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Abstract The value of the Vandermonde determinant is optimized over various surfaces,
including the sphere, ellipsoid and torus. Lagrange multipliers are used to find a system of
polynomial equations which give the local extreme points in its solutions. Using Gröbner
basis and other techniques the extreme points are given either explicitly or as roots of poly-
nomials in one variable. The behavior of the Vandermonde determinant is also presented
visually in some interesting cases.
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1 Introduction

In this paper we will consider the extreme points of the Vandermonde determinant on
various surfaces. The examination is primarily motivated by mathematical curiosity but
the techniques used here are likely to be extensible to some problems related to optimal
experiment design for polynomial regression, see Section 3.
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To the authors knowledge this problem has previously been examined on cubes (see Sec-
tion 3) and spheres, see Szegő (1939). Here we will consider some techniques to extend
some of these results to other surfaces such as ellipsoids, cylinders, p-norm spheres and
other surfaces defined by homogeneous polynomials. Our examination will mostly be
restricted to three dimensions but many of the techniques can in principle be extended to
higher dimensions.

2 The Vandermonde Matrix

A rectangular Vandermonde matrix of size m×n is determined by n values x = (x1, · · · , xn)

and is defined by

Vmn(x) =
[
xi−1
j

]
mn

=

⎡
⎢⎢⎢⎣

1 1 · · · 1
x1 x2 · · · xn

...
...

. . .
...

xm−1
1 xm−1

2 · · · xm−1
n

⎤
⎥⎥⎥⎦ . (1)

Note that some authors use the transpose of this as the definition and possibly also let indices
run from 0. All entries in the first row of Vandermonde matrices are ones and by considering
00 = 1 this is true even when some xj is zero. In this paper we will primarily consider square
Vandermonde matrices and for convenience we will use the notation Vn(x) = Vnn(x).

The determinant of the Vandermonde matrix is well known.

Theorem 1 The determinant of square Vandermonde matrices has the form

det Vn(x) ≡ vn(x) =
∏

1≤i<j≤n

(xj − xi). (2)

This determinant is also simply referred to as the Vandermonde determinant or Vander-
monde polynomial or Vandermondian (Vein and Dale 1999).

In this paper we will use the method of Lagrange multipliers to optimize the Vandermonde
determinant over a surface. For this purpose the following properties will be useful.

Lemma 1 The Vandermonde determinant is a homogeneous polynomial of degree n(n−1)
2 .

Proof Considering (2) the numbers of factor of vn(x) is
n∑

i=1

i − 1 = n(n − 1)

2
. Thus

vn(cx) = c
n(n−1)

2 vn(x). (3)

3 Application to D-optimal Experiment Designs for Polynomial
Regression with a Cost-function

Suppose an experiment is conducted where m data points from some compact interval,
X ⊂ R, i = 1, 2, . . . , m, are used to create a polynomial regression model of degree
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n − 1. A vector containing the data points, xm = (x1, x2, . . . , xm) ∈ Xm, is called a design
and a design is said to be D-optimal if det(Mn(xm)) ≥ det(Mn(ym)) for all y ∈ Xm

where

Mm(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m

m∑
i=1

xi . . .

m∑
i=1

xn−1
i

m∑
i=1

xi

m∑
i=1

x2
i . . .

m∑
i=1

xn
i

...
...

. . .
...

m∑
i=1

xn−1
i

m∑
i=1

xn
i . . .

m∑
i=1

x2n−2
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is the Fischer information matrix, see Kiefer (1959) and Gaffke and Krafft (1982).
Optimal experiment design is often used to find the minimum number of points needed

for a certain model. If we let m = n we get a interpolation problem defined by a square Van-
dermonde matrix and the Fischer information matrix is Mn(x) = Vn(x)�Vn(x) and since
Vn(x) is an n × n matrix det(Mn(x)) = det(Vn(x)�) det(Vn(x)) = det(Vn(x))2. Thus the
maximization of the determinant of the Fischer information matrix is equivalent to find-
ing the extreme points of the determinant of a square Vandermonde matrix in some volume
given by the set of possible designs, see Gaffke and Krafft (1982).

Optimal designs for various kinds of polynomial regression models are known, see Dette
and Trampisch (2010) for an overview. The typical set of possible design is given by con-
straining each parameter of the model to be in a certain interval. Usually these intervals are
also normalized such that the vector of parameters x can be found in the n-dimensional cube
x ∈ [−1, 1]n. When consider certain other sets of possible designs the results presented in
this paper might be useful.

Suppose there is a cost-function associated with the data such that the total cost of
the experiment being below some threshold value, g(x) ≤ 1, defines some compact set,
G = {x ∈ R

m|g(x) ≤ 1}, such that G ⊂ Xm. Since the Vandermonde determinant is a
homogeneous polynomial for any c > 1 |vn(x)| > |vn(cx)| the extreme points will be on
the surface of the compact set and thus it is enough to consider the set of points defined by
g(x) = 1.

4 Optimization using Gröbner Bases

Gröbner bases together with algorithms to find them, and algorithms for solving a polyno-
mial equation is an important tool that arises in many applications. One such application is
the optimization of polynomials over affine varieties through the method of Lagrange mul-
tipliers. We will here give some main points and informal discussion on these methods as
an introduction and to fix some notation.

Definition 1 (Cox et al. 1997) Let f1, · · · , fm be polynomials in R[x1, · · · , xn]. The affine
variety V (f1, · · · , fm) defined by f1, · · · , fm is the set of all points (x1, · · · , xn) ∈ R

n

such that fi(x1, · · · , xn) = 0 for all 1 ≤ i ≤ m.
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When n = 3 we will sometimes use the variables x, y, z instead of x1, x2, x3. Affine vari-
eties are the common zeros of a set of multivariate polynomials. Such sets of polynomials
will generate a greater set of polynomials (Cox et al. 1997) by

〈f1, · · · , fm〉 ≡
{

m∑
i=1

hifi : h1, · · · , hm ∈ R[x1, · · · , xn]
}

,

and this larger set will define the same variety. But it will also define an ideal (a set of
polynomials that contains the zero-polynomial and is closed under addition, and absorbs
multiplication by any other polynomial) by I (f1, · · · , fm) = 〈f1, · · · , fm〉. A Gröbner
basis for this ideal is then a finite set of polynomials {g1, · · · , gk} such that the ideal gener-
ated by the leading terms of the polynomials g1, · · · , gk is the same ideal as that generated
by all the leading terms of polynomials in I = 〈f1, · · · , fm〉.

In this paper we consider the optimization of the Vandermonde determinant vn(x) over
surfaces defined by a polynomial equation on the form

sn(x1, · · · , xn ;p; a1, · · · , an) ≡
n∑

i=1

ai |xi |p = 1, (4)

where we will select the constants ai and p to get ellipsoids in three dimensions, cylinders in
three dimensions, and spheres under the p-norm in n dimensions. The case of the ellipsoid
is suitable for solution by Gröbner basis methods, but due to the existing symmetries the
spheres are more suitable for other methods, as provided in Section 8.

From (3) and the convexity of the interior of the sets defined by (4), under a suitable
choice of the constant p and non-negative ai , it is easy to see that the optimal value of
vn on

∑n
i=1 ai |xi |p ≤ 1 will be attained on

∑n
i=1 ai |xi |p = 1. And so, by the method

of Lagrange multipliers we have that the minimal/maximal values of vn(x1, · · · , xn) on
sn(x1, · · · , xn) ≤ 1 will be attained at points such that ∂vn/∂xi − λ∂sn/∂xi = 0 for 1 ≤
i ≤ n and some constant λ and sn(x1, · · · , xn) − 1 = 0, Tyrrell Rockafellar (1993).

For p = 2 the resulting set of equations will form a set of polynomials in λ, x1, · · · , xn.
These polynomials will define an ideal over R[λ, x1, · · · , xn], and by finding a Grbner basis
for this ideal we can use the especially nice properties of Grbner bases to find analytical
solutions to these problems, that is, to find roots for the polynomials in the computed basis.

5 Extreme Points on the Ellipsoid in Three Dimensions

In this section we will find the extreme points of the Vandermonde determinant on the three
dimensional ellipsoid given by

ax2 + by2 + cz2 = 1, (x, y, z) ∈ R
3 (5)

where a > 0, b > 0, c > 0.
Using the method of Lagrange multipliers together with (5) and some rewriting gives

that all stationary points of the Vandermonde determinant lie in the variety

V = V
(
ax2 + by2 + cz2 − 1, ax + by + cz,

ax(z − x)(y − x) − by(z − y)(y − x) + cz(z − y)(z − x)) .

Methodol Comput Appl Probab (2018) 20:1417–14281420



Computing a Gröbner basis for V using the lexicographic order x > y > z give the
following three basis polynomials:

g1(z) = (a + b)(a − b)2

−
(

4(a + b)2(a + c)(b + c) + 3c2(a2 + ab + b2) + 3c(a3 + b3)
)

z2

+3c(a + b + c)
(

4(a + b)(a + c)(b + c) + (a2 + b2)c + (a + b)c2
)
z4

−c2(b + c)(a + c)(a + b + c)2z6, (6)

g2(y, z) =
(

2(a + b)2(a + c)(b + c) + c(a2 + 2b2)(a + b + c) + 2bc2(a + b)
)

z

+q1z
5 − q2z

3 − b(a − b)(a + b)(a + b + 3c)y, (7)

g3(x, z) =
(

2(a + b)2(a + c)(b + c) + c(2a2 + b2)(a + b + c) + 2ac2(a + b)
)

z

−q1z
5 + q2z

3 − a(a − b)(a + b)(a + b + 3c)x, (8)

q1 = 9 c2(b + c)(a + c)(a + b + c)2,

q2 = 3c(a + b + c)(3a2b + 4a2c + 3ab2 + 6abc + 4ac2 + 4b2c + 4bc2).

The calculation of this basis was done using software for symbolic compupation (Maple
18.02 2015).

Since g1 only depends on z and g2 and g3 are first degree polynomial in y and x respec-
tively the stationary points can be found by finding the roots of g1 and then calculate the
corresponding x and y coordinates. A general formula can be found in this case (since g1
only contains even powers of z it can be treated as a third degree polynomial) but it is quite
cumbersome and we will therefore not give it explicitly.

Note that in general the polynomials in the Gröbner basis are not guaranteed to have
real-valued roots. For the ellipsoid case examined here it can be shown that the computed
Gröbner basis will only give real-valued coordinates. Since the extreme points of the Van-
dermonde determinant is a subset of the points with coordinates given by the roots of the
polynomials in the Gröbner basis this means that we will not need to check that the found
points are real-valued or not, we only need to check whether they are proper extreme points
or not.

Lemma 2 The polynomial equation system defined by (6)–(8) will only have solutions with
real-valued x, y and z.

Proof The discriminant is a useful tool for determining how many real roots low-level poly-
nomials have. Following Irving (2004) the discriminant, �(p), of a third degree polynomial
p(x) = c0 + c1x + c2x

2 + c3x
3 is

�(p) = 18c1c2c3c4 − 4c3
2c4 + c2

2c
2
3 − 4c1c

3
3 − 27c2

1c
2
4

and if �(p) is non-negative then all roots will be real (but not necessarily distinct). Since
the first basis polynomial g1 only contains terms with even exponents and is of degree 6 the
polynomial g̃1 defined by g̃1(z

2) = g1(z) will be a polynomial of degree 3 whose roots are
the square fo the roots of g1. Calculating the discriminant of g̃1 gives

�(g̃1) = 9(a − b)2(a + b + 3c)2(a + b + c)4abc3

(
32(a3b2 + a3c2 + a2b3 + a2c3 + b3c2 + b2c3) + 61abc(a + b + c)2

)
.

Methodol Comput Appl Probab (2018) 20:1417–1428 1421



Since a, b and c are all positive numbers it is clear that �(g1) is non-negative. Further-
more, since a, b and c are positive numbers all terms in g̃1 with odd powers have negative
coefficients and all terms with even powers have positive coefficients. Thus if w < 0 then
g̃1(w) > 0 and thus all roots must be positive. Since g2 is a first order polynomial with
respect to y a real-valued z will give a real-valued y. Since g3 is a first order polynomial
with respect to x a real-valued z will give a real-valued x.

An illustration of an ellipsoid and the extreme points of the Vandermonde determinant
on its surface is shown in Fig. 1.

6 Extreme Points on the Cylinder in Three Dimensions

In this section we will examine the local extreme points on an infinitely long in 3 dimensions
cylinder aligned with the x-axis. In this case we do not need to use Gröbner basis techniques
since the problem can be reduced to a one dimensional polynomial equation.

Consider the cylinder defined by

by2 + cz2 = 1, where b > 0, c > 0. (9)

Using the method of Lagrange multipliers gives the equation system

∂v3

∂x
= 0,

∂v3

∂y
= 2λby,

∂v3

∂z
= 2λcz.

Taking the sum of each expression gives

by + cz = 0 ⇔ y = − c

b
z. (10)

Combining (9) and (10) gives

( c

b
+ 1

)
cz2 = 1 ⇒ z = ±

√
b

c

1√
b + c

⇒ y = ∓
√

c

b

1√
b + c

.

Fig. 1 Illustration of the ellipsoid defined by
x2

9
+ y2

4
+z2 = 0 with the extreme points of the Vandermonde

determinant marked. Displayed in Cartesian coordinates on the right and in ellipsoidal coordinates on the left
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Thus the plane defined by (10) intersects with the cylinder along the lines

�1 =
{(

x,

√
c

b

1√
b + c

,−
√

b

c

1√
b + c

) ∣∣∣∣x ∈ R

}
= {(x, r,−s)|x ∈ R} ,

�2 =
{(

x,−
√

c

b

1√
b + c

,

√
b

c

1√
b + c

) ∣∣∣∣x ∈ R

}
= {(x,−r, s)|x ∈ R} .

Finding the stationary points for v3 along �1:

v3 (x, r, −s) =
(

x2 + 1√
b + c

(√
b

c
−

√
c

b

)
x + 1

b + c

)
(r + s) ,

∂v3

∂x
(x, r, −s) =

(
2x + 1√

b + c

(√
b

c
−

√
c

b

))
(r + s) .

From this it follows that

∂v3

∂x
(x, r, −s) = 0 ⇔ x = 1

2
√

b + c

(√
c

b
−

√
b

c

)
.

Thus

x1 = 1√
b + c

(
1

2

(√
c

b
−

√
b

c

)
,

√
c

b
,−

√
b

c

)
(11)

is the only stationary point on �1. An analogous argument shows that x2 = −x1 is the only
stationary point on �2.

An example of where these points are placed on the cylinder is shown in Fig. 2.

7 Optimizing the Vandermonde Determinant on a Surface Defined by a
Homogeneous Polynomial

When using Lagrange multipliers it can be desirable to not have to consider the λ-parameter
(the scaling between the gradient and direction given by the constraint). we demonstrate
a simple way to remove this parameter when the surface is defined by an homogeneous
polynomial.

Fig. 2 Illustration of the cylinder defined by y2 + 16

25
z2 = 1 with the extreme points of the Vandermonde

determinant marked. Displayed in Cartesian coordinates on the right and in cylindrical coordinates on the left
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Lemma 3 Let g : Rn → R
n be a homogeneous polynomial such that g(cx) = ckg(x) with

k �= n(n−1)
2 such that g(x) = 1, x ∈ R

n defines a continuous bounded surface. Let z ∈ R
n

be a point on the surface. Then z can be written as z = cy where

∂vn

∂xi

∣∣∣∣
x=y

= ∂g

∂xi

∣∣∣∣
x=y

, i ∈ 1, 2, . . . , n (12)

and c = g(y)− 1
k , if and only if z a stationary point for the Vandermonde determinant.

Proof By the method of Lagrange multipliers the point y ∈ {x ∈ R
n|g(x) = 1} is a

stationary point for the Vandermonde determinant and only if

∂vn

∂xk

∣∣∣∣
x=y

= λ
∂g

∂xk

∣∣∣∣
x=y

, k ∈ 1, 2, . . . , n

for some λ ∈ R.
The stationary points on the surface given by g(cx) = ck will be given by

c
n(n−1)

2
∂vn

∂xk

∣∣∣∣
x=y

= ckλ
∂g

∂xk

∣∣∣∣
x=y

, k ∈ 1, 2, . . . , n

and if c is chosen such that λ = c
n(1−n)

2 ck then the stationary points are defined by

∂vn

∂xk

= ∂g

∂xk

, k ∈ 1, 2, . . . , n.

Suppose that y ∈ {x ∈ R
n|g(x) = ck} is a stationary point for vn then the point given by

z = cy where c = g(y)− 1
k will be a stationary point for the Vandermonde determinant and

will lie on the surface defined by g(x) = 1.

Lemma 4 If z is a stationary point for the Vandermonde determinant on the surface g(x) =
1 where g(x) is a homogeneous polynomial then −z is either a stationary point or does not
lie on the surface.

Proof Since g(−x) = (−1)kg(x) is either 1 or −1 then |vn(x)| = |vn(−x)| for any point,
including z and the points in a neighbourhood around it which means that if g(−x) =
g(x) then the stationary points are preserved and otherwise the point will lie on the surface
defined by g(x) = −1 instead of g(x) = 1.

A well-known example of homogeneous polynomials are quadratic forms. If we let

g(x) = x�Sx

then g(x) is a quadratic form which in turn is a homogeneous polynomial with k = 2. If S

is a positive definite matrix then g(x) = 1 defines an ellipsoid. Here will will demonstrate
the use of Lemma 3 to find the extreme points on a rotated ellipsoid.

Consider the ellipsoid defined by

1

9
x2 + 5

8
y2 + 3

4
yz + 5

8
z2 = 1 (13)
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then by Lemma 3 we can instead consider the points in the variety

V = V

(
−2xy + 2xz + y2 − z2 − 2

9
x,

−x2 + 2xy − 2yz + z2 − 5

4
y − 3

4
z,

−2xz − y2 + 2yz + x2 − 3

4
y − 5

4
z

)
.

Finding the Gröbner basis of V gives

g1(z) = z(6z + 1)(260642z2 − 27436z + 697),

g2(y, z) = −1138484256z3 − 127275604z2 + 16689841z + 6277879y,

g3(x, z) = 10246358304z3 + 1145480436z2 − 93707658z + 6277879x.

This system is not difficult to solve and the resulting points are:

p0 = (0, 0, 0),

p1 =
(

0,
1

6
,−1

6

)
,

p2 =
(

45
√

2

361
, − 1

19
− 5

√
2

722
,

1

19
− 5

√
2

722

)
,

p3 =
(

45
√

2

361
, − 1

19
+ 5

√
2

722
,

1

19
+ 5

√
2

722

)
.

The point p0 is not a valid solution since it does and does not lie on any ellipsoid defined
by (5) and can therefore be discarded. By Lemma 4 there are also three more stationary
points p4 = −p1, p5 = −p2 and p6 = −p3. Rescaling each of these points according to
Lemma 3 gives qi = √

g(pi) which are all points on the ellipsoid defined by g(x) = 1. The
result is illustrated in Fig. 3.

Note that this example gives a simple case with a small Gröbner basis that is small
and easy to find. Using this technique for other polynomials and in higher dimensions can
require significant computational resources.

Fig. 3 Illustration of the ellipsoid defined by (13) with the extreme points of the Vandermonde determinant
marked. Displayed in Cartesian coordinates on the right and in ellipsoidal coordinates on the left
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8 The Vandermonde Determinant on p-norm Spheres

The optimization of the Vandermonde determinant on the sphere (p = 2) and on the cube
(p = ∞) lends themselves to methods in orthogonal polynomials. In fact, as shown by
Stieltjes and recaptured by Szegő (1939), and presented in more detail in and extended in
(Lundengård et al. 2013) there is a fairly straightforward solution derived from electrostatic
considerations, which implicitly deals with the Vandermonde determinant.

Consider the optimization of vn(x) over the sphere

sn(x) =
n∑

i=1

x
p
i = 1,

for suitable choices for p (even). Instead of optimizing vn we are free to optimize ln |vn|
over the sphere to the same effect (vn(x) = 0 is not a solution, all xi are pair-wise distinct).
This leaves us with the set of equations by Lagrange multipliers.

∂ ln |vn|
∂xk

= λ
∂sn

∂xk

, sn = 1, (14)

where the left-most equation holds for 1 ≤ k ≤ n. It is easy to show that the partial
derivatives can be written

∂ ln |vn|
∂xk

=
n∑

i=1
i �=k

1

xk − xi

. (15)

From this it is easy to show that (15) can be rewritten by introducing the univariate
polynomial Pn(x) = ∏n

i=1(x − xi) as

∂ ln |vn|
∂xk

= 1

2

P ′′(xk)

P ′(xk)
.

Now the leftmost equation of (14) can be written

1

2

P ′′(xk)

P ′(xk)
= λ

∂sn

∂xk

,

or more succinct

P ′′(xk) − 2λ
∂sn

∂xk

P ′(xk) = 0, (16)

In the case p = 2 we are lucky since (16) becomes, by introducing the new “multiplier” ρ
(
P ′′(x) + ρnxP ′(x)

) |x=xk
= 0, (17)

and since the left part of this equation is a polynomial of degree n and has roots x1, · · · , xn

we must have
P ′′(x) + ρnxP ′(x) + σnP (x) = 0, (18)

for some ρn, σn that may depend on n. Now if choose P(x) to be monic, note that ρn �= 0,
and require us to be on the sphere we get P(x) = xn − 1

2xn−2 + · · · , and by identifying
coefficients we get ρn and σn:

P ′′(x) + n(1 − n)xP ′(x) + n2(n − 1)P (x) = 0,

which is a nice and well known form of differential equation and defines a sequence of
orthogonal polynomials that are rescaled Hermite polynomials (Szegő 1939), so we can find
a recurrence relation for Pn+1 in terms of Pn and Pn−1, and we can, for a fixed n, construct
the coefficients of Pn recursively, without explicitly finding P1, · · · , Pn−1.
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Now, this is for p = 2. For p = 4 we continue from (16) instead with(
P ′′(x) + ρnx

3P ′(x)
)

|x=xk
= 0. (19)

Now the polynomial in x in the left part of this equation has shared roots with P(x) and so
by the same method as for p = 2 we get:

P ′′(x) + ρnx
3P ′(x) + (σnx

2 + τnx + υn)P (x) = 0. (20)

It is easy to show for the sphere under any p-norm that the extreme points of ln |vn(x)|
where x1 < · · · < xn are unique, see Szegő (1939) and Lundengård et al. (2013), this
coupled with the symmetry relation ln |vn(x)| = ln |vn(−x)|, provides us with the property
that the extreme points are symmetric in the sense that for all 1 ≤ i ≤ n we have that there
exists a 1 ≤ j ≤ n such that xi = −xj , for odd n we then have that xi = 0 for some i. We
thus get polynomials P(x) on the form:

P(x) = xn + cn−2x
n−2 + cn−4x

n−4 + · · · ,

with every other coefficient zero, for even n we have only even powers, for odd n we have
odd powers. By identifying powers in (20) we get that τnxP (x) will not share any powers
with any other part of the equation and so τn = 0. We can also by identifying coefficients
get nρn + σn = 0. We now have

P ′′(x) + ρnx
3P ′(x) + (−nρnx

2 + υn)P (x) = 0. (21)

For n = 2 we get the specific system

2 + ρx3(2x) + (−2ρx2 + υ)(x2 + c0) = 0,

but we actually don’t need to calculate much here since it is easy do adapt the roots of
x2 + c0 to the sphere with p = 4, we get:

P 4
2 (x) = x2 − 1√

2
.

The case n = 3 is also easy and by symmetry we get a zero coordinate:

P 4
3 (x) = x3 − 1√

2
x.

The case n = 4 becomes a bit more interesting:

(12x2 + 2c2) + ρx3(4x3 + 2c2x) + (−4ρx2 + υ)(x4 + c2x
2 + c0) = 0,

(υ − 2ρc2)x
4 + (12 + υc2 − 4ρc0)x

2 + (2c2 + υc0) = 0,

This provides three equations. Now letting t = x2 so that

P(t) = t2 + c2t + c0 = (t − t1)(t − t2) = t2 − (t1 + t2)t + t1t2,

gives us the last equation
∑

x4
i = 2

∑
t2
i = 2(c2

2 − 2c0) = 1. Solving this gives us

P 4
4 (x) = x4 − 2√

6
x2 + 1

12
.

9 Conclusion

In this paper we have examined the extreme points of the Vandermonde determinant on
various surfaces in three dimensions. Explicit expressions for the placement of the extreme
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points on an ellipsoid aligned with the axis and a cylinder aligned with the x-axis were
found using Gröbner bases in Sections 5 and 6.

A convenient way of rewriting the system of polynomial equations that the method of
Lagrange multipliers gives was shown in Section 7 and it was illustrated how this rewrite
could be used to find the extreme points on an ellipsoid not aligned with the coordinate
system.

In Section 8 a method for finding the extreme points on spheres with p-norm was
discussed, specifically the case when p = 4 for two, three and four dimensions.

Further work will be to extend the methods described here to higher dimensions and also
examine matrices related to the Vandermonde matrices, for instance the matrices described
in Section 3.
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