Abel expansion of
φn,m(x, θ) in terms of Gi(x | U(θ)) to derive (2.5).

3.4 Initial and Non-Initial Infectives Behave Differently

In some settings the behaviour of initial and non-initial infectives may differ. The above
results are easily extended to incorportate that phenomenon. For k = 0, 1, . . . and θ ≥ 0,
define qk(θ) for non-initial infectives, as before, and define q̂k(θ) analogously for the initial
infectives. The remainder of the notation remains unchanged.

Theorem 3.2 For n, m = 0, 1, . . . ,

φ̃n,m(x, θ) =
n∑

i=0

n[i](qi(θ))n−i (q̂i (θ))mπiGi(x | U(θ)) (x ∈ R, θ ∈ R+),

where U(θ) is given by uk(θ) = qk(θ) (k = 0, 1, . . . ).

Proof We prove the corresponding result for φn,m(x, θ), i.e. for the model without outside
infection. The result for φ̃n,m(x, θ) then follows by conditioning on the number of initial
susceptibles who avoid outside infection.

Methodol Comput Appl Probab (2019) 21:401–421 411



The result follows immediately using the definition (2.4) of Gontcharoff polynomials
when m = 0, so assume that m > 0 and fix n. The final outcome of the epidemic can be
obtained by first letting the m initial infectives make their contacts and then conditioning
on the number of susceptibles that remain, S∗ say. Let T ∗

A denote the sum of the infectious
periods of the m initial infectives. Then, using Theorem 3.1,

φn,m(x, θ) =
n∑

k=0

E
[
e−θT ∗

A1{S∗=k}
]
φk,n−k(x, θ)

=
n∑

k=0

E
[
e−θT ∗

A1{S∗=k}
] k∑

i=0

k[i](qi(θ))n−iGi(x | U(θ))

= n[i](q̂0(θ))m
n∑

i=0

(qi(θ))n−iGi(x | U(θ))

n∑

k=i

k[i]
n[i]

p̂
(n)
k (θ),

where p̂
(n)
k (θ) = E

[
e−θT ∗

A1{S∗=k}
]
/(q̂0(θ))m. Observe that p̂

(n)
k (θ) (k = 0, 1, . . . , n)

is the probability mass function of the number of objects not sampled in the symmetric
sampling procedure having inclusion probabilities (see Section 2.1) rk = (q̂k(θ)/q̂0(θ)

)m

(k = 0, 1, . . . , n) and that k[i] / n[i] = (n−i
k−i

)
/
(
n
k

)
. Thus, using (2.1),

n∑

k=i

k[i]
n[i]

p̂
(n)
k (θ) = ri =

(
q̂i (θ)

q̂0(θ)

)m

,

so

φn,m(x, θ) =
n∑

i=0

n[i](qi(θ))n−i (q̂i (θ))mGi(x | U(θ)),

as required.

Remark 3.6 Corollary 3.1 can be extended more directly to the present setting by noting
that (3.7) becomes

P(A avoids infection) =
n−j∑

�=0

Pj,n−j (|SA| = �)π�+j q̂
m
�+j ,

where q̂k = q̂k(0) (k = 0, 1, . . . ), so (3.1) and (3.5) now give

E[S[j ]] =
n∑

i=0

n[i]qn−i
i q̂m

i πiG
(j)
i (1 | U) (j = 0, 1, . . . ),

and arguing as in the proof of Corollary 3.1 gives

f̃n,m(x) =
n∑

i=0

n[i]qn−i
i q̂m

i πiGi(x | U) (n,m = 0, 1, . . . ; x ∈ R).

3.5 General Final State Random Variables

Ball and O’Neill (1999) introduced the notion of general final state random variables for
SIR epidemic models, which are defined as sums over all ultimately infected individuals of
random quantities of interest associated with an individual. Consider the collective Reed–
Frost epidemic with outside infection defined in Section 2.4. Let R = (R1, R2, . . . , Rp)
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be a random vector associated with a typical infective. The components of R represent
quantities of interest associated with that infective, for example, R1 could be the length of
its infectious period, R2 could be how many infectious contacts that individual attempts
to make, and so on. Some other examples are given below. The components of R may be
dependent. The realisations of R for distinct infectives are mutually independent but for any
given infective, R may be dependent on its contact behaviour. The realisations of R for the
initial infectives are identically distributed, as are those for non-initial infectives, but the two
distributions may differ. Let TR denote the sum of the R-vectors over all of the individuals
that are ultimately infected by the epidemic, including the initial infectives. Thus if R1 is
the length of the infectious period then the first component of TR is the severity of the
epidemic. For ease of exposition it is assumed that the components of R are all nonnegative
almost surely. The results continue to hold if this condition is relaxed, though the domains
of Laplace transforms may change.

Consider a typical non-initial infective with associated random vector R. As in Section 2.3,
for k = 1, 2, . . . , let Ak be the event that that infective fails to infect anyone in a given
set of k susceptibles. For θ = (θ1, θ2, . . . , θp) ∈ R

p
+, let qk(θ) = E

[
exp
(−θ�R

)
1Ak

]

(k = 1, 2, . . . ) and q0(θ) = E
[
exp
(−θ�R

)]
, where � denotes transpose. Define q̂k(θ)

(k = 0, 1, . . . ) similarly for a typical initial infective.
Recall that S denotes the number of intial susceptibles who survive the epidemic. For

n, m = 0, 1, . . . , let

φ̂n,m(x, θ) = E
[
xS exp(−θ�TR)

]
(x ∈ R, θ ∈ R

p
+),

be the joint generating function Laplace transform of (S,TR) given that initially there are n

susceptibles and m infectives. The following theorem generalises Ball and O’Neill (1999),
Theorem 4.2, which considers the extended general epidemic without outside infection and
does not distinguish between initial and non-initial infectives.

Theorem 3.3 For n, m = 0, 1, . . . ,

φ̂n,m(x, θ) =
n∑

i=0

n[i](qi(θ))n−i (q̂i (θ))mπiGi(x | U(θ)) (x ∈ R, θ ∈ R
p
+),

where U(θ) is given by uk(θ) = qk(θ) (k = 0, 1, . . . ).

Proof Suppose first that initial and non-initial infectives follow the same probabilistic
law, i.e. that q̂k(θ) = qk(θ) (k = 0, 1, . . . ). Then an identical argument to the proof of
Lemma 3.2 yields that, for n, m = 0, 1, . . . ,

φ̂n,m(x, θ) = (q0(θ))n+mf̃n,m(x/q0(θ); Q̃(θ)) (x ∈ R, θ ∈ R
p
+),

where Q̃(θ) denotes the sequence given by q̃k(θ) = qk(θ)/q0(θ) (k = 0, 1, . . . ), and
Theorem 3.3 (with q̂i (θ) = qi(θ), i = 0, 1, . . . ) now follows using Corollary 3.1, as in the
proof of Theorem 3.1. The general case is shown by generalising the proof of Theorem 3.1
to the present setting.

Remark 3.7 An analogous result to Corollary 3.2 follows immediately from Theorem 3.3.

A couple of examples of the use of general final state random variables follow; both are
motivated by extensions of the collective Reed–Frost epidemic model considered in Picard
and Lefèvre (1990).
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3.5.1 Several Types of Infectives

Following Picard and Lefèvre (1990), Section 2.3, suppose that there are s types of infec-
tives, labelled 1, 2, . . . , s, who may have different infectious period distributions and
different degrees of infectivity. Suppose that there is no outside infection and that initially
there are mi infectives of type i (i = 1, 2, . . . , s) and n susceptibles. For i = 1, 2, . . . , s,
define q

(i)
k (θ) (k = 0, 1, . . . ; θ ≥ 0) for a typical type-i infectives analogously to qk(θ)

(k = 0, 1, . . . ; θ ≥ 0) in Section 2.3. Each infected susceptible independently becomes
an infective of type i with probability αi , irrespective of the type of its infector, where∑s

i=1 αi = 1. Distinct infectives behave independently of each other and initial infectives
of a given type follow the same probabilistic law as non-initial infectives of that type. As
explained in Picard and Lefèvre (1990), the carrier-borne epidemic models of Pettigrew and
Weiss (1967) and Downton (1968) are special cases of this model.

For i = 1, 2, . . . , s, let Z(i) denote the total number of infectives of type i, including
the initial infectives, during the course of the epidemic and let T

(i)
A be the type-i severity

of the epidemic, i.e. the sum of the infectious periods of the Z(i) type-i infectives. Let

m = (m1,m2, . . . , ms), Z = (Z(1), Z(2), . . . , Z(s)
)
and TA =

(
T

(1)
A , T

(2)
A , . . . , T

(s)
A

)
. Let

φ̄n,m(x, θ) = E

[(
s∏

i=1

xZ(i)

i

)

exp

(

−
s∑

i=1

θiT
(i)
A

)]

(x ∈ R
s , θ ∈ R

s+),

where x = (x1, x2, . . . , xs) and θ = (θ1, θ2, . . . , θs), denote the joint generating function
Laplace transform of (Z,TA). For k = 0, 1, . . . , let

q̄k(x, θ) =
s∑

i=1

αiq
(i)
k (θi)xi (x ∈ R

s , θ ∈ R
s+).

Theorem 3.4 For n = 0, 1, . . . , m ∈ Z
s+, x ∈ R

s and θ ∈ R
s+,

φ̄n,m(x, θ) =
n∑

i=0

n[i](q̄i (x, θ))n−i

s∏

j=1

(q
(j)
i (θj )xj )

mj Gi(1 | Ū (x, θ)), (3.13)

where Ū (x, θ) is given by ūk(x, θ) = q̄k(x, θ) (k = 0, 1, . . . ).

Proof Consider a typical infective, having infectious period TI and type χ say, and define
the vector R = (R1, R2, . . . , R2s) by Ri = 1{χ=i}TI and Ri+s = 1{χ=i} (i = 1, 2, . . . , s).
The corresponding general final state random vector is TR = (TA, Z). Theorem 3.4 fol-
lows immediately using Theorem 3.3, after an obvious adjustment for the initial infectives,
on setting πk = 1 (k = 0, 1, . . . ), as there is no outside infection, x = 1, p = 2s and
(θ1, θ2, . . . , θ2s) = (θ1, θ2, . . . , θs,− log x1,− log x2, . . . , − log xs).

Remark 3.8 Theorem 3.4 extends Picard and Lefèvre (1990), Proposition 3.3, which gives
the joint generating function Laplace transform of (S,TA), where S = n −∑s

i=1(mi +
Z(i)) is the number of susceptibles remaining at the end of the epidemic. The latter may be
obtained from Theorem 3.4 as follows. Note that

E

[

xS exp

(

−
s∑

i=1

θiT
(i)
A

)]

= xn+mφ̄n,m(x−11, θ),
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where m = ∑s
i=1 mi and 1 is the row vector of s ones. Applying Property 2.3 yields

Gi(1 | Ū (x−11, θ)) = x−iGi(x | U(θ)) (i = 0, 1, . . . ), where U(θ) is given by uk(θ) =
∑s

j=1 αjq
(j)
k (θj ) (k = 0, 1, . . . ). Thus, using Theorem 3.4,

E

[

xS exp

(

−
s∑

i=1

θiT
(i)
A

)]

= xn+m
n∑

i=0

n[i](q̄i (x
−11, θ))n−i

s∏

j=1

(q
(j)
i (θj )x

−1)mj Gi(1 | Ū (x−11, θ))

= xn+m
n∑

i=0

n[i]x−(n−i)

(
s∑

l=1

αlq
(l)
k (θl)

)n−i

x−m
s∏

j=1

(q
(j)
i (θj ))

mj x−iGi(x | U(θ))

=
n∑

i=0

n[i]

(
s∑

l=1

αlq
(l)
k (θl)

)n−i s∏

j=1

(q
(j)
i (θj ))

mj Gi(x | U(θ)),

which is Picard and Lefèvre (1990), Proposition 3.3.

3.5.2 Different Degrees of Infectiousness

Picard and Lefèvre (1990), Section 3.3, considers models with different types of infectives
in which infectives of each type pass through successive stages of infection, having possibly
different levels of infectivity, before recovering. For simplicity, we consider here the special
cases where there is only one type of infective described in Lefèvre and Picard (1995).
Thus suppose that there are L stages of infection, labelled 1, 2, . . . , L. Consider a typical
infective and define the random vector R = (R1, R2, . . . , RL), where Ri is the total time
the the infective spends in infection stage i (i = 1, 2 . . . , L). For θ = (θ1, θ2, . . . , θL) and
k = 0, 1, . . . , define q̂k(θ) and qk(θ) for initial and non-initial infectives as in Section 3.5.
Then the joint generating function Laplace transform of the final number of susceptibles,
S, and the total time spent in the L stages of infection by the infectives during the whole
course of the epidemic, TR , follows immediately from Theorem 3.3.

For a more explicit example, suppose that the progress of an infective through the stages
of infection is modelled by a homogeneous continuous-time Markov chain {W(t) : t ≥ 0}
having states labelled 0, 1, . . . , L, where W(t) gives the stage that the infective is in t time
units after it was first infected and state 0, which is absorbing, corresponds to the infective
being recovered. In Lefèvre and Picard (1995), the states are necessarily visited sequentially,
i.e. an infective starts off in state L and on leaving a state it moves to the next lower state,
but here we allow {W(t) : t ≥ 0} to be any arbitrary but specified transient continuous-
time Markov chain with a finite state space and a single absorbing state. Thus the infectious
period of an infective follows a phase-type distribution (see Asmussen 1987, Chapter III,
Section 6).

For i = 1, 2, . . . , L, let qij = limt↓0 t−1P(W(t)=j |W(0) = i) (j = 0, 1, . . . , L, j �= i)

be the transition rate of {W(t) : t ≥ 0} from state i to state j and let qii be such that
∑L

j=0 qij =
0. LetQ = [qij ; i, j = 1, 2, . . . , L] and q0 = (q10, q20, . . . , qL0)

�. For i = 1, 2, . . . , L, let
Ti = ∫∞

0 1{W(t)=i} dt be the total time an infective spends in state i prior to recovery, and let T =
(T1, T2, . . . , TL). For θ = (θ1, θ2, . . . , θL), let h(θ) = (h1(θ), h2(θ), . . . , hL(θ))�, where
hi(θ) = E[exp(−θ�T )|W(0) = i] (i = 1, 2, . . . , L). Let D(θ) denote the L × L

diagonal matrix whose consecutive diagonal entries are the elements of θ .
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Lemma 3.3 For θ ∈ R
L+,

h(θ) = (D(θ) − Q)−1 q0. (3.14)

Proof Fix i ∈ {1, 2, . . . , L}, suppose that W(0) = i and let τ = min(t ≥ 0 : W(t) �= i).
Then conditioning on (τ,W(τ)) and using the strong Markov property of {W(t) : t ≥ 0}
yields

hi(θ) =
∫ ∞

0
−qiie

qii te−θi t

⎛

⎜
⎜
⎜
⎝

−qi0

qii

−
L∑

j=1
j �=i

qij

qii

hj (θ)

⎞

⎟
⎟⎟
⎠

dt

= 1

θi − qii

⎛

⎜
⎜
⎜
⎝

qi0 +
L∑

j=1
j �=i

qij hj (θ)

⎞

⎟⎟
⎟
⎠

,

so

θihi(θ) =
L∑

j=1

qijhj (θ) + qi0 (i = 1, 2, . . . , L). (3.15)

Expressing (3.15) in vector/matrix form and solving yields (3.14). The matrix D(θ) − Q is
non-singular since the eigenvalues of Q all have strictly negative real parts, see Asmussen
(1987), page 77.

Return to the epidemic process and suppose that, given {W(t) : t ≥ 0}, the infective
contacts distinct susceptibles independently at the points of a Poisson process having rate
βW(t) at time t , where β0 = 0 and, for i = 1, 2, . . . , L, βi is the individual-to-individual
infection rate from an infective in state i. Assume that the initial states of initial infectives
are independent and identically distributed, with P(W(0) = i) = ξi0 (i = 1, 2, . . . , L), and
let ξ0 = (ξ10, ξ20, . . . , ξL0). Define ξ = (ξ1, ξ2, . . . , ξL) similarly for non-initial infectives.
Consider a typical initial infective, with associated infection-stage process {W(t) : t ≥ 0},
and note that R defined above is given by R = T . For k = 1, 2, . . . , let Ak be the event that
that infective fails to infect anyone in a given set of k susceptibles and note that P(Ak|T ) =
exp(−∑L

i=1 kβiTi). Thus, using Lemma 3.3,

q̂k(θ) = ξ0 (D(θ + kβ) − Q)−1 q0 (k = 0, 1, . . . ), (3.16)

where β = (β1, β2, . . . , βL). A similar argument gives

qk(θ) = ξ (D(θ + kβ) − Q)−1 q0 (k = 0, 1, . . . ). (3.17)

The joint generating function Laplace transform of (S,TR) now follows immediately using
Theorem 3.3.

4 Multitype Epidemics

4.1 Introduction and Notation

The above theory extends naturally and easily to multitype epidemics. The proofs parallel in
an obvious fashion those of corresponding results for single population epidemics, so only
very brief outlines are given. The following notation is used throughout this section. For
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vectors, x = (x1, x2, . . . , xJ ) and y = (y1, y2, . . . , yJ ) say, belonging to R
J , the product∏J

i=1 x
yi

i is denoted by xy and x ≤ y denotes that xi ≤ yi for all i = 1, 2, . . . , J . The
row vectors of J zeros and of J ones are denoted by 0 and 1, respectively. For vectors, k =
(k1, k2, . . . , kJ ) and n = (n1, n2, . . . , nJ ) say, belonging to Z

J+, define n[k] = ∏J
i=1 ni [ki ]

and, when k ≤ n,
(
n
k

) =∏J
i=1

(
ni

ki

)
. Finally,

∑n
i=k denotes

∑n1
i1=k1

∑n2
i2=k2

· · ·∑nJ

iJ =kJ
.

4.2 Multitype Symmetric Sampling Procedures

Consider a finite population N comprising J types of objects, labelled 1, 2, . . . , J . For
i = 1, 2, . . . , J , let Ni denote the set of objects of type i, so N = ∪J

i=1Ni . Let N =
(N1, N2, . . . , NJ ), where Ni = ∣∣Ni

∣
∣ is the size of Ni (i = 1, 2, . . . , J ). Let X be a ran-

dom subset of N and X = (X1, X2, . . . , XJ ), where Xi = ∣∣X ∩ Ni

∣
∣ (i = 1, 2, . . . , J ).

For A ⊆ N , let pA = P(X = A) and rA = P(X ⊇ A). A multitype symmetric sampling
procedure is one in which for all A ⊆ N , pA depends only on the numbers of the different
types in A, i.e. on a = (a1, a2, . . . , aJ ), where ai = ∣∣A ∩ Ni

∣
∣ (i = 1, 2, . . . , J ). It follows

that pA = pa/
(
N
a

)
, where pa = P(X = a), and also that rA depends only on a, so one can

write rA = ra . Further, using the multitype version of (2.2) yields the following formula for
the factorial moments of X:

E[X[k]] = N [k]rk (k ∈ Z
J+). (4.1)

4.3 Multivariate Gontcharoff Polynomials

The Gontcharoff family of polynomials was extended to the case of several variables by
Lefèvre and Picard (1990) as follows. Let U = (uj ∈ R

J : j ∈ Z
J+) be a collection of real

numbers. Then the Gontcharoff polynomials associated with U , viz. Gj (x | U) (j ∈ Z
J+)

where x = (x1, x2, . . . , xJ ) ∈ R
J , are defined recursively by

n∑

i=0

n[i]un−i
i Gi(x | U) = xn (n ∈ Z

J+). (4.2)

Thus, for k ∈ Z
J+, the polynomial Gk(x | U) is of degree k1, k2, . . . , kJ in the variables

x1, x2, . . . , xJ . For j ∈ Z
J+, the partial derivative of Gi(x | U) of order j1, j2, . . . , jJ in

x1, x2, . . . , xJ is denoted by G
(j)

i (x | U). Properties 2.1, 2.2 and 2.3 in Section 2.2 gener-
alise to multivariate Gontcharoff polynomials, see Properties 4.2, 4.4 and 4.5, respectively,
in Lefèvre and Picard (1990).

4.4 Multitype Collective Reed–Frost Epidemics

4.4.1 Model Definition

The model is defined analogously to the single-population collective Reed–Frost model
in Section 2.3 but now there are J types of individuals, labelled 1, 2, . . . , J . The epi-
demic again evolves in discrete time t = 0, 1, . . . . Let Xt = (Xt1, Xt2, . . . , XtJ ) and
Y t = (Yt1, Yt2, . . . , YtJ ), where Xti and Yti are respectively the numbers of suscepti-
ble and infectives of type i present at time t . Suppose that (X0,Y 0) = (n, m), where
n = (n1, n2, . . . , nJ ) and m = (m1,m2, . . . , mJ ), so initially there are mi infectives
and ni susceptibles of type i (i = 1, 2, . . . , J ). For i = 1, 2, . . . , J and k ∈ Z

J+ \ {0},
let q̂

(i)
k be the probability that any given type-i initial infective fails to contact anyone in
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any given set of k susceptibles (i.e. comprising k1 type-1 susceptibles, k2 type-2 suscepti-

bles, . . . , kJ type-J susceptibles). Let q̂
(i)
0 = 1 and q̂k =

(
q̂

(1)
k , q̂

(2)
k , . . . , q̂

(J )
k

)
. Define

qk =
(
q

(1)
k

, q
(2)
k

, . . . , q
(J )
k

)
similarly for non-initial infectives. Different infectives make

contacts independently of each other. Thus {(Xt ,Y t ); t = 0, 1, . . . } is a Markov chain. The
epidemic ends when there is no infective present in the population.

The model can be extended to incorporate outside infection in the obvious fashion.
Specifically, for 0 ≤ k ≤ n, let πk be the probability that everyone in any given set k

susceptibles avoids outside infection during the course of the epidemic, with π0 = 1.

4.4.2 Susceptibility Sets

Let V denote the set of all the individuals in the population and partition V = ∪J
i=1Vi ,

where Vi is the set of all type-i individuals, so |Vi | = ni + mi . Suppose that q̂k = qk

(k ∈ Z
J+), so that initial and non-initial infectives follow the same probabilistic laws. Con-

struct a directed random graph on V , as described in Section 2.3. For A ∈ V , define
the susceptibility set SA as in Section 3.1 and let SA = (SA1, SA2, . . . , SAJ ), where
SAi = |SA ∩ Vi | is the number of type-i individuals in SA (i = 1, 2, . . . , J ). Let
ji = |A ∩ Vi | (i = 1, 2, . . . , J ), j = (j1, j2, . . . , jJ ) and k = n + m − j , and denote
P(SA = �) by Pjk(SA = �) (0 ≤ � ≤ k). The following lemma is proved analogously to
Lemma 3.1.

Lemma 4.1 For j , k ∈ Z
J+,

Pjk(SA = �) = k[�]qk−�
j+�G

(j)

j+�(1 | U)qk−�
j+� (0 ≤ � ≤ k), (4.3)

where U is given by uk = qk (k ∈ Z
J+).

4.4.3 Total Size

Consider the multitype collective Reed–Frost epidemic, including outside infection,
described in Section 4.4.1. Let S = (S1, S2, . . . , SJ ), where Si is the number of type-i
susceptibles that remain susceptible at the end of the epidemic, and let f̃n,m(x) = E

[
xS
]

(x ∈ R
J ) denote the joint probability generating function of S.

Theorem 4.1 For n, m ∈ Z
J+,

f̃n,m(x) =
n∑

i=0

n[i]qn−i
i q̂

m
i πiGi(x | U) (x ∈ R

J ),

where U is given by uk = qk (k ∈ Z
J+).

Proof Arguing as in the proof of Proposition 3.1, generalised to the multitype epidemic and
utilising Remarks 3.3 and 3.6, yields that

E
[
S[j ]
] =

n∑

i=0

n[i]qn−i
i q̂

m
i πiG

(j)

i (1|U) (j ∈ Z
J+).

Theorem 4.1 now follows by considering the Taylor expansion of f̃n,m(x) about x = 1.
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4.4.4 General Final State Random Variables

For the above multitype collective Reed–Frost epidemic with outside infection, let R =
(R1, R2, . . . , Rp) be a random vector associated with an infective and TR be the sum of
the R-vectors over all individuals that are ultimately infected by the epidemic, including
the initial infectives. As in Section 3.5, the realisations of R for distinct individuals are
independent and, for ease of exposition, it is assumed that the components of R are all
nonnegative almost surely. Examples are numerous and are not considered here but note that
if p = J , χ and TI denote respectively the type and infectious period of the given infective,
and Ri = TI1{χ=i} then TR is the (multivariate) severity of the epidemic. Let

φ̂n,m(x, θ) = E
[
xS exp(−θ�TR)

]

denote the joint generating function Laplace transform of (S, TR).
Fix attention on a given type-i initial infective, with associated random vector R, and

for k ∈ Z
J+ let Ak be the event that this infective fails to infect anyone in a given set

of k susceptibles, where Ak necessarily occurs if k = 0. For k ∈ Z
J+ and θ ∈ R

J+,
let q̂k(θ) =

(
q̂

(1)
k

(θ), q̂
(2)
k

(θ), . . . , q̂
(J )
k

(θ)
)
, where q̂

(i)
k

(θ) = E
[
exp(−θ�R)1Ak

]
. Define

qk(θ) =
(
q

(1)
k

(θ), q
(2)
k

(θ), . . . , q
(J )
k

(θ)
)
similarly for non-initial infectives.

Theorem 4.2 For n, m ∈ Z
J+,

φ̂n,m(x, θ) =
n∑

i=0

n[i](qi(θ))n−i(q̂i(θ))mπiGi(x | U(θ)) (x ∈ R
J , θ ∈ R

p
+), (4.4)

where U(θ) is given by uk(θ) = qk(θ) (k ∈ Z
J+).

Proof Consider first the case when initial and non-initial infectives follow the same proba-
bilstic law so, for k ∈ Z

J+, q̂k(θ) = qk(θ) (θ ∈ R
J+) and q̂k = qk . Let Q = (qk : k ∈ Z

J+)

and write the joint probability generating function f̃n,m(x) as f̃n,m(x;Q) to show explic-

itly its dependence on Q. Let q̃k(θ) =
(
q̃

(1)
k

(θ), q̃
(2)
k

(θ), . . . , q̃
(J )
k

(θ)
)
, where q̃

(i)
k

(θ) =
q

(i)
k

(θ)/q
(i)
k

(θ) (i = 1, 2, . . . , J ). Let x/q0(θ) denote the vector(
x1/q

(1)
0 (θ), x2/q

(2)
0 (θ), . . . , xJ /q

(J )
0 (θ)

)
. Generalising the proof of Lemma 3.2 to the

present multitype setting with a general final state random vector yields

φ̂n,m(x, θ) = (q0(θ)
)n+m

f̃n,m(x/q0(θ); Q̃(θ)),

where Q̃(θ) = (q̃k(θ) : k ∈ Z
J+). Theorem 4.2 for the present case then follows immediately

using Theorem 4.1.
For the case when initial and non-initial infectives follow different probabilistic law and

there is no outside infection, the final outcome of the epidemic can be obtained by first
letting the initial infectives make their contacts, as in the proof of Theorem 3.1. Let S∗ =
(S∗

1 , S
∗
2 , . . . , S

∗
J ), where S∗

i is the number of type-i susceptibles that remain after the initial
infectives have made their contacts, and let T ∗

R be the sum of the R-vectors of the initial
infectives. Theorem 4.2 for this case then follows by conditioning on (S∗,T ∗

R), as in the
proof of Theorem 3.1. Finally, the result for the corresponding model with outside infection
is obtained by conditioning on the numbers of the initial susceptibles that avoid outside
infection.
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Remark 4.1 Theorem 4.2 is both very general and very powerful. For example, the joint
generating function Laplace transform for the total size and severity of the multipopulation
collective epidemic model with different types of infectives, given in Proposition 4.3 of
Picard and Lefèvre (1990), can be obtained using Theorem 4.2 with a suitable choice for
the random vector R. Theorem 4.2 also extends Theorem 5.1 in Ball and O’Neill (1999)
to a broader class of models, i.e. to multiype collective Reed–Frost models, which do not
necessarily admit a Sellke construction having exponentially distributed tolerances. The
multipopulation model underlying Theorem 5.1 in Ball and O’Neill (1999) also allows for
infectives to move between the populations but that extra generality can be accommodated
using the model in Section 4.4.1 by suitable choice of the random vector R.
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Lefèvre C, Picard P (2005) Nonstationarity and randomization in the Reed–Frost epidemic model. J Appl
Prob 42:950–963

Methodol Comput Appl Probab (2019) 21:401–421420

http://creativecommons.org/licenses/by/4.0/


Ludwig D (1975) Final size distributions for epidemics. Math Biosci 23:33–46
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