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Abstract
We consider topological twists of four-dimensional N = 2 supersymmetric QCD
with gauge group SU(2) and N f ≤ 3 fundamental hypermultiplets. The twists are
labelled by a choice of background fluxes for the flavour group, which provides an
infinite family of topological partition functions. In this Part I, we demonstrate that
in the presence of such fluxes the theories can be formulated for arbitrary gauge
bundles on a compact four-manifold. Moreover, we consider arbitrary masses for the
hypermultiplets, which introduce new intricacies for the evaluation of the low-energy
path integral on theCoulomb branch.We develop techniques for the evaluation of these
path integrals. In the forthcoming Part II, we will deal with the explicit evaluation.
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1 Introduction

Correlations functions of topologically twisted quantum field theories provide many
insights into non-perturbative aspects of quantum field theory as well as the geometry
of four-manifolds [1–3]. We consider topologically twisted N = 2 supersymmetric
Yang–Mills theories with additional matter multiplets on a compact four-manifold,
which were introduced in [4–9]. After the work by Seiberg and Witten on the full
non-perturbative solution [3, 10, 11], these theories have received much attention in
physics [12–26] and mathematics [27–38].1 Their path integrals can in many cases be
explicitly evaluated after topologically twisting. The study of the analytical structure of
partition functions as function of the parameters such as the masses and UV couplings
allows to study the limits in parameters space, as well as relations between different
field theories.Moreover, the Q-fixed equations give rise to topological invariants of the
underlying space-time geometry. The path integral derivation relates distinct notions
of invariants for the same space-time geometry and improves the understanding of
such invariants [21, 24, 25, 33, 43–49].

We consider in this article topological twists of N = 2 QCD with gauge group
SU(2) and matter multiplets in the fundamental representation of the gauge group.
By including background fluxes for the flavour group, we obtain an infinite family
of topological theories [16]. The choice of a background flux makes it possible to
formulate topologically twists for N = 2 SQCD for arbitrary ’t Hooft fluxes, or first
Chern classes of the gauge bundle. This is similar to the topological twist of N =
2∗ SU(2) gauge theory, which requires a non-vanishing background flux on a non-
spin four-manifold [25]. We moreover develop techniques to determine correlation
functions for arbitrary values of the masses of the hypermultiplets.

1 For reviews, see for example [39–42].
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The starting point of our approach is the low-energy effective field theory on the
Coulomb branch. This phase of the theory contributes for a compact four-manifold
X with the topological condition that b+

2 (X) = 1 [12]. In this way, the classical
Donaldson invariants can be derived starting from the Seiberg–Witten (SW) solution
toN = 2 supersymmetric Yang–Mills theory with gauge group SU(2). The Coulomb
branch integral (or u-plane integral) reduces to an integral over zero modes [12] and
reads schematically

� =
∫
B
da ∧ dā ρ(a)�(a, ā), (1.1)

where B is the Coulomb branch with local coordinates a and ā, ρ(a) contains the
couplings to the background and �(a, ā) is a sum over fluxes of the unbroken U(1)
gauge group. For simplicity, we have suppressed the dependence on the metric and not
included observables here. For the pure SU(2) theory, the Coulomb branch integral
can be formulated and evaluated for arbitrary four-manifolds, without a requirement
for Kähler or toric properties.

Recently, progress has been made on evaluating these u-plane integrals using a
change of variables from a to the running coupling τ . As a result, the integration
domain becomes a fundamental domain F ⊆ H in the upper half-plane H for the
running coupling [23, 25, 50–58]. The integral then takes the form

� =
∫
F
dτ ∧ dτ̄ ν(τ )�(τ, τ̄ ), (1.2)

where themeasure factor ν(τ) further contains the Jacobian for the change of variables
from a to τ . The domain F is a modular fundamental domain in previous analyses,
corresponding to the duality group �0(4) for the pure SU(2) theory [12, 54, 56], �(2)
for the N = 2∗ theory [25] and similarly �(2) and �0(4) for the theories with two
and three massless flavours [50].

As mentioned above, we aim to apply this approach to N = 2 supersymmetric
SU(2) theories with N f ≤ 3 hypermultiplets in the fundamental representation. Topo-
logical correlators of these asymptotically free theories have been considered in various
papers before, in particular the formulation of the low-energy path integral in [12, 13],
SW contributions for four-manifolds with b+

2 > 1 [12, 20, 21, 24], the u-plane integral
for P2 [50], and the calculation of the partition function of the AD theory within the
N f = 1 theory [23]. Since no background fluxes are included in these works, the ’t
Hooft flux necessarily matches the second Stiefel-Whitney class of the four-manifold,
w2(E) = w2(X), since the twisted hypermultiplets are not well-defined otherwise.

Extending to generic ’t Hooft fluxes, and application of the above approach (1.2) to
fundamental hypermultiplets with generic masses, gives rise to several new aspects.
In particular:

1. The fundamental domain of the effective coupling constant becomesmore intricate
for massive theories and does for generic masses not correspond to a modular
fundamental domain for a subgroupof PSL(2,Z). The domain contains generically
a set of branch points, and branch cuts starting from these points [59–61]. These
aspects have to be dealt with appropriately.
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2. We couple the hypermultiplets to background fluxes k j for the flavour group to
formulate the theories for arbitrary ’t Hooft fluxes. This gives rise to additional
couplings in (1.1) and (1.2),

N f∏
j,k=1

exp

(
−2π i

∂2F

∂m j∂mk
B(k j , kk)

)
, (1.3)

where F is the prepotential of the massive theory, and B(·, ·) is the quadratic
form associated to the intersection form on the middle homology H2(X ,Z) of
X . Such couplings were suggested by Shapere and Tachikawa [62] and are also
essential for the formulation of theN = 2∗ Yang–Mills theory on a non-spin four-
manifold [25]. Similarly to [25], we also deduce a non-holomorphic coupling to
k j . Moreover, for arriving at a single-valued integrand, we fix an ambiguity in
the quadratic terms of the prepotential. These terms have appeared earlier in the
literature in the context of singularities of the SWdifferential andwinding numbers
[11, 63].

3. Special points on the Coulomb branch give rise to superconformal theories, such as
the Argyres–Douglas (AD) theories [64, 65] and the massless N f = 4 theory [11].
Their topological partition functions and correlators can be found by considering
them in certain mass deformations. The case of N f = 1 is analysed in [42].

The paper is organised as follows. In Sect. 2, we present the Seiberg–Witten solu-
tion of SU(2) N = 2 SQCD in flat space, focusing on the fundamental domains for
the effective coupling, which we illustrate in several interesting examples. In Sect. 3,
we formulate the topological twist by coupling the hypermultiplets to external fluxes,
such that the topological field theory is well-defined for arbitrary ’t Hooft flux and
non-spin manifolds. The topological low-energy effective theory coupled to N f back-
ground fluxes is then modelled in Sect. 4 as a SU(2)×U(1)N f theory, with the matter
fields corresponding to frozen U(1) factors. This allows to compute the path integral
explicitly as an integral over the u-plane. In Sect. 5, we formulate the u-plane integral
as an integral over the fundamental domains. We prove that the single-valuedness
under monodromies holds for a specific choice of magnetic winding numbers. Finally,
in Sect. 6 we demonstrate that such integrals may be evaluated using mock modu-
lar forms, and we show that they localise at the cusps, elliptic points and interior
singularities of the fundamental domains.

A following paper, Part II, will be dedicated to explicit analyses and computations
for specific examples. There, we will give a detailed discussion on the contribution
from the AD points for each type, as briefly mentioned in point 3 above, as well as
calculating the u-plane integrals for a number of examples.

2 Special geometry and SW theories

In this section, we review aspects of the non-perturbative solution for the low-energy
effective theory of N = 2 SQCD with gauge group SU(2) and 0 ≤ N f ≤ 3 funda-
mental hypermultiplets [10, 11]. See [66] for a review. Throughout, we let
N f denote

123



Topological twists Page 5 of 53    62 

the scale of the theory with N f hypermultiplets having masses m j , j = 1, . . . , N f ,
and a the mass of the W-boson on the Coulomb branch.

2.1 Field content

The N = 2 theories we consider contain a vector multiplet and N f ≤ 3 hypermul-
tiplets. The fields in these multiplets form representations of Spin(4) = SU(2)+ ×
SU(2)− and SU(2)R , which we denote by (k, l,m), with k, l and m dimensions of
the representations.

The vector multiplet consists of a gauge field Aμ, complex scalar field φ and a pair
of Weyl fermions � I

α , �̄
I
α̇ . This multiplet transforms under the adjoint representation

of the gauge group G. The representation of SU(2)+ × SU(2)− × SU(2)R formed by
the bosonic fields is,

(2, 2, 1) ⊕ (1, 1, 1) ⊕ (1, 1, 1), (2.1)

while the representation for the fermions is

(1, 2, 2) ⊕ (2, 1, 2). (2.2)

The hypermultiplet consists of a pair of complex scalar fields, q and q̃ , and Weyl
fermions, λα , λ̄α̇ ,χα and χ̄α̇ .We fix the gauge groupG = SU(2), and let the hypermul-
tiplets transform under the fundamental representation of this group. With the same
notation as above, the bosonic fields of this multiplet form the representation,

(1, 1, 2) ⊕ (1, 1, 2), (2.3)

while the fermions form the representation

(2, 1, 1) ⊕ (1, 2, 1) ⊕ (2, 1, 1) ⊕ (1, 2, 1). (2.4)

2.2 Seiberg–Witten geometry

The Seiberg–Witten geometry underlies the Coulomb branch ofN = 2 gauge theory.
The Coulomb branch is the phase of the theory where SU(2) is broken to U(1) by
a vacuum expectation value (vev) of the vector multiplet scalar φ. The vev is semi-
classically parametrised by a complex parameter a,

φ =
(
a 0
0 −a

)
, (2.5)

up to gauge transformations. In particular, a → −a is a gauge transformation. The
gauge invariant order parameter is the Coulomb branch expectation value of the theory
in R4,

u = 1

16π

〈
Tr(φ2)

〉
R4

. (2.6)
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The non-perturbative effective action of N = 2 SQCD is characterised by the prepo-
tential F(a,m), with m the mass vector m = (m1, . . . ,mN f ). The semi-classical part
of F reads [63, 67–69]

F(a,m) = 2i

π
a2

(
log(4a/
N f ) − 3

2

)
− 1

2

N f∑
j=1

(
n j

m j√
2
a + C (a2 + m2

j/2)

)

− i

4π

N f∑
j=1

(
a + m j√

2

)2
log((a + m j√

2
)/
N f ) +

(
a − m j√

2

)2
log((a − m j√

2
)/
N f )

+ . . . , (2.7)

where the . . . indicates further non-perturbative corrections.HereC = 1
2+ i

2π log(2)−
3i
2π . The classical terms proportional toa2 andm2 on thefirst line are chosen to facilitate
the decoupling of hypermultiplets, which will be discussed later in more detail.

The n j ∈ Z in (2.7) are the magnetic winding numbers of the periods aD := ∂F
∂a

dual to a [63, 67, 70]. These numbers seem to be only rarely discussed in the literature
beyond these references.2 Generally, the theory allows for N f electric winding num-
bers for a and N f magnetic winding numbers for aD . These appear in the massive
N f > 0 theories since the Seiberg–Witten differentials now have poles with nonzero
residues [67]. See alsoAppendix C. The choice (2.7) of the prepotential corresponds to
fixing the electric winding numbers to be zero, or equivalently fixing the monodromy
at infinity to map a → eπ i a. Compare for example with [67, Eq. (2.17)]. In Sect. 5,
we will discuss that the single-valuedness of the u-plane integral requires n j ≡ −1
mod 4.

We introduce the period aD dual to a, and the parameters mD, j dual to m j by

aD = ∂F

∂a
, mD, j = √

2
∂F

∂m j
. (2.8)

These parameters are further combined into the (2 + 2N f )−dimensional vector �,

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aD
a

mD,1
m1√
2
...

mD,N f
mN f√

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.9)

2 Nekrasov’s partition function gives a specific choice upon expanding the function γ�(x; 
) in the per-
turbative part [69, 71].
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This vector forms a local system over the u-plane. The elements of the vector form
the symplectic form,

ωN f = daD ∧ da + 1√
2

N f∑
j=1

dmD, j ∧ dm j . (2.10)

The effective gauge coupling is related to the prepotential through

τ = ∂2F

∂a2
. (2.11)

We also introduce the couplings v j and w jk with j, k ∈ 1, . . . , N f [72–74],3

v j = √
2

∂2F

∂a∂m j
, w jk = 2

∂2F

∂m j∂mk
. (2.12)

The derivative of the prepotential with respect to the scale 
N f provides the order
parameter u (2.6) on the Coulomb branch,

u = 4π i

4 − N f

N f

∂F(a,m)

∂
N f

+ 1

4 − N f

∑
j

m2
j . (2.13)

Using the different relations introduced above together with the fact that the pre-
potential satisfies the homogeneity equation [75–77]

2F = 
N f

∂F

∂
N f

+
N f∑
j=1

m j
∂F

∂m j
+ a

∂F

∂a
, (2.14)

we can find some non-trivial relations between the respective quantities. For instance,
from the perturbative prepotential (2.7), we deduce that the leading terms of u are

u = 2 a2 + O(a−2) (2.15)

The weak-coupling limit then becomes in our conventions4

⎧⎨
⎩

τ → +i∞,

a → −i∞,

u → −∞.

(2.16)

3 If we consider F as a function of (a, 1√
2
m1, . . . ,

1√
2
mN f ), then the dual parameters are encoded in the

Jacobian J F = (aD,mD), while the couplings are the elements of the Hessian HF =
(

τ vT
v w

)
.

4 Note that this differs slightly from some of the previous literature. However, it is shown in [59] to be the
unique limit consistent with the RG flow.
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The Seiberg–Witten (SW) solution provides a family of elliptic curves parametrised
by the order parameter u and the masses mi , whose complex structure corresponds to
the running coupling τ = θ

π
+ 8π i

g2
. For the theories of interest in this paper, the curves

SN f are given by [11]

N f = 0 : y2 = x3 − ux2 + 1

4

4

0x,

N f = 1 : y2 = x2(x − u) + 1

4
m
3

1x − 1

64

6

1,

N f = 2 : y2 = (x2 − 1

64

4

2)(x − u) + 1

4
m1m2


2
2x − 1

64
(m2

1 + m2
2)


4
2,

N f = 3 : y2 = x2(x − u) − 1

64

2

3(x − u)2 − 1

64
(m2

1 + m2
2 + m2

3)

2
3(x − u)

+ 1

4
m1m2m3
3x − 1

64
(m2

1m
2
2 + m2

2m
2
3 + m2

1m
2
3)


2
3.

(2.17)
The family of SW curves (2.17) are Jacobian rational elliptic surfaces with singular
fibres [78–80]. These surfaces are well studied in the mathematical literature [81–83].
Rational in this context means that g2 and g3 are polynomials in u of degree at most
4 and 6, respectively [84]. In Appendix B, we summarise the class S representation
of the SW curves [85].

The curve for N f hypermultiplets reduces to the curve for N f − 1 hypermultiplets
upon decoupling a hypermultiplet in the double scaling limit [86]

mN f → ∞, 
N f → 0, mN f 

4−N f
N f

= 

4−(N f −1)
N f −1 . (2.18)

The curves (2.17) provide the exact results for the vevs of the scalar a and its dual
aD as period integrals. We have explicitly,

a =
∫
A

λ, aD =
∫
B

λ, (2.19)

with λ the SW differential, for which we refer to [11, 63, 67].

2.3 Characteristic functions on the Coulomb branch

In this subsection, we discuss various characteristic functions on the Coulomb branch,
which are instrumental for determining the u-plane integral. They are:

• the physical discriminant �N f ,
• the order parameter u,
• the period da/du, and
• the derivatives du/dτ and da/dτ .
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The physical discriminant �N f

We define the physical discriminant �N f as the monic polynomial

�N f =
N f +2∏
j=1

(u − u j ), (2.20)

where u j for j = 1, . . . , N f + 2 are the singular points of the effective theory. We
let j = 1, . . . , N f label the singular points where one of the matter hypermultiplets
becomes massless, and j = N f + 1, N f + 2 denote the strong coupling singularities
where a monopole and a dyon, respectively, become massless.

The discriminant is a polynomial of degree 2+ N f in u. It can also be determined
directly from the SW curve [59],

�N f = (−1)N f 

2N f −8
N f

(g32 − 27g23), (2.21)

where g2 and g3 are the Weierstraß invariants of the SW curve. Up to the sign and
scale, the physical discriminant �N f equals the mathematical discriminant g32 − 27g23
for these theories.

As the masses are tuned, some of the singularities on the Coulomb branch can
collide. If we consider �N f as a polynomial in u, its discriminant D(�N f ) vanishes
if and only if two roots coincide. It is straightforward to show that for N f ≤ 3,

D(�N f ) =
(
DAD

N f

)3∏
i< j

(mi − m j )
2(mi + m j )

2. (2.22)

This factorises the locus in mass space where singularities collide into two orthogonal
components: The first component is the Argyres–Douglas (AD) locus given by the
polynomial equation DAD

N f
= 0, where mutually non-local singularities collide [59,

65, 87]. The other component is characterised by the equations mi = ±m j , and one
can check that this gives rise to mutually local singularities colliding. Here, the flavour
symmetry gets enhanced and a Higgs branch opens up [11]. This extends the analysis
of [59].

Given a mass configuration m = (m1, . . . ,mN f ), we can denote by kl the weight
(or multiplicity) of the l-th singularity, and by k(m) = (k1, k2, . . . ) the vector of those
weights. Since the Coulomb branch BN f (m) contains 2+ N f singularities aside from
weak coupling u = ∞, it is clear that k(m) provides a partition of 2+N f . This in turn
partitions the mass space CN f � m into finitely many regions where k(m) is locally
constant. As an example, in Fig. 1 we plot the contours of (2.22) for N f = 2 in the
real m = (m1,m2) plane.

The possible singularity structures of the rational elliptic curves (2.17) are classified
in Persson’s list of allowed configurations of singular fibres [88, 89]. From Kodaira’s
classification, it follows that any solution to (2.22) gives rise to a singularity on the
Coulomb branch of Kodaira type Ik , I I , I I I or I V . As described in [59, 80], the
solutions to 0 = DAD

N f
give rise to AD points of Kodaira type I I , I I I and I V . The

123



   62 Page 10 of 53 J. Aspman et al.

Fig. 1 Partitioning of the real m = (m1,m2) plane in N f = 2, in units of 
2 = 1. On the AD component
the Coulomb branch B2(m) contains an AD point of Kodaira type II (blue) or III (green). On the other
component (orange), mutually local singularities collide. If m is varied along a continuous path that does
not cross the partitioning 0 = D(�N f ), the weight vector k(m) is constant (colour figure online)

second component 0 = ∏
i< j (mi − m j )(mi + m j ) can be studied in more detail.

These are 2(N f − 1) independent equations. Whenever one of the factors vanishes,
the SW surface contains an Ik singularity with k ≥ 2. For N f = 2, the only possibility
is I2, while for N f = 3 singularities of type I2, I3 and I4 are possible. The point in the
Coulomb branch BN f corresponding to an Ik singularity with k ≥ 2 intersects with
a Higgs branch of quaternionic dimension k − 1 ≥ 1 [11]. Further merging these Ik
singularities with a mutually non-local singularity does not affect the Higgs branch,
such that the points with a I I I or I V singularity also intersect with a Higgs branch
of quaternionic dimension one or two, respectively, while the points with AD theories
of type I I do not intersect with any Higgs branch.

Order parameter u
The order parameter u, introduced in (2.6), is invariant under monodromies on the
Coulomb branch. By bringing the SW curve to Weierstraß form, u can be expressed
in terms of the running coupling τ ∈ H (2.11) [59, 61, 90–92]. As in [59], we restrict
the domain for τ ∈ H to F(m) ⊆ H, such that u is 1-to-1. In specific cases, u can be
expressed in terms of modular forms. We follow the conventions of [59, Sect. 2.2] in
picking the solutions. We discuss the order parameters in more detail in the following
Sect. 2.4.
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The period da/du
The period da

du can be related to the complex structure τ of the curve through [91]

da

du
= 1

6

√
g2
g3

E6

E4
, (2.23)

where the Weierstraß invariants g2, g3 are polynomials in u, and E4 = E4(τ ), E6 =
E6(τ ) are the Eisenstein series of modular weights four and six, respectively, defined
in Eq. (A.7). The square root in (2.23) leads to an ambiguity in the sign of da/du. This
can be resolved by taking a branch of the square root, for example at weak coupling.
On the other hand, da/du is not a single-valued function on the u-plane. It changes
by a sign under monodromies at weak coupling and transforms with a modular weight
under monodromies around strong coupling singularities.

The derivatives du/dτ and da/dτ
The derivative du/dτ is related to the period da

du through [59, 93]

du

dτ
= − 16π i

4 − N f

�N f

PM
N f

(
da

du

)2

, (2.24)

where PM
N f

is a polynomial in u. For N f ≤ 3, it reads

PM
N f

= 6

4 − N f
(−1)N f 


2N f −8
N f

(2g2g
′
3 − 3g′

2g3), (2.25)

where the prime denotes differentiation with respect to u. It appears naturally in
differential equations associated with elliptic surfaces (see e.g. [94]).

When u is known in terms of modular forms, it is also straightforward to determine
du
dτ by differentiating modular forms [59]. For generic masses m, we can compute the
q-series of u and thus du

dτ to any order.Wewill not explicitly need du/dτ for evaluating
the u-plane integral, but through

da

dτ
= da

du

du

dτ
(2.26)

we can use it to evaluate da/dτ . This derivative appears as the Jacobian for the change
of integration variables from the periods a to the couplings τ .

2.4 Fundamental domains

The recent progress in computing u-plane integrals has been enabled by mapping the
u-plane to a modular fundamental domain, on which the u-plane integrand can be
related to mock modular forms and thus be efficiently evaluated [23, 25, 50–58]. It has
been known since the 1990s that the u-planes for N = 2 SQCD with N f = 0, 2, 3
massless hypermultiplets are modular and correspond to fundamental domains for
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congruence subgroups of PSL(2,Z) [90]. On the other hand, the generic mass case
including the peculiar role of massless N f = 1 has remained elusive.

The order parameter u for a given mass m = (m1, . . . ,mN f ) can be considered as
a function

u : H → BN f (m), (2.27)

where BN f (m) is the Coulomb branch of the theory with N f hypermultiplets of mass
m. In [59], it was found that for N f ≥ 1 and generic masses the duality group
does not act on τ by fractional linear transformations. This prevents the preimage
u−1(BN f (m)) frombeing amodular fundamental domain for a subgroup of PSL(2,Z).
Instead, we can define a fundamental domainFN f (m) through the equivalence relation
τ ∼ τ ′ ⇔ u(τ ) = u(τ ′), such that u : FN f (m) → BN f (m) is bijective. In [59, 61],
such fundamental domains for the effective gauge coupling have been found explicitly
for N = 2 SQCD with N f ≤ 4 generic masses. They decompose as

FN f (m) =
n⋃
j=1

α jF , (2.28)

where F = PSL(2,Z)\H is the key-hole fundamental domain of PSL(2,Z), and
α j ∈ PSL(2,Z) are n ≤ 6 maps that are locally constant as functions of the massesm.
More precisely,FN f (m) is constant on any of the finitelymany connected components
of {m ∈ C

N f | D(�N f ) = 0}, where D(�N f ) is given in (2.22). We also call n the
index of the domain FN f (m).

The geometry ofFN f (m) agreeswith that of theCoulomb branchBN f (m). Namely,
BN f (m) is the complex plane with 2 + N f singular points removed. In (2.28), those
singularities are reflected in the cusps α j (∞), where the number of α j with the same
α j (∞) (giving the width of the cusp) agrees with the multiplicity of the singularity
u(α j (∞)).

The domainsF(m) := FN f (m) are endowed with further data. For generic masses
m, there are N f pairs of branch points on F(m) that are connected by branch cuts.
The branch points are determined by the non-removable singularities of the rational
function �N f (u)/PM

N f
(u), as it appears in Matone’s relation (2.24). They correspond

to the non-trivial zeros of the discriminant of the sextic equation associated with the
SW curve [59]. As the masses are varied, the branch points move on continuous paths
in the fundamental domain.

When two branch points collide, there appears an elliptic point, which is a fur-
ther dedicated point on the domain F(m). These elliptic points correspond to the
superconformal Argyres–Douglas (AD) points [64, 65]. By Kodaira’s classification
of singular fibres, they are always in the PSL(2,Z) orbit of i or eπ i/3. Their presence
is also responsible for the index n of the domain to be reduced. The possible values
are n = 2, 3, 4 if F(m) contains such an elliptic point, and n = 6 otherwise.

The N f = 4 theory furthermore contains a UV coupling τUV. Since u(τ ) → ∞ for
τ → τUV, it can be viewed as a puncture of the fundamental domain, and has to be
excluded from the integration domain.
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Fig. 2 Fundamental domain of �0(4). This is the duality group of the pure SU(2) theory. The two cusps on
the real line correspond to the strong coupling singularities of the gauge theory, while the cusp at τ = i∞
corresponds to weak coupling. Boundaries of the same colour are identified (colour figure online)

Let us review the explicit construction ofF(m) in a few important examples. Many
more examples can be found in [59, 61]. Here, we are mainly considering the masses
to be small compared to the period a, such that the mass singularities discussed in
previous sections can be considered as strong coupling singularities, or in other words
as cusps on the real line of the fundamental domains. When the masses are increased
it is more natural to think of the mass singularities as weakly coupled.

The pure SU(2) N f = 0 theory
It is well-known that the pure SU(2) Coulomb branch corresponds to the fundamental
domain for the congruence subgroup �0(4) of PSL(2,Z). The order parameter can be
explicitly determined in terms of a modular function for the duality group [95],

u


2
0

= − 1

2

ϑ4
2 + ϑ4

3

ϑ2
2ϑ2

3

, (2.29)

where the Jacobi theta functions ϑi are defined in Appendix A.1. A fundamental
domain for the pure SU(2) theory is given in Fig. 2. Since the domain is modular, the
branch points are absent.

The massless N f = 1 theory
From the massless N f = 1 SW curve, one directly finds [90]

u


2
1

= − 3

2
7
3

E
1
2
4

(E
3
2
4 − E6)

1
3

, (2.30)

where E4 and E6 are theEisenstein series defined in (A.7). This function also appears as
an order parameter in pure SU(3) SW theory [60] as well as in the description of certain
elliptically fibred Calabi–Yau spaces [96]. Due to the presence of the square root, this
function is notmodular. Themassless N f = 1 curve has three distinct strongly coupled
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Fig. 3 Fundamental domain for massless N f = 1

singularities, which become the three cusps of the fundamental domain aside from the
weakly coupled region u → ∞. The fundamental domain is plotted in Fig. 3. Note
that, this is not the fundamental domain of any subgroup of PSL(2,Z).

When a positive mass m is turned on, the branch points move in the fundamental
domain emerging from those of themassless case. Theymove as a function of themass
as shown in [59] and depicted in Fig. 4. This further incorporates the hypermultiplet
decoupling on the level of the fundamental domain.

The equal mass N f = 2 theory
For N f = 2 with m1 = m2 = m, the order parameter can be determined explicitly
[59],

u


2
2

= −
ϑ8
4 + ϑ4

2ϑ4
3 + (ϑ4

2 + ϑ4
3 )

√
16m2


2
2
ϑ4
2ϑ4

3 + ϑ8
4

8ϑ4
2ϑ4

3

. (2.31)

The curve has a double singularity at u∗ = m2 + 
2
2
8 and two simple singularities at

u± = −
2
2
8 ±m
2. When m is varied, it can be determined how the branch point τbp

moves in the fundamental domain. When m is not zero and not equal to mAD = 
2
2 ,

the singularities u∗, u+ and u− are distinct and the fundamental domain F(m,m) is
given in Fig. 5. For any such mass, there is a pair of branch points in F(m,m), which
are connected by a branch cut. Near a branch point τbp, u reads

u(τ ) = ubp + c(τbp) (τ − τbp)
1/2, (2.32)

for some constant c(τbp).
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Fig. 4 Choice of branch cuts (zigzag lines) for varying (real) mass in N f = 1. Lines with the same colour
are identified. Starting with a small mass in (a), we cut along the arcs of radius 1 around τ = 1 and τ = 2.
At the AD mass we can use the identifications of the different boundaries to reorganise the domain in (b) to
the one of (c). When we increase the mass further the cuts of (c) move upwards as in (d) eventually reaching
infinity and disappearing, leaving us with the domain in Fig. 2 of the pure theory (colour figure online)

The massless limit in N f = 2
In the limit where m1 = m2 = m → 0, one finds from (2.31) that

u


2
2

= −1

8

ϑ4
3 + ϑ4

4

ϑ4
2

(2.33)

This expression is a modular function for the principal congruence subgroup �(2) of
PSL(2,Z). The holomorphy of (2.33) is explained by the fact that the pair of branch
points form �= 0 collides in the limitm → 0, which annihilates the branch cut. This is

because the mutually local singularities u± → −
2
2
8 collide, and thus the singularities

corresponding to τ → 0 and τ → 2 in Fig. 5 are identified. The fundamental domain
of the massless theory is thus the modular fundamental domain for the duality group
�(2), as depicted in Fig. 6.

The AD limit in N f = 2
When m → mAD = 
2

2 , the singularities u∗ and u+ collide and form the supercon-
formal AD point (A1, A3) of Kodaira type III. As studied in detail in [59, 80, 97],
this AD point forms an elliptic point of the fundamental domain. Since three mutually
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Fig. 5 Fundamental domain F2(m,m) of the massive m = (m,m) N f = 2 theory. The dashed lines
correspond to the paths of the branch points from zero to infinite mass. For given positive mass m, the two

branch points are identified under T ST−1, such that there is only one branch point ubp = 2m2 − 
2
2
8 on

the u-plane

Fig. 6 Fundamental domain for �(2), the duality group of the massless N f = 2 theory

non-local singularities collide for this mass, the index of the domainF(mAD,mAD) is
reduced by 3, giving a domain of index 6−3 = 3. By taking the limit from (2.31), one
finds that the square root resolves by virtue of the Jacobi identity (A.4). This restores
holomorphy and even modularity. One finds that the order parameter

u


2
2

= − 1

64

(
16ϑ8

4

ϑ4
2ϑ4

3

+ 40

)
(2.34)
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Fig. 7 Fundamental domain of the N f = 2 theory with equal AD mass m1 = m2 = mAD = 
2
2 . It is the

modular fundamental domain for the congruence subgroup �0(2) of PSL(2,Z). The AD point τAD = 1+ i
is the elliptic fixed point of �0(2). The three singularities collided in uAD result in a reduction of the index
from 6 to 3

is a modular function for the congruence subgroup�0(2) of PSL(2,Z) [59]. Its elliptic
fixed point τAD = 1 + i is precisely the AD point. We depict the corresponding
fundamental domain in Fig. 7.

The N f = 4 theory
In N f = 4, the fundamental domain for the effective coupling τ can be found anal-
ogously to the asymptotically free cases. One notable new feature is the additional
singularity of the theory when τ approaches the UV coupling τUV. For example, with
the mass configuration m = (m,m, 0, 0) one finds [61]

u(τ, τUV) = −m2

3
ϑ3(τUV)

4 λ(τUV)
2 + 2 (λ(τ ) − 1) λ(τUV) − λ(τ)

λ(τUV) − λ(τ)
, (2.35)

where λ = ϑ4
2

ϑ4
3
. This function is a meromorphic �(2) modular form of weight 2 in

τUV for fixed τ and of weight 0 in τ for fixed τUV. Furthermore, it has mixed weight
(0, 2) under PSL(2,Z) acting on τ and τUV simultaneously. As such, it is an example
of a bimodular form for the triple (�(2), �(2);PSL(2,Z)) [25, 61]. Since u(τ, τUV)

has a pole as τ → τUV, the fundamental domain F4(m) has a puncture at τUV. This is
depicted in Fig. 8.

2.5 Monodromies

This section determines the monodromies around the N f + 2 monodromies. Duality
transformations of such couplings in N = 2 supersymmetric theories have also been
studied in [72–74]. We leave the winding numbers n j , j = 1, . . . , N f , for aD generic.
Starting with the monodromy around infinity, a → eπ i a, we deduce from the (2.7)
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Fig. 8 Fundamental domain of the N f = 4 theory with massm = (m,m, 0, 0). The six singularities on the
Coulomb branch B4 are described by the three cusps, each of width 2. The I

∗
0 singularity corresponding to

u = ∞ sits at τ = τUV

that the vector � transforms as � → M∞ �, withM∞ given by

M∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 4 − N f 0 −n1 · · · 0 −nN f

0 −1 0 0 · · · 0 0
0 n1 1 1 · · · 0 0
0 0 0 1 · · · 0 0
...

...
. . .

0 nN f 0 0 · · · 1 1
0 0 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.36)

The monodromy matrix M∞ is in SL(2 + 2N f ,Z), while it acts on the couplings by
a symplectic transformation, i.e. it preserves the symplectic form (2.10). This can be
checked by requiring that any monodromy M∞ satisfies MT JM = J, with

J =
(

0 1
−1 0

)⊕N f +1

. (2.37)

The action on the couplings τ (2.11), v j and w jk (2.12) is thus

M∞ :

⎧⎪⎨
⎪⎩

τ → τ + N f − 4,

v j → −v j − n j ,

w jk → w jk + δ jk,

(2.38)

with δ jk the Kronecker delta.
If we assume that themassm j is large, we can also deduce themonodromies around

a = m j√
2
, j = 1, . . . , N f from the perturbative prepotential (2.7). For a encircling m1√

2
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counterclockwise, � → M1�, we find for the monodromy matrix M1,

M1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 −1 · · · 0 0
0 1 0 0 · · · 0 0
0 −1 1 1 · · · 0 0
0 0 0 1 · · · 0 0
...

...
. . .

0 0 0 0 · · · 1 0
0 0 0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.39)

while theM j for other values of j are given by permutations. Its action on the couplings
is

M j :

⎧⎪⎨
⎪⎩

τ → τ + 1,

vk → vk − δ jk,

wkl → wkl + δklδ jl .

(2.40)

To visualise the monodromies with large Im(τ ) for N f = 1, we refer to Fig. 4(d). In
this regime of the masses, there is one monodromy with periodicity 3 and one with
periodicity 1.

Besides themonodromiesM∞ andM j , there aremonodromiesMm andMd around
the points where a monopole and a dyon become massless, respectively. By requiring
that the electro-magnetic charges of the massless particles are (nm, ne) = (1, 0) and
(1,−2), respectively, we can fix the upper left blocks of the monodromies. We fix the
remaining entries by assuming that the masses remains invariant, m j → m j , and that
the other periods only change by amultiple of the vanishing cycle at the corresponding
cusp, together with the requirement that

M∞ = MmMd

N f∏
j=1

M j . (2.41)

For N f = 1 and n1 = n, this gives forMm ,

Mm =

⎛
⎜⎜⎝

1 0 0 0
−1 1 0 −(n + 1)/2

(n + 1)/2 0 1 (n + 1)2/4
0 0 0 1

⎞
⎟⎟⎠ . (2.42)

This acts on the couplings as

Mm :

⎧⎪⎨
⎪⎩

τ → τ
−τ+1 ,

v → v+(n+1)τ/2
−τ+1 ,

w → w + (v+(n+1)/2)2

−τ+1 .

(2.43)
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The monodromy Md around the dyon singularity for N f = 1 is

Md =

⎛
⎜⎜⎝

−1 4 0 −n − 1
−1 3 0 −(n + 1)/2

(n + 1)/2 −n − 1 1 (n + 1)2/4
0 0 0 1

⎞
⎟⎟⎠ , (2.44)

This acts on the couplings as

Md :

⎧⎪⎨
⎪⎩

τ → −τ+4
−τ+3 ,

v → v+(n+1)τ−n−1
−τ+3 ,

w → w + (v+(n+1)/2)2

−τ+3 .

(2.45)

We can note that all the above monodromy matrices leave the symplectic form (2.10)
invariant and are independent of the masses.

For a small mass m, the fourth “hypermultiplet” cusp of the fundamental domain
for N f = 1 lies naturally near the real axis, τ → 1. See for example Fig. 4a. Having
determined M∞, Mm and Md , we can easily determine the monodromy M̃1 in this
regime as

M̃1 = M−1
m M∞M−1

d =

⎛
⎜⎜⎝

0 1 0 (1 − n)/2
−1 2 0 (1 − n)/2

(n − 1)/2 (1 − n)/2 1 (n − 1)2/4
0 0 0 1

⎞
⎟⎟⎠ (2.46)

Thus for n = −1, the massless particle has charge ±(−1, 1, 0, 1).
We get similar monodromies for N f = 2, 3. The action on the running couplings

τ is the same for all N f , by construction. The transformations of v j and w jk also take
the same form for all N f and can be summarised as

Mm :
{

v j → v j+(n j+1)τ/2
−τ+1 ,

w jk → w jk + (v j+(n j+1)/2)(vk+(nk+1)/2)
−τ+1 ,

Md :
{

v j → v j+(n j+1)τ−n j−1
−τ+3 ,

w jk → w jk + (v j+(n j+1)/2)(vk+(nk+1)/2)
−τ+3 .

(2.47)

3 The UV theory on a four-manifold

We review various aspects of the formulation of the UV theory on a compact smooth
four-manifold.
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3.1 Aspects of four-manifolds

We let X be a smooth, compact, oriented Riemannian four-manifold, with Euler
number χ = χ(X) and signature σ = σ(X) = b+

2 − b−
2 . The u-plane integral is

non-vanishing only for four-manifolds X with b+
2 ≤ 1. In this article, we consider

manifolds with b+
2 = 1. Such four-manifolds admit a linear complex structure J on

the tangent space T X p at each point p of X . The complex structure varies smoothly
on X , such that T X is a complex bundle.We introduce furthermore the canonical class
KX = −c1(T X) of X , with c1(T X) the first Chern class of T X . For a manifold X
with (b1, b

+
2 ) = (0, 1), we have that

K 2
X = 8 + σ(X). (3.1)

The middle cohomology H2(X ,Z) of X gives rise to the uni-modular lattice L .
More precisely, we identify L with the natural embedding of H2(X ,Z) in H2(X ,Z)⊗
R, which mods out the torsion of H2(X ,Z). A characteristic element K ∈ L is an
element which satisfies l2 + B(K , l) ∈ 2Z for all l ∈ L . The Riemann–Roch theorem
demonstrates that the canonical class KX of X is a characteristic element of L . The
Wu formula furthermore shows that any characteristic vector K of L is a lift ofw2(X).

The quadratic form Q of the lattice L for a 4-manifold with (b1, b
+
2 ) = (0, 1)

can be brought to a simple standard form depending on whether Q is even or odd
[98]. This divides such manifolds into two classes, for which the evaluation of their u-
plane integrals needs to be done separately [56, 99]. The period point J ∈ H2(X ,R)

is defined as the unique class in the forward light cone of H2(X ,R) that satisfies
J = ∗J and J 2 = 1.

All four-manifolds without torsion and even intersection form admit a Spin struc-
ture. More generally, for any oriented four-manifold one can define a Spinc-structure.
The group Spinc(4) can be defined as pairs of unitary 2 × 2 matrices with coinciding
determinant,

Spinc(4) = {(u1, u2) ∈ U(2) × U(2)| det u1 = det u2}. (3.2)

There exists a short exact sequence

1 −→ U (1) −→ Spinc(4) −→ SO(4) −→ 1. (3.3)

A Spinc-structure s on a four-manifold X is then a reduction of the structure group
of the tangent bundle on X , i.e. SO(4), to the group Spinc(4). The different Spinc-
structures correspond to the inequivalent ways of choosing transition functions of the
tangent bundle such that the cocycle condition is satisfied. The Spinc-structure defines
two rank two hermitian vector bundles W±. We let c(s) be the first Chern class of the
determinant bundles, c(s) := c1(detW±) ∈ H2(X ,Z).

If s is the canonical Spinc structure associated to an almost complex structure on
X , then c(s)2 = 2χ + 3σ . More generally,

c1(s)
2 ≡ σ mod 8. (3.4)
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3.2 Topological twisting with background fluxes

Wediscuss in this section topological twisting of theories with fundamental hypermul-
tiplets including background fluxes. The discussion is parallel to the case of N = 2∗
[25], where the hypermultiplet is in the adjoint representation of the gauge group.

We let (E → X ,∇) be a principal SU(2)/Z2 ∼= SO(3)-bundle with connection
∇. The second Stiefel-Whitney class w2(E) ∈ H2(X ,Z2) measures the obstruction
to lift E to an SU(2) bundle, which will exist locally but not globally if w2(E) �= 0.
We denote a lift of w2(E) to the middle cohomology lattice L by w̄2(E) ∈ L and
define the ’t Hooft flux μ = w̄2(E)/2 ∈ L/2. The instanton number of the principal
bundle is defined as k = − 1

4

∫
X p1(E) and satisfies k ∈ −μ2 + Z, where p1 is the

first Pontryagin class.
To formulate the theories with N f fundamental hypermultiplets on a compact four-

manifold, we perform a topological twist. Coupling the four-dimensional N = 2
SU(2) theory to background fields means choosing two sets of data:

• A principal SU(2)R R-symmetry bundle, with connection ∇R ,
• and a principal bundle L with connection for global symmetries (the flavour sym-
metries) [25].

The relevant twist for the N = 2 supersymmetry algebra in four dimensions is the
Donaldson-Witten twist. This twist is the local identification of the SU(2)+ with the
diagonal subgroup of the SU(2)+×SU(2)R factor of the spin lift of the local spin group
Spin(4) ∼= SU(2)+ × SU(2)− [1]. Alternatively, one can view the fields as sections
of a non-trivial R-symmetry bundle, isomorphic to the spin bundle S+. Application
of this to the representations of the vector multiplet (2.1) and (2.4) gives:

bosons: (2, 2) ⊕ (1, 1) ⊕ (1, 1),

fermions: (2, 2) ⊕ (3, 1) ⊕ (1, 1).
(3.5)

Thus the bosons remain unchanged, a vector and a complex scalar, while the fermions
reorganise to a vector, self-dual two-form and real scalar, which we denote as ψ , χ

and η, respectively. We note that none of these fields are spinors and can thus be
considered on a non-spin four-manifold. The original supersymmetry generators also
transform in the representations for the fermions above. Thus the theory contains a
scalar fermionic supercharge Q = ε Ȧ ḂQ Ȧ Ḃ , whose cohomology provides the opera-
tors in the topological theory [1].

For the fields of a hypermultiplet, (2.3) and (2.4), one finds

bosons: (1, 2) ⊕ (1, 2),

fermions: (2, 1) ⊕ (1, 2) ⊕ (2, 1) ⊕ (1, 2).
(3.6)

Thus hypermultiplet bosons become spinors, i.e. sections of the spin bundle S+, while
the fermions are sections of S+ and S−. Thus the twisted hypermultiplets can in this
case only be formulated on four-manifolds which are spin, i.e. w2(X) = 0 [12, 16].

However, if the hypermultiplets are charged under a gauge field or flux, the product
of these bundles with S± may be a Spinc bundle, W+ or W− [16, 25, 39]. The latter
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are defined for arbitrary four-manifolds. For example, an almost complex structure on
X determines two canonical Spinc bundlesW± � S± ⊗K−1/2

X with KX the canonical
class determined by the almost complex structure. Since the hypermultiplets are in
the fundamental, two-dimensional representation of SU(2), the topologically twisted
hypermultiplets are well-defined on a non-spin four-manifold if μ = −KX/2 [12].

Let us state this also in terms of the gauge bundle E . To this end, we label the
two components of the fundamental, two-dimensional representation of SU(2) by ±.
The two components are sections of a line bundle L±1/2

E with c1(LE ) = w̄2(E).

Of course, the square root L1/2
E only exists if w2(E) ∈ 2L . On the other hand, the

physical requirement is that S+ ⊗ L1/2
E is well defined, or w̄2(X) + w̄2(E) ∈ 2 L .

Therefore, the obstructions can cancel each other for a suitable choice ofw2(E). Thus
the topological twisted theory is not well-defined for an arbitrary choice of ’t Hooft
flux μ := 1

2 w̄2(E), but rather μ has to satisfy μ = 1
2 w̄2(X) mod L [12], or

w̄2(X) = w̄2(E) mod 2 L. (3.7)

To consider more general ’t Hooft fluxes μ or equivalently w2(E), we can couple
the j’th hypermultiplet to a background flux or line bundle L j , with L j possibly

different for each j . We let E j = LE ⊗ L j . Then the requirement that S± ⊗ E±1/2
j is

globally well-defined is that

c1(E j ) ∈ w̄2(X) + 2 L, (3.8)

which can be satisfied for any w̄2(E) for a suitable choice ofL j . Thuswe can formulate
the u-plane integral for arbitrary w̄2(E), ifwe require that the backgroundfluxes satisfy

c1(L j ) ∈ w̄2(X) + w̄2(E) + 2 L, (3.9)

for each j . This is consistent with (3.7) for c1(L j ) = 0.
The Chern classes c1(L j ) can also be seen as the splitting classes of the Spin(2N f )

principal bundle L. The Chern class of L reads

c(L) =
2∑

l=0

cl(L) =
N f∏
j=1

(1 + c1(L j )). (3.10)

The scalar generators of the equivariant cohomology of Spin(2N f ) are the masses
m j , which generate the N f -dimensional Cartan subalgebra of Spin(2N f ). The gauge
bundle Ek is also Spin(2N f ) equivariant. For generic masses, the flavour group is
U(1)N f and is enhanced for special loci of the masses, for example to U(N f ) for equal
masses [11].

The Q-fixed equations are the non-Abelian monopole equations with N f matter
fields in the fundamental representation. For generic gauge group G and with repre-

123



   62 Page 24 of 53 J. Aspman et al.

sentation R, these equations read [15]

(
Fa

α̇β̇

)+ + i

2

N f∑
j=1

M̄ j
(α̇T

aM j
β̇)

= 0,

/DM j =
∑
μ

σμ DμM
j = 0,

(3.11)

where T a is a generator of the Lie algebra in the representation R. Including the sum
over matrix elements, we have

M j
(αT

aM j
β) =

∑
k,l

(M j )k(α(T a)kl(M j )lβ). (3.12)

Wedenote themoduli space of solutions to (3.11) byMQ,N f

k,L j
, and leave the dependence

on the ’t Hooft fluxμ and themetric J implicit. For N f = 4 on X = CP
2, suchmoduli

spaces are studied in [32].

The moduli spaces MQ,N f

k,L j
are non-compact for vanishing masses [24, 36, 100].

This is improved upon turning on masses and localizing with respect to the U(1)N f

flavour symmetry,M j
α → ei ϕ j M j

α , which leave the invariantQ-fixed equations (3.11).
There are two components:

• the instanton component, with F+ = 0 and M j = 0, j = 1, . . . , N f . The moduli
space for this component is denoted Mi

k . Since the hypermultiplet fields vanish,
this component is associated to the Coulomb branch.

• the abelian or monopole component, for which a U(1) subgroup of the flavour
group acts as pure gauge. Here the connection is reducible, and a U(1) subgroup
of the SU(2) gauge group is preserved. For generic masses, there are N f such
components, where M� is upper or lower triangular for some �, and M j = 0 for all
j �= �. Themoduli spaceof this component is denotedMa, j

k , j = 1, . . . , N f . Since
some of the hypermultiplet fields are non-vanishing, this component is associated
to the Higgs branch [21, 100].

The instanton componentMi
k is non-compact due to point-like instantons. This can

be cured using the Uhlenbeck compactification or algebraic-geometric compactifica-
tions. We assume that the physical path integral chooses a specific compactification,
whose details are however not manifest at the level of the low-energy effective field
theory other than that the compactification must be in agreement with the correlation
functions.

The topological twist for N = 2 supersymmetric QCD can be further made
dependent on a cocycle ζ

gauge
αβγ representing the ’t Hooft flux, and ζ s

αβγ a cocycle repre-
senting w2(X) (the cocycles are the U(1)-valued functions measuring the obstruction
of the cocycle condition for transition functions) [25].Without additional line bundles,
w̄2(X) = w̄2(E) is equivalent to the cocycle ζ

gauge
αβγ ζ s

αβγ being trivialisable.We leave it
for future work to explore whether the invariants depend on the choice of trivialisation.
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3.3 Correlation functions andmoduli spaces

The Q-fixed equations (3.11) include a Dirac equation for each hypermultiplet j =
1, . . . , N f in the fundamental representation. The corresponding index bundle W j

k

defines an element of the K -group of Mi
k . Its virtual rank rk(W j

k ) is the formal
difference of two infinite dimensions. It is given by an index theorem and reads

rk(W j
k ) = −k + 1

4
(c1(L j )

2 − σ) ∈ Z, (3.13)

where c1(L j ) is the first Chern class of the bundle L j . Note that the rhs is not an
integer for an arbitrary c1(L j ) ∈ H2(X ,Z). To verify that the rhs is integral for the

c1(L j )’s satisfying (3.9), we rewrite rk(W
j
k ) as

rk(W j
k ) = −(k + μ2) − c1(L j ) · μ + 1

4

(
(c1(L j ) + 2μ)2 − σ

)
. (3.14)

Then the first term on the rhs is an integer since k ∈ − 1
4w2(E)2 + Z for an SO(3)

bundle. The second term is an integer because c1(L j ) · μ = (w̄2(X) − 2μ) · μ

mod Z ∈ Z, and the third term is an integer using (3.4) and the fact that c1(L j ) + 2μ
equals the characteristic class of a Spinc-structure s j by (3.9),

c1(L j ) + 2μ = c(s j ), (3.15)

for each j .
The mass m j is the equivariant parameter of the U(1) flavour symmetry associated

to the j’th hypermultiplet. The equivariant Chern class of W j
k reads in terms of the

splitting class xl ,

c(W j
k ) =

−rk(W j
k )∏

l=0

(xl + m j ) = m
−rk(W j

k )

j

∑
l

cl(W
j
k )

ml
j

. (3.16)

We abbreviate cl(W
j
k ) to cl, j , and let c(Wk) = ∏N f

j=1 c(W
j
k ).

The moduli space MQ
k,μ,L j

for N f hypermultiplets corresponds to the vanishing
locus of the obstructions for the existence of N f zero modes of the Dirac operator.

As a result, the virtual complex dimension of the moduli spaceMQ
k,μ,L j

is that of the
instanton moduli space plus the sum of (typically negative) ranks of the index bundles

W j
k , vdim(MQ,N f

k,L j
) = vdim(MQ

k )N f =0 +∑N f
j=1 rk(W

j
k ) [17, 25, 31, 36]. This gives

vdim(MQ,N f

k,L j
) = (4 − N f )k + 1

4

⎛
⎝−3χ − (3 + N f )σ +

N f∑
j=1

c1(L j )
2

⎞
⎠ . (3.17)
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It is argued in [13] that the inclusion of massive matter amounts to inserting an
integral of the equivariant Euler class of the Dirac index bundle over the moduli space.
Therefore, the correlation functions are the generating functions for the intersection
numbers of the standard Donaldson observables and the Poincaré duals to the Chern
classes of the various vector bundles.

The correlation functions on X in the theory with N f massive fundamental hyper-
multiplets are conjectured to be

〈O1 . . .Op〉 =
∑
k



vdim(MQ,N f

k,L j
)

N f

∫
MQ,N f

k,L j

c(Wk) ω1 ∧ · · · ∧ ωp, (3.18)

where ωi = μ(Oi ) are the Donaldson classes associated to the physical observable
Oi , and c(M) is the Euler class of the matter bundle [101–104]. Localising to the fixed

point locus inMQ,N f

k,L j
with respect to U (1)N f gives

〈O1 . . .Op〉 =
∑
k



vdim(MQ,N f

k,L j
)

N f

×
∫
Mi

k∪Ma
k

⎛
⎝

N f∏
j=1

m
−rk(W j

k )

j

∑
l

cl, j
ml

j

⎞
⎠ ω1 ∧ · · · ∧ ωp.

(3.19)

where the integral is over the unionMi
k∪Ma

k of the instanton componentMi
k [13, Eq.

(5.13)] and the monopole component Ma
k [25, 105]. The equation together with the

dimension of the moduli spaces (3.17) demonstrates a selection rule for observables
together with powers of 
N f and m j .

In the decoupling limit mN f → ∞, 
N f → 0 (2.18), the only contribution for
j = N f is from l = 0, c0,N f = 1. The powers of m j and 
N f work out such that the
correlation functions reduce to those of the theory with N f − 1 hypermultiplets [21]

(

N f


N f −1

)−α

〈O1 . . .Op〉N f → 〈O1 . . .Op〉N f −1, (3.20)

We deduce from (3.19) that

α = vdim(MQ,N f
k ) + (4 − N f ) rk(W

N f
k )

= 1

4

(
− 3χ − 7σ + (5 − N f ) c1(LN f )

2 +
N f −1∑
j=1

c1(L j )
2
)
.

(3.21)

The overall factor can be accounted for by an overall renormalization in the decoupling
limit.
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The correlation function has a smoothmassless limitm j → 0, for which only terms
with the top Chern classes contribute. These are given by

〈O1 . . .Op〉 =
∑
k

N f∏
j=1



vdim(MQ,N f

k,L j
)

N f

∫
Mi

k∪Ma
k

cl j , j ω1 ∧ · · · ∧ ωp (3.22)

with l j = −rk(W j
k ) for each cl, j . For a non-vanishing result, the degree of ω1 . . . ωp

must equal vdim(MQ,N f

k,L j
).

By comparing the form degrees (or ghost numbers) of operators with the virtual
dimension of the moduli space, one derives selection rules for correlation functions
of point and surface operators. Since u has ghost number 4, the fugacity p naturally
has ghost number −4. Similarly, we associate ghost number −2 to the surface x. The
mass m j finally has ghost number 2. Thus correlation functions will evaluate to sums

of monomials of the form psxt
∏N f

j=1m
r j
j , with the selection rule

− 4s − 2t + 2

N f∑
j=1

r j = −vdimR(MQ,N f

k,L j
). (3.23)

4 The effective theory on a four-manifold

Weconsider in this section the low-energy effective field theory on a four-manifold.We
derive the semi-classical action of the theory coupled to background U(1) fields. As in
previous cases [12, 25, 62, 106], the final expression takes the form of a Siegel–Narain
theta series multiplied by a measure factor.

4.1 Hypermultiplets and background fields

The effective theory coupled to N f background fluxes can be modelled as that of
a theory with gauge group SU(2) × U(1)N f , where the fields of the U(1) factors
have been frozen in a special way [25, 107]. To derive the precise form, we recall
the low-energy effective Lagrangian for the r multiplets (φ J , ηJ , χ J , ψ J , F J ) of the
topologically twisted U(1)r SYM theory [108]. Since the u-plane integral reduces to
an integral over zero-modes [12], it suffices to only include the zero-modes in the
Lagrangian. For simply connected four-manifolds, there is no contribution from the
one-form fieldsψ J . The Lagrangian is then given in terms of the prepotential F({aJ })
and its derivatives to the vevs 〈φ J 〉 = aJ , as

L = i

16π
(τ̄J K F J+ ∧ FK+ + τJ K F J− ∧ FK− ) − 1

8π
yJ K DJ ∧ DK

+ i
√
2

16π
F̄J K LηJχK ∧ (D + F+)L ,

(4.1)
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with yJ K = Im(τJ K ), τJ K = ∂J ∂K F({aJ }) and FJ K L = ∂J ∂K ∂L F({aJ }). It is left
invariant by the BRST operator Q, which acts on the zero modes as

[Q, AJ ] = ψ J = 0, [Q, ψ J ] = 4
√
2daJ ,

[Q, aJ ] = 0, [Q, ā J ] = √
2iηJ ,

[Q, ηJ ] = 0, [Q, χ J ] = i(F+ − D+)J ,

[Q, DJ ] = (dψ J )+ = 0.

(4.2)

Using this operator, we can writeL as the sum of a topological, holomorphic term and
a Q-exact term,

L = i

16π
τJ K F J ∧ FK + {Q,W }, (4.3)

with

W = − i

8π
yJ Kχ J (F+ + D)K . (4.4)

The low-energy theory of SU(2) gauge theory with N f hypermultiplets coupled
to N f background fluxes can then be modelled by the above rank r description with
r = N f + 1. We identify F({aJ }) with F(a,m). We let the indices J , K run from 0
to N f and identify the index 0 with the unbroken U(1) of the SU(2) gauge group and
the indices j, k, l = 1, . . . , N f with that of the frozen U(1)N f factors. We further set
φ0 := φ for any field φ. We will proceed by using lower indices for j, k, l, except
where the summation convention is explicitly used, to avoid confusion with powers
of the fields.

The masses of the hypermultiplets are the vevs of the frozen scalar fields of the
corresponding vector multiplets,

m j√
2

= 〈φ j 〉 = a j [107]. We set [Fj ] = 4πk j with

k j = c1(L j )/2 ∈ L/2. (4.5)

To make the BRST variations of the fields from the frozen U(1) factors vanish, we
set η j = χ j = 0, as well as D j = F j

+. With these identifications, the Lagrangian
becomes

L = i

16π
τJ K F J ∧ FK + 1

8π
y00F+ ∧ F+ − 1

8π
y00D ∧ D

+ i
√
2

16π
F̄000ηχ ∧ (D + F+) + i

√
2

8π
F̄00 jηχ ∧ F j

+

+ 1

4π
y0 j (F+ − D) ∧ F j

+.

(4.6)

Integrating over D, η and χ in the standard way [12, 25, 108], we end up with

∫
dDdηdχ e− ∫

X L

= ∂

∂ ā

(
i
√
y00 B

(
F + y0 j

y00
F j , J

))
e− ∫

X L0 ,

(4.7)
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where

L0 = i

16π
τJ K F J ∧ FK + 1

8π
y00F+ ∧ F+ + y0 j

4π
F+ ∧ F j

+ + 1

8π

y0 j y0k
y00

F j
+ ∧ Fk+

= i

16π
(τ̄ F+ ∧ F+ + τ F− ∧ F−) + i

8π
(v j F− ∧ F j

− + v̄ j F+ ∧ F j
+)

+ i

16π
w jk F

j ∧ Fk + y

8π
Im(v j )Im(vk)F

j
+ ∧ Fk+, (4.8)

and we identified τ := τ00, y = Im(τ ) = y00, v j := τ0 j and w jk := τ jk . Thus the
coupling w jk is holomorphic, but the coupling v j is non-holomorphic. This is similar
to the couplings for N = 2∗ [25].

4.2 Sum over fluxes

The path integral includes a sum over fluxes k = [F]/4π ∈ L/2. After summing the
exponentiated action (4.7) over the fluxes k and multiplying by dā

dτ̄ , we find that this
takes the form

∑
k∈L+μ

∫
dDdηdχ e− ∫

X L =
⎛
⎝

N f∏
j,k=1

C
B(k j ,kk )
jk

⎞
⎠ � J

μ(τ, τ̄ , z, z̄). (4.9)

The couplings C jk are given in terms of w jk (2.12) by

C jk = e−π iw jk , (4.10)

for j, k = 1, . . . , N f . Such couplings were first put forward in [62] and were also
crucial in [25].

The term � J
μ is an example of a Siegel–Narain theta function. It reads explicitly

� J
μ(τ, τ̄ , z, z̄) = e−2π yb2+

∑
k∈L+μ

∂τ̄

(
4π i

√
yB(k + b, J )

)

× (−1)B(k,K )q−k2−/2q̄k2+/2e−2π i B(z,k−)−2π i B( z̄,k+),

(4.11)

and discussed in more detail in Appendix A.2. The elliptic variable reads in terms of
v j and k j ,

z =
N f∑
j=1

v j k j , and b = Im(z)
y

, (4.12)

thus inducing a non-holomorphic dependence on v j . Furthermore, K appearing in the
fourth root of unity (−1)B(k,K ) is a characteristic vector of L . Note that � J

μ changes

by the sign (−1)B(μ,K−K ′) upon replacing K by a different characteristic vector K ′
[12, 25, 109].
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For N f = 0, this phase can be understood as arising from integrating out massive
fermionic modes [106]. It also appears naturally in decoupling the adjoint hypermul-
tiplet in the analogous function forN = 2∗ [25]. For N f > 0, the constant part of the
couplings v j (2.12) effectively contributes to the phase, such that the total phase reads

eπ i B(k,K )

N f∏
j=1

eπ i n j B(k j ,k), (4.13)

with n j the magnetic winding numbers. For arbitrary n j ∈ Z, the phase is an eighth
root of unity. It would be interesting to understand this phase from integrating out
massive modes.

We deduce from (4.13) that the summand of � J
μ changes by a phase

eπ i(n′
j−n j )B(k j ,k) (4.14)

if the winding numbers n j are replaced by n′
j . Since k j ∈ K/2 − μ mod L (see

(3.9)) and k ∈ L +μ, this phase is 1 if n′
j − n j = 0 mod 4. We can therefore restrict

to n j ∈ Z4. For specific choices of μ and k j , the n j can lie in a subgroup of Z4.
The modular transformations of � J

μ are discussed in Appendix A.2, which are
crucial input for single-valuedness of the u-plane integrand. We will demonstrate in
Sect. 5.2 that the u-plane integrand is single-valued if we impose further constraints
on the winding numbers n j .

Finally, if the theory is considered on a curved background, topological couplings
arise in the effective field theory [106]. These terms couple to the Euler characteristic
and the signature of the four-manifold X , respectively, denoted A and B. These take
the form [12, 106],

A = α

(
du

da

)1/2

, B = β�
1/8
N f

. (4.15)

Here, �N f is the physical discriminant incorporating the singularities of the effective

theory, while du
da is the (reciprocal of) the periods of the SW curves as introduced in

Sect. 2. Both can be determined directly from the SW curve, as described in Sect. 2.3.
The prefactors α and β are independent of u, but can be functions of other moduli
such as the masses m, the dynamical scale 
N f or the UV coupling τUV. However,
it turns out that for the theories with fundamental matter they are independent of the
masses and only depend on the scale [21, 110]. They satisfy several constraints from
holomorphy, RG flow, homogeneity and dimensional analysis and can in principle be
fixed for any Lagrangian theory from a computation in the �-background [21, 23, 80,
110].

4.3 Observables and contact terms

The observables in the topologically twisted theories are the point observable or 0-
observable u, as well as d-observables supported on a d-dimensional submanifold
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of X . The d-observables are only non-vanishing if the submanifold corresponds to a
non-trivial homology class. For b1 = 0, the d-observables with d odd therefore do not
contribute.

To introduce the surface observable, let x ∈ H2(X ,Q). Then the surface observable
reads in terms of the UV fields,

I (x) = 1

4π2

∫
x
Tr

[
ψ ∧ ψ − 1√

2
φ F

]
. (4.16)

In the effective infrared theory, this operator becomes,

Ĩ (x) = i√
2π

∫
x

1

32

d2u

da2
ψ ∧ ψ −

√
2

4

du

da
(F− + D). (4.17)

Generating functions of correlation functions are obtained by inserting

e
p u/
2

N f
+ Ĩ (x)/
N f (4.18)

in the path integral. The surface observable leads to a change in the argument of the
sum over fluxes (4.11),

z → z + x
2π 
N f

du

da
, z̄ → z̄. (4.19)

and to analytically continue b (4.12) to the complex number by setting b = (z −
z̄)/(2iy).

The inclusion of the surface observable also gives rise to a contact term [2, 12, 103],
which in particular ensures that the u-plane integrand is single-valued. For 0 ≤ N f ≤
3, the contact term is exp(x2 GN f ) with [13, 22, 111]

GN f = − 1

24
2
N f

E2

(
du

da

)2

+ 1

3
2
N f

(
u + 
2

3

64
δN f ,3

)
, (4.20)

while for N f = 4 it is given by [22, 112]

GN f =4 = − 1

24
2
4

E2

(
du

da

)2

+ u

3
2
4

E2(τUV) + 1

18
2
4

�
m2

1

�
E4(τUV). (4.21)

This expression (4.20) is valid for the theories with N f arbitrary hypermultiplet
masses. The reason for it is the following [22, 74, 108]:G is guaranteed to be Q̄-closed

and hence locally holomorphic. First, notice that ∂F
∂τ0

= u
4 , where 


4−N f
N f

=: eπ iτ0 for
the asymptotically free theories (N f ≤ 3) and τ0 = τUV for N f = 4. The real part
of the exponential prefactor of � J

μ can be added to G to give a monodromy-invariant

123



   62 Page 32 of 53 J. Aspman et al.

contribution Ĝ which multiplies the intersection x2. From the action of a duality
transformation on Ĝ it can be inferred that

GN f = − 4i

π
2
N f

∂2F

∂τ 20
. (4.22)

The expression (4.20) follows by direct computation. A more general scheme to fix
the contact terms is proposed in [13]. Contact terms can also be derived from the
corresponding Whitham hierarchies [111, 113]. In the presence of surface observ-
ables, there are additional mixed contact terms ∂2F

∂τ0∂m
for the external fluxes {k j } as

encountered in [25] for the N = 2∗ theory.

5 The u-plane integral

In this section, we set up the u-plane integral schematically given in (1.2), and demon-
strate that it is well-defined on the integration domain for any μ with appropriate
background fluxes. The case μ = w̄2(X)/2 and k j = 0 was analysed in [12].

5.1 Definition of the integrand

As discussed in the previous sections, the u-plane integral on a closed four-manifold
X with (b1, b

+
2 ) = (0, 1) depends on many parameters. We summarise:

• The scale 
N f and masses m = (m1, . . . ,mN f ) of the theory. See Sect. 2.
• The magnetic winding numbers n j , j = 1, . . . , N f . See Sect. 2.2.
• The four-manifold X , in particular its signature σ = σ(X), Euler characteristic

χ = χ(X), period point J and intersection form Q. See Sect. 3.1.
• The ’t Hooft flux μ, and the external fluxes {k j } = (k1, . . . , kN f ). See Sect. 3.3.
• The fugacities for the point and surface observables p and x. See Sect. 4.3.

In terms of these parameters, the u-plane path integral reduces to the following
finite-dimensional integral over FN f (m),

�J
μ,{k j }(p, x,m,
N f )

=
∫
FN f (m)

dτ ∧ dτ̄ ν(τ ; {k j })� J
μ(τ, τ̄ , z, z̄) e

2pu/
2
N f

+x2GN f .
(5.1)

We summarise the different elements on the rhs:

• The integration domain FN f (m) in (5.1) is crucially the fundamental domain
of the effective gauge coupling. As discussed in Sect. 2.4, this domain requires
new aspects compared to integration domains for earlier discussions of u-plane
integrals. The evaluation of integrals overFN f (m)will be discussed in more detail
in Sect. 6.
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• ν is the “measure factor" [12, 13, 21, 25, 106]

ν(τ ; {k j }) = KN f

da

dτ
Aχ Bσ

N f∏
i, j=1

C
B(ki ,k j )

i j . (5.2)

It combines the topological couplings (4.15) and the couplings to the background
fluxes (4.10) with the Jacobian da

dτ of the change of variables from a to τ .
KN f is an overall normalisation factor. For N f = 0, it is fixed by matching to
known Donaldson invariants. Since χ + σ = 4, there is an ambiguity [23]

(KN f , α, β) ∼ (ζ−4KN f , ζα, ζβ), (5.3)

with α and β the u-independent prefactors in (4.15).
• The function � J

μ arises from the sum overU (1) fluxes. It is a Siegel–Narain theta
function (4.11) and discussed in detail in Sect. 4.2. The elliptic parameter z of the
Siegel–Narain theta function reads

z = x
2π 
N f

du

da
+

N f∑
j=1

v j k j ,

z̄ =
N f∑
j=1

v̄ j k j .

(5.4)

• Finally, GN f is the contact term, discussed in more detail in Sect. 4.3.

While the path integral set up in Sect. 4 integrates the exponentiated action over
the local coordinates a and ā, in (5.1) we have changed variables to τ and τ̄ . This
change of variables (a, ā) → (τ, τ̄ ) is valid as long as the Jacobian is non-singular
in the integration region. Since the coordinates a and ā are holomorphic and anti-
holomorphic, respectively, the Jacobian is diagonal and the functional determinant
accordingly reads da

dτ
dā
dτ̄ . We thus need to show that da

dτ is not singular away from
isolated points in FN f (m), which in (5.1) we remove implicitly from the integration
domain.

Using da
du = da

du
du
dτ , we can study the singular points in detail. First, it is shown in [59]

that the singularities of du
dτ are in one-to-one correspondence with the branch points.

In fact, both du
dτ = 0 and du

dτ = ∞ are realised as branch points in N = 2 SQCD. In
the following Sect. 6, we remove a small circle in FN f (m) around the branch points
and show that they do not give an extra contribution. Furthermore, the solutions to
du
da = 0 are shown to be the Argyres–Douglas (AD) points. We exclude them from the
integration region and study their contribution also in Sect. 6. Finally, we know that

η24 ∝ ( da
du

)12
�N f [59], with η the Dedekind eta-function as defined in (A.5). Since

η �= 0 and �N f does not have poles, we find that
da
du never vanishes. This agrees with

the fact that da
du is the period of a holomorphic differential and therefore is never zero.
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We conclude that the functional determinant is singular inH precisely at the branch
points and AD points; however, with the proper exclusion of those as done in the
following section, it is non-singular and the change of variables is well-defined. This
furthermore conveniently solves the problem that there is no natural integration region
in (a, ā) space [12].

5.2 Monodromy transformations of the integrand

We continue by explicitly verifying that the u-plane integral is single-valued around
the singular points of the moduli space. We find that this puts a constraint on the
magnetic winding numbers n j , in addition to the constraints on the background fluxes
k j discussed in Sect. 3.3.

Monodromy around infinity

Let us determine how the u-plane integrand transforms under the monodromy around
infinity. As a function of the effective coupling τ , the measure factor (5.2) is pro-

portional to da
dτ

( du
da

) χ
2 �

σ
8 times the product over the couplings Ci j . We take the

monodromy at infinity to be oriented as u → e2π i u and a → eπ i a, as in Sect. 2.5.
Then this path also encircles all singularities u j , which are the roots of the physical

discriminant, � = ∏N f +2
j=1 (u − u j ). We thus have that � → e2π i(N f +2)�, and hence

�
σ
8 → eπ i(N f +2)σ/4�

σ
8 (5.5)

Next, since u → e2π i u and a → eπ i a we find du
da → eπ i du

da , and therefore

(
du

da

) χ
2 → eπ iχ/2

(
du

da

) χ
2

. (5.6)

For da
dτ we have that a → eπ i a, while dτ → dτ , and thus

da

dτ
→ −da

dτ
. (5.7)

From (2.38) we recall that wi j → wi j + δi j , such that with the definition (4.10) we
find Ci j → e−π iδi j Ci j . The couplings Ci j transform in the measure factor as

N f∏
i, j=1

C
B(ki ,k j )

i j → e−π i
∑

j k
2
j

N f∏
i, j=1

C
B(ki ,k j )

i j . (5.8)

Combining (5.5), (5.6), (5.7), (5.8), and using χ = 4 − σ , we obtain

ν → −eπ i N f σ/4e−π i
∑

j k
2
j ν. (5.9)
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This phase for k j = 0 can be checked directly by taking q-expansions from the SW
curves, for generic masses.

From (2.38) we recall that under the monodromy around infinity v j → −v j − n j ,
and thus

z → −z −
N f∑
j=1

n j k j . (5.10)

For the sum over fluxes we can now deduce using (A.12) that

� J
μ

(
τ + N f − 4,−z −

N f∑
j=1

n j k j

)

= eπ i(N f −4)(μ2−μ·K ) � J
μ

(
τ,−z −

N f∑
j=1

n j k j + (N f − 4)(μ − K
2 )
)
,

(5.11)

where we suppressed the dependence on the anti-holomorphic parts. Recall from (3.9)
that

c1(L j ) ≡ K − 2μ mod 2L. (5.12)

and as such we can express k j = c1(L j )/2 as

k j = K

2
− μ + � j , � j ∈ L. (5.13)

We have then
k2j = σ

4
− K · μ + μ2 − 2μ · � j mod 2Z, (5.14)

where we used that K is a characteristic vector of L , and K 2 = σ mod 8. Using
(A.12) and substitution of (5.13) in this expression, (5.11) equals

eπ i(N f −4)(μ2−μ·K ) � J
μ

⎛
⎝τ,−z −

N f∑
j=1

n j� j + (N f − 4 +
∑
j

n j )(μ − K
2 )

⎞
⎠ .

(5.15)
Our aim is to write this as a phase times � J

μ(τ, z). The constraints on the winding
numbers should be independent of μ and k j , since the prepotential is. From (A.15),
we therefore get the first constraint

∑
j

n j = N f mod 2. (5.16)
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Using identity (A.15), 2μ2 − K · μ ∈ Z and 4(μ − K
2 ) ∈ 2L , this simplifies to

eπ i(N f −4)(μ2−μ·K )+2π iμ·∑ j n j � j−2π i(N f +∑
j n j )(μ

2−μ·K/2)
� J

μ(τ,−z)

= −eπ i N f (μ
2−μ·K )+2π iμ·∑ j n j � j−2π i(N f +∑

j n j )(μ
2−μ·K/2)

� J
μ(τ, z)

= −e−π i N f μ
2+2π iμ·∑ j n j � j−2π i

∑
j n j (μ

2−μ·K/2)
� J

μ(τ, z).

(5.17)

Finally using (5.14), we can express the phase in terms of k j ,

M∞ : � J
μ(τ, z) → −e−π i N f μ

2−π i
∑

j n j (k2j+μ2−σ/4)
� J

μ(τ, z). (5.18)

By multiplying (5.9) with (5.18), we find

ν(τ ; {k j })� J
μ(τ, z) → e−π i

∑
j (n j+1)k2j+ π i

4

∑
j (σ−4μ2)(n j+1)

ν(τ ; {k j })� J
μ(τ, z).

(5.19)
Combining (3.15) with (3.4), we have that 4(k j + μ)2 ≡ σ mod 8 for every j =
1, . . . , N f . We insert this into the second exponential of (5.19), such that

M∞ : ν(τ ; {k j })� J
μ(τ, z) → e2π iμ

∑
j (n j+1)k j ν(τ ; {k j })� J

μ(τ, z), (5.20)

and the u-plane integrand is invariant under T N f −4 if and only ifμ
∑

j (n j +1)k j ∈ Z.
Using (5.13) and the fact that K is a characteristic vector of L , we find

n j = 1 mod 2 (5.21)

for all j = 1, . . . , N f , which implies the above constraint (5.16).

MonodromyMj

Let us determine how the integrand transforms under the monodromy Mj around
the mass singularity m j/

√
2. Since the mass singularity corresponds to a singularity

u j on the u-plane, we have that (u − u j ) → e2π i (u − u j ). This implies that � =
(u − u j )

∏2+N f
i �= j (u − ui ) → e2π i�, such that �

σ
8 → eπ iσ/4�

σ
8 . The transformation

of da
du can be determined from (2.23): While u → u j , both g2 and g3 remain finite

and nonzero (otherwise u j would be an AD point). This implies that g3
g2

contains no

factors of (u−u j ), and thus du
da → du

da . Similarly, we have that da
dτ → da

dτ . From (2.40)
we finally have that wik → wik + δi jδik . We combine

M j : ν → eπ iσ/4e−π ik2j ν. (5.22)
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For the monodromy around the mass singularity m j/
√
2, we find for � J

μ with
(A.12)

� J
μ(τ + 1, z − k j ) = eπ i(μ2−μ·K )� J

μ(τ, z − � j )

= eπ i(μ2−μ·K )+2π i B(μ,� j ) � J
μ(τ, z)

= e−π iσ/4+π ik2j � J
μ(τ, z).

(5.23)

The phases thus cancel precisely,

M j : ν(τ + 1)� J
μ(τ + 1, z − k j ) = ν(τ)� J

μ(τ, z), (5.24)

without any constraints.

MonodromyMm

For the monopole singularity in N f = 1 we find that

� J
μ( τ

−τ+1 ,
vk1+(n+1)/2 τ k1

−τ+1 ) = eπ i(n+1) v
−τ+1 k

2
1+π i (n+1)2

4
τ

−τ+1 k
2
1 (−1)(n+1)k1·K/2

× � J
μ+(n+1)k1/2(

τ
−τ+1 ,

vk1−τ+1 ),

(5.25)
where we have used (A.16). Then using (A.13), we arrive at

� J
μ( τ

−τ+1 ,
vk1+(n+1)/2 τ k1

−τ+1 )

= (−τ + 1)b2/2(−τ̄ + 1)2 eπ i(n+1)k1·K/2−(n+1)2k21/4 e−π iσ/4

× exp

[
π i

(v + (n + 1)/2)2

−τ + 1
k21

]
� J

μ+(n+1)k1/2(τ, z).

(5.26)

Since� J
μ is required to transform to itself up to an overall factor, we must demand that

(n+1)k1/2 ∈ L . Therefore for k1 ∈ L/2, we find the requirement that n = −1 ∈ Z4.
This simplifies the transformations considerably, and we find

� J
μ(τ, z) → (−τ + 1)b2/2(−τ̄ + 1)2e−π iσ/4eπ ik21

v2
−τ+1 � J

μ(τ, z). (5.27)

The k j -independent part of the measure factor transforms precisely as underM j (see
(5.22)), as the same argument holds. However, due to the transformation τ → τ

−τ+1 ,
the measure also picks up its modular weight σ

2 + 1. From (2.43) we furthermore find
the transformation of C11, such that

ν(τ, k1) → eπ iσ/4e−π ik21
v2

−τ+1 (−τ + 1)
σ
2 +1ν(τ, k1), (5.28)
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where we have already used n = −1 ∈ Z4. If we multiply (5.27) and (5.28) with
dτ ∧ dτ̄ (which has modular weight (−2,−2)), then

Mm : dτ ∧ dτ̄ ν(τ, k1)� J
μ(τ, z) → dτ ∧ dτ̄ ν(τ, k1)� J

μ(τ, z), (5.29)

where we have used σ + b2 = 2. Thus, the u-plane integrand is also invariant under
Mm .

For N f > 1 we find the same condition, namely that n j = −1 mod 4 for all j .

MonodromyMd

Given the relation (2.41), it is not necessary to explicitly check single-valuedness of
the integrand under this monodromy, as it is a product of the above monodromies.

To conclude this section, let us stress the constraints for the winding number n j , such
that the u-plane integral is invariant under all monodromies in N f ≤ 3. To this end,
we need to satisfy the constraints n j = 1 mod 2 (5.21) from M∞, and n j = −1
mod 4 forMm . Since the latter is the stronger constraint, we require

n j = −1 mod 4, (5.30)

for all j = 1, . . . , N f .

6 Integration over fundamental domains

As discussed in Sects. 2 and 5, u-plane integrals for massiveN = 2 theories with fun-
damental hypermultiplets include new aspects. This section discusses how to evaluate
such integrals (5.1). More concretely, we aim to define and evaluate integrals of the
form

I f =
∫
F(m)

dτ ∧ dτ̄ y−s f (τ, τ̄ ), (6.1)

with s ≤ 1. The domain F(m) is the fundamental domain for the effective cou-
pling constant as discussed in Sect. 2.4, and f a non-holomorphic function of weight
(2 − s, 2 − s) arising from the topologically twisted Yang–Mills theory. For F(m) a
fundamental domain of a congruence subgroup, such integrals (6.1) have been studied
in the context of theta lifts of weakly holomorphic modular forms and harmonicMaass
forms [114–116] as well as one-loop amplitudes in string theory [117–119].

We assume that the integrand y−s f (τ, τ̄ ) can be expressed as

∂τ̄ ĥ(τ, τ̄ ) = y−s f (τ, τ̄ ), (6.2)

for a suitable function ĥ(τ, τ̄ ) using mock modular forms. This was indeed the case in
[25, 54, 55] and will be demonstrated for massive N = 2 theories with fundamental
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hypermultiplets. The integral I f then reads

I f = −
∫

∂F(m)

dτ ĥ(τ, τ̄ ), (6.3)

with ∂F(m) the boundary of F(m). We will carry this out evaluation in Part II [99].
There are a number of aspects to be addressed in order to evaluate integrals over

F(m):

1. Identifications of boundary components of F(m) due to monodromies on the u-
plane.

2. Contributions from the cusps, that is τ → i∞ or τ → γ (i∞) ∈ Q for an element
γ ∈ PSL(2,Z).

3. Contributions from a singular point in the interior of F(m).
4. Contributions from an elliptic point p ∈ H of PSL(2,Z).
5. Branch points and branch cuts.

We will discuss these aspects 1.–5. in the following.

1. Identifications
The modular transformation induced by monodromies identifies components of the
boundary of the fundamental domain ∂F(m) pairwise. Their contributions to the
integral (6.3) vanish, which is, for example, familiar from deriving valence formulas
for modular forms [120, Fig. 2]. See Fig. 4 for an example.

2. Cusps
Contributions near the cusps require a regularisation [12, 55]. Such regularisations
have been developed in the context of string amplitudes [117–119] and analytic number
theory [120–122].

Let us first consider the cusp τ → i∞. To regularise the divergence, one introduces
a cut-off Im τ = Y � 1, and takes the limit Y → ∞ after evaluation. We require that
f near i∞ has a Fourier expansion of the form5

f (τ, τ̄ ) =
∑

m�−∞,n≥0

c(m, n) qm q̄n . (6.4)

Then the function ĥ has the form,

ĥ(τ, τ̄ ) = h(τ ) + 2s
∫ i∞

−τ̄

f (τ,−v)

(−i(v + τ))s
dv, (6.5)

where h(τ ) is a weakly holomorphic q-series, with expansion

h(τ ) =
∑

m�−∞
d(m) qm . (6.6)

5 Also if f does not satisfy this requirement, the integral can be regularised as explained in [55, 122]. We
do not need this regularisation for the correlators in this paper.
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The cusp τ → i∞ then contributes

[I f
]
∞ = w∞ d(0), (6.7)

with d(0) the constant term of h(τ ) (6.6), and w∞ the width of the cusp F(m) at i∞.
For N f ≤ 3, w∞ is 4 − N f [59].

The other cusps can be treated in a similar fashion using modular transformations.
We label the nc cusps in F(m) by j = 1, . . . , nc. If the cusp is on the horizontal
axis at − d j

c j
∈ Q with relative prime (c j , d j ) ∈ Z

2, we can map the cusp to i∞ by a
modular transformation

γ j =
(
a j b j

c j d j

)
. (6.8)

We let τ j = γ jτ . Then the holomorphic part h j (τ j ) of (c jτ + d j )
−2 ĥ(γ τ j , γ τ̄ j ) can

be expanded for τ near − d j
c j

as

h j (τ j ) =
∑

d j (n) qnj , q j = e2π iτ j . (6.9)

As a result, the cusp j contributes

[I f
]
j = w j d j (0). (6.10)

3. Singular points in the interior of F(m)

The integrand can be singular at a point τs in the interior of F(m). Such singularities
appear typically for deformations of superconformal theories, such as the N = 2∗
theory and the N f = 4 theory, where the UV coupling τUV gives rise to such a sin-
gularity [25, 61]. See Fig. 8 for an example. We require that the expansion of f near
such a singularity reads,

f (τ, τ̄ ) =
∑

m�−∞,n≥0

cs(m, n) (τ − τs)
m (τ̄ − τ̄s)

n . (6.11)

Then, the anti-derivative ĥ(τ, τ̄ ) has similar expansion,

ĥ(τ, τ̄ ) =
∑

m�−∞,n≥0

ds(m, n) (τ − τs)
m (τ̄ − τ̄s)

n . (6.12)

The contour integral for a small contour around τs,

Cε(τs) =
{
τ = τs + ε eiϕ, ϕ ∈ [0, 2π)

}
, (6.13)
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is bounded for such a function. Moreover, in the limit ε → 0, the contour integral is
finite. We define the “residue” of a non-holomorphic function g(τ, τ̄ )

nRes
τ=τs

[g(τ, τ̄ )] = 1

2π i
lim
ε→0

∮
Cε(τs)

g(τ, τ̄ ) dτ. (6.14)

For the expansion (6.11) this evaluates to

[I f
]
s = 2π i nRes

τ=τs

[̂
h(τ, τ̄ )

] = ds(−1, 0), (6.15)

with ds(−1, 0) the coefficient in the expansion (6.12).

4. Elliptic points
For N = 2 QCD, AD points are the elliptic points of the duality group, and lie on
the boundary of F(m). See Fig. 7 for an example. The elliptic points are α = eπ i/3

and i , and their images under PSL(2,Z). Contour integrals around such points can be
regularised using a cut-off ε. We assume that the anti-derivative ĥ has the following
expansion near an elliptic point τe,

ĥ(τ, τ̄ ) =
∑

m�−∞,n≥0

de(m, n) (τ − τe)
m (τ̄ − τ̄e)

n . (6.16)

As a result, the boundary arc around τAD in H is a fraction of 2π , which needs to
be properly accounted for. These neighbourhoods have an angle 2π

ke
, with ke = 2 for

τe = i , and ke = 6 for τe = α [123]. Furthermore, it is important how many images
of F in F(m) coincide at the elliptic point. We denote this number by ne. ForN = 2
SQCD, we found examples with ne = 2 and 4 for τe ∼ α, while for τe ∼ i , ne = 1
[59]. The contribution from an elliptic point is then,

[I f
]
e = 2π i

ne
ke

nRes
τ=τe

[̂
h(τ, τ̄ )

] = ne
ke

de(−1, 0), (6.17)

5. Branch points and cuts
Branch points and cuts are a newaspect compared to previous analyses (see for instance
Figs. 4, 5). We will demonstrate that their contribution vanishes for the integrands of
interest.

We assume that the integrand f satisfies

ĥ(τ, τ̄ ) = (τ − τbp)
n g(τ, τ̄ ), (6.18)

with n ∈ Z/2 and n ≥ −1/2, g(τ, τ̄ ) being a real analytic function near τbp. This
assumption is satisfied for the twisted Yang–Mills theories [99]. To treat this type of
singularity, we remove a δ neighbourhood and analyse the δ → 0 limit. Let Cδ be the
contour

Cδ = {τbp + δ eiθ | θ ∈ (0, 2π)} (6.19)
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around τbp with radius δ > 0. Therefore, on the contour |y−s f | is bounded by

|̂h| ≤ δn K (6.20)

for some K > 0. The integral around the branch point therefore vanishes in the limit,

Ibp
f = lim

δ→0

∫
Cδ

ĥ |dτ | ≤ lim
δ→0

∫ 2π

0
δn K δ dθ

= lim
δ→0

2πK δn+1 = 0.
(6.21)

The branch points necessarily give rise to branch cuts. For the purpose of integration,
we remove a neighbourhood with distance r from the cut and take the limit r → 0
after determining the integral. Since the value of the integrand is finite near the branch
cut, the contribution to the integral vanishes.

Summary
Combining all the contributions discussed above, we find

I f =
n∑
j=1

w j d j (0) +
∑
s

ds(−1, 0) +
∑
e

ne
ke

de(−1, 0). (6.22)

This formula generalises [12] for the pure N f = 0 theory on a smooth four-manifold
X that admits a metric of positive scalar curvature, [56, Equation (5.10)] for the pure
theory on generic X , [25, Equation (4.88)] for the N = 2∗ theory on X , and [50] for
the massless N f = 2 and N f = 3 theories on X = CP

2.

AModular forms

In this Appendix, we collect some properties of modular forms for subgroups of
PSL(2,Z). For further reading, see [120, 123–127].

A.1 Theta functions and Eisenstein series

We make use of modular forms for the congruence subgroups �0(n) and �0(n) of
PSL(2,Z). These subgroups are defined as

�0(n) =
{(

a b
c d

)
∈ SL(2,Z)

∣∣ c ≡ 0 mod n

}
,

�0(n) =
{(

a b
c d

)
∈ SL(2,Z)

∣∣ b ≡ 0 mod n

}
,

(A.1)

and are related by conjugation with the matrix diag(n, 1). We furthermore define the
principal congruence subgroup �(n) as the subgroup of SL(2,Z) � A with A ≡ 1
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mod n. A subgroup � of SL(2,Z) is called a congruence subgroup if it contains �(n)

for some n ∈ N.
The above-introduced congruence subgroups host a number of interesting modular

forms. The Jacobi theta functions ϑ j : H → C, j = 2, 3, 4, are defined as

ϑ2(τ ) =
∑

r∈Z+ 1
2

qr
2/2, ϑ3(τ ) =

∑
n∈Z

qn
2/2, ϑ4(τ ) =

∑
n∈Z

(−1)nqn
2/2,

(A.2)

with q = e2π iτ . These functions transform under T , S ∈ SL(2,Z) as

S :
ϑ2(−1/τ) = √−iτϑ4(τ ),

ϑ3(−1/τ) = √−iτϑ3(τ ),

ϑ4(−1/τ) = √−iτϑ2(τ ),

T :
ϑ2(τ + 1) = e

π i
4 ϑ2(τ ),

ϑ3(τ + 1) = ϑ4(τ ),

ϑ4(τ + 1) = ϑ3(τ ).

(A.3)

They furthermore satisfy the Jacobi abstruse identity

ϑ4
2 + ϑ4

4 = ϑ4
3 . (A.4)

The Dedekind eta function η : H → C is defined as the infinite product

η(τ) = q
1
24

∞∏
n=1

(1 − qn), q = e2π iτ . (A.5)

It transforms under the generators of SL(2,Z) as

S : η(−1/τ) = √−iτ η(τ),

T : η(τ + 1) = e
π i
12 η(τ),

(A.6)

and relates to the Jacobi theta series as η3 = 1
2ϑ2ϑ3ϑ4.

Eisenstein series

We let τ ∈ H and define q = e2π iτ . Then the Eisenstein series Ek : H → C for even
k ≥ 2 are defined as the q-series

Ek(τ ) = 1 − 2k

Bk

∞∑
n=1

σk−1(n) qn, (A.7)

where Bk are the Bernoulli numbers and σk(n) = ∑
d|n dk is the divisor sum. For

k ≥ 4 even, Ek is a modular form of weight k for SL(2,Z). Any modular form for
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SL(2,Z) can be related to the Jacobi theta functions (A.2) by

E4 = 1

2
(ϑ8

2 + ϑ8
3 + ϑ8

4 ), E6 = 1

2
(ϑ4

2 + ϑ4
3 )(ϑ4

3 + ϑ4
4 )(ϑ4

4 − ϑ4
2 ). (A.8)

With our normalisation (A.7), the j-invariant can be written as

j = 1728
E3
4

E3
4 − E2

6

= 256
(ϑ8

3 − ϑ4
3ϑ4

4 + ϑ8
4 )3

ϑ8
2ϑ8

3ϑ8
4

. (A.9)

A.2 Siegel–Narain theta function

Let L be an n-dimensional uni-modular lattice with signature (1, n − 1). For the
application to the u-plane integral, n = b2(X). Let K be a characteristic vector of L .
Its defining property is l2 = l · K mod 2 for every l ∈ L . Furthermore, we have that
μ ∈ L/2.

We consider the Siegel–Narain theta function � J
μ : H × C → C defined in the

main text in (4.11). We repeat it here for convenience,

� J
μ(τ, τ̄ , z, z̄) = e−2π yb2+

∑
k∈L+μ

∂τ̄

(
4π i

√
yB(k + b, J )

)

× (−1)B(k,K )q−k2−/2q̄k2+/2e−2π i B(z,k−)−2π i B( z̄,k+),

(A.10)

where J is a normalized positive vector in L ⊗ R, k+ = B(k, J ) J , k− = k − k+
and b = Im(z)/y. The transformations under the generators S and T of PSL(2,Z) are
most easily determined if we shift μ → μ + K/2. One finds [54, 56]

S : � J
μ+K/2(−1/τ,−1/τ̄ , z/τ, z̄/τ̄ ) = −i(−iτ)n/2(i τ̄ )2

× e−π i z2/τ+π i K 2/2 (−1)B(μ,K ) � J
K/2(τ, τ̄ , z − μ, z̄ − μ),

T : � J
μ+K/2(τ + 1, τ̄ + 1, z, z̄) =

eπ i(μ2−K 2/4) � J
μ+K/2(τ, τ̄ , z + μ, z̄ + μ).

(A.11)

Using these transformations, one finds for the periodicity in τ ,

� J
μ(τ + 1, τ̄ + 1, z, z̄) = eπ i(μ2−B(μ,K ))� J

μ(τ, τ̄ , z + μ − K/2, z̄ + μ − K/2)
(A.12)

and for S−1T−k S = (
1 0
k 1

)
,

� J
μ

(
τ

kτ+1 ,
τ̄

kτ̄+1 ,
z

kτ+1 ,
z̄

kτ̄+1

)
= (kτ + 1)

n
2 (kτ̄ + 1)2e− π ik z2

kτ+1 e
π i
4 kK 2

� J
μ(τ, τ̄ , z, z̄).

(A.13)
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We furthermore list the following transformations for z:

• For the reflection z → −z,

� J
μ(τ, τ̄ ,−z,−z̄) = −e2π i B(μ,K ) � J

μ(τ, τ̄ , z, z̄). (A.14)

• For shifting z → z + ν with ν ∈ L ,

� J
μ(τ, τ̄ , z + ν, z̄ + ν) = e−2π i B(ν,μ) � J

μ(τ, τ̄ , z, z̄). (A.15)

• For shifting z → z + ντ with ν ∈ L ⊗ R,

� J
μ(τ, z + ντ) = e2π i B(z,ν)qν2/2(−1)−B(ν,K ) � J

μ+ν(τ, τ̄ , z, z̄). (A.16)

We can restrict to ν ∈ L/2, if the characteristic μ + ν is required to be in L/2.

B ClassS representation

A different parametrisation of the SW curves (2.17) is the class S representation. This
representation gives the SW differential in a canonical form

λ2 = pN f (z, u,
N f ,m)dz2, (B.1)

where the Laurent polynomials pN f read [85, Sect. 10]

p0 = 
2
0

z3
+ 2u

z2
+ 
2

0

z
,

p1 = 
2
1

z3
+ 3u

z2
+ 2
1m

z
+ 
2

1,

p2 = 
2
2

z4
+ 2
2m1

z3
+ 4u

z2
+ 2
2m2

z
+ 
2

2.

(B.2)

The corresponding elliptic curves can be found as x2 = z4 pN f , which is quartic for
N f = 0, 1 and cubic for N f = 2. By comparing invariants of the SW curves (2.17)
with those of the class S curve (B.1), one finds the dictionary

N f = 0 : uS = uSW,

N f = 1 : uS = 4

3
uSW, mS = 2mSW,

N f = 2 : uS = 4uSW, mS,i = 4mSW,i .

(B.3)

These relations merely amount to a rescaling of the parametrisation of the Coulomb
branch and in particular leave its geometry invariant. For this reason, we proceed above
with using the SW curves (2.17).
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CWinding numbers

In this Appendix, we discuss the winding numbers appearing in (2.7) in some more
detail. As mentioned in Sect. 2.2, generally the theory admits N f electric winding
numbers and N f magnetic winding numbers.While in the main text we set the electric
winding numbers to zero, in this Appendix we keep the possibility open for them to
be nonzero.

The N = 2 supersymmetry algebra requires that the central charge Z is a linear
combination of conserved charges. The U(1) conserved charges Si of the hypermulti-
plets must appear in Z as follows [11],

Z = nmaD + nea +
N f∑
j=1

S j
m j√
2
. (C.1)

We note that Z is an inner product of periods (aD, a, 1√
2
m) and conserved charges

(nm, ne, S). The periods are given by contour integrals

a =
∫

γ1

λ, aD =
∫

γ2

λ, (C.2)

where γ1, γ2 generate H1(E,Z), and λ is a meromorphic 1-form, the SW differential.
In massive SQCD, λ has poles with nonzero residues. If the contours γi are deformed
across poles of λ, then a and aD pick up contributions from the residues. By invariance
of (C.1), these jumps are linear combinations of the masses,

N f∑
j=1

�S j
m j√
2
, (C.3)

i.e. the global charges of the hypermultiplets are shifted as S j → S j +�S j . From the
residue theorem, the shift in the periods gives

2π i

N f∑
i=1

niRes(λ, xi ), (C.4)

where xi are the N f poles of λ, and ni ∈ Z are the winding numbers of the con-
tour deformation. Since both aD and a are given by contour integrals of the same
differential, a deformation of either γ1 or γ2 or both results in such a shift.

Example. In order to see how ni and �S j are related, let us study N f = 2 as an
example. In N f = 2, the S j are integers for fundamental particles and half-integers
for monopoles [11]. The two poles of λ are x± = ± 1

8

2
2, with residue [11, (15.4)]

2π iRes(λ, x±) = ±m1 + m2

2
√
2

. (C.5)
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Then,
2∑
j=1

�S j
m j√
2

= 2π i
2∑

i=1

niRes(λ, xi ) =
2∑
j=1

n1 − n2
2

m j√
2
, (C.6)

such that �S j = n1−n2
2 ∈ Z/2 for both j = 1, 2. Constraints on the ni entail

constraints on the change �S j . For instance, if both n1 and n2 are odd, or if both are
even, then �S1 and �S2 are integers. In the main text of this paper, we find such a
constraint.

For generic N f ≤ 3, by construction of the SW curves the residues of λ are linear
combinations of the masses

2π iRes(λ, xi ) =
N f∑
j=1

li j
m j√
2
, (C.7)

with i = 1, . . . , N f , and li j ∈ Z/2 [11, (17.1)]. Then we can compute

N f∑
j=1

�S j
m j√
2

= 2π i

N f∑
i=1

niRes(λ, xi ) =
N f∑
i=1

N f∑
j=1

ni li j
m j√
2

=
N f∑
j=1

m j√
2

N f∑
i=1

li j ni .

(C.8)
We find that the change in the abelian global charges �S j is given by a half-integral
linear combination of winding numbers,

�S j =
N f∑
i=1

li j ni . (C.9)

In order to relate the winding numbers ni to those for the periods ai and aD,i as
found in [63], we can expand

MOhta∞ : aD → −aD + (4 − N f )a − 1√
2

(
naDN f

naN f

− 4 − N f

2

) N f∑
j=1

najm j , (C.10)

with naj being the coefficients of − 1
2
√
2
m j in the constant term of a, and similarly naDj

those for aD [63, (5.2)]6. We are aiming to compare this to (2.36),

M∞ : aD → −aD + (4 − N f )a − 1√
2

N f∑
j=1

n jm j . (C.11)

6 In [63], the naj are called n j and n
aD
j are called n′

j .
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Since in (C.10) we divide and multiply by naj , we cannot directly relate the two
expressions by setting naj = 0. However, if we relate first

naj =
naN f

naDN f

naDj , j = 1, . . . N f − 1, (C.12)

then we find

MOhta∞ : aD → − aD + (4 − N f )a − 1√
2

N f∑
j=1

(
naDj − 4 − N f

2
naj

)
m j .

(C.13)
In this case, it is well-defined to set naj = 0, such that the action of MOhta∞ and M∞
coincide for n j = naDj , as anticipated.

The N f −1 condition (C.12) reproduces the constraints on the winding numbers in
[63, (5.3)]: For N f = 1, the condition is empty. For N f = 2, it agrees precisely with
Ohta. For N f = 3 finally, the N f − 1 = 2 equations (C.12) are equivalent to those
found in [63]. It seems however that our result naj = 0, naDj = −1 (5.30) is merely one

particular of the infinitely many solutions to the geometric constraint (C.12).7 Thus
it appears that the formulation of the theory on a compact four-manifold introduces
further constraints. It would be interesting to understand whether it is possible to
introduce non-vanishing electric winding numbers in the u-plane integral, andwhether
this leads to different correlation functions.
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