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Abstract We define the drawdown stopping time of a Brownian motion as the first time its
drawdown reaches a duration of length 1. In this paper, we propose an efficient algorithm to
efficiently simulate the drawdown stopping time and the associated maximum at this time.
The method is straightforward and fast to implement, and avoids simulating sample paths
thus eliminating discretisation bias. We show how the simulation algorithm is useful for
pricing more complicated derivatives such as multiple drawdown options.

Keywords Drawdown stopping time · Monte Carlo simulation · Multiple drawdown
options
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1 Introduction

Drawdown measures the fall in value of a process from its running maxima, and is fre-
quently used as performance indicators in the fund management industry. There are two
dimensions to drawdown risk - the magnitude and duration of the drawdown. Large mar-
ket drawdowns lead to portfolio losses and liquidity shocks, while a prolonged drawdown
period can also lead to high sustained losses. The magnitude of drawdowns has been studied
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extensively in the literature. In particular the probabilistic properties of the first time the
drawdown amount for a Brownian motion exceeds a certain threshold a > 0 has been stud-
ied in Taylor (1975) and Douady et al. (2000). Insurance contracts designed to insure against
the risk of large drawdowns have been introduced in Carr et al. (2011), who proposed a way
to hedge the liability. Zhang and Hadjiliadis (2012) studied this stopping time together with
the last visit time of the maximum before the drawdown.

Besides the magnitude, the duration of drawdowns is also important as a measure of risk.
Recent studies have been done on the duration and frequency of drawdowns. Landriault et al.
(2015) derived the joint distribution of the nth drawdown time, the running maximum, and
the value process of the Brownian motion. The duration of drawdowns for Levy models has
also been studied by the same authors in Landriault et al. (2017). Dassios and Lim (2016)
introduced the drawdown stopping time, which is the first time that the drawdown period
exceeds a certain length D > 0, and obtained the joint Laplace transform of this stopping
time and the running maximum of the Brownian motion at this time.

This stopping time is related to the Parisian stopping time, which is the first time the
length of the excursions around 0 exceed a certain threshold D. The joint Laplace transform
of the Parisian stopping time and the value of the Brownian motion is derived in Dassios
and Wu (2010) and the density of the Parisian stopping time is obtained in Dassios and
Lim (2013, 2015). The distribution of the Parisian stopping time is key to the pricing of
Parisian options, which was introduced by Chesney et al. (1997). Anderluh (2008) proposed
a method for simulating the Parisian stopping time using an approximation of the hitting
time, and Bernard and Boyle (2011) developed a Monte Carlo method to price discrete
Parisian options.

In this paper, we propose an efficient algorithm to simulate jointly the drawdown stop-
ping time and the running maximum at the time. This is done by first simulating a geometric
random variable, which determines the number of time intervals less than unit length it
takes before the drawdown duration reaches length 1. The drawdown length and maximum
achieved for each of these intervals are then added together. Our method is computation-
ally efficient and straightforward to implement, and avoids simulating sample paths, thus
eliminating discretisation bias.

Based on our result, we propose a Monte Carlo method for pricing drawdown options,
which are options which pay off an amount proportional to the maximum of the underlying
asset when the drawdown duration reaches a prespecified length D. This type of options
were introduced by Dassios and Lim (2016), who obtained a recursive formula for the joint
density of the stopping time and the maximum, and used this to price the options. This new
simulation method is faster and computationally more efficient. Like other Monte Carlo
methods, the greatest advantage comes when multiple variables are involved. To show its
effectiveness, we introduce multiple drawdown options, which pay off an amount propor-
tional to the running maximum at each drawdown time. As the prices of these options
involve multiple integrals, our algorithm eliminates the need to evaluate these integrals and
provides a fast method to compute the prices of these options.

This paper is organised as follows. Section 2 begins with the mathematical set-up of
the problem and introduces a result which lead to the algorithm. Section 3 provides the
simulation algorithm and its proof. To verify the accuracy of our algorithm, we compare
the numerical results with theoretical properties of the two random variables in Section 4.
Section 5 presents the method for pricing drawdown options and multiple drawdown options
using Monte Carlo simulation.
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2 Joint Laplace Transform of τ and Mτ

Let (�,F , (Ft )t≥0,P) be a filtered probability space and let W be a standard Brownian
motion adapted to (Ft )t≥0 with W0 = 0. Its maximum process is

Mt = max
s≤t

Ws,

and its drawdown process is

Yt = Mt − Wt.

We denote by Ut the time elapsed since the last time the maximum is achieved,

Ut = t − sup{s ≤ t | Mt = Ws} = t − sup{s ≤ t | Yt = 0}.
Define the stopping time

τD = inf{t ≥ 0 | Ut = D}.
This is the first time the duration of drawdowns exceeds a certain threshold D > 0. Without
loss of generality, we set D = 1 and drop its notation.

Theorem 2.1 The joint Laplace transform of τ and Mτ can be written as

E
(
e−βτ e−γMτ

)
=

2
π
e−β

∫ ∞
0

∫ 1
0 e−γme−βs m

2s3/2
e− m2

2s dsdm

1 − π−2
π

∫ ∞
0 e−γme−β

∫ 1
0 e−βtf (t, m)dtdm

, (2.1)

Furthermore, we have

f (t, m) = g(t) w(m|t), (2.2)

where g(t) is a proper density function over (0, 1) and w(m|t) is a conditional density over
(0, ∞) given by

g(t) = 1 − t

(π − 2)(t + 1)
√

t
, (2.3)

and

w(m|t) =
√
2π

√
t

(1 − t)
√

t + 1
e
− m2

2(t+1)

(
1 − m2

t + 1

)(
N

(
m√

t (t + 1)

)
−N

(
m

√
t

t + 1

))
(2.4)

+ m

1 − t2

(
e− m2

2 − te− m2
2t

)
. (2.5)

Proof From Dassios and Lim (2016), we have

E
(
e−βτ e−γMτ

)
= e−β

γ
√

π
2 + β

∫ 1
0 e−βt 1√

t
dt + e−β

. (2.6)
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Multiply both the numerator and denominator by

∫ ∞

0

∫ 1

0
e−γme−βs m

s3/2
e− m2

2s dsdm.

In the denominator, the first term is

γ

√
π

2

∫ ∞

0

∫ 1

0
e−γme−βs m

s3/2
e− m2

2s dsdm (2.7)

= γ

√
π

2

∫ ∞

0

(∫ ∞

0
e−γme−βs m

s3/2
e− m2

2s ds −
∫ ∞

1
e−γme−βs m

s3/2
e− m2

2 ds

)
dm (2.8)

= πγ

γ + √
2β

−
√

π

2

∫ ∞

0

∫ ∞

1
e−γme−βs

(
1

s3/2
e− m2

2s − m2

s5/2
e− m2

2s

)
dsdm. (2.9)

The second term in the denominator is

β

∫ ∞

0
e−γm

(∫ 1

0
e−βs 1√

s
ds

) (∫ 1

0
e−βu m

u3/2
e− m2

2u du

)
dm (2.10)

= β

∫ ∞

0
e−γm

(∫ 1

0
e−βt

∫ t

0

1√
s

m

(t − s)3/2
e
− m2

2(t−s) dsdt (2.11)

+
∫ 2

1
e−βt

∫ 1

t−1

1√
s

m

(t − s)3/2
e
− m2

2(t−s) dsdt

)
dm (2.12)

= β

∫ ∞

0
e−γm

∫ 1

0
e−βt

√
2π

t
e− m2

2t dtdm (2.13)

+ β

∫ ∞

0
e−γm

∫ 2

1
e−βt

(
2

√
2π

t
e− m2

2t

(
N

(
m

√
1

t (t − 1)

)
− N

(
m

√
t − 1

t

)))
dtdm (2.14)

Equation 2.13 is equal to

β

∫ ∞

0
e−γm

∫ 1

0
e−βt

√
2π

t
e− m2

2t dt (2.15)

= β

∫ ∞

0
e−γm

∫ ∞

0
e−βt

√
2π

t
e− m2

2t dt− β

∫ ∞

0
e−γm

∫ ∞

1
e−βt

√
2π

t
e− m2

2t dtdm (2.16)

= π
√
2β

γ + √
2β

−
∫ ∞

0
e−γm

∫ ∞

1
e−βt

(
−

√
π

2t3
e− m2

2t +
√

π

2t5
m2e− m2

2t

)
dtdm (2.17)

−
∫ ∞

0
e−γme−β

√
2πe− m2

2 , (2.18)
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and Eq. 2.14 is equal to

β

∫ ∞

0
e−γm

∫ 2

1
e−βt

(
2

√
2π

t
e− m2

2t

(
N

(
m

√
1

t (t − 1)

)
− N

(
m

√
t − 1

t

)))
dtdm (2.19)

=
∫ ∞

0
e−γm

[
βe−βt

−β

(
2

√
2π

t
e− m2

2

(
N

(
m

√
1

t (t − 1)

)
− N

(
m

√
t − 1

t

)))]2

1

dm (2.20)

+
∫ ∞

0
e−γm

∫ 2

1
e−βth(t,m)dtdm (2.21)

=
∫ ∞

0
e−γme−β

√
2πe− m2

2 dm −
∫ ∞

0
e−γm

∫ 2

1
e−βth(t, m)dtdm (2.22)

=
∫ ∞

0
e−γme−β

√
2πe− m2

2 dm −
∫ ∞

0
e−γme−β

∫ 1

0
e−βth(t + 1,m)dtdm, (2.23)

where for simplicity we have defined

h(t, m) = 2
√
2π

(
1

2t3/2
e− m2

2t − 1√
t
e− m2

2t
m2

2t2

)(
N

(
m

√
1

t (t − 1)

)
− N

(
m

√
t − 1

t

))
(2.24)

+ 1√
t
e− m2

2t

(
m(2t − 1)

(t (t − 1))3/2
e
− m2

2t (t−1) + m

t3/2
√

t − 1
e− m2(t−1)

2t

)
. (2.25)

Hence, we have

E
(
e−βτ e−γMτ

)
= e−β

∫ ∞
0

∫ 1
0 e−γme−βs m

s3/2
e− m2

2s dsdm

π − ∫ ∞
0 e−γme−β

∫ 1
0 e−βt

(
h(t+1,m)− m

t3/2
e− m2

2t

)
dtdm

(2.26)

=
2
π
e−β

∫ ∞
0

∫ 1
0 e−γme−βs m

2s3/2
e− m2

2s dsdm

1 − π−2
π

∫ ∞
0 e−γme−β

∫ 1
0 e−βtf (t, m)dtdm

, (2.27)

where

f (t,m) = 1

π − 2

√
2π

(t + 1)3/2
e
− m2

2(t+1)

(
1 − m2

t + 1

)(
N

(
m√

t (t + 1)

)
− N

(
m

√
t

t + 1

))
(2.28)

+ 1

π − 2

m√
t(t + 1)2

(
e− m2

2 − te− m2
2t

)
(2.29)

= g(t)w(m|t). (2.30)
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To see that f (t, m) ≥ 0 ∀ t > 0, m > 0, we use Hermite-Hadamard’s Inequality, which
states that if a function h : [a, b] → R is convex, then

1

b − a

∫ b

a

h(x)dx ≤ h(a) + h(b)

2
. (2.31)

Hence we have

√
2π

(
N

(
m√

t (t + 1)

)
− N

(
m

√
t

t + 1

))
=

∫ m√
t (t+1)

m
√

t
t+1

e− x2
2 dx (2.32)

≤ m(1 − t)√
t (t + 1)

e
− m2

2t (t+1) + e
− m2 t

2(t+1)

2
. (2.33)

Hence,

√
2π

(t + 1)3/2
e
− m2

2(t+1)

(
N

(
m√

t (t + 1)

)
− N

(
m

√
t

t + 1

))
(2.34)

≤ m(1 − t)√
t(t + 1)2

e− m2
2t + e− m2

2

2
(2.35)

= m√
t(t + 1)2

1

2

((
e− m2

2 − te− m2
2t

)
+

(
e− m2

2t − te− m2
2

))
(2.36)

≤ m√
t(t + 1)2

(
e− m2

2 − te− m2
2t

)
, (2.37)

where the last equality follows since 0 < t < 1. Now, when m2

t+1 ≤ 1, we have

m2

t + 1

√
2π

(t + 1)3/2
e
− m2

2(t+1)

(
N

(
m√

t (t + 1)

)
− N

(
m

√
t

t + 1

))
(2.38)

≤ m√
t(t + 1)2

(
e− m2

2 − te− m2
2t

)
, (2.39)

and thus

(
1 − m2

t + 1

) √
2π

(t + 1)3/2
e
− m2

2(t+1)

(
N

(
m√

t (t + 1)

)
− N

(
m

√
t

t + 1

))
(2.40)

≥ −m√
t(t + 1)2

(
e− m2

2 − te− m2
2t

)
. (2.41)
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and we are done. For 1 < m2

t+1 ≤ 2, we have 0 < m2

t+1 − 1 ≤ 1 and we have the same result.

Finally for m2

t+1 > 2, we have m2

t+1 − 1 > 1, and hence we have

(
m2

t + 1
− 1

) √
2π

(t + 1)3/2
e
− m2

2(t+1)

(
N

(
m√

t (t + 1)

)
− N

(
m

√
t

t + 1

))
(2.42)

≤
(

m2

t + 1
− 1

)
m(1 − t)√
t(t + 1)2

e− m2
2t + e− m2

2

2
(2.43)

= m√
t(t + 1)2

(
m2

t + 1
− m2t

t + 1
− 1 + t

)
e− m2

2t + e− m2
2

2
(2.44)

= m√
t(t + 1)2

t2 − m2t + m2 − 1

1 + t

e− m2
2t + e− m2

2

2
(2.45)

= m√
t(t + 1)2

(
t − m2

2

)2 −
(

m2

2 − 1
)2

1 + t

e− m2
2t + e− m2

2

2
(2.46)

≤ m√
t(t + 1)2

1 − t2

1 + t

e− m2
2t + e− m2

2

2
(2.47)

= m√
t(t + 1)2

(1 − t)
e− m2

2t + e− m2
2

2
(2.48)

≤ m√
t(t + 1)2

(
e− m2

2 − te− m2
2t

)
, (2.49)

where for the step from Eqs. 2.46 to 2.47, we observe that t − m2

2 < −1 and m2

2 − 1 > t .
Taking the negative of both sides, we see that f (t, m) ≥ 0.

To see that
∫ ∞
0 w(m|t) = 1, we have

w(m|t) =
√
2π

√
t

(1 − t)
√

t + 1
e
− m2

2(t+1)

(
1 − m2

t + 1

)(
N

(
m√

t (t + 1)

)
− N

(
m

√
t

t + 1

))
(2.50)

+ m

1 − t2

(
e− m2

2 − te− m2
2t

)
(2.51)

=
√

t

(1 − t)
√

t + 1

(
1 − m2

t + 1

)∫ ∞

0
e− x2

2

(
e− m2

2 e
−

√
t

t+1 mx − e− m2
2t e

− 1√
t (t+1)

mx
)

dx (2.52)

+ m

1 − t2

(
e− m2

2 − te− m2
2t

)
. (2.53)
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The integral of Eq. 2.52 over m is 0 since

∫ ∞

0

(
1 − m2

t + 1

)∫ ∞

0
e− x2

2

(
e− m2

2 e
−

√
t

t+1 mx − e− m2
2t e

− 1√
t (t+1)

mx
)

dxdm (2.54)

=
∫ ∞

0

(
1 − m2

t + 1

)∫ ∞

0
e− x2

2 e− m2
2 e

−
√

t
t+1 mx

dxdm (2.55)

+
∫ ∞

0

(
1 − m2

t + 1

)∫ ∞

0
e− x2

2 e− m2
2t e

−
√

1
t (t+1) mx

dxdm (2.56)

=
∫ ∞

0

(
1 − m2

t

) ∫ ∞

0
e− x2

2 e− m2(t+1)
2t e−mxdxdm (2.57)

+
∫ ∞

0

(
1 − m2t

) ∫ ∞

0
e− x2

2 e− m2(t+1)
2 e−mxdxdm (2.58)

=
∫ ∞

0

(
1− m2

t

)∫ ∞

m

e− x2
2 e− m2

2t dxdm +
∫ ∞

0

(
1−m2t

)∫ ∞

m

e− x2
2 e− m2 t

2 dxdm (2.59)

=
∫ ∞

0
e− x2

2

∫ x

0

((
1 − m2

t

)
e− m2

2t +
(
1 − m2t

)
e− m2 t

2

)
dmdx (2.60)

=
∫ ∞

0
e− x2

2

∫ x

0

(
e− m2

2t +e− m2 t
2

)
dmdx−

∫ ∞

0
e− x2

2

∫ x

0

(
m2

t
e− m2

2t +m2te− m2 t
2

)
dmdx (2.61)

= 0, (2.62)

where the last step is obtained after integration by parts on the second term. Hence,
∫ ∞

0
w(m|t)dm =

∫ ∞

0

m

1 − t2

(
e− m2

2 − te− m2
2t

)
(2.63)

= 1. (2.64)

Furthermore, it is easy to check that
∫ 1

0
g(t)dt = 1. (2.65)

Hence, g(t), w(m|t) and thus f (t, m) are proper density functions.

3 Simulation Algorithm

The representation of the Laplace Transform given in Theorem 2.1 gives us an algorithm for
simulating the pair of random variables (τ,Mτ ). They can be sampled from a Compound
Geometric distribution using the following algorithm. The acceptance-rejection schemes
used in the algorithm are very efficient, needing only a small expected number of iterations
for each sample.

Algorithm 3.1 The simulation algorithm for one sample of (τ,Mτ ) is given as follow:

1. Generate a Geometric random variable N with

P(N = n) = 2

π

(
π − 2

π

)n

, n = 0, 1, 2, ... (3.1)
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2. Simulate a random variable Y0 with density

g0(t) = 1

2
√

t
, 0 ≤ t ≤ 1, (3.2)

and let T0 = Y0 + 1.
3. Let t = T0, and simulate a random variable M0 with density

w0(m|t) = m

t
e− m2

2t , m ≥ 0. (3.3)

This is a Rayleigh distribution with parameter
√

t , and can be generated using the
inverse transform method M0 = √−2t log(U), where U ∼ U(0, 1).

4. For n = N , simulate the sequence of random variables Y1, ..., Yn each with density

g(t) = 1 − t

(π − 2)(t + 1)
√

t
, 0 ≤ t ≤ 1, (3.4)

and take Ti = Yi + 1. This can be implemented using an acceptance-rejection scheme
with an envelope density

g1(t) = 1√
t

− 1, 0 ≤ t ≤ 1. (3.5)

5. For each i = 1, ..., n, let t = Yi and generate Mi with density

w(m|t) =
√
2π

√
t

(1 − t)
√

t + 1
e
− m2

2(t+1)

(
1 − m2

t + 1

)(
N

(
m√

t (t + 1)

)
− N

(
m

√
t

t + 1

))
(3.6)

+ m

1 − t2

(
e− m2

2 − te− m2
2t

)
. (3.7)

This can be implemented using an acceptance-rejection scheme with the envelope
density

w1(m|t) = m

c(t)2(t + 3)

t + 3

t + 1
e
− m2(t+3)

2(t+1) + mt

c(t)2(3t + 1)

3t + 1

t (t + 1)
e
− m2(3t+1)

2t (t+1) (3.8)

+ 1

c(t)(t + 1)
me− m2

2 + t

c(t)(t + 1)

m

(
e− m2

2 − e− m2
2t

)

1 − t
. (3.9)

A random variable sampled from the envelope density w1(m|t) can be generated as
follows:

(a) Let

c(t) = 1 + 1

2(t + 3)
+ t

2(3t + 1)
, (3.10)

and define

q1(t) = 1

c(t)2(t + 3)
(3.11)

q2(t) = q1(t) + t

c(t)2(3t + 1)
(3.12)

q3(t) = q2(t) + 1

c(t)(t + 1)
. (3.13)
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(b) Generate three uniform (0, 1) random variables V1, V2 and U1 and take

X = −2 log(V1)

(
t + 1

t + 3
1{U1<q1(t)} + t (t + 1)

3t + 1)
1{q1(t)<U1<q2(t)} + 1{q2(t)<U1}

)
(3.14)

− 2 log(V2)t1{q3(t)<U1}. (3.15)

Then Mi = √
X.

6. The drawdown stopping time τ is

τ = T0 + T1 + T2 + ... + Tn, (3.16)

and the maximum at this time Mτ is

Mτ = M0 + M1 + ... + Mn, (3.17)

and for n = 0 would just be τ = T0 and Mτ = M0.

Proof It is clear from Theorem 2.1 that the pair (τ,Mτ ) has a bivariate compound
Geometric distribution with parameter p = 2

π
. In particular, we have

E
(
e−βτ−γMτ

)
= E

(
e− ∑N

i=0(Ti+Mi)
)

(3.18)

where N ∼ Geometric(p), and the joint density of (T0 − 1,M0) is

f0,0(t, m) = m

2t3/2
e− m2

2t = g0(t)w0(m|t), (3.19)

which gives rise to steps 2 and 3, and the joint density of (Ti − 1,Mi) is

f (t, m) = g(t)w(m|t), (3.20)

which explains steps 4 and 5.
The envelope density used in the acceptance-rejection scheme in step 4 can be derived

as follows:

g(t) = 1 − t

(π − 2)(t + 1)
√

t
(3.21)

= g1(t)
1 + √

t

(π − 2)(1 + t)
(3.22)

≤ g1(t)
1 + √

t∗
(π − 2)(1 + t∗)

. (3.23)

where t∗ =
(√

2 − 1
)2
. Hence the expected number of iterations required for each sample

of Ti , i = 1, 2, ..., n is 1.057.
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To derive the acceptance-rejection scheme in step 5, we first have the following
inequality

√
2πt

(1 − t)
√

t + 1
e
− m2

2(t+1)

(
1 − m2

t + 1

)(
N

(
m√

t (t + 1)

)
− N

(
m

√
t

t + 1

))
(3.24)

≤
√
2πt

(1 − t)
√

t + 1
e
− m2

2(t+1) e− m2
t+1

(
N

(
m√

t (t + 1)

)
− N

(
m

√
t

t + 1

))
(3.25)

≤ m

2(t + 1)

(
e− m2

2 + e− m2
2t

)
e− m2

t+1 (3.26)

= m

2(t + 1)

(
e
− m2(t+3)

2(t+1) + e
− m2(3t+1)

2t (t+1)

)
, (3.27)

where we have used the Hermite-Hadamard Inequality as in Eq. 2.31. Hence, we have

w(m|t) ≤ m

2(t + 1)

(
e
− m2(t+3)

2(t+1) + e
− m2(3t+1)

2t (t+1)

)
+ m

1 − t2

(
e− m2

2 − te− m2
2t

)
(3.28)

= m

2(t + 1)

(
e
− m2(t+3)

2(t+1) + e
− m2(3t+1)

2t (t+1) + 2e− m2
2

)
+ t

t + 1

m

(
e− m2

2 − e− m2
2t

)

1 − t
(3.29)

= m

2(t + 3)

t + 3

t + 1
e
− m2(t+3)

2(t+1) + mt

2(3t + 1)

3t + 1

t (t + 1)
e
− m2(3t+1)

2t (t+1) (3.30)

+ 1

t + 1
me− m2

2 + t

t + 1

m

(
e− m2

2 − e− m2
2t

)

1 − t
. (3.31)

Letting

c(t) = 1

2(t + 3)
+ t

2(3t + 1)
+ 1

t + 1
+ t

t + 1
= 1 + 1

2(t + 3)
+ t

2(3t + 1)
, (3.32)

we have the envelope density

w1(m|t) = m

c(t)2(t + 3)

t + 3

t + 1
e
− m2(t+3)

2(t+1) + mt

c(t)2(3t + 1)

3t + 1

t (t + 1)
e
− m2(3t+1)

2t (t+1) (3.33)

+ 1

c(t)(t + 1)
me− m2

2 + t

c(t)(t + 1)

m

(
e− m2

2 − e− m2
2t

)

1 − t
, (3.34)

which can be generated as in step 5. The average number of iterations needed to generate
one sample of Mi given Ti = t is c(t), and this has expectation

∫ 1

0
c(t)

1

π − 2

1 − t

(1 + t)
√

t
dt = 1.201. (3.35)

We then sum up the variables to get τ and Mτ in the last step.
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4 Numerical Studies

To verify the accuracy of our algorithm, we compare the sample moments of the simulated
τ and Mτ with the theoretical formulas obtained from the marginal distributions. Firstly, if
we set β = 0 in Eq. 2.6, we get

E
(
e−γMτ

)
= 1

γ
√

π
2 + 1

, (4.1)

hence Mτ has an exponential distribution with parameter
√

2
π
. In Fig. 1, we compare the

estimated density based on 100,000 samples generated from the algorithm, to the theoretical
density of Mτ , and the results are very close. For τ , we compare the estimated density from
the simulations to the density computed using the recursive formula derived in Dassios and
Lim (2015).

We also check that the first and second moments of the simulated samples correspond

to that of the Exp(

√
2
π
) distribution with an error of ±0.05% for the mean and variance

of Mτ . Furthermore, setting γ = 0, we can also calculate the first moment of the distri-
bution of E(τ) = 2, which corresponds to the numerical simulated result with an error of
approximately ±0.05%.

Figure 2 presents the joint density of τ and Mτ estimated from the simulated samples.

5 Application: Pricing Drawdown Options

In this section, we propose a Monte Carlo method for pricing drawdown options using the
simulation algorithm. We assume the Black-Scholes framework where the underlying asset
St is a Geometric Brownian motion under the risk-neutral measureQ:

dSt = St (rdt + σdWt), S0 = x, (5.1)
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Fig. 1 Comparison of theoretical and simulated densities of Mτ and τ
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Fig. 2 Heat contour map of τ and Mτ

so that

St = S0e
σW

μ
t , (5.2)

where

W
μ
t = μt + Wt, (5.3)

μ = 1

σ
(r − σ 2

2
). (5.4)

We also define

M
μ
t = max

0≤s≤t
Wμ

s , (5.5)

S̄t = max
0≤s≤t

Ss = S0e
σM

μ
t , (5.6)

US
t = t − sup{0 ≤ s ≤ t |S̄t = Ss} = Ut , (5.7)

τS = inf{t ≥ 0|US
t = 1} = τμ. (5.8)

As before we have taken the drawdown length D = 1 without loss of generality. In order to
price the option, we also need the result on the density of the Brownian motion with drift,

P
(
τμ ∈ dt, Mμ

τ ∈ dm
) = eμme− 1

2μ2t f (t, m)

(
1 − √

2πμe
mu2
2 N (−μ)

)
, (5.9)

where f (t, m) is the joint density of τ and Mτ for a standard Brownian motion. Hence,
any integral involving the density of (τμ,M

μ
τ ) can be written as an integral involving the

density f (t, m) and hence can be estimated using Monte Carlo simulations.
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5.1 Single Drawdown Option

We consider an option which pays off an amount proportional to the running maximum of
the underlying asset when the drawdown duration first reaches length D. The discounted
payoff of this option is e−rτS

S̄τS1{τS≤T } at time τS . The price of the option at the start of
the option lifetime, P0(S0, T ) is,

P0(S0, T ) = EQ
(
e−rτμ

S0e
σM

μ
τ 1{τμ≤T }

)
(5.10)

=
∫ T

0

∫ ∞

0
e−rt S0e

σmeμme− 1
2 μ2t f (t,m)

(
1−√

2πμe
μ2

2 N (−μ)

)
dtdm. (5.11)

This can be computed using Monte Carlo simulation, sampling from the distribution
f (t, m) using Algorithm 3.1.

Let Pt

(
St , S̄t , U

S
t , T

)
denote the price at time t of a drawdown option. It depends on the

current stock price St , the current maximum S̄t , the current drawdown duration US
t , and the

maturity time T . To price this option at time t , given that the drawdown has not achieved
a duration of length 1 before time t (τS > t), and that the remaining lifetime of the option
is sufficient for it to have a chance of getting a payoff (1 − US

t ≤ T − t), we consider two
cases, when the drawdown duration reaches length 1 in the current drawdown period, and
when the underlying goes back to its maximum before the drawdown stopping time is hit.
Let T μ

x denote the hitting time of level x of a Brownian motion with drift μ. Then the price
of the option is

Pt (St , S̄t , U
S
t , T ) (5.12)

= EQ
(
e−r(τS−t)S̄τS1{τS≤T } | St , S̄t , U

S
t , τ S > t

)
(5.13)

= EQ
(
1{T μ

y >1−US
t }e

−r(1−US
t )S̄t | St , S̄t , U

S
t , τ S > t

)
(5.14)

+ EQ
(
1{T μ

y ≤1−US
t }e

−r(T
μ
y +τμ)S̄t e

σM
μ
τ 1{T μ

y +τμ≤T −t} | St , S̄t , U
S
t , τ S >t

)
(5.15)

= Q
(
T μ

y > 1 − US
t

)
e−r(1−US

t )S̄t (5.16)

+ EQ
(
1{T μ

y ≤1−US
t }S̄t e

−rT
μ
y EQ

(
e−rτμ

eσM
μ
τ 1{τμ≤T −t−T

μ
y } | Ft+T

μ
y

))
(5.17)

where y = 1
σ
log

(
S̄t

St

)
to simplify notation. The time it takes for S to return to the run-

ning maximum S̄t is T
μ
y , and by the strong Markov property of Brownian motion, since it

resets itself at t + T
μ
y at level S̄t , (τμ,M

μ
τ ) is the drawdown stopping time and maximum

of a Brownian motion starting at 0 again and can be generated independently from T
μ
y .

The hitting time T
μ
y has an inverse Gaussian distribution, T

μ
y ∼ IG

(
y
μ
, y2

)
. The second

term (5.17) can thus be computed using Monte Carlo simulation, sampling from an inverse
Gaussian distribution T

μ
y and independently, the pair (τ,Mτ ).

5.2 Multiple Drawdown Option

This simulation method is particularly effective in multivariate cases where multiple inte-
grals need to be evaluated. To demonstrate this advantage, we introduce multiple drawdown
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options, a new type of drawdown option which provide insurance against prolonged draw-
downs each time it occurs. These options pay off an amount proportional to the running
maximum every time the drawdown duration reaches length 1, until the option expires. Pric-
ing using the recursive formulas in Dassios and Lim (2015) would become too cumbersome
when pricing multiple drawdown options, as an additional integral would need to be eval-
uated for each drawdown time. This simulation algorithm, however, eliminates the need to
evaluate multiple integrals.

Let τ1 = τS and define the series of stopping times τi = inf{t > τi−1 | US
t = 1}.

We first look an option which pays off an amount proportional to the running maximum at
the second time the drawdown duration reaches length 1. This option has discounted payoff
e−rτ2 S̄τ21{τ2≤T } at time τ2. Hence, the price of the option is

P 2
0 (S0, T )

= EQ
(
e−rτ2 S̄τ21{τ2≤T }

)

= EQ
(
EQ

(
e−rτ2 S̄τ21{τ2≤T } | Fτ1 , τ1 ≤ T −1

))

= EQ
(
EQ

(
e−r(τ1+T

μ
y +τμ)S̄τ1e

σMτμ 1{τ1+T
μ
y +τμ≤T }1{τ1+T

μ
y ≤T −1} | Fτ1 , τ1 ≤ T −1

))

= EQ
(
e−rτ1 S̄τ1EQ

(
e−r(T

μ
y +τμ)eσMτμ 1{τ1+T

μ
y +τμ≤T }1{τ1+T

μ
y ≤T −1} |Fτ1 , τ1 ≤ T −1

))

= EQ
(
e−rτ1 S̄τ11{τ1≤T −1}EQ

(
e−rT

μ
y 1{T μ

y ≤T −1−τ1}EQ

×
(
e−rτμ

eσM
μ
τ 1{τμ≤T −τ1−T

μ
y } | Fτ1+T

μ
y

)
| Fτ1

))
,

with y = Mτ1 − Wτ1 here. The pair (τμ,M
μ
τ ) are the stopping time and maximum after

the Brownian motion resets at level Mτ1 at time τ1 + T
μ
y , and following from the strong

Markov property of Brownian motion, they can be generated independently from τ1 and
T

μ
y . We generate first the triplet (τ1,Mτ1 , Wτ1), followed by T

μ
y and then the pair (τμ, M

μ
τ ).

The price of the option can then be computed by aggregating a function of these variables.

Table 1 Price of Multiple Drawdown Options, PMD(S0, T )

D = 1 year D = 1/2 year D = 1/4 year

T S0 = 50 S = 100 S0 = 50 S0 = 100 S0 = 50 S0 = 100

2 29.89 61.51 62.25 123.48 112.17 226.95

3 44.96 95.91 91.28 183.27 156.60 314.46

4 63.38 128.13 120.74 242.23 195.81 387.49

5 80.41 160.63 149.40 298.81 233.81 465.64

6 96.48 194.72 176.79 351.90 266.44 531.92

7 116.60 230.65 200.03 401.17 303.73 606.97

8 132.41 265.43 222.85 449.22 341.71 677.72

9 150.36 299.94 248.98 501.95 372.91 753.51

10 167.77 337.55 274.23 544.66 421.08 836.10
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Similarly, by induction, we can see that the price of the kth drawdown option can be
computed from the k − 1th drawdown stopping time using the formula

P k
0 (S0, T )

= EQ
(
e−rτk S̄τk

1{τk≤T }
)

= EQ
(
e−rτk−1 S̄τk−11{τk−1≤T −1}EQ

(
e−rT

μ
y 1{T μ

y ≤T −1−τk−1}

EQ
(
e−rτμ

eσM
μ
τ 1{τμ≤T −τk−1−T

μ
y } | Fτk−1+T

μ
y

)
| Fτk−1

))
,

with y = Mτk−1 − Wτk−1 . For multiple drawdown options, there are multiple payoffs. The
price of the option is

P MD
0 (S0, T ) = EQ

( ∞∑
i=1

e−rτi S̄τi
1{τi≤T }

)
, (5.18)

and each term in the summation can be computed recursively, generating a sample from
(τi ,Mτi

, Wτi
) and T

μ
y each time. The price can then be computed by aggregating across all

the samples. Table 1 presents the prices of the multiple drawdown options with drawdown
duration 1 and a range of maturities.
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