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Abstract In the present we establish Laws of Large Numbers for Non-Homogeneous
Markov Systems and Cyclic Non-homogeneous Markov systems. We start with a theorem,
where we establish, that for a NHMS under certain conditions, the fraction of time that a
membership is in a certain state, asymptotically converges in mean square to the limit of the
relative population structure of memberships in that state. We continue by proving a theo-
rem which provides the conditions under which the mode of covergence is almost surely.
We continue by proving under which conditions a Cyclic NHMS is Cesaro strongly ergodic.
We then proceed to prove, that for a Cyclic NHMS under certain conditions the fraction
of time that a membership is in a certain state, asymptotically converges in mean square to
the limit of the relative population structure in the strongly Cesaro sense of memberships
in that state. We then proceed to establish a founding Theorem, which provides the condi-
tions under which, the relative population structure asymptotically converges in the strongly
Cesaro sense with geometrical rate. This theorem is the basic instrument missing to prove,
under what conditions the Law of Large Numbers for a Cycl-NHMS is with almost surely
mode of convergence. Finally, we present two applications firstly for geriatric and stroke
patients in a hospital and secondly for the population of students in a University system.
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1 Introductory Notes

One of the most celebrated theorems in probability theory is the Law of Large Numbers
(Grimmett and Stirzaker 2001). The Law of Large Numbers were also studied for finite
Markov chains (Kemeny and Snell 1981). The Law of Large Numbers for a regular homo-
geneous Markov chain states, that if πj is the limiting probability of being in state j

independent of the initial state, then also πj represents the fraction of time, that the process
can be expected to be in state j for a large number of steps. The Law of Large Numbers
for Markov chains is also linked with the Martingale Convergence Theorem (Kemeny et al.
1976). Laws of Large Numbers were also studied for non-homogeneous semi-Markov pro-
cesses by Vadori and Swishchuk (2015). For Markov chains in general state spaces there
exists a chapter on Laws of Large Numbers in Meyn and Tweedie (2009), where the the-
ory of martingales is the main instrument for proving various types of LLN. These laws are
of value for Markov chains exactly as they are for all stochastic processes: the LLN and
CLT, in particular, provide the theoretical basis for many results in the statistical analysis of
chains as they do in related fields. For this and other applications, the reader is referred to
Hall and Heyde (1980).

In the present paper we will study the Laws of Large Numbers for Non-Homogeneous
Markov Systems and for Cyclic Non-HomogeneousMarkov systems. The theory of NHMSs
has its roots in the use of Markov models in manpower systems, which started with the work
of Young and Almond (1961) and Bartholomew (1963). Young’s motive was the applica-
tion of homogeneous Markov chain models in the British University system. Bartholomew
created important multiple renewal theory models for various social processes and his first
related book Bartholomew (1967) among other things, provided an important theoreti-
cal reference of applied probability style for everyone. The concept of Non-homogeneous
Markov systems was first introduced in Vassiliou (1982). From then onwards a vast liter-
ature in a great variety of journals was created by many authors, a sample of which could
be found in the review papers by Vassiliou (1997) and Ugwuowo and McClean (2000).
The motive was to provide a more general framework for a number of Non-homogeneous
Markov chain models in manpower systems. There is also a great variety of applied prob-
ability models, that could be accommodated in this general framework. Let us consider a
population (system), which is stratified into classes (states) according to various character-
istics. The members of the system could be sections of human societies, parts of the animal
kingdom, populations of fisheries, biological micro-organisms, particles in a physical phe-
nomenon, various types of machines, various types of cells or viruses of the human body
etc. The members of the system are categorized into various states, according to the problem
at hand. The set of states are assumed to be exclusive, so that each member of the system
may be in one and only one state at a given time. We call population structure, the vector
containing the number of members of each state in the system. Members are leaving the
system in a stochastic way and also new members are entering the system in a stochastic
way. In fact a non-homogeneous Markov chain is a NHMS with one particle as a member,
which never leaves the system and in which no other particles enter.

There are a large number of applications of the theory of NHMS and in quite diverse
areas, where the present results will have an impact. We will only refer to some of these
applications that contribute to the health care of human beings. For example, applications to
the evolution of the population of HIV virus within the human of T-cells in Mathiew et al.
(2006), and Foucher et al. (2005); gene expression sequences in McClean et al. (2003); in
hospital and geriatric patient care McClean et al. (1998a, b), Taylor et al. (2000), Faddy and
McClean (2005), Garg et al. (2010), McClean and Millard (2007), Marshall et al. (2002),
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Marshall and McClean (2003, 2004). Garg et al. (2009), Lalit et al. (2010), McClean et al.
(2014a) and McClean et al. (2014b).

The paper is organized as follows: In Section 2 we provide basic concepts and useful
results for a NHMS, which are known or slightly amended. Also we provide some useful in
what follows theorems on the various modes of convergence of random variables in a prob-
ability space. The results in this section will be used repeatedly in the sections that follow.
In Section 3 we first prove a theorem which is a Law of Large Numbers for a NHMS. We
prove, that for a NHMS under certain conditions the fraction of time that a membership is
in a certain state, asymptotically converges in mean square to the limit of the relative pop-
ulation structure of membership in that state. In a second theorem in the same section we
provide and prove under what conditions the mode of convergence in the previous basic
result is almost surely. In Section 4 we study the important category of Cyclic NHMS, a con-
cept which was motivated by the work of Gani (1963) on students enrolment at Michigan
state University and Bartholomew (1982). We prove in two theorems, under what conditions
the relative population structure of a Cycl-NHMS asymptotically converges in the strongly
Cesaro sense. In Section 5 we first prove a theorem which is a Law of Large Numbers for
a Cycl-NHMS. We prove, that for a Cycl- NHMS under certain conditions the fraction of
time that a membership is in a certain state, asymptotically converges in mean square to
the limit of the relative population structure in the strongly Cesaro sense of membership
in that state. We then proceed to establish a founding Theorem, which provides the condi-
tions under which the relative population structure asymptotically converges in the strongly
Cesaro sense with geometrical rate. This theorem is the basic instrument missing to prove,
under what conditions the Law of Large Numbers for a Cycl-NHMS is with almost surely
mode of convergence. In Section 6 we provide applications of the present results in Section 3
to geriatric and stroke patients. Also, we provide applications of the results in Sections 4
and 5 for the movements of students in a University system.

2 Basic Concepts and Useful Results for a NHMS in Discrete Time

We firstly recall the concept of an NHMS and introduce concepts and known results nec-
essary for the study of the Law of Large numbers for NHMSs. Consider a population
(system) which is stratified into classes (states) according to various characteristics. Let
S = {1, 2, ..., k} be the set of states, that are assumed to be exclusive and exhaustive.
Let, that we have a discrete time scale t = 0, 1, 2, ... and {P (t)}∞t=0 be the sequence of
transition probability matrices between the states. Assume, that we have wastage from the
system and denote by ω the state which represents the external environment of the system
to which the population members, who leave the system go. Let {pω (t)}∞t=0 be the vector
of probabilities of wastage from the various states of the system. Let {T (t)}∞t=0 be the total
number of memberships of the system at time t , which is assumed to be a realization of
a known stochastic process. We assume that each member holds a membership, which is
left, when the member leaves the system and is taken by new members entering the sys-
tem to replace leavers or to expand the system. Apparently, T (t) ≥ 0 and it is assumed
that �T (t) = T (t + 1) − T (t) ≥ 0. Let {p0 (t)}∞t=0 be the vector of probabilities of allo-
cation of replacements and new memberships, in the various states of the system, which is
being done independently of internal movements. Denote by Q (t) = P (t) + p�

ω (t) p0 (t);
then Q (t) is a stochastic matrix, and the non-homogeneous Markov chain defined by the
sequence {Q (t)}∞t=0 will be called the imbedded non-homogeneous Markov chain of the
NHMS. Define by Ni (t) the random variable representing the number of memberships in
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state i at time t ; N (t) = [N1 (t) , N2 (t) , ..., Nk (t)] the vector of the random variables rep-
resenting the population structure of the NHMS. Let q (t) = N (t) /T (t) be the relative
population structure. Define by

q (s, t) = [q1 (s, t) , q2 (s, t) , ..., qk (s, t)] , (2.1)

where
qj (s, t) = P [Xt = j | q (s)] , for s ≤ t, (2.2)

then from Georgiou and Vassiliou (1992) p.140 we get that

E [q (t − 1, t)] = a (t − 1)q (t − 1)Q (t − 1) + b (t − 1)p0 (t − 1) , (2.3)

where

a (t − 1) = T (t − 1)

T (t)
and b (t − 1) = T (t) − T (t − 1)

T (t)
. (2.4)

also we get that

E [q (0, t)] = a (t − 1)E [q (0, t − 1)]Q (t − 1) + b (t − 1) p0 (t − 1) , (2.5)

from which recursively we get (see Georgiou and Vassiliou (1992) p.149) that

E [q (0, t)] = T (0)

T (t)
q (0)Q (0, t − 1)

+ 1

T (t)

t∑

τ=1

�T (τ − 1)p0 (τ − 1)Q (τ, t − 1) , (2.6)

where Q (s, t) = Q (s)Q (s + 1) ...Q (t) for s ≤ t. We set Q (s, t) = I the identity matrix
for s > t. Note also that we set q (s, t) = 0 for s > t.

We denote by

E [q (s, t)] = [E [q1 (s, t)] ,E [q2 (s, t)] , ...,E [qk (s, t)]] ,

and apparently we have

E [q (s, t)] = T (s)

T (t)
q (s)Q (s, t − 1)

+ 1

T (t)

t∑

τ=s+1

�T (τ − 1) p0 (τ − 1)Q (τ, t − 1) .

We denote by E
[
q(i) (s, t)

]
if it is known that

q (s) =
⎡

⎣0, 0, ..., 1︸︷︷︸
i−th

, ..., 0

⎤

⎦ ,

and the vector E
[
q(i) (s, t)

]
is then

E

[
q(i) (s, t)

]
=
[
E

[
q

(i)
1 (s, t)

]
,E
[
q

(i)
2 (s, t)

]
, ...,E

[
q

(i)
k (s, t)

]]
.

LetMn,m (R) be the vector space of all n×m real matrices SMn,n ; the vector space of
all n×n stochastic matrices. LetQ ∈ SMn,n,then it is regular if it’s states consist of a single
communicating class which is aperiodic or equivalentlyQ has 1 as the only eigenvalue with
modulus 1 and with geometric multiplicity one. For A ∈ Mn,n (R) we define the norm ‖.‖

‖A‖ = sup
i∈S

∑

j∈S

∣∣aij

∣∣ .
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Now from Vassiliou (1981) we get the following theorem:

Theorem 1 Let a NHMS and let that

a) limt→∞ ‖Q (t) − Q‖ = 0 and Q a regular stochastic matrix;
b) limt→∞ ‖p0 (t) − p0‖ = 0;
c) limt→∞ [�T (t) /T (t)] = 0,

then
lim

t→∞ ‖E [q (0, t)] − q (∞)‖ = 0,

where q (∞) is the row of the stable stochastic matrix Q (∞) = limt→∞ Qt .
From Isaacson and Madsen p.157 and p.170 we get the following two theorems

Theorem 2 A non-homogeneous Markov chain with transition matrices {Q (t)}∞t=0 is
strongly ergodic if and only if there exists a constant matrix Q such that for each m

lim
t→∞ ‖Q (m, t) − Q‖ = 0.

Theorem 3 Let {Q (t)}∞t=0 be a sequence of transition matrices corresponding to a non-
homogeneous Markov chain. If limt→∞ ‖Q (t) − Q‖ = 0 where Q is weakly ergodic, then
the chain is strongly ergodic.

Following the steps of the proof of Theorem 1 in Vassiliou (1981) and using Theorems 2
and 3 we arrive at

Theorem 4 Let a NHMS and let that

a) limt→∞ ‖Q (t) − Q‖ = 0 and Q a regular stochastic matrix;
b) limt→∞ ‖p0 (t) − p0‖ = 0;
c) limt→∞ [�T (t) /T (t)] = 0,

then
lim

t→∞ ‖E [q (s, t)] − q (∞)‖ = 0, for every s ≤ t.

Let a probability space (�,F ,P) and a sequence of random variables {Xn}∞n=0 with
Xn : � → R. It is well known that there are various modes of convergence of the sequence
{Xn}∞n=0 to a random variable X : � → R. We now provide the formal definition of three
of these modes.

Definition 1 Let a probability space (�,F ,P) and a sequence of random variables
{Xn}∞n=0 with Xn : � → R and a random variable X : � → R. We say that the sequence
of random variables {Xn}∞n=0 converge almost surely to the random variable X if the event

{ω ∈ � : Xn (ω) → X (ω) as n → ∞} ,

has probability one. We will denote this type of convergence by

Xn
a.s.→ X or lim

n→∞ Xn = X a.s.

Definition 2 Let a probability space (�,F ,P) and a sequence of random variables
{Xn}∞n=0 with Xn : � → R and a random variable X : � → R. If |Xn| and |X| are in Lp
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where 1 ≤ p ≤ ∞, i.e., E
[∣∣Xp

n

∣∣] < ∞ for all n and E [|X|] < ∞, then we say that the
sequence of random variables {Xn}∞n=0 converges to X in p-th mean and we denote it by

Xn
Lp→ X,

if and only if
lim

n→∞E
{|Xn − X|p} = 0.

One of the most useful modes of convergence is the mean square, that is, for p = 2 we
have

Xn
L2→ X, or Xn → X in mean square, or Xn

m.s.→ X.

Definition 3 Let a probability space (�,F ,P) and a sequence of random variables
{Xn}∞n=0 with Xn : � → R and a random variable X : � → R. We say that Xn → X in

probability, and we write Xn
P→ X, if

P (|Xn − X| > ε) → 0 as n → ∞ for all ε > 0.

From Grimmett and Stirzaker (2001) p.311 we get the following Theorem.

Theorem 5 Let a probability space (�,F ,P) and a sequence of random variables {Xn}∞n=0

with Xn : � → R and a random variable X : � → R. Then (a) If r > s ≥ 1 and Xn
Lr→ X

then Xn
Ls→ X. (b) If Xn

L1→ X then Xn
P→ X. The converse assertions fail in general.

Note that any sequence {Xn}∞n=0 which satisfies Xn
P→ X necessarily contains a sub-

sequence
{
Xni

: 1 ≤ i < ∞} which converge almost surely. From Grimmett and Stirzaker
(2001) p.314 we get the following Theorem.

Theorem 6 Let a probability space (�,F ,P) and a sequence of random variables {Xn}∞n=0

with Xn : � → R and a random variable X : � → R. If Xn
P→ X, there exists a

non-random increasing sequence of integers n1, n2, ... such that Xni

a.s.→ X as i → ∞.

Also from Grimmett and Stirzaker (2001) p.310 we get the following Theorem.

Theorem 7 Let a probability space (�,F ,P) and a sequence of random variables {Xn}∞n=0
with Xn : � → R and a random variable X : � → R. If Pn (ε) = P (|Xn − X| > ε)

satisfies ∑

n

Pn (ε) < ∞ for all ε > 0

then Xn
a.s.→ X.

Theorem 8 (Chebychov inequality). Let a probability space (�,F ,P) and a random
variable X : � → R. Then

P (|X| ≥ a) ≤ E
(
X2
)

a2
if a > 0.

From Huang et al. (1976) we amend slightly the basic theorem to get that
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Theorem 9 Let a probability space (�,F ,P) and a non-homogeneous Markov chain be
defined by the sequence of transition matrices{Q (s, t)}s,t . Let limt→∞ ‖Q (t) − Q‖ = 0
geometrically fast with Q a regular stochastic matrix. Then ‖Q (s, t) − Q‖ = 0 geometri-
cally fast uniformly in s. That is, for every s there exists constants c > 0 and 0 < b < 1
such that

‖Q (s, t) − Q‖ ≤ cbt−s .

From Vassiliou and Georgiou (1990) p.541 we get the following theorem:

Theorem 10 Let an NHMS be given with {P (t)}∞t=0, {T (t)}∞t=0, {pk+1 (t)}∞t=0, {p0 (t)}∞t=0.
Assume that

a) lim
t→∞ ‖P (t) − P‖ = 0, b) lim

t→∞ ‖pk+1 (t) − pk+1‖ = 0, c) ‖p0 (t) − p0‖ = 0,

the rate of convergence is geometric in all cases andQ = P + pᵀωp0 is regular. Also, T (t) ≥
T (t − 1) and {

�T (t)

T (t)

}∞

t=0
converges to zero geometrically fast.

Then the sequence of relative structures converges to q (∞) = p0Q∞ geometrically fast,
where Q∞ = limt→∞ Qt .

3 Laws of Large Numbers for a NHMS

In the present section we will study the Law of Large Numbers for a NHMS. We will start
with the mode of mean square convergence and then we will proceed to prove almost sure
convergence. Let Xt the random variable representing the state of a membership at time t .
Define by

uj (t) =
{
1 if Xt=j

0 if Xt 	=j

}
, (3.1)

also let yj (t) be the random variable representing the number of times the membership is
in state j up to time t , i.e., Xs = j , 1 ≤ s ≤ t; νj (t) be the random variable representing
the fraction of time the membership is in state j up to time t . We have that

yj (t) =
t∑

s=1

uj (s) and νj (t) = yj (t)

t
. (3.2)

Denote by

u (t) = [u1 (t) , u2 (t) , ..., uk (t)] , y (t) = [y1 (t) , y2 (t) , ..., yk (t)] ,

and
ν (t) = [ν1 (t) , ν2 (t) , ..., νk (t)] .

We will now provide and prove the following theorem of the Law of Large Numbers for a
NHMS

Theorem 11 Let a probability space (�,F ,P) and a NHMS be defined in Section 2.
Assume that a) limt→∞ ‖Q (t) − Q‖ = 0 and Q a regular stochastic matrix; b)

limt→∞ ‖p0 (t) − p0‖ = 0; c) limt→∞ [�T (t) /T (t)] = 0. Then

ν (t)
L2→ q (∞) .
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Proof It is equivalent to show that

E

[
(ν (t) − q (∞))2

]
= 0. (3.3)

Since the dimension of the vectors is finite it is equivalent to show that

E

[(
νj (t) − qj (∞)

)2] = 0 for every j = 1, 2, ..., k. (3.4)

We have that

E

[(
νj (t) − qj (∞)

)2] = E

(
t∑

n=1

uj (n)

t
− qj (∞)

)2

= 1

t2
E

(
t∑

n=1

(
uj (n) − qj (∞)

)
)2

= 1

t2
E

[(
t∑

n=1

(
uj (n)−qj (∞)

)
)(

t∑

l=1

(
uj (l)−qj (∞)

)
)]

. (3.5)

Hence we have that

E

[(
νj (t) − qj (∞)

)2] = 1

t2

t∑

n=1

t∑

l=1

E
[
uj (n) uj (l)

]
(3.6)

− 1

t2

t∑

n=1

t∑

l=1

qj (∞)E
[
uj (n)

]
(3.7)

− 1

t2

t∑

n=1

t∑

l=1

qj (∞)E
[
uj (l)

]
(3.8)

+ 1

t2

t∑

n=1

t∑

l=1

q2
j (∞) . (3.9)

Now we have that

lim
t→∞

{
− 1

t2

t∑

n=1

t∑

l=1

qj (∞)E
[
uj (n)

]
}

= lim
t→∞

{
− 1

t2

t∑

n=1

t∑

l=1

qj (∞)E
[
E
[
uj (n) | q (0)

]]
}

= lim
t→∞

{
−1

t
qj (∞)

t∑

n=1

E [P (Xn = j | q (0))]

}

= lim
t→∞

{
−qj (∞)

1

t

t∑

n=1

E
[
qj (0, n)

]
}

= (by Theorem 1) = −q2
j (∞) . (3.10)

Similarly we get that

lim
t→∞

{
− 1

t2

t∑

n=1

t∑

l=1

qj (∞)E
[
uj (l)

]
}

= −q2
j (∞) . (3.11)
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It is easy to see that

1

t2

t∑

n=1

t∑

l=1

q2
j (∞) = q2

j (∞) . (3.12)

Finally it remains to find

lim
t→∞

{
1

t2

t∑

n=1

t∑

l=1

E
[
uj (n) uj (l)

]
}

= lim
t→∞

{
1

t2

t∑

n=1

t∑

l=1

E
[
E
[
uj (n) uj (l)

] | q (0)
]
}

= lim
t→∞

{
1

t2

t∑

n=1

t∑

l=1

E [P (Xn = j, Xl = j | q (0))]

}

= A (3.13)

Define by n ∧ l = max {n, l} and n ∨ l = min {n, l} then we have that
P (Xn∧l =j, Xn∨l =j |q(0)) = P (Xn∧l = j |Xn∨l = j,q(0))P (Xn∨l = j | q (0))

= P
(
Xn∧l = j |qj (0, n ∨ l)=1

)
P (Xn∨l =j | q (0)) . (3.14)

Hence from Eqs. 3.13 and 3.14 we get that

A = lim
t→∞

{
1

t2

t∑

n=1

t∑

l=1

E [P (Xn = j,Xl = j | q (0))]

}

= lim
t→∞

{
1

t2

t∑

n=1

t∑

l=1

E
[
P
(
Xn∧l = j | qj (0, n ∨ l) = 1

)]
E [P (Xn∨l = j | q (0))]

}

= lim
t→∞

{
1

t2

t∑

n=1

t∑

l=1

E

[
q

(j)
j (n ∨ l, n ∧ l)

]
E
[
qj (0, n ∨ l)

]
}

=
(
since q

(j)
j (s, t) = 0 for s > t

)

= lim
t→∞

{
1

t2

t∑

n=1

t∑

l=n

E

[
q

(j)
j (n, l)

]
E
[
qj (0, n)

]
}

= lim
t→∞

{
1

t

t∑

n=1

E
[
qj (0, n)

] 1
t

t∑

l=n

E

[
q

(j)
j (n, l)

]}
= (by Theorems 1,2 and 3)

= q2
j (∞) . (3.15)

Hence from Eqs. 3.6, 3.7,..., 3.15 we get Eq. 3.4 which completes the proof.

Hence, we have actually proved, that under certain conditions the fraction of time the
membership of an NHMS stays in a state after a large number of steps, converges in mean
square to the limit of the relative population structure in that state. This result constitutes the
Weak Law of Large Numbers for a NHMS. We are now going to proceed and prove under
which conditions the mode of convergence is almost surely.

Theorem 12 Let a probability space (�,F ,P) and an NHMS as defined in Section 2.
Assume that a) limt→∞ ‖Q (t) − Q‖ = 0 geometrically fast and Q a regular stochastic
matrix; b) limt→∞ ‖p0 (t) − p0‖ = 0 geometrically fast c) limt→∞ [�T (t) /T (t)] = 0
geometrically fast. Then

ν (t)
a.s.→ q (∞) .

Methodol Comput Appl Probab (2020) 22:1631–1658 1639



Proof In Theorem 11 we have actually proved that

νj (t)
L2→ qj (∞) as t → ∞ for ever j ∈ S, (3.16)

or equivalently

1

t

t∑

s=1

uj (s)
L2→ qj (∞) as t → ∞ for ever j ∈ S, (3.17)

from Theorem 5 (a) and Eq. 3.17 we get that

1

t

t∑

s=1

uj (s)
L1→ qj (∞) as t → ∞ for ever j ∈ S, (3.18)

from Theorem 5 (b) and Eq. 3.18 we get that

1

t

t∑

s=1

uj (s)
P→ qj (∞) as t → ∞ for ever j ∈ S. (3.19)

By Theorem 6 there exists a non-random increasing sequence of integers t1, t2, ... such that

1

ti

ti∑

s=1

uj (s)
a.s→ qj (∞) as i → ∞ for ever j ∈ S. (3.20)

We will now prove that such a choice of subsequence is ti = i2 for i = 1, 2, .... In order to
do so it is sufficient by Theorem 7 to show that

For every ε > 0
∑

i

P

⎛

⎝

∣∣∣∣∣∣
1

i2

i2∑

s=1

uj (s) − qj (∞)

∣∣∣∣∣∣
> ε

⎞

⎠ < ∞. (3.21)

By Theorem 8 , that is, Chebychov inequality we get that

P

⎛

⎝

∣∣∣∣∣∣
1

i2

i2∑

s=1

uj (s) − qj (∞)

∣∣∣∣∣∣
> ε

⎞

⎠ ≤
E

[(
1
i2

∑i2

s=1 uj (s) − qj (∞)
)2]

ε2
. (3.22)

Therefore, we should prove that

For every ε > 0 B = 1

∈2

∑

i

E

⎡

⎢⎣

⎛

⎝ 1

i2

i2∑

s=1

uj (s) − qj (∞)

⎞

⎠
2
⎤

⎥⎦ < ∞. (3.23)

From Eqs. 3.10, 3.11, 3.12 and 3.15 we get that

B = 1

∈2

∑

i

1

i4
{

i2∑

n=1

i2∑

l=1

[−qj (∞)E
[
qj (0, n)

]+ q2
j (∞) − qj (∞)E

[
qj (0, l)

]

+E

[
q

(j)
j (n ∨ l, n ∧ l)

]
E
[
qj (0, n ∨ l)

]]}

≤ 1

∈2

∑

i

1

i4
{

i2∑

n=1

i2∑

l=1

{∣∣qj (∞) − E
[
qj (0, n)

]∣∣+ ∣∣qj (∞) − E
[
qj (0, l)

]∣∣

+ ∣∣E [qj (0, n ∨ l)
]− qj (∞)

∣∣+
∣∣∣E
[
q

(j)
j (n ∨ l, n ∧ l)

]
− qj (∞)

∣∣∣}}. (3.24)
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From Theorem 10 we get that there exists constants c > 0 and 0 < b < 1 such that
∣∣qj (∞) − E

[
qj (0, n)

]∣∣ ≤ cbn ;
∣∣qj (∞) − E

[
qj (0, l)

]∣∣ ≤ cbl and
∣∣E
[
qj (0, n ∨ l)

]− qj (∞)
∣∣ ≤ cbn∨l . (3.25)

From Theorem 9 we get that there exists constants c1 > 0 and 0 < b1 < 1 such that
∣∣∣E
[
q

(j)
j (n ∨ l, n ∧ l)

]
− qj (∞)

∣∣∣ ≤ c1b
n∧l−n∨l
1 . (3.26)

From Eqs. 3.24, 3.25 and 3.26 we get that

B ≤ 1

∈2

∑

i

1

i4

i2∑

n=1

i2∑

l=1

[
cbn + cbl + cbn∨l + c1b

n∧l−n∨l
1

]
< ∞.

Hence, we have proved that

1

i2

i2∑

s=1

uj (s)
a.s.→ qj (∞) . (3.27)

We have that
i2∑

s=1

uj (s) is monotonic non-decreasing, (3.28)

therefore
i2∑

s=1

uj (s) ≤
t∑

s=1

uj (s) ≤
(i+1)2∑

s=1

uj (s) if i2 ≤ t ≤ (i + 1)2 , (3.29)

from which we get

1

(i + 1)2

i2∑

s=1

uj (s) ≤ 1

t

t∑

s=1

uj (s) ≤ 1

i2

(i+1)2∑

s=1

uj (s) if i2 ≤ t ≤ (i + 1)2 . (3.30)

In Eq. 3.30 let t → ∞, use the fact that limi→∞
(
i2/ (i + 1)2

) → 1, and relation (3.27) to
get

1

t

t∑

s=1

uj (s)
a.s.→ qj (∞) .

4 Convergence in the Cesaro Sense for Cyclic NHMS

In the present section we study convergence of the relative population structure in the Cesaro
sense for an NHMS which undergoes a cyclic behavior. This is a founding step in order to
study Laws of Large Numbers in Cyc-NHMS in the next section. The importance of cyclic
behavior was firstly stressed in Bartholomew (1982) p.71. The motive was Gani’s (1963)
study of student enrolment at Michigan state University. A general theorem for the limit-
ing behavior of the expected population structure for a Cyc-NHMS was given in Vassiliou
(1984). Also, the asymptotic variability of nonhomogeneous Markov systems under cyclic
behavior was studied in Vassiliou (1986). Georgiou and Tsantas (1996) studied asymptotic
attainability of nonstationary cyclic Markov systems as a natural extension of Cyc-NHMS.

We now provide the definition of a Cyc-NHMS
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Definition 4 Let a probability space (�,F ,P) and an NHMS as defined in Section 2.
We say that the NHMS undergoes a cyclic behavior with period d if and only if for all
m = 1, 2, ... and s = 0, 1, ..., d − 1

P (md + s) = P (s) ; p�
k+1 (md + s) = p�

k+1; p0 (md + s) = p0. (4.1)

It is apparent that for a Cyc-NHMS with period d we have that for all m = 1, 2, ... and
s = 0, 1, ..., d − 1

Q (md + s) = Q (s) . (4.2)

We now define the following stochastic matrices

Q0 = Q (0)Q (1) ...Q (d − 1) ; Q1 = Q (1)Q (2) ...Q (d − 1)Q (0) , ...,

Qd−1 = Q (d − 1)Q (0) ...Q (d − 2) . (4.3)

It is well known that if Q0 is a regular stochastic matrix then limt→∞ Qt
0 = Q∞

0 a stable
matrix or equivalently

lim
t→∞

∥∥Qt
0 − Q∞

0

∥∥ = 0. (4.4)

We will now provide the following Proposition:

Proposition 1 Let a probability space (�,F ,P) and a Cyc-NHMS. If Q0 is a regular
stochastic matrix then

lim
t→∞

∥∥Qt
i − Q∞

i

∥∥ = 0, for i = 1, 2, ..., d − 1. (4.5)

where

Q∞
i = Q∞

0

⎛

⎝
i−1∏

j=0

Q (j)

⎞

⎠ , for i = 1, 2, ..., d − 1. (4.6)

Proof Since Q∞
0 is a stable stochastic matrix we have that

Q∞
i =

⎛

⎝
d−1∏

j=i

Q (j)

⎞

⎠Q∞
0

⎛

⎝
i−1∏

j=0

Q (j)

⎞

⎠ , (4.7)

therefore we have that

Qt
i = QiQi ...Qi︸ ︷︷ ︸

t-times

=

= Q (i)Q (i + 1) ...Q (d − 1)Q (0)Q (1) ...Q (i − 1)

×Q (i)Q (i + 1) ...Q (d − 1)Q (0)Q (1) ...Q (i − 1)

×.................................................

×Q (i)Q (i + 1) ...Q (d − 1)Q (0)Q (1) ...Q (i − 1)

×
⎛

⎝
d−1∏

j=i

Q (j)

⎞

⎠Qt−1
0

⎛

⎝
i−1∏

j=0

Q (j)

⎞

⎠ , (4.8)
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hence, for every ε > 0 there is a t0 such that for t ≥ t0

∥∥Qt
i − Q∞

i

∥∥ =
∥∥∥∥∥∥

⎛

⎝
d−1∏

j=i

Q (j)

⎞

⎠Qt−1
0

⎛

⎝
i−1∏

j=0

Q (j)

⎞

⎠−
⎛

⎝
d−1∏

j=i

Q (j)

⎞

⎠Q∞
0

⎛

⎝
i−1∏

j=0

Q (j)

⎞

⎠

∥∥∥∥∥∥

≤ ∥∥Qt
0 − Q∞

0

∥∥ < ε.

From Vassiliou and Georgiou (1990) p.541 we get the following Lemma

Lemma 1 Let a probability space (�,F ,P) and a NHMS be defined in Section 2. Suppose
that the sequence {

�T (t)

T (t)

}∞

t=0
converges to zero geometrically fast with T (t) ≥ T (t − 1). Then {T (t)}∞t=0 converges
geometrically fast.

Remark 1 The assumption limt→∞ �T (t)
T (t)

= 0 allows for limt→∞T (t) = ∞.

We will now prove the following theorem

Theorem 13 Define a probability space (�,F ,P) and a Cyc-NHMS. If (a)Q0 =
Q (0)Q (1) ...Q (d − 1) is a regular stochastic matrix; limt→∞ �T (t)

T (t)
= 0 with

limt→∞ T (t) = ∞ then the sequence E [q (0, t)] splits into d subsequences with limits

qs (∞) =
s−1∑

r=0

p0 (r) srQ(∞)
r

⎛

⎝
s−1∏

j=r

Q (j)

⎞

⎠

+
d−1∑

r=s

p0 (r) srQ(∞)
r

⎛

⎝
d−1∏

j=r

Q (j)

⎞

⎠

⎛

⎝
s−1∏

j=0

Q (j)

⎞

⎠

for s = 0, 1, ..., d − 1.

(b)Q0 = Q (0)Q (1) ...Q (d − 1) is a regular stochastic matrix; lim t→∞ �T (t)
T (t)

= 0
geometrically fast then the sequence E [q (0, t)] splits into d subsequences with limits

qs (∞) = T (0)

T
q (0)Q(∞)

s−1 +
s−1∑

r=0

p0 (r) srQ(∞)
r

⎛

⎝
s−1∏

j=r

Q (j)

⎞

⎠

+
d−1∑

r=s

p0 (r) srQ(∞)
r

⎛

⎝
d−1∏

j=r

Q (j)

⎞

⎠

⎛

⎝
s−1∏

j=0

Q (j)

⎞

⎠

for s = 0, 1, ..., d − 1.

Proof Without loss of generality assume that t = md + s. Due to the fact that we have a
Cyc-NHMS we get that

Q (0,md + s − 1) = Qm
0

⎛

⎝
s−1∏

j=0

Q (j)

⎞

⎠ .
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Since Q0is a regular stochastic matrix it is easy using Eq. 4.6 to see that

lim
m→∞

∥∥Q (0,md + s − 1) − Q∞
s−1

∥∥ = 0. (4.9)

Denote by

U (md + s) = 1

T (md + s)

md+s∑

τ=1

�T (τ − 1)p0 (τ − 1)Q (τ,md + s − 1) (4.10)

=
m−1∑

τ=0

d−1∑

r=0

�T (τd + r)

T (md + s)
p0 (τd + r)Q (τd + r,md + s − 1)

+
s−1∑

r=0

�T (md + r)

T (md + s)
p0 (md + r)Q (md + r,md + s − 1) . (4.11)

From Eq. 4.11 we get that

lim
m→∞

∥∥∥∥∥

s−1∑

r=0

�T (md + r)

T (md + s)
p0 (md + r)Q (md + r,md + s − 1)

∥∥∥∥∥

≤ lim
m→∞

s−1∑

r=0

�T (md + r)

T (md + s)
‖p0 (md + r)‖ ‖Q (md + r, md + s − 1)‖

≤ lim
m→∞

s−1∑

r=0

�T (md + r)

T (md + s)
= 0. (4.12)

Let r ≤ s − 1 then it is not difficult to see that

Q (τd + r, md + s − 1) = Q(m−τ)
r

⎛

⎝
s−1∏

j=r

Q (j)

⎞

⎠ . (4.13)

On the other hand when r > s − 1 then

Q (τd + r,md + s − 1) = Q(m−τ−1)

⎛

⎝
d−1∏

j=r

Q (j)

⎞

⎠

⎛

⎝
s−1∏

j=0

Q (j)

⎞

⎠ . (4.14)

The expression in Eq. 4.10 could be written as

m−1∑

τ=0

d−1∑

r=0

�T (τd + r)

T (md + s)
p0 (τd + r)Q (τd + r,md + s − 1)

=
m−1∑

τ=0

s−1∑

r=0

�T (τd + r)

T (md + s)
p0 (τd + r)Q (τd + r,md + s − 1)

+
m−1∑

τ=0

d−1∑

r=s

�T (τd + r)

T (md + s)
p0 (τd + r)Q (τd + r,md + s − 1)

= U1 (md + s) + U2 (md + s) . (4.15)
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We now have that

lim
m→∞

m−1∑

τ=0

s−1∑

r=0

�T (τd + r)

T (md + s)
p0 (τd + r)Q (τd + r, md + s − 1)

= (from the fact that we have a Cyc-NHMS and (4.13))

=
s−1∑

r=0

p0 (r) lim
m→∞

m−1∑

τ=0

�T (τd + r)

T (md + s)
Q(m−τ)

r

⎛

⎝
s−1∏

j=r

Q (j)

⎞

⎠ . (4.16)

Now the series
m−1∑

τ=0

�T (τd + r)

T (md + s)
for r = 0, 1, ..., d − 1, (4.17)

is bounded by the series

t∑

τ=0

�T (τ)

T (t)
≤ 1,

hence

lim
m→∞

m−1∑

τ=0

�T (τd + r)

T (md + s)
≤ 1, (4.18)

since {T (t)}∞t=0 is a monotonically increasing function of t , we have �T (τd+r)
T (md+s)

≥ 0 and
consequently the series in Eq. 4.18 is converging and denote by

sr = lim
m→∞

m−1∑

τ=0

�T (τd + r)

T (md + s)
for r = 0, 1, ..., d − 1. (4.19)

We now have that
∥∥∥∥∥∥

m−1∑

τ=0

�T (τd + r)

T (md + s)
Q(m−τ)

r

⎛

⎝
s−1∏

j=r

Q (j)

⎞

⎠−
m−1∑

τ=0

�T (τd + r)

T (md + s)
Q(∞)

r

⎛

⎝
s−1∏

j=r

Q (j)

⎞

⎠

∥∥∥∥∥∥

≤
m−1∑

τ=0

�T (τd + r)

T (md + s)

∥∥∥Q(m−τ)
r − Q(∞)

r

∥∥∥ . (4.20)

From Proposition 1, Eqs. 4.16, 4.18 and 4.20 we get that

lim
m→∞ U1 (md + s) =

s−1∑

r=0

p0 (r) srQ(∞)
r

⎛

⎝
s−1∏

j=r

Q (j)

⎞

⎠ for r ≤ s − 1. (4.21)

In a similar way we arrive at

lim
m→∞ U2 (md + s) =

d−1∑

r=s

p0 (r) srQ(∞)
r

⎛

⎝
d−1∏

j=r

Q (j)

⎞

⎠

⎛

⎝
s−1∏

j=0

Q (j)

⎞

⎠ . (4.22)
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Hence, from Eqs. 4.10, 4.11 and 4.15 we get that

lim
m→∞ U (md + s) =

s−1∑

r=0

p0 (r) srQ(∞)
r

⎛

⎝
s−1∏

j=r

Q (j)

⎞

⎠

+
d−1∑

r=s

p0 (r) srQ(∞)
r

⎛

⎝
d−1∏

j=r

Q (j)

⎞

⎠

⎛

⎝
s−1∏

j=0

Q (j)

⎞

⎠ . (4.23)

Now from Eqs. 2.6 and 4.23 we get that for limt→∞ �T (t)
T (t)

= 0 and limt→∞ T (t) = ∞ the
sequence E [q (0, t)] splits into d subsequences with limits

qs (∞) =
s−1∑

r=0

p0 (r) srQ(∞)
r

⎛

⎝
s−1∏

j=r

Q (j)

⎞

⎠

+
d−1∑

r=s

p0 (r) srQ(∞)
r

⎛

⎝
d−1∏

j=r

Q (j)

⎞

⎠

⎛

⎝
s−1∏

j=0

Q (j)

⎞

⎠ . (4.24)

for s = 0, 1, ..., d − 1.

If limt→∞ �T (t)
T (t)

= 0 in a geometrical rate then by Lemma 1 limt→∞ T (t) = T and the
sequence E [q (0, t)] splits into d subsequences with limits

qs (∞) = T (0)

T
q (0)Q(∞)

s−1 +
s−1∑

r=0

p0 (r) srQ(∞)
r

⎛

⎝
s−1∏

j=r

Q (j)

⎞

⎠

+
d−1∑

r=s

p0 (r) srQ(∞)
r

⎛

⎝
d−1∏

j=r

Q (j)

⎞

⎠

⎛

⎝
s−1∏

j=0

Q (j)

⎞

⎠ . (4.25)

for s = 0, 1, ..., d − 1.

We will now introduce the concept of Cesaro strongly ergodic for a Cycl-NHMS:

Definition 5 A Cycl-NHMS is called Cesaro strongly ergodic if there exists a vector q (∞)

such that

lim
t→∞

∥∥∥∥∥
1

t

t∑

n=0

E [q (0, n)] − q (∞)

∥∥∥∥∥ = 0.

We call the q (∞) the Cyclic strong run distribution for the NHMS.

We will now provide a basic theorem on the Cesaro convergence for a Cycl-NHMS.

Theorem 14 Consider a Cycl-NHMS and let that:

(a) Q0 = Q (0)Q (1) ...Q (d − 1) is a regular stochastic matrix;
(b) limt→∞ �T (t)

T (t)
= 0
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then the Cycl-NHMS is Cesaro strongly ergodic in the sense that

lim
t→∞

∥∥∥∥∥
1

t

t∑

n=0

E [q (0, n)] − 1

d

d−1∑

s=0

qs (∞)

∥∥∥∥∥ = 0,

where

qs (∞) =
s−1∑

r=0

p0 (r) srQ(∞)
r

⎛

⎝
s−1∏

j=r

Q (j)

⎞

⎠

+
d−1∑

r=s

p0 (r) srQ(∞)
r

⎛

⎝
d−1∏

j=r

Q (j)

⎞

⎠

⎛

⎝
s−1∏

j=0

Q (j)

⎞

⎠ .

If (a) Q0 = Q (0)Q (1) ...Q (d − 1) is a regular stochastic matrix;
(
b̂
)
limt→∞ �T (t)

T (t)
= 0

geometrically fast then the Cycl-NHMS is Cesaro strongly ergodic in the sense that

lim
t→∞

∥∥∥∥∥
1

t

t∑

n=0

E [q (0, n)] − 1

d

d−1∑

s=0

qs (∞)

∥∥∥∥∥ = 0,

where

qs (∞) = T (0)

T
q (0)Q(∞)

s−1 +
s−1∑

r=0

p0 (r) srQ(∞)
r

⎛

⎝
s−1∏

j=r

Q (j)

⎞

⎠

+
d−1∑

r=s

p0 (r) srQ(∞)
r

⎛

⎝
d−1∏

j=r

Q (j)

⎞

⎠

⎛

⎝
s−1∏

j=0

Q (j)

⎞

⎠ .

Proof We start with the first part, that is (a) and (b) hold. Since the Cycl-NHMS is of finite
size it is sufficient to show that

lim
t→∞

1

t

t∑

n=0

E [q (0, n)] = 1

d

d−1∑

s=0

qs (∞) . (4.26)

Let
[

a
b

]
the integer part of the division then we have that

1

t

t∑

n=0

E [q (0, n)] = 1

t

d[t/d]−1∑

n=0

E [q (0, n)] + 1

t

t∑

n=d[t/d]

E [q (0, n)] . (4.27)

Now we have that

lim
t→∞

1

t

d[t/d]−1∑

n=0

E [q (0, n)] = lim
t→∞

1

t

d−1∑

s=0

[t/d]−1∑

n=0

E [q (0, nd + s)]

=
d−1∑

s=0

lim
t→∞

[t/d]

t

1

[t/d]

[t/d]−1∑

n=0

E [q (0, nd + s)] . (4.28)
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From (a), (b), Theorem 13 and the fact that the series is an arithmetic mean we get that

lim
t→∞

1

[t/d]

[t/d]−1∑

n=0

E [q (0, nd+s)] =
s−1∑

r=0

p0 (r) srQ(∞)
r

⎛

⎝
s−1∏

j=r

Q (j)

⎞

⎠

+
d−1∑

r=s

p0 (r) srQ(∞)
r

⎛

⎝
d−1∏

j=r

Q (j)

⎞

⎠

⎛

⎝
s−1∏

j=0

Q(j)

⎞

⎠. (4.29)

Also limt→∞ [t/d] /t = 1/d therefore from Eqs. 4.28 and 4.29 we get that

lim
t→∞

1

t

d[t/d]−1∑

n=0

E [q (0, n)] = 1

d

d−1∑

s=0

s−1∑

r=0

p0 (r) srQ(∞)
r

⎛

⎝
s−1∏

j=r

Q (j)

⎞

⎠

+ 1

d

d−1∑

s=0

d−1∑

r=s

p0 (r) srQ(∞)
r

⎛

⎝
d−1∏

j=r

Q (j)

⎞

⎠

⎛

⎝
s−1∏

j=0

Q (j)

⎞

⎠. (4.30)

Now it is easy to see that

lim
t→∞

1

t

t∑

n=d[t/d]

E [q (0, n)] = 0. (4.31)

The second part of the Theorem is proved in a similar way.

5 Laws of Large Numbers for a Cycl-NHMS

We are now in a position to study the first Law of Large Numbers for a Cycl-NHMS. We
will start with the mode of mean square convergence. Let Xt, uj (t) , yj (t) and νj (t) be
defined as in Section 3. We will now provide and prove the following theorem of the Law
of Large Numbers

Theorem 15 Define a probability space (�,F ,P) and a Cyc-NHMS. If (a)Q0 =
Q (0)Q (1) ...Q (d − 1) is a regular stochastic matrix and limt→∞ �T (t)

T (t)
= 0 then

ν (t)
L2→ 1

d

d−1∑

s=0

qs (∞) ,

where qs (∞) is given by Eq. 4.24 if in addition T (t) →t→∞ ∞; and where qs (∞) is
given by Eq. 4.25 if limt→∞ �T (t)

T (t)
= 0 geometrically fast.

Proof It is equivalent to show that

lim
t→∞E

⎡

⎣
(

ν (t) − 1

d

d−1∑

s=0

qs (∞)

)2⎤

⎦ = 0. (5.1)

Since the dimensions of the vectors are finite it is equivalent to show that

lim
t→∞E

⎡

⎣
(

νj (t) − 1

d

d−1∑

s=0

qsj (∞)

)2⎤

⎦ = 0 for j = 1, 2, ..., k. (5.2)
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We have that

E

⎡

⎣
(

νj (t) − 1

d

d−1∑

s=0

qsj (∞)

)2⎤

⎦ = E

⎡

⎣
(

t∑

n=1

uj (n)

t
− 1

d

d−1∑

s=0

qsj (∞)

)2⎤

⎦

= 1

t2
E

⎡

⎣
(

t∑

n=1

(
uj (n) − 1

d

d−1∑

s=0

qsj (∞)

))2⎤

⎦

= 1

t2
E

[(
t∑

n=1

(
uj (n) − 1

d

d−1∑

s=0

qsj (∞)

))

×
(

t∑

l=1

(
uj (l) − 1

d

d−1∑

s=0

qsj (∞)

))]
. (5.3)

Therefore we get that

E

⎡

⎣
(

νj (t) − 1

d

d−1∑

s=0

qsj (∞)

)2⎤

⎦ = 1

t2

t∑

n=1

t∑

l=1

E
[
uj (n) uj (l)

]
(5.4)

− 1

t2d

d−1∑

s=0

t∑

n=1

t∑

l=1

qsj (∞)E
[
uj (n)

]
(5.5)

− 1

t2d

d−1∑

s=0

t∑

n=1

t∑

l=1

qsj (∞)E
[
uj (l)

]
(5.6)

+ 1

t2

t∑

n=1

t∑

l=1

(
1

d

d−1∑

s=0

qsj (∞)

)2

. (5.7)

We start with relation (5.5)

lim
t→∞

{
− 1

t2d

d−1∑

s=0

t∑

n=1

t∑

l=1

qsj (∞)E
[
uj (n)

]
}

= lim
t→∞

{
− 1

d

d−1∑

s=0

qsj (∞)
1

t

t∑

n=1

E
[
uj (n)

]
}

= lim
t→∞

{
− 1

d

d−1∑

s=0

qsj (∞)
1

t

t∑

n=1

E
[
E
[
uj (n) |q (0)

]]
}

= lim
t→∞

{
− 1

d

d−1∑

s=0

qsj (∞)
1

t

t∑

n=1

E [P (Xn =j) |q (0)]

}

= lim
t→∞

{
− 1

d

d−1∑

s=0

qsj (∞)
1

t

t∑

n=1

E
[
qj (0, n)

]
}

= (by Theorem 14) = −
(
1

d

d−1∑

s=0

qsj (∞)

)2

. (5.8)
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Similarly we get that

− 1

t2d

d−1∑

s=0

t∑

n=1

t∑

l=1

qsj (∞)E
[
uj (l)

] = −
(
1

d

d−1∑

s=0

qsj (∞)

)2

. (5.9)

It is easy to see that

1

t2

t∑

n=1

t∑

l=1

(
1

d

d−1∑

s=0

qsj (∞)

)2

=
(
1

d

d−1∑

s=0

qsj (∞)

)2

. (5.10)

The term (5.4) could be written as

lim
t→∞

{
1

t2

t∑

n=1

t∑

l=1

E
[
uj (n) uj (l)

]
}

= lim
t→∞

{
1

t2

t∑

n=1

t∑

l=1

E
[
E
[
uj (n) uj (l) | q (0)

]]
}

= B. (5.11)

Now from Eqs. 5.11 and 3.14 we get that

B = lim
t→∞

{
1

t2

t∑

n=1

t∑

l=1

E
[
P
[
uj (n) uj (l) | q (0)

]]
}

= (from (3.14))

= lim
t→∞

{
1

t2

t∑

n=1

t∑

l=1

E
[
P
(
Xn∧l = j | qj (0, n ∨ l) = 1

)]
E [P [Xn∨l = j | q (0)]]

}

= lim
t→∞

{
1

t2

t∑

n=1

t∑

l=1

E

[
q

(j)
j (n ∨ l, n ∧ l)

]
E
[
qj (0, n ∨ l)

]
}

=
(
since q

(j)
j (s, t) = 0 for s > t

)

= lim
t→∞

{
1

t2

t∑

n=1

t∑

l=n

E

[
q

(j)
j (n, l)

]
E
[
qj (0, n)

]
}

= lim
t→∞

{
1

t

t∑

n=1

E
[
qj (0, n)

] 1
t

t∑

l=n

E

[
q

(j)
j (n, l)

]}

= (by Theorem 14 and 13)

=
(
1

d

d−1∑

s=0

qsj (∞)

)(
1

d

d−1∑

s=0

qsj (∞)

)

=
(
1

d

d−1∑

s=0

qsj (∞)

)2

. (5.12)

From Eqs. 5.3, 5.4,..., 5.12 we get Eq. 5.1 and that completes the proof.

We will now establish under what conditions the L2 convergence of the Law of Large
numbers we proved in Theorem 15 holds for almost sure convergence also. In order to do
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so we need the following founding Theorem which provides the conditions under which the
Cesaro convergence in Theorem 14 is with geometrical rate.

Theorem 16 Define a probability space (�,F ,P) and a Cyc-NHMS. If (a)Q0 =
Q (0)Q (1) ...Q (d − 1) is a regular stochastic matrix and limt→∞ �T (t)

T (t)
= 0 geometrically

fast then

lim
t→∞

∥∥∥∥∥
1

t

t∑

n=0

E [q (0, n)] − 1

d

d−1∑

s=0

qs (∞)

∥∥∥∥∥ = 0,

in a geometrical rate.

Proof From the fact that Q0 is a regular stochastic matrix we know that

There exists c0 > 0 and 0 < b0 < 1 such that
∥∥∥Qt

0 − Q(∞)
0

∥∥∥ ≤ c0b
t
0. (5.13)

From the end of the proof of Proposition 1 we get that

∥∥∥Qt
i − Q(∞)

i

∥∥∥ ≤ c0b
t−1
0 , (5.14)

hence the convergence is geometric. Now we have

∥∥∥∥∥∥
Q (0, md + s − 1) − Q(∞)

0

⎛

⎝
s−1∏

j=0

Q (j)

⎞

⎠

∥∥∥∥∥∥

=
∥∥∥∥∥∥
Qm

0

⎛

⎝
s−1∏

j=0

Q (j)

⎞

⎠− Q(∞)
0

⎛

⎝
s−1∏

j=0

Q (j)

⎞

⎠

∥∥∥∥∥∥
≤
∥∥∥Qm

0 − Q(∞)
0

∥∥∥ ≤ c0b
m
0 . (5.15)

From Vassiliou and Georgiou (1990) we know that since limt→∞ �T (t) /T (t) = 0 geo-
metrically fast, then the sequence {T (t)}∞t=0 converges geometrically fast to a positive scalar
T and so there exists c1 > 0 and 0 < b1 < 1 such that

∣∣∣∣
1

T (t)
− 1

T

∣∣∣∣ < c1b
t
1. (5.16)

We start with the first part of the right hand side of Eq. 2.6 for the case of Cycl-NHMS:

∥∥∥∥
T (0)

T (md + s)
q (0)Q (0,md + s − 1) − T (0)

T
q (0)Q(∞)

s−1

∥∥∥∥

≤ T (0) ‖q (0)‖
∥∥∥∥

1

T (md + s)
Q (0, md + s − 1) − 1

T
Q(∞)

s−1

∥∥∥∥

≤
∣∣∣∣

1

T (md + s)
− 1

T

∣∣∣∣ ‖Q (0,md + s − 1)‖ +
∣∣∣∣
1

T

∣∣∣∣
∥∥∥Q (0,md + s − 1) − Q(∞)

s−1

∥∥∥

= (from (5.15) and (5.16)) ≤ c2b2 with c2 > 0 and 0 < b2 < 1. (5.17)
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Now we have that

‖ 1

T (ms + s)

m−1∑

τ=0

s−1∑

r=0

�T (τd + r) p0 (τd + r)Q (τd + r, md + s − 1)

− 1

T

m−1∑

τ=0

s−1∑

r=0

�T (τd + r) p0 (r)Q(∞)
r

⎛

⎝
s−1∏

j=r

Q (j)

⎞

⎠ ‖ (5.18)

≤ ‖ 1

T (ms + s)

m−1∑

τ=0

s−1∑

r=0

�T (τd + r) p0 (τd + r)Q (τd + r, md + s − 1)

− 1

T

m−1∑

τ=0

s−1∑

r=0

�T (τd + r) p0 (τd + r)Q (τd + r,md + s − 1) ‖ (5.19)

+‖ 1

T

m−1∑

τ=0

s−1∑

r=0

�T (τd + r) p0 (τd + r)Q (τd + r,md + s − 1)

− 1

T

m−1∑

τ=0

s−1∑

r=0

�T (τd + r) p0 (r)Q(∞)
r

⎛

⎝
s−1∏

j=r

Q (j)

⎞

⎠ ‖=I1 + I2 (5.20)

From relation (5.19) we get that

I1 ≤
∣∣∣∣

1

T (md + s)
− 1

T

∣∣∣∣
m−1∑

τ=0

s−1∑

r=0

‖ �T (τd + r)p0 (τd + r)Q (τd + r,md + s − 1) ‖

≤
∣∣∣∣

1

T (md + s)
− 1

T

∣∣∣∣
m−1∑

τ=0

s−1∑

r=0

�T (τd + r)‖p0 (τd + r)‖‖ Q (τd + r,md + s−1) ‖

≤
∣∣∣∣

1

T (md + s)
− 1

T

∣∣∣∣ [T − T (0)] ≤ c2b
md+s
2 . (5.21)

Also

I2 ≤ 1

T

m−1∑

τ=0

s−1∑

r=0

�T (τd + r) ‖p0 (r)‖
∥∥∥∥∥∥
Q (τd + r,md + s − 1) − Q(∞)

r

⎛

⎝
s−1∏

j=r

Q (j)

⎞

⎠

∥∥∥∥∥∥

≤ 1

T

m−1∑

τ=0

s−1∑

r=0

�T (τd + r)

∥∥∥Q(m−τ)
r − Q(∞)

r

∥∥∥ . (5.22)

Assume that for m ≥ t0 :
∥∥∥Q(m−τ)

r − Q(∞)
r

∥∥∥ ≤ c3b
m−t0
3 then

I2 ≤ 1

T

m−t0∑

τ=0

s−1∑

r=0

�T (τd + r)

∥∥∥Q(m−τ)
r − Q(∞)

r

∥∥∥

+ 1

T

m−1∑

τ=m−t0+1

s−1∑

r=0

�T (τd + r)

∥∥∥Q(m−τ)
r − Q(∞)

r

∥∥∥ , (5.23)
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from which we get that I2 goes geometrically fast to zero. Therefore relation (5.18) con-
verges geometrically fast to zero. In a similar way one could prove, that the convergence in
(4.22) is geometrically fast. Hence, we get that

E [0, q (md + s)] →m→∞ qs (∞) geometrically fast. (5.24)

Now following the steps of Theorem 14 it is easy to show that

lim
t→∞

∥∥∥∥∥
1

t

t∑

n=0

E [q (0, n)] − 1

d

d−1∑

s=0

qs (∞)

∥∥∥∥∥ = 0,

in a geometrical rate.

Having proved this basic result, we are now in a position following the steps of the proof
of Theorem 12 where the role of Theorems 9 and 10 is now played by Theorem16 to arrive
at the following theorem.

Theorem 17 Define a probability space (�,F ,P) and a Cyc-NHMS. If (a) Q0 =
Q (0)Q (1) ...Q (d − 1) is a regular stochastic matrix and limt→∞ �T (t)

T (t)
= 0 geometrically

fast then

ν (t)
a.s→ 1

d

d−1∑

s=0

qs (∞) as t → ∞.

6 Applications

6.1 Geriatric and Stroke Patients

In the present section we present two types of applications. The first one in the present
subsection is a general Coxian phase type model, special forms of which has been used as
stochastic models for geriatric patients and stroke patients by McClean and her co-authors
McClean et al. (1998a, b), Taylor et al. (2000), Marshall et al. (2002), Marshall andMcClean
(2003, 2004), Garg et al. (2010), McClean et al. (2014a, b). In these applications in the basic
model, we distinguish three states which are called hospital pathways. In the case of geriatric
patients the states are the “Acute Care”, the “Rehabilative” and the “Long Stay”. From each
state we have movements outside the hospital due to discharge or death. Also, geriatric
patients may be thought of as progressing through stages of acute care, rehabilitation and
long-stay care, where most patients are eventually rehabilitated and discharged. Geriatric
medical services are an important asset in the care of the elderly, while at the same time
they can be easy victims of the political pressure on savings in health care expenditure.
Note that the number of pathways could be increased and the criterion is what best fits the
data. However, there is no reason to consider a larger number of states in here due to the
restriction of space. It is of importance in the best management of hospital resources and
certainly to the benefit of geriatric patients to know the tendencies of the system in the
long run. That is, what proportion of the total population is going to be in each state. In the
case of stroke patients there are more types of transitions due to the nature of stroke, which
allows for relapses and hence more transitions among the hospital pathways. The model we
will illustrate in what follows could be easily adjusted for both cases.
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Consider a hospital which starts with T (0) = 400 patients and in a very short time
reaches its full capacity of 435 patients. That is T (1) = 420, T (2) = 430, T (3) = 435.
Assume three hospital pathways and let that the initial relative population structure is

q (0) = (0.5 0.25 0.25).

The vast majority of new patients enter the system in hospital pathway one, either by taking
an empty place or as a virtual replacement of a discharged patient, that is q11 (t) = p11 (t)+
p14 (t) p01 (t). In here state 4 expresses the external environment. The entrance probabilities
are

p0 (0) = (0.6 0.3 0.1); p0 (1) = (0.5 0.3 0.2);
p0 (2) = (0.75 0.25 0.1) and p0 = p0 (t) = (0.7 0.2 0.1);

for t = 3, 4, .... The form of the transition probability matrices according to the stochastic
model for movements in the hospital is the following

P (t) =
⎛

⎝
p11 (t) p12 (t) p13 (t)

0 p22 (t) p23 (t)

0 0 p33 (t)

⎞

⎠ ,

also the inherent non-homogeneous Markov chain will evolve with the sequence of stochas-
tic matrices Q (t) = {

qij (t)
}
i,j∈S

where qij (t) = pij (t) + pi4 (t) p0j (t). We get the
following typical set of Q (t)’s which are easily estimated from the data by its maximum
likelihood estimates:

Q (0) =
⎛

⎝
0.7 0.2 0.1
0.2 0.6 0.2
0.6 0.1 0.3

⎞

⎠ ; Q (1) =
⎛

⎝
0.65 0.25 0.1
0.1 0.7 0.2
0.5 0.1 0.4

⎞

⎠ ;

Q (2) =
⎛

⎝
0.5 0.3 0.2
0.2 0.5 0.3
0.4 0.2 0.4

⎞

⎠ ; Q (t) = Q =
⎛

⎝
0.6 0.3 0.1
0.14 0.6 0.26
0.49 0.14 0.37

⎞

⎠ ,

for t = 2, 3, .... The row of the stable matrix limt→∞ Qt = Q (∞) = (q (∞) q (∞)

q (∞))� is

q (∞) = (0.41 0.37 0.22),

where the convergence is geometrically fast, that is for t = 5 it already converges. Now
simulating Theorem 11 we find that

===== ================
T ime E

[
(ν1 (t) − q1 (∞))2

]

===== ================
t = 5 0.01380
t = 6 0.0007
===== ================

From the above table it is apparent that

ν1 (t)
L2→ 0.41

Analogous results are found also for the remaining of the hospital pathways. That is

ν (t)
L2→ (0.41 0.37 0.22).
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Now, since as we have seen �T (t) /T (t) → 0 geometrically fast, that is, for t = 3, and
since as we have seen limt→∞ Qt converges to Q (∞) geometrically fast, that is, for t = 5,
then according to Theorem 12 we have

ν (t)
a.s→ (0.41 0.37 0.22).

One of the uses for hospital planning based on the above result is, that a membership of
a patient remains in hospital pathway 1, in the long run, almost surely 0.41 of the time
the hospital is in operation. Another useful physical meaning for hospital planning, is that
the relative population structure of the memberships in the various hospital pathways tends
asymptotically almost surely to (0.41 0.37 0.22).

6.2 A University System

In this subsection we illustrate an application of a cyclic non-homogeneous Markov sys-
tem in a University system. The importance of cyclic behavior was firstly stressed in
Bartholomew (1982), p.71, where he also provided an interesting application of this concept
which arose in Gani’s (1963) study of student enrolment at Michigan State University. We
consider the university system in Vassiliou and Tsantas (1984) with 3 years of study where
the students that fail their year repeat it in the following year. The estimates of the transition
probability matrices taken from Vassiliou and Tsantas (1984) assuming a cyclic repetition
are

P (3t) =
⎛

⎝
0.17188 0.81875 0

0 0.29873 0.68644
0 0 0.32303

⎞

⎠ ,

P (3t + 1) =
⎛

⎝
0.19379 0.7726 0

0 0.33503 0.65482
0 0 0.53563

⎞

⎠ ,

P (3t + 2) =
⎛

⎝
0.16631 0.81641 0

0 0.34318 0.64557
0 0 0.50860

⎞

⎠ .

Also

p4 (3t) = (0.00937 0.01483 0.67697),

p4 (3t + 1) = (0.03361 0.01015 0.46437),

and

p4 (3t + 2) = (0.01728 0.01125 0.49140),

and p0 (t) = (1 0 0) for every t = 0, 1, 2, .... The total population of students is T (0) =
8970, T (1) = 9000, T (2) = 9050 and T (t) = 9050 for t = 3, 4, .... Then we have

Q (3t) =
⎛

⎝
0.181 0.819 0
0.015 0.299 0.686
0.677 0 0.323

⎞

⎠ , Q (3t + 1) =
⎛

⎝
0.227 0.773 0
0.010 0.335 0.655
0.464 0 0.536

⎞

⎠ ,

Q (3t + 2) =
⎛

⎝
0.184 0.816 0
0.011 0.343 0.646
0.491 0 0.509

⎞

⎠ , for t = 0, 1, 2, ....
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Then

Q0 =
⎛

⎝
0.277 0.182 0.541
0.388 0.303 0.359
0.147 0.427 0.426

⎞

⎠ , Q1 =
⎛

⎝
0.354 0.176 0.470
0.433 0.305 0.262
0.253 0.399 0.348

⎞

⎠ ,

Q2 =
⎛

⎝
0.274 0.167 0.559
0.308 0.381 0.311
0.179 0.470 0.351

⎞

⎠ .

Applying Eq. 2.3 recursively using the above data we get

q (0) = (0.32 0.30 0.38), E [q (0, 3)] = (0.242 0.315 0.443),

E [q (0, 6)] = (0.238 0.329 0.433), E [q (0, 9)] = (0.241 0.328 0.431),

E [q (0, 12)] = (0.241 0.328 0.431).

We observe that E [q (0, 3t)] converges. Since, �T (t) = 0 for t = 3, 4, ... and Q0 is
a regular stochastic matrix then the conditions of Theorem 13b are satisfied and hence
q0 (∞) as given by Theorem 13b should coincide with E [q (0, 3t)]. This was found
to be true. The same was found with E [q (0, 3t + 1)] →t→∞ (0.340 0.295 0.365),
E [q (0, 3t + 1)] →t→∞ (0.340 0.295 0.365), which were found equal with q1 (∞) and
q2 (∞) given by Theorem 13b.

The Cezaro sum
1

t

t−1∑

n=0

E [0, n]

was found to converge as early as t = 12 to (0.278 0.331 0.391). The two conditions of
Theorem 14 are valid in this case since for the model used Q0 is regular and �T (t) = 0
for t = 3, 4, .... According to Theorem 14 the strong run distribution was found to be equal
with the limit of the Cezaro sum.

The conditions of Theorem 15 are satisfied for the present problem again since Q0 is
regular and �T (t) = 0 for t = 3, 4, .... In order to find ν (t) and verify that

ν (t)
L2→ 1

d

d−1∑

s=0

qs (∞) ,

it is equivalent according to relation (5.1) in the proof of Theorem 15 to verify that

lim
t→∞E

⎡

⎣
(

ν (t) − 1

d

d−1∑

s=0

qs (∞)

)2⎤

⎦ = 0.

For the present University System it was found that

lim
t→∞E

[
(ν (t) − (0.278 0.331 0.391))2

]
= 0.

Hence,

ν (t)
L2→ (0.278 0.331 0.391) as t → ∞.

Now, since Q0 is regular and �T (t) = 0 for t = 3, 4, ..., that is, the convergence is in
geometric rate, the conditions of Theorem 17 are satisfied and thus

ν (t)
a.s.→ (0.278 0.331 0.391) as t → ∞.

One of the uses for University planning physical meaning of the above result is, that a mem-
bership of a student place remaining in the first year of study, in the long run, almost surely
0.278 of the time the University is working. Another useful physical meaning for University
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planning, is that the relative population structure of the memberships in the various years of
study tends asymptotically almost surely to (0.278 0.331 0.391).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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