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Abstract
In this paper, we present the connection of two concepts as induced representation and
partially reduced irreducible representations (PRIR) appear in the context of port-based
teleportation protocols. Namely, for a given finite group G with arbitrary subgroup H ,
we consider a particular case of matrix irreducible representations, whose restriction
to the subgroup H , as a matrix representation of H , is completely reduced to diagonal
block form with an irreducible representation of H in the blocks. The basic properties
of such representations are given. Then as an application of this concept, we show that
the spectrum of the port-based teleportation operator acting on n systems is connected
in a very simple way with the spectrum of the corresponding Jucys–Murphy operator
for the symmetric group S(n − 1) ⊂ S(n). This shows on the technical level relation
between teleporation and one of the basic objects from the point of view of the repre-
sentation theory of the symmetric group. This shows a deep connection between the
central object describing properties of deterministic PBT schemes and objects appear-
ing naturally in the abstract representation theory of the symmetric group. In particular,
we present a new expression for the eigenvalues of the Jucys–Murphy operators based
on the irreducible characters of the symmetric group. As an additional but not triv-
ial result, we give also purely matrix proof of the Frobenius reciprocity theorem for
characters with explicit construction of the unitary matrix that realizes the reduction
in the natural basis of induced representation to the reduced one.
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1 Introduction

Port-based teleportation (PBT) [1, 2] is a remarkable protocol possessing a counter-
intuitive emanating in that the teleported state requires no unitary correction and is
ready for use after the sender performs ameasurement and sends classical communica-
tion. No-unitary correction property has attracted wide attention from the community
resulting in intensive research in the field of the PBT resulting in the development
of quantum information theory. First, the PBT scheme offers a model of a universal
programmable quantum processor [1], it gives a connection with quantum cryptogra-
phy and instantaneous non-local computation [3]. PBT protocols were instrumental
in establishing a link between interaction complexity and entanglement in non-local
computation and holography [4], between quantumcommunication complexity advan-
tage and a violation of a Bell inequality [5], deriving fundamental bounds for quantum
channels discrimination by designing PBT stretching protocols [6], and many other
interesting results [7–9]. Describing the efficiency of the PBT protocol was a very
complex task and for a long time satisfactory description, in particular, a description
in higher dimensions and asymptotic behavior was missing. Difficulties came mostly
from the point of view of mathematical methods andmuch effort was put into optimiz-
ing the protocol and its variants by developing a proper mathematical tool-kit [10–16]
and recently in [17].

In this paper, we start from Sect. 2 with a general description of the basic properties
of PBT operator, an object crucial for describing the efficiency of the deterministic
PBT.We shortly remind its connection with the representation theory of the symmetric
group. In particular, we focus on the aspect of the occurrence of induced representation
and connection of the PBT operator with Jucys–Murphy elements and partial transpo-
sition. We focus here also on the case of the multi-port-based teleportation protocols
[18] where we have to consider many layers of the induction process. Next, in Sect. 3
we on the above-mentioned connection more formal. We present rigorously the con-
cept of Partially Reduced Irreducible Representations (PRIRs)—a notion related to
subgroup-adapted basis [19]—andwe discuss their properties and their role in induced
representation. As an application of developed techniques, we show how the spectrum
of famous Jucys–Murphy elements [20, 21] acting on n −1 systems is connected with
the spectrum of the PBT operator acting on n systems. In particular, in Corollary 11
we present new expressions for the spectrum of the Jucys–Murphy of the symmetric
group by use of the irreducible characters. In this regard in Proposition 9, we present
fully analytical expressions for the mentioned eigenvalues, in the natural represen-
tation of the Jucys–Murphy elements, when the dimension of the underlying space
is 2. This is possible, since then we have analytical expressions for corresponding
irreducible characters which are labeled by Young frames with up to two rows, see
Lemma 8. In the same section, we also contain, up to our best knowledge, a completely
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unknown previously orthogonality relation. It is contained in Proposition 3. Finally,
we present purely matrix proof of the celebrated Frobenius reciprocity theorem for
characters which was not known earlier in the literature. As an additional result, we
give the explicit form of the unitary matrix U (β) which realizes the reduction in the
natural basis of induced representation to the reduced one. These results are contained
in Theorem 1, preceded by auxiliary considerations.

2 From PBT operator to induced representation and PRIR

In this section, we will show (based on our previous papers) how the two concepts: the
induced representation and PRIR appears in the context of port-based teleportation.
We shall then show how this leads to the proof of the Frobenius reciprocity theorem
for a subgroup of the symmetric group.

2.1 Algebra of the symmetric group and partial transposition

For the symmetric group S(n), we can define its natural representation V n
d : S(n) →

(Cd)⊗n by the following action on the set of basis vectors {|i〉}d
i=1, where d stand for

the local dimension:

∀σ ∈ S(n) V n
d (σ ).|i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |in〉 = |iσ−1(1)〉 ⊗ |iσ−1(2)〉 ⊗ · · · ⊗ |iσ−1(n)〉.

(1)

The representation V n
d (S(n)) is defined in a given basis of the space C

d , so it is a
matrix representation, and operators V n

d (σ ) just permute basis vectors according to
the given permutation σ . Whenever the numbers n, d are clear from the context, we
will write just simply V (σ ) instead of V n

d (σ ) to simplify the notation.
For later purposes, we can introduce a matrix algebra Ad(n) spanned by the oper-

ators V (σ ) as follows:

An(d) := spanC{V (σ ) | σ ∈ S(n)}. (2)

The abovematrix algebra is just a natural representation of an abstract algebraC[S(n)]
of the symmetric group S(n). Having definition of the group algebraC[S(n)] in Eq. (2),
we can naturally introduce the algebra of partially transposed operators with respect
to the last subsystem Atn

n (d) in the following way:

Definition 1 For An(d) := spanC{V (σ ) : σ ∈ S(n)} we define a new complex
algebra

ATn
n (d) := spanC{V Tn (σ ) | σ ∈ S(n)}, (3)

where the symbol Tn denotes the partial transpositionwith respect to the last subsystem
in the space Hom((Cd)⊗n).
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Fig. 1 The left-hand side graphic presents an element from the walled Brauer algebra Bδ
3,2. On the right-

hand side, we illustrate the composition of two diagrams σ, π ∈ Bδ
3,2. When we identify a closed loop (red

color), we multiply the resulting diagram by a scalar δ ∈ C. We see that the resulting composition σπ also
belongs to Bδ

3,2

Fig. 2 Graphic presents the procedure of partial transposition T34 applied to a diagram from Bδ
3,2. Notice

that the resulting diagram is no longer an element of Bδ
3,2. The resulting diagram is an element of Brauer

algebra Bδ
3+2 introduced in [27] and graphically represents permutation from S(3+2) = S(5). The walled

Brauer algebra Bδ
p,q is subalgebra of the Brauer algebra Bδ

p+q . We can say that π ∈ Bδ
p+q if and only if

πT ∈ S(p + q)

Definition 1 can be extended to a larger number of partial transpositions, see for
example [17, 18]. The considered algebraATn

n (d) is in fact a matrix representation of
a diagram algebra called walled Brauer algebra Bδ

p,q , where p, q ≤ 0, p +q = n, and
δ ∈ C, introduced and analyzed in an abstract way in [22–26]. The abstract algebra
Bδ

p,q is composed of formal combinations of diagrams. Each diagram has two rows
with p + q nodes, associated with a vertical wall between the first p and the last q
nodes. These nodes are connected up in pairs in such a way that:

1. if both nodes are in the same row, they must lie on different sides of the wall,
2. if both nodes are in different rows, they must lie on the same side of the wall.

We illustrate the above construction with the notion of composition of such diagrams
in Fig. 1. For any diagram from Bδ

p,q , the partial transposition T can be understood by
exchanging the nodes on the right-hand side of the wall. This procedure is illustrated
in Fig. 2. To get matrix representation (3) we set p = n − 1, q = 1, and δ = d. In
this case of two systems the following relation between transposition V ((1, 2)) and
unnormaalised projector on maximally entangled state P+ = |φ+〉1,2〈φ+| between
systems 1 and 2:

V T2((1, 2)) = d P+, V T2((1, 2))V T2((1, 2)) = dV T2((1, 2)) = d P+, (4)
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Fig. 3 Graphic illustrates on the diagram-level relation given in Eq. (4). This is a special case of the walled
Brauer algebra Bδ

p,q with p = q = 1 and δ = d, where d is the local dimension

where |φ+〉 = ∑d
i=1 |i1〉|i2〉. This relation will be exploited extensively in the further

parts of this manuscript. This particular case is illustrated on the diagram level also in
Fig. 3.

2.2 PBT operator and induced representation

One of the key ingredients of most of the results on port-based teleportation was
understanding an operator that can be called PBT operator. For standard port-based
teleportation it acts on n = N + 1 systems, where N is the number of shared ports,
and it is of the form:

ρ =
N∑

a=1

V ((a, N ))
(
1⊗N−1 ⊗ P+

)
V ((a, N )), (5)

where V (σ ) is the operator that permutes systems according to permutation σ , P+ =
|φ+〉N ,N+1〈φ+| is unnormalized projector on the unnormalized maximally entangled
state between systems N and N + 1,

|φ+〉 =
d∑

i=1

|i〉N |i〉N+1, (6)

and 1⊗N−1 is the identity operator on rest of the systems.
For generalization of the port-based teleportation for sending composite quantum

systems [11, 28–30] the relevant operator is a direct generalization of the above one:

ρ = 1

(N − l)!
∑

σ∈S(N )

V (σ )
(
1⊗N−l ⊗ P⊗l+

)
V (σ−1), (7)

where l is the number of systems to be teleported, and S(N ) is the symmetric group
over N elements. From Fig. 4 it is easy to see on what systems identities and are acting.
The factor 1/(N − l)! is to remove overcounting.

Thus the operator ρ is sum of operators, for which N − l systems are identity, while
the other 2l are occupied by maximally entangled states. In [14] it was noted that the
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Fig. 4 For l = 1 the operator ρ is a sum of the depicted operators in (a); here N = 4. For l > 1, ρ is the
sum of operators of type of those depicted in (b). Here N = 7 and l = 3

operator is tightly related to the notion of induced representation as well as with PRIR
(“partially reduced irreducible representation”).

To see how they arise, let us first notice how permutation from S(N ) acts on the
state. For each particular constituent of ρ an effect will be the following: the ends of
maximally entangled states that lie to the left of the “wall” will be redistributed, and
permuted, and the same happens to the free systems. Let us start with one constituent
of the state—the one where all free systems are on the left:

I ⊗N−l ⊗ P⊗l+ (8)

Let us split the identity into projectors onto irreps of S(N − l):

I ⊗N−l =
⊕

α

Pα, (9)

where α are all irreps of S(N −l)which are present in the representation that permutes
the “free” systems. Now, if we apply some permutation σ from S(N ), then we see
that Pα is put to different systems, but still it becomes Pα as it is invariant under
permutations. The same happens to any other constituent of ρ. Thus we can split ρ

into a direct sum of ρα’s which instead of identity will have Pα:

ρ =
⊕

α

ρα (10)

with

ρα = 1

(N − l)!
∑

σ∈S(N )

V (σ )Pα ⊗ P⊗l+ V (σ−1). (11)

Thus ρ is block diagonal, and the blocks are subspacesHα , that are spanned by vectors
of the form
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Fig. 5 How permutation from S(N ) acts on exemplary constituent of ρ: it re-configures legs

V (σ )|φα
i 〉|φ+〉⊗l , (12)

where i = 1, . . . , dα with dα being dimension of irrep α; σ ∈ S(N ). However, in
the above equation we have much more vectors than needed to span Hα . Indeed, a
permutation σ acting on |φα

i 〉|φ+〉⊗l does the following: it changes the configuration
of legs and applies some permutation on the free systems, see Fig. 5.

We see, that if we have some permutation σ then all other permutations σ ′ which
have the same permutation on free systems are not needed—as the resulting vectors
will have the same configuration of legs, and will differ only by permutation on free
systems, which will enlarge dimension. Indeed on free systems, we have anyway full
irrep basis, and permuting it we shall not go outside of the space.

Thus since we are not interested in action instead of all σ from S(N ) it is enough to
take only ones from transversal, the quotient S(N )/S(N − l), which we shall denote
by tk, k = 1, . . . , N !/(N − l)!:

V (tk)|φα
i 〉|φ+〉⊗l ≡ |tk, φα

i 〉. (13)

We are now in a position to examine the action of our group S(N ) on the space Hα .
For σ ∈ S(N ) We write

V (σ )|tk, φα
i 〉 = V (σ )V (tk)|φα

i 〉|φ+〉⊗l . (14)

Now we use that there is unique element tp of transversal, which satisfies:

σ tk = tph, (15)

where h ∈ S(N − l), so that

V (σ )V (tk)|φα
i 〉|φ+〉⊗l = V (tp)V (h)|φα

i 〉|φ+〉⊗l =
∑

j

ϕα
j i (h)V (tp)|φα

j 〉|φ+〉⊗l

=
∑

j

ϕα
j i (h)|tp, φ

α
j 〉. (16)

However this is nothing but one of the definitions of the induced representation: it
permutes elements of transversal, and applies an element from the subgroup to the
irrep α (cf. (68))
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Thus we have seen that if we apply permutation σ ∈ S(N ) to the total system,
on the space Hα it acts as the induced representation by irrep α. Such representation
is reducible, and the Frobenius reciprocity theorem says that the multiplicity of each
irrep μ is equal to the multiplicity of the so-called, reduced representation α in μ (see
below for definition of reduced representation).

2.3 PRIR and proof of Frobenius theorem for symmetric group

Suppose now that we do not know the Frobenius theorem, and let us proceed with
setting orthonormal basis inHα . Such basis was derived in [18] in the form of matrix
basis, on space Hα including multiplicity, which is given by mα—the multiplicity of
irrep α in the natural representation of the symmetric group in N − l systems (by
natural we mean that it is given by operators V (σ ) which permute the systems, i.e.,
this is Schur-Weyl setup). To write it down we need a bit of preparation. First, for irrep
μ of S(N ) we define the natural representation of the matrix basis (or matrix units)
for the irrep μ including multiplicities as follows

Eμ
i j = dμ

N !
∑

σ∈S(N )

ϕ
μ
j i (σ

−1)V (σ ). (17)

Here ϕ
μ
j i (σ

−1) are matrix elements of irrep of σ−1 ∈ S(N ) and i, j = 1, . . . , dμ,
where dμ is dimension of the irrep μ. Now consider subgroup S(N − l) ⊂ S(N ). If
in our irrep μ we restrict to this subgroup, we obtain representation called reduced
representation. It is reducible, and let α labels its irreducible components within irrep
μ, determining blocks. Further, each copy of irrep α can appear with multiplicity,
which we shall denote by mα/μ. Now we can always assume that the basis in which
the matrix elements of ϕμ(σ) are written are chosen in such a way that the basis of
(17) is compatible with the α blocks. This is what we call partially reduced irreducible
representation. Now the label iμ can be alternatively written by means of a triple
iμ = (α, rμ/α, iα). Namely, the index α tells in which irrep α we are, the index rμ/α

tells in which copy of irrep α we are, and finally, the index iα denotes the position
in that copy (in the same way as iμ denotes position in irrep μ). One can use even
shorter notation iμ = (rμ/α, iα). We are now prepared to write the promised basis that
appeared earlier in Theorem 11 [18]

F
rμ/αrν/α

iμ jν
:= dk mα√

mμmν

E
rμ/α

iμ 1α
P⊗k+ E

rν/α

1α jν
(18)

where mα is multiplicity of irrep α in natural representation of S(N − l) and mμ, mν

are multiplicities of natural representation of S(N ), and we have written one of the
index of the operators E in the partially reduced notation:

E
rμ/α

iμ 1α
≡ Eμ

iμi ′μ
(19)
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with i ′μ = (rμ/α, 1α). Here 1α represents some arbitrarily fixed label—the operator
does not depend on its choice. Now [18] the operator

∑

iμ

F
rμ/αrμ/α

iμ iμ
(20)

projects onto irrepμwithin Hα , which is the space for representation of S(N ) induced
by irrep α of its subgroup S(N − l). Thus we see here explicitly, how the indices r
that originally count multiplicity of α within reduced representation of μ, now count
multiplicity of μ within the induced representation. Equation (18) is a special case of
the more general result presented in Theorem 1.4 in [31].

This is just the contents of the Frobenius reciprocity theorem in the special case for
the symmetric group. In the following, inspired by this example, we shall prove the
Frobenius reciprocity theorem for general group and subgroup.

2.4 Duality between induced and reduced representation via PBT operator versus
Jucys–Murphy operator for l = 1

The dualism of reduced and induced representation manifested by the Frobenius the-
orem is indeed very directly seen in our above derivation of the theorem. In this
section, we shall present this dualism in yet another way. To do so let us define the
Jucys–Murphy operator [20, 21, 32], which in the natural representation, is given by

JN =
N−1∑

a=1

V ((a, N )), (21)

where V ((a, N )) are as before operators that permute N systems according to permu-
tation (a, N ). It is clear from its definition that the operator JN belongs to the matrix
algebra AN (d) defined through (2). Due to the discussion presented in Sect. 2.1, the
operator JN is the matrix representation of the element from the Brauer algebra Bd

N .
The Jucys–Murphy elements play an important role in the representation theory of
the symmetric group. In principle, they have found an application to an alternative
approach in the construction of irreducible representations of S(n) called Okounkov–
Vershik approach [32–34]. The spectrum of the Jucys–Murphy elements is known
and discussed for example in Section 4.5 of [17]. Now let us consider the operator
JN+1 and apply to it partial transpose on (N + 1)−th system. Now, since the partially
transposed swap operator is equal to d P+ we see that PBT operator ρ is just a partially
transposed Jucys–Murphy operator on N + 1 systems

ρ = (JN+1)
TN+1 . (22)

Clearly, the above operator belongs to the algebra of partially transposed permutation
operatorsATN+1

N+1 (d) defined through Definition 1. In other words, the operator ρ is the
matrix representation of the element from the walled Brauer algebra Bd

N ,1, according
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Table 1 Table collects relations between the eigenvalues of Jucys–Murphy operator JN and partially trans-
posed Jucys–Murphy operator (JN+1)

TN+1 , or equivalently the PBT operator ρ, see (22)

Operator Eigenvalue Multiplicity

JN N
mμdα

mαdμ
− d mμdα

(JN+1)
TN+1 N

mμdα

mαdμ
mαdμ

We see that the spectrum of ρ is just shifted by d spectrum of the Jucys–Murphy element JN . Notice that
operators ρ and JN are defined for the different number of systems, i.e., they differ by one system. Here μ

labels irreps of S(N ) that can be induced from irreps α of S(N − 1)

to the discussion presented in Sect. 2.1. The eigenvalues of this operator were found
in [12] and are given by

λμ(α) = N
mμdα

mαdμ

(23)

and multiplicity of the eigenvalue is dμmα . In the rest of the paper, we shall find
eigenvalues of ordinary Jucys–Murphy operator JN (see Corollary 15). They are given
by

γμ(α) = N
mμdα

mαdμ

− d (24)

and multiplicity of the eigenvalue is mμdα . We have summarized this in Table 1. The
discussion in the previous section shows how the multiplicity for transposed Jucys–
Murphy element ρ = (JN+1)

TN+1 is related to induced representation. Namely, mα

term in multiplicity comes from the fact that spaceHα is labeled by α, which repeats
mα times. And the multiplicity mμ comes from the fact, that ρ is invariant under μ,
hence by Schur lemma, is proportional to identity on irreps of μ.

Similarly, it is easy to understand the opposite formula for the multiplicity of the
Jucys–Murphy operator JN . First, since it is a combination of permutations, it is a
direct sum over irreps μ with multiplicity mμ. Next, within irrep μ, it is constant on
irrep α of subgroup S(N − 1), hence we have term dα .

3 The concept of PRIR for an arbitrary group G and its subgroup
H ⊂ G

Let H ⊂ G be an arbitrary subgroup ofG with transversal T = {tk : k = 1, . . . , |G|
|H | ≡

s}, i.e., we have a coset decomposition

G =
s⋃

k=1

tk H , ∀g ∈ G g = tkh : h ∈ H , (25)
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where the last decomposition of g ∈ G is unique. Now, let us consider an arbitrary
unitary irreducible representation (irrep) ψμ of G, which also will be denoted briefly
as μ ∈ Ĝ where the latter is the set of all irreps of the group G. The irrep ψμ can be
always unitarily transformed to a partially reduced form, such that

Res ↓G
H (ψ

μ
R ) =

⊕

α∈μ,aα

ϕα(aα), aα = 1, . . . , mμ
α , (26)

whereα labels the type of irrep of H and aα is a number of irrep typeα in the decompo-
sition (26), andmμ

α is the multiplicity of irrep ϕα in Res ↓G
H (φ

μ
R). Decomposition (26)

is not unique. We will assume that irreps ϕβ(bβ) of subgroup H are identical, i.e., we
have

ϕα(aα) = ϕα, ∀aα = 1, . . . , mμ
α . (27)

Definition 2 A unitary matrix irrep ψμ of G, with partially reduced form (26), i.e.,
which on the subgroup H has block diagonal form, we call Partially Reduced Irre-
ducible Representation (P RI R).

From the above, it follows that the diagonal blocks in the decomposition (26) are
labeled and in fact ordered by the index α(aα) and inside diagonal blocks the matrix
elements are labeled by indices jα = 1, . . . , dim ϕα = dα of irrep ϕα(aα) of the
subgroup H , which is included in irrep ψμ of G, so in matrix notation we have

∀h ∈ H (ψ
μ
R )

α(aα)β(bβ)

iα jβ
(h) = δαβδaαbβ ϕ

α(aα)
iα jα

(h). (28)

The block structure of this reduced representation allows us to introduce such a
block indexation for irrep ψμ for all elements of G

∀g ∈ G ψ
μ
R (g) = ((ψ

μ
R )kμlμ(g)) = (

(ψ
μ
R )

α(aα)β(bβ)

iα jβ
(g)

)
, (29)

where the indices kμ, lμ are standard matrix indices, so in P RI R the standard matrix
indices are replaced by indexation directly connected with irreps of subgroup H
included in irrep ψμ of G. Note that the diagonal blocks are square, whereas the
off-diagonal blocks in general need not be square. Thus we see that P RI R′s have two
main features:

1. They are partially reduced on subgroup H .
2. The matrix elements of irrepψμ of G are labeled by multi-indices

(
α(aα)

iα

)
,
(β(bβ)

jβ

)
.

Note that in definition of P RI R we do not assume that Res ↓G
H (ψμ) is simply

reducible, which is important because it allows us to give a new proof of the Frobenius
reciprocity theorem (see Thm. 1). Actually, if we have an inclusion chain of subgroups
so that each inclusion is multiplicity-free, then we obtain a chain of P RI Rs which are
multiplicity-free, which leads to the well-known Gelfand-Tsetlin basis. As said, we
are interested in P RI R that is not necessarily multiplicity-free. As a matter of fact,
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P RI R is strictly related to subgroup-adapted basis [19]. The latter is the basis in the
irreducible representation of a group whose elements are basis vectors from individual
irreps of the subgroup (which are subspaces of the irrep of the group). Now P RI R is
simply irreducible representation of the group written in subgroup-adapted basis. On
the level of matrices, this is equivalent to saying that P RI Rs are block diagonal on
the subgroup as in Eq. (26).

The above-introduced indexation of P RI Rs is more complicated than the standard
one but, for example, it allows to derive some important new relations among matrix
elements of P RI Rs which would be difficult to rewrite in standard indexation—see
Proposition 3 below).

Using Eq. (28) we get

(ψ
μ
R )

α(aα)β(bβ)

iα jβ
(tkh) =

∑

kβ

(ψ
μ
R )

α(aα)β(bβ)

iα kβ
(tk)ϕ

β(bβ)

kβ jβ
(h), ∀h ∈ H ∀tk ∈ T . (30)

From this, it follows that multiplication by a matrix representing elements of subgroup
H is simpler than in non-P RI R representations.

Now we may formulate the first important property of P RI Rs, which is a kind of
orthogonality relation for matrix elements of transversal T .

Proposition 3 Suppose that

ϕβ ∈ Res ↓G
H (ψ

μ
R ) and ϕβ ∈ Res ↓G

H (ψν
R). (31)

Then the matrix elements of P RI R′s ψ
μ
R and φν

R of G satisfy the following sum rule

s∑

k=1

|β|∑

kβ=1

(ψ
μ
R )

α(aα)β(bβ)

iα kβ
(t−1

k )(ψν
R)

(β,b′
β)(γ,cγ )

kβ jγ
(tk) = |G|

|H |
dβ

dμ

δμνδ
bβb′

β δαγ δaαcγ δiα jγ ,

(32)

where ϕα ∈ Res ↓G
H (φ

μ
R) and ϕγ ∈ Res ↓G

H (φν
R).

Proof The proof is based on the classical orthogonality relations for irreps, which in
P RI R notation takes the form

∑

g∈G

(ψ
μ
R )

α(aα)β(bβ)

iα kβ
(g−1)(ψν

R)
β(b′

β)γ (cγ )

kβ jγ
(g) = |G|

dμ

δμνδ
bβb′

β δαγ δaαcγ δiα jγ , (33)

which means, that even if α = γ , i.e., these representations are of the same type, but
aα �= cγ , the RH S of (33) is equal to zero. Similarly, if the indices bβ, b′

β which
enumerate irreps β are not equal, then RH S of (33) is equal to zero. This follows
from the fact that in the classical orthogonality relations if corresponding indices of
irreps are not equal, then the RH S of the orthogonality relations is equal to zero, and
in P RI R notation the irreps ϕα of subgroup H and their indices iα play the role of
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indices in irrepssψ
μ
R . The next part of the proof is a simple generalization of the proof

of Proposition 17 in [14]. ��
Remark 1 From the formof L H S of Eq. (33) in the thesis of Proposition 3, in particular
from the fact that the second sum in L H S runs over a lower part of multi-index

(β(bβ)

kβ

)

only (over kβ ) it is clear that P RI R multi-index notation is essential to formulate and
prove this result.

Next result concerns properties of the transversal T = {tk : k = 1, . . . , |G|
|H | ≡ s}

of the subgroup H ⊂ G and transversal element ϒ = ∑s
k=1 tk in the group algebra

C[G]. It is well known that any irrep of any group G is also an irrep the corresponding
group algebra C[G], so we may use the concept of P RI R′s in the group algebra.

Proposition 4 Suppose that {tk} is any transversal of a group G with respect to sub-
group H (25), ψ

μ
R is P RI R of a group algebra C[G], such that

1. Res ↓G
H (ψ

μ
R ) is simply reducible,

2. and we have

∀h ∈ H h

(
s∑

k=1

tk

)

h−1 =
(

s∑

k=1

tk

)

, (34)

then

s∑

k=1

(ψ
μ
R )(tk) =

⊕

α∈μ

ημ(α)1α, (35)

i.e., on RH S we have a block diagonal matrix, such that the diagonal blocks are unit
matrices multiplied by numbers ημ(α). These numbers do not depend on the form of
P RI R ψ

μ
R , i.e., for all possible choices of P RI R representation, satisfying the above

assumptions, these numbers are the same.

Proof We give here a sketch of the proof. The assumption of simple reducibility and
condition (34) together with classical Schur Lemma for irreps implies that Eq. (35)
must hold. This result is easy to see due to the P RI R blocks indexation of P RI R
ψ

μ
R . ��
From Proposition 4 we get immediately:

Corollary 5 For any P RI R ψ
μ
R transversal element ϒ = ∑s

k=1 tk ∈ C[G] takes in
ψ

μ
R diagonal form

ψ
μ
R (ϒ) =

⊕

α∈μ

ημ(α)1α (36)

and the numbers ημ(α) form the spectrum of the operator ψ
μ
R (ϒ). Multiplicity of

eigenvalue ημ(α) is equal to dim ϕα = dα . Decomposing arbitrary representation
� of the group G into P RI R′s ψ

μ
R and using Proposition 4 we get the spectral

decomposition of the transversal operator �(ϒ).
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As an important example of application of P RI Rs we have the following:

Proposition 6 Let G = S(n) and H = S(n − 1) with standard transversal T =
{(an) : a = 1, . . . , n}, which satisfy the assumptions of Proposition 4. Then for any
P RI R ψ

μ
R of the group S(n) we have

n∑

a=1

(ψ
μ
R )(an) = ψ

μ
R (ϒ) =

⊕

α∈μ

ημ(α)1α, (37)

ημ(α) =
(

n
2

)
χμ(12)

dμ

−
(

n − 1
2

)
χα(12)

dα

+ 1, (38)

where χμ is the character of ψ
μ
R and χα s the character of ϕα . We see that numbers

ημ(α) depend only on the pure characteristics of irreps ψ
μ
R and ϕα ∈ Res ↓G

H (φ
μ
R)

(for brevity α ∈ μ).

Proof The starting point in this proof is the following equation

n∑

a<b

(ψ
μ
R )(ab) =

(
n
2

)
χμ(12)

dμ

1dμ, (39)

where 1dμ is the unit matrix of dimension dμ and on L H S we have the sum of all
transpositions in S(n) which forms an equivalence class. This equation follows from
the fact that the famous Schur lemma implies that the sum of all elements of any the
equivalence class of an arbitrary group in any irrep is proportional to the unit matrix.
Taking trace we derive the coefficient of proportionality. Next we rewrite L H S as
follows

n∑

a<b

(ψ
μ
R )(ab) =

n−1∑

a=1

(ψ
μ
R )(an) +

n−1∑

a<b

(ψ
μ
R )(ab), (40)

so in the second sum on RH S the summation is over all equivalence class of transpo-
sitions but in the subgroup S(n − 1). Therefore, from definition of P RI Rs matrix of
the second sum is block diagonal matrix and in the diagonal blocks we have irreps of
S(n − 1) included in ψ

μ
R . Again from the Schur lemma we get in each diagonal block

in the last sum

n∑

a<b

(ϕα)(ab) =
(

n − 1
2

)
χα(12)

dα

1dα (41)

for any irrep ϕα of S(n − 1) included in ψ
μ
R , so we see that diagonal blocks in matrix

∑n−1
a<b(ψ

μ
R )(ab) are also diagonal. Shifting the diagonal matrix

∑n−1
a<b(ψ

μ
R )(ab) on

RH S of the first equation we get the result. ��
In the above proof, we see that the defining property of P RI Rs, i.e., partial reduc-

tion plays an essential role in it.
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Example 7 In the simplest case, i.e., for identity irrep μ = id, we have

ηid(id) = n. (42)

In general the above formulae for eigenvalues ημ(α) of the transversal operator
ϒ are not entirely analytical because for natural characteristics of irreps characters
χμ and corresponding dimension dμ there are not analytical expressions. However,
for particular irreps of group S(n) there exists purely analytical formulae for these
quantities. Namely, we have

Lemma 8 (see [35]) Let μ ≡ μk = (n − k, k) : 1 ≤ k ≤ 1
2n be a two-row partition

of irrep of S(n), then

χμk (12) =
(

n − 2

k

)

+
(

n − 2

k − 2

)

−
(

n − 2

k − 1

)

−
(

n − 2

k − 3

)

, (43)

and

dimμk = dμk =
(

n

k

)

−
(

n

k − 1

)

. (44)

When k = 1 we set
(n−2

k−2

) ≡ 0 ≡ (n−2
k−3

)
, and when k = 2 we set

(n−2
k−3

) ≡ 0 in (43).

Next, we have for n − k > k

Res ↓S(n)
S(n−1) (ψμk ) = ϕαk ⊕ ϕαk−1 , (45)

where αk = (n − 1 − k, k), and αk−1 = (n − 1 − (k − 1), k − 1), so αk, αk−1 are
irreps of S(n − 1). For n − k = k, we have

Res ↓S(n)
S(n−1) (ψμk ) = ϕαk−1 , (46)

where αk−1 = (n − 1 − (k − 1), k − 1).
Using Lemma 8 and expressions (45), (46), we derive purely analytical formulae

for the eigenvalues of the transversal operator ϒ in two rows P RI Rs of the group
S(n).

Proposition 9 Let μ ≡ μk = (n − k, k) : 1 ≤ k ≤ 1
2n be a two row partition of irrep

of S(n), then

1. If n − k > k the transversal operator ϒ = ∑
a=1,...,n(an) takes in P RI R ψμk

diagonal form with two different eigenvalues

ημk (αk ) =
(

n

2

)(n−2
k

) + (n−2
k−2

) − (n−2
k−1

) − (n−2
k−3

)

(n
k
) − ( n

k−1
) −

(
n − 1

2

)(n−3
k

) + (n−3
k−2

) − (n−3
k−1

) − (n−3
k−3

)

(n−1
k

) − (n−1
k−1

) + 1

(47)
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with multiplicity dαk = (n−1
k

) − (n−1
k−1

)
, and

ημk (αk−1) =
(

n

2

)(n−2
k

) + (n−2
k−2

) − (n−2
k−1

) − (n−2
k−3

)

(n
k

) − ( n
k−1

) −
(

n − 1

2

)(n−3
k−1

) + (n−3
k−3

) − (n−3
k−2

) − (n−3
k−4

)

(n−1
k−1

) − (n−1
k−2

) + 1

(48)

with multiplicity dαk−1 = (n−1
k−1

) − (n−1
k−2

)
.

2. If n − k = k then ψμk (ϒ) has only one eigenvalue equal to ημk (αk−1) with
multiplicity dαk−1 = (n−1

k−1

) − (n−1
k−2

) = dμk . In this particular case, ψμk (ϒ) is
proportional to unit matrix.

Definition 10 The element Jn = ∑n−1
a=1(an) is called Jucys–Murphy element (JM

element) in the group algebra C[S(n)] and together with reduced JM element Jk =∑k−1
a=1(ak), k = 2, . . . , n it plays an important role in the representation theory of

symmetric group S(n) [20, 21, 33, 36].

In general, calculating analytically the spectrumof JMelements in the group algebra
C[S(n)] is not easy (see [36]). Using Proposition 4 together with the above example
we get

Corollary 11 In any P RI R ψ
μ
R of the symmetric group S(n) we have the following

spectral decomposition JM operator Jn = ∑n−1
a=1(an)

ψ
μ
R (Jn) =

⊕

α∈μ

γμ(α)1α, (49)

where

γμ(α) =
(

n
2

)
χμ(12)

dμ

−
(

n − 1
2

)
χα(12)

dα

= ημ(α) − 1, (50)

and multiplicity of the eigenvalue γμ(α) is equal to dα .

Again, knowing the spectrum of the operator Jn in any P RI R, one can determine
the spectrum of Jn in any representation. As an example let us consider the natural
permutation representation of symmetric as it is defined in (1). It is known [35] that
then for d = 2, we have the following

V n
d=2 = midψ id ⊕

⎡

⎢
⎣

⊕

1≤k≤ 1
2 n

mμk ψ
μk

⎤

⎥
⎦ , (51)

where mid = n + 1, and mμk = n − 2k + 1 are the multiplicities of corresponding
irreps which are assumed to be P RI Rs. Now using the above results we may derive
the spectrum of the J M operator in the natural representation V n

d=2.

123



From port-based teleportation to Frobenius reciprocity… Page 17 of 25    56 

Proposition 12 The spectrum of the operator V n
d=2(Jn) acting in the space (C2)⊗n is

the following

1. If μk = id, then

γid(id) = n − 1, (52)

with multiplicity n + 1.
2. If μk is such that n − k > k, then

γμk (αk) = ημk (αk) − 1, (53)

with multiplicity mμk dαk = (n − 2k + 1)
(n−1

k

) − (n−1
k−1

)
, and

γμk (αk−1) = ημk (αk−1) − 1, (54)

with multiplicity mμk dαk−1 = (n − 2k + 1)
(n−1

k−1

) − (n−1
k−2

)
.

3. If μk is such that n − k = k, then

γμk (αk−1) = ημk (αk−1) − 1 (55)

with multiplicity mμk dαk−1 .

It is well known that any group algebra C[G] (G is finite) has the following decom-
position into irreps

C[G] =
⊕

μ∈Ĝ

mμψμ, (56)

where mμ = dimψμ. From this and Corollary 11 we get:

Proposition 13 The spectrum of JM element Jn = ∑n−1
a=1(an), acting on the group

algebra C[S(n)], i.e in regular representation is given by numbers γμ(α) and multi-
plicity of eigenvalue γμ(α) is equal to mμdα .

We see that by using the P RI R concept one can express the eigenvalues of the JM
element Jn = ∑n−1

a=1(an) via characters of irreps of the groups S(n) and S(n − 1),
which are basic characteristics of irreps. Their multiplicities are also expressed by
basic group representation parameters. Obtained expressions for the spectrum of the
JM elements are of a different nature than in [33, 34, 36].

One very efficient application of P RI R concept was dedicated studies on PBT
operator in deterministic port-based teleportation scheme, see (5) and (7). Hereunder
we use original notation and we denote the total number of systems (number of ports +
teleported state) byn,while the number of ports by N , andwehaveof coursen = N+1.
The algebraic structure of the port-based teleportation scheme is connected with the
algebra of partially transposed operators Atn

n (d) acting in n-fold tensor product of
d−dimensional vector space. This algebra is not isomorphic (except when d = 2)
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with standard permutational representation of symmetric group S(n) in the Schur-
Weyl construction. Due to the application of properties of P RI R’s it was possible to
derive elegant expression for the spectrum of PBT operator and to derive entanglement
fidelity for deterministic PBT-scheme in all variants. The result for the mentioned
eigenvalues are contained in [12, 14].

Proposition 14 The eigenvalues λμ(α) of PBT operator with N = n − 1 ports are of
the following form

λμ(α) = (n − 1)
mμdα

mαdμ

=
(

n − 1
2

)
χμ(12)

dμ

−
(

n − 2
2

)
χα(12)

dα

+ d, (57)

where dα, dμ are dimensions of irreps ψμ ∈ ̂S(n − 1), ϕα ∈ ̂S(n − 2) and mμ, mα

are corresponding multiplicities is the standard swap representation of S(n − 1) and
S(n − 1), respectively.

Comparing Proposition 14 with Corollary 11 we get

Corollary 15 The eigenvalues λμ(α) of PBT operator with N = n − 1 ports and
eigenvalues γμ(α) of Jucys–Murphy element Jn−1 are related in a very simple way

λμ(α) − d = (n − 1)
mμdα

mαdμ

− d = γμ(α). (58)

In this way, we get, from PBT formalism, another (up to our best knowledge not
knownearlier) expression for the spectrumof the JMelement Jn−1.Another expression
for the numbers ημ(α), so also for the eigenvalues γμ(α) of Jn−1, is given in [14].

Remark 2 Note that although we have very simple relation between PBT operator ρ

and JM operator Jn :

Jn �→ ρ = J tn
n , (59)

the spectrum of the operator ρ is in very simple ’shift’ relation with the spectrum of
the ’shorter’ JM operator Jn−1, see Eq. (57).

Let us remind basic properties of the regular representation of a group algebraC[G]
for finite a finite group G.

Proposition 16 Let ψμ be any irrep (not necessarily P RI R) of a finite group G, then
the operators

Eμ
i j = dμ

|G|
∑

g∈G

ψ
μ
j i (g

−1)g ∈ C[G] (60)
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have the following properties

Eμ
i j Eν

kl = δμν Eμ
il , gEμ

i j =
dμ∑

k=1

ψ
μ
ki (g)Eμ

k j , ∀ j = 1, . . . , dμ, C[G] =
⊕

μ∈Ĝ

Eμ,

(61)

where Eμ = spanC{Eμ
i j : i, j = 1, . . . , dμ}. The algebra C[G] is a direct sum of

non-isomorphic matrix algebras and for any fixed j = 1, . . . , dμ set of dμ vectors
Eμ

i j : i = 1, . . . , dμ form a basis of irrep ψμ contained in C[G]. Each subalgebra
Eμ contains dμ such irreps.

If the ψμ ∈ C[G] are P RI R′s, then we may rewrite the expressions from Propo-
sition 16 as follows

(Eμ
R)

α(aα)β(bβ)

iα jβ
= dμ

|G|
∑

g∈
(ψ

μ
R (g−1)

β(bβ)α(aα)

jβ iα
g, (62)

g(Eμ
R)

β(bβ)α(aα)

jβ iα
=

∑

γ (cγ ),kγ

(ψ
μ
R (g)

γ (cγ )β(bβ)

kγ jβ
(Eμ

R)
γ (cγ )α(aα)

kγ iα
, (63)

(Eμ
R)

α(aα)β(bβ)

iα jβ
(Eμ

R)
α′(a′

α)β ′(b′
β)

i ′α j ′β
= δβα′

δbβa′
α δ jβ i ′α (Eμ

R)
α(aα)β ′(b′

β)

iα j ′β
. (64)

Now we consider, in the regular representation of the group algebra C[G], a con-
struction of induced representation Ind ↑G

H (ϕα), where ϕα ∈ Ĥ is an arbitrary irrep
of the subgroup H ⊂ G. We have (for simplicity we omit label β in indices i, j):

Proposition 17 Consider the standard matrix algebra generated by the irrep ϕβ =
(ϕ

β
i j ) ∈ Ĥ (here for simplicity we write omit label β in indices i, j )

Eβ
i j = dβ

|H |
∑

h∈H

ϕ
β
j i (h

−1)h ∈ C[H ] ⊂ C[G], (65)

and the transversal T = {tk : k = 1, . . . , |G|
|H | ≡ s}, then for any fixed value of

j = 1, . . . , dβ , the sdβ vectors

tk Eβ
i j : k = 1, . . . ,

|G|
|H | ≡ s, i = 1, . . . , dβ (66)

form a basis of the induced representation Ind ↑G
H (ϕβ) of the group G, embedded in

the regular representation of group algebra C[G], i.e. we have

∀g ∈ G g.tk Eβ
i j =

∑

tp∈T

∑

l=1,...,dα

ϕ
β
li (t

−1
p gtk)tp Eβ

l j , (67)
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where the summation over tp ∈ T is taken over such tp ∈ T , that t−1
p gtk ∈ H [37].

From the uniqueness of coset decomposition, Eq. (25) we get that such an element
tp ∈ T is unique and we have t−1

p gtk = h = hk ∈ H so the above equation may
written equivalently

∀g ∈ G g.tk Eβ
i j =

∑

l=1,...,dα

ϕ
β
li (hk)tp Eβ

l j , (68)

where gtk = tphk is the unique coset decomposition. Thus we see that the main
feature of the induced representation is that the action of g ∈ G on basis vectors
{tk Eβ

i j } permutes the transversal vectors {tk : k = 1, . . . , |G|
|H | ≡ s} and transforms

vectors {Eβ
i j : i = 1, . . . , dβ} ( j is fixed) according irrep ϕβ .

The subspaces

I β
j = I β

jβ
= spanC

{

tk Eβ
i j : k = 1, . . . ,

|G|
|H | ≡ s, i = 1, . . . , dβ

}

, jβ = 1, . . . , dβ

(69)

are representation spaces for representation Ind ↑G
H (ϕβ). From the above we get

Corollary 18 We have the following decomposition of algebra C[G]

C[G] =
⊕

β∈Ĥ

⊕

jβ=1,...,dβ

I β
jβ

C[G] =
⊕

μ∈Ĝ

Eμ. (70)

Now it is well known that the induced representation Ind ↑G
H (ϕα) of the group G

is in general reducible. It appears that the reduction of Ind ↑G
H (ϕα) onto the direct

product of irreps of the group G may be achieved using P RI R′s. Using such a P RI R
matrices ψ

μ
R we define the following matrices

Definition 19 Let ϕβ ∈ Ĥ be an irrep and all ψ
μ
R ≡ ψ

μβ

R ∈ Ĝ be a P RI R′s, such
that ϕβ ∈ Res ↓G

H (ψ
μ
R ). For such an irreps ϕβ and P RI R′s ψ

μβ

R we define a matrix
U (β) with coefficients

U (β)
μα(aα), tk
bβ lα,kβ

=
√

|H |dμ

|G|dβ

(ψ
μ

R)
α(aα)β(bβ)

lα kβ
(tk) = U (β)RL , (71)

so the left multi-index R = μβ α(aα)

bβ lα
, which includes four indices, runs over all

μβ , over P RI R indices α(aα), lα inside P RI R′s ψ
μβ

R , as well over index bβ , which

enumerates the copies of the irrep ϕβ in ψ
μβ

R . The right muli-index L = tk
kβ

runs over
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the natural indices of the induced representation Ind ↑G
H (ϕβ). Matrix U (β) is of

dimension dβ [G : H ] = dim Ind ↑G
H (ϕβ). One can check that

(U †)(β)
tk , μα(aα)
kβ , bβ lα

=
√

|H |dμ

|G|dβ

(ψ
μ

R)
β(bβ)α(aα)

kβ lα
(tk) = U †(β)I R . (72)

Matrix U (β) is determined by irrep ϕβ ∈ Ĥ because, by assumption irrep ϕβ

determines all irreps μβ ∈ Ĝ, which must satisfy ϕβ ∈ Res ↓G
H (ψ

μ
R ). Note that the

matrixU (β) is not proportional to some P RI R′s matrixψ
μ(β)
R , the coefficients of the

matrix U (β) are equal to corresponding coefficients of the different matrices ψ
μ(β)
R .

In general the matrices U (β) and ψ
μ(β)
R have different dimension.

Directly from Definition 19 and the sum rule for P RI Rs in Proposition 3 we get

Proposition 20 The matrix U (β) is unitary with respect to the induced multi-indices

I = tk
kβ

, i.e. we have

∑

tk ,kβ

U (β)
να(aα), tk
bβ lα,kβ

(U †)(β)
tk , μ γ (cγ )

kβ , b′
β jγ

= δμνδbβb′
β
δαγ γ aαcγ δlα jγ (73)

and it is known that if a matrix is unitary with respect to the columns, then it is also
unitary with respect to the rows, so the matrix U (β) : ϕβ ∈ Ĥ is unitary and has
dimension dβ

|G|
|H | .

Now let us consider subspace I β
jβ

⊂ C[G] with fixed label jβ = 1, dβ , a represen-

tation space for Ind ↑G
H (ϕβ), which in general, as representation of G is reducible.

It appears that matrix U (β) realize reduction of natural basis {tk Eβ
iβ jβ

} in I β
jβ
to the

reduced one with P RI R operators (Eμ)
α(aα)β(bβ)

lα jβ
as a basis.

Lemma 21 Let ϕβ ∈ Ĥ be an irrep and let us fix label jβ = 1, . . . , dβ . Then the unitary

matrix U (β) transforms the natural basis {tk Eβ
iβ jβ

} of the subspace I β
jβ

⊂ C[G],
representation space for Ind ↑G

H (ϕβ) onto a reduced basis of this representation
space, that is we have

√
|G|
|H |

dμ

dβ

∑

tp∈T

∑

kβ=1,...,dβ

U (β)
μα(aα), tp
bβ lα,kβ

tp E
β(bβ)

kβ jβ
= (Eμ)

α(aα)β(bβ)

lα jβ
, (74)

where

(Eμ)
α(aα)β(bβ)

lα jβ
= dμ

|G|
∑

g∈G

(ψ
μ
R )

β(bβ)α(aα)

jβ lα
(g−1)g ∈ I β

jβ
(75)
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are standard matrix operators of the group algebra C[G], defined by the irrep ψ
μ
R in

the P RI R version included in I β
jβ

, the representation Ind ↑G
H (ϕβ).

Proof In order to prove the equation

|G|
|H |

dμ

dβ

∑

tp∈T

∑

kβ=1,...,dβ

(ψ
μ
R )

α(aα)β(bβ)

lα kβ
(tk)tp E

β(bβ)

kβ jβ
= (Eμ)

α(aα)β(bβ)

lα jβ
, (76)

it is enough to use the definition of the matrix operators Eβ
kβ jβ

and (Eμ)
α(aα)β(bβ)

lα jβ
(see

Eq. (65)) together with Eq. (30). ��
From Eq. (74) in Lemma 21 we see that each irrep ϕβ(bβ) of H , where β(bβ) =

1, . . . , mμ
β , included in Res ↓G

H (ψ
μ
R ) defines one irrep ψ

μ
R ≡ ψ

μ(β)
R (the index jβ is

fixed) with basis vectors indexed by the left pair of P RI R indices

(
α(aα)

lα

)

in the

element (Eμ)
α(aα)β(bβ)

lα jβ
and this correspondence is one-to-one from the invertibility of

the matrix U (β). From this as a corollary we get

Theorem 1 Let ϕβ ∈ Ĥ , I β
jβ

⊂ C[G] be the corresponding representation space for

Ind ↑G
H (ϕβ) with natural basis {tp Eβ

kβ jβ
} and U (β) be an unitary P RI R matrix

determined by ϕβ , then

1. the transformation of the natural basis of the representation Ind ↑G
H (ϕβ) in C[G]

to the reduced one is realized by the P RI R unitary matrix U (β) in the following
way

U (β) : tk Eβ
iβ jβ

→
√

|G|
|H |

dμ

dβ

∑

tp∈T

∑

kβ=1,...,dβ

U (β)
μα(aα), tp
bβ lα,kβ

tp Eβ
kβ jβ

= (Eμ)
α(aα)β(bβ )

lα jβ
, (77)

2. from this one can deduce the following decomposition of the induced representa-
tions

Ind ↑G
H (ϕβ) =

⊕

μ(β)

mμ
βψ

μ(β)
R , (78)

so each irrep ψ
μ
R appears in representation Ind ↑G

H (ϕβ) with multiplicity equal
to the multiplicity mμ

β of irrep ϕβ in Res ↓G
H (ψ

μ
R ).

The second part of Theorem 1 is the famous Frobenius reciprocity theorem [36,
38]. This classical theorem is usually proved using group character properties and
this proof seems to be the simplest. Our proof of the theorem is technically much
more complicated, but its first result gives in Eq. (77) a unitary matrix U (β) which
realizes the reduction of the natural basis of induced representation to the reduced
one, and this is the most complicated part of our proof. To our knowledge, this is
a new result. The standard, character proof of the Frobenius theorem does not give
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such representation reduction (via unitary matrix) because that proof is independent
of matrix form of considered representations (which is obtained by use of character
theory). The second statement of Theorem 1, i.e., the Frobenius theorem itself is a
relatively simple corollary from the multi-index structure of the matrix U (β).

4 Discussion

In this paper, we discuss the appearance of induced representation in port-based tele-
portation protocols, focusing on its deterministic version. First, we define the concept
of partially reduced irreducible representation for an arbitrary group G and its sub-
group H and discuss the most important properties of the introduced concept. This
part is presented on the most possible abstract level, i.e., we do not restrict ourselves
to a specific choice of the group G. Afterward, we choose G to be a symmetric group
S(n) with subgroup H = S(n − 1)—groups naturally appearing in all variants of the
PBT. This restriction allows us to show the relation between basic objects for rep-
resentation theory for the symmetric group, so-called Jucys–Murphy elements, and
the PBT operator ρ. In particular, we prove a linear connection between the spectra
of these two objects, presenting two different expressions. Spectra of the JM element
Jn−1 and n-particle PBT operator are related by a simple shift by factor d. In particu-
lar, we give new expression for the eigenvalues of the Jucys–Murphy elements based
on the irreducible character of the symmetric group, and new orthogonality relations
exploiting the concept of PRIRS. In the special case, when one considers the natural
representation of Jucys–Murphy elements in dimension 2, we present fully analytical
expressions for the mentioned spectrum. Evaluated spectra are crucial in determining
entanglement fidelity in deterministic PBT schemes. At the end, we present a matrix
proof of the famous Frobenius reciprocity theorem for characters, and we give the
explicit construction of the unitary matrix that realizes the reduction of the natural
basis of induced representation to the reduced one.

Acknowledgements This research was funded in whole or in part by the National Science Centre, Poland,
Grant Number 2020/39/D/ST2/01234 (MM,MS). MH is supported by the National Science Center, Poland
within the QuantERA II Programme (No 2021/03/Y/ST2/00178, acronym ExTRaQT) that has received
funding from the European Union’s Horizon 2020. For the purpose of Open Access, the author has applied
a CC-BY public copyright license to any Author Accepted Manuscript (AAM) version arising from this
submission.

Data availability The manuscript has no associated data.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If

123



   56 Page 24 of 25 M. Mozrzymas et al.

material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ishizaka, S., Hiroshima, T.: Asymptotic teleportation scheme as a universal programmable quantum
processor. Phys. Rev. Lett. 101(24), 240501 (2008)

2. Ishizaka, S., Hiroshima, T.: Quantum teleportation scheme by selecting one of multiple output ports.
Phys. Rev. A 79(4), 042306 (2009)

3. Beigi, S., König, R.: Simplified instantaneous non-local quantum computation with applications to
position-based cryptography. New J. Phys. 13(9), 093036 (2011)

4. May, A.: Complexity and entanglement in non-local computation and holography. Quantum 6, 864
(2022)

5. Buhrman, H., Czekaj, Ł, Grudka, A., Horodecki, M., Horodecki, P., Markiewicz, M., Speelman, F.,
Strelchuk, S.: Quantum communication complexity advantage implies violation of a Bell inequality.
Proc. Natl. Acad. Sci. 113(12), 3191–3196 (2016)

6. Pirandola, S., Laurenza, R., Lupo, C., Pereira, J.L.: Fundamental limits to quantum channel discrimi-
nation. NPJ Quantum Inf. 5(1), 50 (2019)

7. Pereira, J., Banchi, L., Pirandola, S.: Characterising port-based teleportation as universal simulator of
qubit channels. J. Phys. A: Math. Theor. 54(20), 205301 (2021)

8. Quintino,M.T.: Quantum teleportation beyond its standard form:multi-port-based teleportation. Quan-
tum Views 5, 56 (2021)

9. Sedlák, M., Bisio, A., Ziman, M.: Optimal probabilistic storage and retrieval of unitary channels. Phys.
Rev. Lett. 122, 170502 (2019)

10. Wang, Z.-W., Braunstein, S.L.: Higher-dimensional performance of port-based teleportation. Sci. Rep.
6, 33004 (2016)

11. Strelchuk, S., Horodecki, M., Oppenheim, J.: Generalized teleportation and entanglement recycling.
Phys. Rev. Lett. 110(1), 010505 (2013)
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