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Abstract
This paper discusses the mean-field limit for the quantum dynamics of N identical
bosons in R3 interacting via a binary potential with Coulomb-type singularity. Our
approach is based on the theory of quantum Klimontovich solutions defined in Golse
and Paul (CommunMath Phys 369:1021–1053, 2019) . Our first main result is a defini-
tion of the interaction nonlinearity in the equation governing the dynamics of quantum
Klimontovich solutions for a class of interaction potentials slightly less general than
those considered in Kato (Trans Am Math Soc 70:195–211, 1951). Our second main
result is a new operator inequality satisfied by the quantum Klimontovich solution
in the case of an interaction potential with Coulomb-type singularity. When evalu-
ated on an initial bosonic pure state, this operator inequality reduces to a Gronwall
inequality for a functional introduced in Pickl (Lett Math Phys 97:151-164, 2011),
resulting in a convergence rate estimate for the quantum mean-field limit leading to
the time-dependent Hartree equation.
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1 Introduction and notation

In classical mechanics, themotion equations for a system of N identical point particles
of mass m with positions q j (t) ∈ R3 and momenta p j (t) ∈ R3 for all j = 1, . . . , N
are:

⎧
⎪⎨

⎪⎩

q̇ j (t) = 1
m p j (t) = ∇p j HN (p1(t), . . . , qN (t)) ,

ṗ j (t) = −
∑N

k=1
k �= j

∇V (q j (t) − qk(t)) = −∇p j HN (p1(t), . . . , qN (t)) ,
(1)

where the N -particle classical Hamiltonian is

HN (p1, . . . , qN ) :=
N∑

j=1

1
2m |p j |2 +

∑

1≤ j<k≤N

V (q j − qk).

Assuming that V ∈ C1,1(R3), this differential system has a unique global solution for
all initial data. If V is even,1 the phase-space empirical measure

μN (t, dxdξ) := 1
N

N∑

j=1

δq j (t/N ),p j (t/N )(dxdξ) , Nm = 1 , (2)

is an exact, weak solution of the Vlasov equation

∂tμN + ξ · ∇xμN − ∇x (V �μN (t)) · ∇ξμN = 0 (3)

with self-consistent, mean-field potential

V �x,ξμN (t, x) = 1
N

N∑

k=1

V (x − qk(t)).

This remarkable observation is due to Klimontovich, and solutions of the Vlasov
equation (3) of the form (2) are referred to as “Klimontovich solutions”. They are
discussed in detail in Klimontovich’s own book on the statistical mechanics of plasmas
[14]. Thus, if μN (0) → f indxdξ weakly in the sense of probability measures as
N → ∞, where f in is a probability density on R3

x × R3
ξ , one has

μN (t, dxdξ) → f (t, x, ξ)dxdξ weakly in the sense of probability measures

for all t ≥ 0 as N → ∞, where f is the solution of the Vlasov equation

∂t f + ξ · ∇x f − ∇x (V �x,ξ f (t, ·, ·)) · ∇ξ f = 0 , f
∣
∣
t=0 = f in . (4)

1 In this case, the exclusion j �= k in the right-hand side of Newton’s second law for ṗ j (t) is useless since
V even 	⇒ ∇V (0) = 0.
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Thus, the mean-field limit in classical mechanics is equivalent to the continuous
dependence for the weak topology of probability measures of solutions of the Vlasov
equation in terms of their initial data. See [4] for a proof of this result. For instance,
the weak convergence of the initial data can be realized by a random choice of
(q j (0), p j (0)), independent and identically distributed with distribution f in .

The mean-field limit for bosonic systems in quantum mechanics has been formu-
lated in different settings, by using the so-called BBGKY hierarchy [1, 2, 6, 22], or in
the second quantization setting [20]. Interestingly, these techniques allow considering
singular potentials such as the Coulomb potential, instead of C1,1 potentials as in the
classical case. (The mean-field limit with Coulomb potentials in classical mechanics
is still an open problem at the time of this writing; see however [21] in the special case
of monokinetic particle distributions. See also [9, 10] for potentials less singular than
the Coulomb potential).

The quantummean-field equation analogous to the Vlasov equation (4) is the (time-
dependent) Hartree equation

i�∂tψ(t, x) = − 1
2�

2�xψ(t, x) + (V �|ψ(t, ·)|2)(x)ψ(t, x), ψ
∣
∣
t=0 = ψ in . (5)

In [15, 18], an original method, close to the second quantization approach in [20],
but avoiding the rather heavy formalismof Fock spaces,was proposed and successfully
applied to singular potentials including the Coulomb potential.

All these approaches noticeably differ from the classical setting used in [4] for
lack of a quantum notion of phase-space empirical measures. However, a quantum
analogue of the notion of phase-space empirical measure was recently proposed in
[8], along with an equation analogous to (3) governing their evolution. This notion
was used in [8] to prove the uniformity of the mean-field limit in the Planck constant
� > 0. However, the discussion in [8] only considers regular potentials (specifically
∂αV ∈ FL1(Rd) for |α| ≤ 3 + [d/2]). Even writing the equation analogous to
(3) satisfied by the quantum analogue of the phase-space empirical measure requires
V ∈ FL1(Rd) in the setting of [8].

The purpose of the present paper is twofold:

(a) to extend the formalism of quantum empirical measures considered in [8] to treat
the case of singular potentials including the Coulomb potential, which is of par-
ticular interest for applications to atomic physics (see Theorem 3.1 in Sect. 3),
and

(b) to explain how the ideas in [15, 18] can be couched in terms of the formalism of
quantum empirical measures defined in [8] (see Theorem 4.1 and Corollary 4.2 in
Sect. 4).

Specifically, we prove an inequality between operators on the N -particleHilbert space,
of which the key estimates in [15, 18] leading to the quantum mean-field limit are
straightforward consequences.

The next section briefly recalls only the essential part of [8] used in the sequel. The
main results obtained in the present paper are Theorems 3.1 and 4.1 from Sects. 3 and
4, respectively. The proofs of these results are given in the subsequent sections.
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All the discussions in this paper apply to the mean-field limit in the case of bosons
only—in particular, the analysis proposed here is not uniform in �, exactly as in [15,
18], and at variance with [8]. This precludes using the distinguished limit � ∼ N−1/3

that is typical of the mean-field limit in the case of fermions.

2 Quantum Klimontovich solutions

Consider the quantum N -body Hamiltonian

HN :=
N∑

j=1

− 1
2�

2�x j + 1
N

∑

1≤ j<k≤N

V (x j − xk) (6)

onHN := H⊗N  L2(R3N ), whereH := L2(R3). Henceforth, it is assumed that V is
a real-valued function such that HN has a (unique) self-adjoint extension to HN , still
denoted by HN . A well-known sufficient condition for this to be true has been found
by Kato (see condition (5) in [12]): there exists R > 0 such that

∫

|z|≤R
V (z)2dz + esssup|z|>R |V (z)| < ∞ . (7)

In particular, these conditions include the (repulsive) Coulomb potential inR3. In fact,
HN has a self-adjoint extension to HN under a condition slightly more general than
Kato’s original assumption recalled above:

V ∈ L2(R3) + L∞(R3) (8)

(see Theorem X.16 and Example 2 in [19], and Theorem V.9 with m = 1 in [17]).
In the sequel, we adopt the notation in [8]. In particular, we set

Jk A := I⊗(k−1)
H ⊗ A ⊗ I⊗(N−k)

H , 1 ≤ n ≤ N , (9)

and

Min
N := 1

N

N∑

k=1

Jk ∈ L(L(H),L(HN )) . (10)

The dynamics of the morphism Min
N is defined by conjugation with the N -particle

dynamics as follows: for each A ∈ L(H),

MN (t)A := UN (t)∗(Min
N A)UN (t) , with UN (t) := exp(−i tHN/�) . (11)

Since HN is self-adjoint, t �→ UN (t) is a unitary group by Stone’s theorem. The
time-dependent morphism t �→ MN (t) ∈ L(L(H),L(HN )) is henceforth referred to
as the quantum Klimontovich solution.
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Assume henceforth that V is even:

V (x) = V (−x) , x ∈ Rd . (12)

The first main result in [8] (Theorem 3.3) is that, if V̂ ∈ L1(Rd), the quantum
Klimontovich solution MN (t) satisfies

i�∂tMN (t) = ad∗(K )MN (t) − C(V ,MN (t),MN (t)) , (13)

where K = − 1
2�

2� is the quantum kinetic energy, and where

(ad∗(T )	)A := −	([T , A]) (14)

for each unbounded self-adjoint operator T on H, each A ∈ L(H) satisfying the
condition [T , A] ∈ L(H), and each 	 ∈ L(L(H),L(HN )). Moreover,

C(V ,	1,	2)(A) := 1
(2π)d

∫

Rd
V̂ (ω)((	1E

∗
ω)	2(EωA) − 	2(AEω)(	1E

∗
ω))dω

(15)
for each A ∈ L(H) and each 	1,	2 ∈ L(L(H),L(HN )), where Eω ∈ L(H) is the
operator defined by

(Eωφ)(x) := eiω·xφ(x) for each φ ∈ H and ω ∈ Rd . (16)

Since the integrand of the right-hand side of (15) takes its values in the non-separable
space L(HN ), it is worth mentioning that this integral is a weak integral for the ultra-
weak topology inL(HN ): see footnote 3 on p. 1032 in [8]. (We recall that the ultraweak
topology on the algebra L(H) of bounded operators on the Hilbert space H is the
topology defined by the family of seminorms

L(H) � B �→ | traceH (BT )| ∈ [0,+∞)

as T runs through the set of trace-class operators on H : see for instance §4.6.10 in
chapter 4 of the book [16].)

At variance with the classical case recalled in (3), the differential equation (13)
satisfied by the quantum Klimontovich solution t �→ MN (t) is not formally identical
to the mean-field, time-dependent Hartree equation (5). The relation between (5) and
(13) is explained in Theorem 3.5, the second main result in [8], recalled below.

If ψ is a solution of the time-dependent Hartree equation (5) satisfying the normal-
ization condition

‖ψ(t, ·)‖H = 1 for all t ∈ R,
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the time-dependent morphism t �→ R(t) ∈ L(L(H),L(HN )) defined by the formula2

R(t)A := 〈ψ(t, ·)|A|ψ(t, ·)〉IHN

is a solution of (13).

3 Extending the definition of C(V,MN(t),MN(t))when
V /∈ FL1(R3)

Our first task is to extend the definition (15) of the term C(V ,MN (t),MN (t)) to a
more general class of potentials V , including the Coulomb potential in R3.

Since

MN (t)(E∗
ω)MN (t)(Eω|φ〉〈φ|) − MN (t)(|φ〉〈φ|Eω)MN (t)(E∗

ω)

= UN (t)∗(Min
N (E∗

ω)Min
N (Eω|φ〉〈φ|) − Min

N (|φ〉〈φ|Eω)Min
N (E∗

ω))UN (t),

the idea is to define

〈in
N |C(V ,MN (t),MN (t))(|φ〉〈φ|)|� in

N 〉
:= 1

(2π)3

∫

R3
V̂ (ω)〈UN (t)in

N |SN [φ](ω)|UN (t)� in
N 〉dω

for all in
N , � in

N ∈ HN , where

SN [φ](ω) := Min
N (E∗

ω)Min
N (Eω|φ〉〈φ|) − Min

N (|φ〉〈φ|Eω)Min
N (E∗

ω)

and to take advantage of the decay of SN [φ] in ω, assuming that φ is regular enough.
Our argument does not use any regularity on in

N or � in
N . This is quite natural, since

anyway Kato’s condition (8) on the interaction potential V does not entail higher than
(Sobolev) H2 regularity for UN (t)in

N or UN (t)� in
N , as observed in Note V.10 of [17].

Our first main result in this paper is the following result, leading to a definition
of C(V ,MN (t),MN (t))(|φ〉〈φ|) in the case of singular, Coulomb-like potentials V ,
and for bounded wave functions φ. This theorem can be regarded as an extension to the
case of singular,Coulomb-like potentialsV of the formalismof quantumKlimontovich
solutions in [8].

2 Throughout this paper, we adopt the Dirac bra–ket notation. Thus, a wave function ψ ∈ H viewed as a
vector of the linear space H is denoted |ψ〉, whereas 〈ψ | designates the linear functional

〈ψ | : H � φ �→
∫

Rd
ψ(x)φ(x)dx ∈ C.

If A ∈ L(H), we denote

〈ψ |A|φ〉 :=
∫

Rd
ψ(x)(Aφ)(x)dx

and 〈ψ |φ〉 := 〈ψ |IH|φ〉 is the inner product on H.
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Theorem 3.1 Assume that V is a real-valued measurable function on R3 satisfying
the parity condition (12), and

V ∈ L2(R3) + FL1(R3) . (17)

For each φ ∈ L2 ∩ L∞(R3) and each �N ∈ HN , the function

ω �→ 〈�N |SN [φ](ω)|�N 〉 belongs to L2 ∩ L∞(R3).

The interaction operator C(V ,MN (t),MN (t))(|φ〉〈φ|) is defined by the formula

C(V ,MN (t),MN (t))(|φ〉〈φ|) := 1
(2π)3

∫

R3
V̂ (ω)UN (t)∗SN [φ](ω)UN (t)dω

The integral on the right-hand side of the equality above is to be understood as a weak
integral and defines

t �→ C(V ,MN (t),MN (t))(|φ〉〈φ|)

as a continuous map from R to L(HN ) endowed with the ultraweak topology, which
is moreover bounded on R for the operator norm on L(HN ).

Obviously, condition (17) is stronger than Kato’s condition (8). However, the repul-
sive Coulomb potential z �→ 1/|z| in R3 obviously satisfies (17), since its Fourier
transform ζ �→ C/|ζ |2 belongs to L1(R3) + L2(R3). In particular, HN has a self-
adjoint extension to HN under condition (17)

Proof Assuming that � in
N ∈ HN , one has

UN (t)� in
N ∈ HN with ‖UN (t)� in

N ‖HN = ‖� in
N ‖HN .

Therefore, we henceforth forget the time dependence in �N (t, ·) = UN (t)� in
N ,

which will be henceforth denoted �N ≡ �N (x1, . . . , xN ).
Observe first that

SN [φ](ω) = 1
N2

∑

1≤k �=l≤N

(Jk(E
∗
ω)Jl(Eω|φ〉〈φ|) − Jl(|φ〉〈φ|Eω)Jk(E

∗
ω))

since

Jk(E
∗
ω)Jk(Eω|φ〉〈φ|) − Jk(|φ〉〈φ|Eω)Jk(E

∗
ω)

= Jk(E
∗
ωEω|φ〉〈φ|) − Jk(|φ〉〈φ|EωE

∗
ω)

= Jk(|φ〉〈φ|) − Jk(|φ〉〈φ|) = 0 .
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Without loss of generality, consider the term

〈�N |J1(E∗
ω)J2(Eω|φ〉〈φ|)|�N 〉

=
∫

R6
e−iω·(x1−x2)φ(x2)

×
(∫

R3N−6
�N (x1, x2, Z)

(∫

R3
�N (x1, y2, Z)φ(y2)dy2

)

dZ

)

dx1dx2

= F̂(−ω)

where

F(X) :=
∫

R3
φ(X+x1) f (x1, x1 + X , x1)dx1,

with the notation

f (x1, x2, y1) :=
∫

R3N−6
�N (x1, x2, Z)

(∫

R3
�N (y1, y2, Z)φ(y2)dy2

)

dZ .

We shall prove that F ∈ L1(R3) ∩ L2(R3), so that F̂ ∈ L2(R3) ∩ C0(R3).
First

∫

R3
|F(X)|dX ≤

∫

R6
|φ(X + x1)|| f (x1, x1 + X , x1)|dx1dX

=
∫

R3

(∫

R3
|φ(x2)|| f (x1, x2, x1)|dx2

)

dx2

≤
∫

R3N−3

(∫

R3
|φ(x2)||�N (x1, x2, Z)|dx2

)

×
(∫

R3
|�N (x1, y2, Z)||φ(y2)|dy2

)

dZdx1

=
∫

R3N−3

(∫

R3
|φ(x2)||�N (x1, x2, Z)|dx2

)2

dZdx1

≤‖φ‖2L2(R3)

∫

R3N−3

∫

R3
|�N (x1, x2, Z)|2dx2dZdx1

=‖φ‖2L2(R3)
‖�N‖2L2(R3N )

< ∞,

where the last inequality is the Cauchy–Schwarz inequality for the inner integral.
On the other hand,

∫

R3
|F(X)|2dX ≤ ‖φ‖2L∞(R3)

∫

R3

(∫

R3
| f (x1, x1 + X , x1)|dx1

)2

dX ,
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and
∫

R3
| f (x1, x1 + X , x1)|dx1 ≤

∫

R3N−3
|�N (x1, x1 + X , Z)|N (x1, Z)dZdx1,

with

(x1, Z) :=
∫

R3
|�N (x1, y2, Z)||φ(y2)|dy2,

so that

N (x1, ZN )2 ≤ ‖φ‖2L2(R3)

∫

R3
|�N (x1, y2, Z)|2dy2,

and
∫

R3N−3
N (x1, Z)2dZdx1 ≤‖φ‖2L2(R3)

∫

R3
|�N (x1, y2, Z)|2dx1dy2dZ

=‖φ‖2L2(R3)
‖�N‖2L2(R3N )

.

Hence,

(∫

R3
| f (x1, x1 + X , x1)|dx1

)2

≤
(∫

R3N−3
|�N (x1, x1 + X , Z)|N (x1, Z)dZdx1

)2

≤
∫

R3N−3
|�N (x1, x1 + X , Z)|2dZdx1

∫

R3N−3
N (x1, Z)2dZdx1

≤
∫

R3N−3
|�N (x1, x1 + X , Z)|2dZdx1‖φ‖2L2(R3)

‖�N‖2L2(R3N )
,

so that

∫

R3

(∫

R3
| f (x1, x1 + X , x1)|dx1

)2

dX

≤ ‖φ‖2L2(R3)
‖�N‖2L2(R3N )

∫

R3

∫

R3N−3
|�N (x1, x1 + X , Z)|2dZdx1dX

= ‖φ‖2L2(R3)
‖�N‖2L2(R3N )

∫

R3

∫

R3N−3
|�N (x1, x2, Z)|2dZdx1dx2

= ‖φ‖2L2(R3)
‖�N‖4L2(R3N )

.

Therefore,

∫

R3
|F(X)|2dX ≤ ‖φ‖2L∞(R3)

‖φ‖2L2(R3)
‖�N‖4L2(R3N )

< ∞
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so that ω �→ F̂(−ω) belongs to L2(Rd) by Plancherel’s theorem. Hence, for each
k �= l ∈ {1, . . . , N }, one has

V̂ ∈ L1(Rd ) + L2(Rd ) 	⇒

⎧
⎪⎪⎨

⎪⎪⎩

∫

R3
|V̂ (ω)||〈�N |Jk(E∗

ω)Jl (Eω|φ〉〈φ|)|�N 〉|dω < ∞,

∫

R3
|V̂ (ω)||〈�N |Jl (|φ〉〈φ|Eω)Jk(E

∗
ω)|�N 〉|dω < ∞.

Hence,

(t, ω) �→ V̂ (ω)〈UN (t)� in
N |SN [φ](ω)|UN (t)� in

N 〉 belongs to Cb(Rt , L
1(R3

ω)).

Since SN [φ](ω)∗ = −SN [φ](ω) ∈ L(HN ) for each ω ∈ R3 and V̂ is even because of
(12), the formula

〈� in
N |C(V ,MN (t),MN (t))(|φ〉〈φ|)|� in

N 〉
:= 1

(2π)3

∫

R3
V̂ (ω)〈UN (t)∗� in

N |SN [φ](ω)|UN (t)∗� in
N 〉dω

defines

C(V ,MN (t),MN (t))(|φ〉〈φ|) = −C(V ,MN (t),MN (t))(|φ〉〈φ|)∗ ∈ L(HN )

for each t ∈ R by polarization, and the function

t �→ C(V ,MN (t),MN (t))

is bounded on R with values in L(HN ) for the norm topology, and continuous on R
with values in L(HN ) endowed with the weak operator topology, and therefore, for
the ultraweak topology, since the weak operator and the ultraweak topologies coincide
on norm bounded subsets of L(HN ). This last point is Proposition 4.6.14 in chapter 4
of [16], where the weak operator and the ultraweak topologies are referred to as the
weak and the σ -weak topologies, respectively. ��
Remark In the sequel, we shall also need to consider terms of the form

(I ) := 1
(2π)3

∫

R3
V̂ (ω)〈�N |J1(E∗

ω|φ〉〈φ|)J2(Eω|φ〉〈φ|)|�N 〉dω

(I I ) := 1
(2π)3

∫

R3
V̂ (ω)〈�N |J1(|φ〉〈φ|E∗

ω)J2(Eω|φ〉〈φ|)|�N 〉dω

(I I I ) := 1
(2π)3

∫

R3
V̂ (ω)〈�N |J1(|φ〉〈φ|E∗

ω|φ〉〈φ|)J2(AEωB)|�N 〉dω

where A, B ∈ L(H).
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The term (III) is the easiest of all. Indeed,

(I I I ) = 1
(2π)3

∫

R3
V̂ (ω)̂|φ|2(ω)〈�N |J1(|φ〉〈φ|)J2(AEωB)|�N 〉dω

=〈�N |J1(|φ〉〈φ|)J2(A(V �|φ|2)B)|�N 〉

and since V ∈ L2(R3)+Cb(R3)while φ ∈ L1∩ L∞(R3), one has V �|φ|2 ∈ Cb(R3),
so that A(V �|φ|2)B ∈ L(H).

The terms (I) and (II) are slightly more delicate, but can be treated by the same
method already used in the proof of the theorem above. First,

〈�N |J1(E∗
ω|φ〉〈φ|)J2(Eω|φ〉〈φ|)|�N 〉 = F̂1(ω),

with

F1(Y ) :=
∫

R3N−6
A1(Y , Z)A2(Z)dZ ,

A1(Y , Z) :=
∫

R3
φ(X + Y

2 )φ(X − Y
2 )�N (X + Y

2 , X − Y
2 , Z)dX ,

A2(Z) :=
∫

R6
�N (y1, y2, Z)φ(y1)φ(y2)dy1dy2,

so that

(I ) = 1
(2π)3

∫

R3
V̂ (ω)F̂1(ω)dω.

Then,

(∫

R3
|F1(Y )|dY

)2

≤ ‖A2‖2L2(R3N−6)

∫

R3N−6

(∫

R3
|A1(Y , Z)|dY

)2

dZ ≤ ‖A2‖2L2(R3N−6)

×
∫

R3N−6

(∫

R6
|φ(X + Y

2 )||φ(X − Y
2 )||�N (X + Y

2 , X − Y
2 , Z)|dXdY

)2

dZ

≤ ‖A2‖2L2(R3N−6)

∫

R6
|φ(X + Y

2 )|2|φ(X − Y
2 )|2dXdY

×
∫

R3N
|�N (X + Y

2 , X − Y
2 , Z)|2dXdYdZ

= ‖A2‖2L2(R3N−6)

∫

R6
|φ(x1)|2|φ(x2)|2dx1dx2

×
∫

R3N
|�N (x1, x2, Z)|2dx1dx2dZ

= ‖A2‖2L2(R3N−6)
‖φ‖4L2(R3)

‖�N‖2HN
.
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Besides

‖A2‖2L2(R3N−6)
≤

∫

R6
|φ(y1)|2|φ(y2)|2dy1dy2

∫

R3N−6
|�N (y1, y2, Z)|2dy1dy2dZ

=‖φ‖4L2(R3)
‖�N‖2HN

,

so that

‖F1‖L1(R3) ≤ ‖φ‖4L2(R3)
‖�N‖2HN

< ∞.

On the other hand,

∫

R3
|F1(Y )|2dY ≤ ‖A2‖2L2(R3N−6)

‖A1‖2L2(R3N−3)
,

where

‖A1‖2L2(R3N−3)
≤ sup

Y∈R3

∫

R3
|φ(X + Y

2 )|2|φ(X − Y
2 )|2dX

×
∫

R3N
|�N (X + Y

2 , X − Y
2 , Z)|2dXdYdZ

≤‖φ‖4L4(R3)
‖�N‖2HN

,

so that
∫

R3
|F1(Y )|2dY ≤ ‖φ‖4L4(R3)

‖φ‖4L2(R3)
‖�N‖4HN

< ∞.

Thus, we have proved that F1 ∈ L1 ∩ L2(Rd), and since V̂ ∈ L2(Rd) + L1(Rd), the
product V̂ F̂ ∈ L1(Rd), which leads to a definition of (I).

The case of (II) is essentially similar. Observe that

〈�N |J1(|φ〉〈φ|E∗
ω)J2(Eω|φ〉〈φ|)|�N 〉 =

∫

R3N−6
F̂2(ω, Z)F̂3(ω, Z)dZ ,

where

F2(y1, Z) := φ(y1)
∫

R3
φ(y2)�N (y1, y2, Z)dy2,

F3(x2, Z) := φ(x2)
∫

R3
φ(x1)�N (x1, x2, Z)dx1.

And

(I I ) := 1
(2π)3

∫

R3
V̂ (ω)

(∫

R3N−6
F̂2(ω, Z)F̂3(ω, Z)dZ

)

dω.
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Observe that

(∫

|F2(y1, Z)|dy1
)2

≤
(∫

R6
|φ(y1)||φ(y2)||�N (y1, y2, Z)|dy1dy2

)2

≤‖φ‖4L2(R3)

∫

R6
|�N (y1, y2, Z)|2dy1dy2,

so that

sup
ω∈R3

∣
∣
∣
∣

∫

R3N−6
F̂2(ω, Z)F̂3(ω, Z)dZ

∣
∣
∣
∣

2

≤
(∫

R3N−6
sup

ω∈R3
|F̂2(ω, Z)| sup

ω∈R3
|F̂3(ω, Z)|dZ

)2

≤
∫

R3N−6
sup

ω∈R3
|F̂2(ω, Z)|2dZ

∫

R3N−6
sup

ω∈R3
|F̂3(ω, Z)|2dZ

≤
∫

R3N−6

(∫

|F2(y1, Z)|dy1
)2

dZ
∫

R3N−6

(∫

|F3(x2, Z)|dx2
)2

dZ

≤ ‖φ‖8L2(R3)
‖�N‖4HN

,

while

∫

R3N−6

(∫

|F2(y1, Z)|dy1
)2

dZ ≤ ‖φ‖4L2(R3)
‖�N‖2HN

,

with a similar conclusion for F3. On the other hand

∫

R3
|F2(y1, Z)|2dy1 ≤

∫

R3
|φ(y1)|2

(∫

R3
φ(y2)�N (y1, y2, Z)dy2

)2

dy1

≤ ‖φ‖2L2(R3)

∫

R3
|φ(y1)|2

(∫

R3
|�N (y1, y2, Z)|2dy2

)

dy1

≤ ‖φ‖2L2(R3)
‖φ‖2L∞(R3)

∫

R6
|�N (y1, y2, Z)|2dy1dy2,

so that

∫

R3

∣
∣
∣
∣

∫

R3N−6
F̂2(ω, Z)F̂3(ω, Z)dZ

∣
∣
∣
∣

2

dω

≤
∫

R3

∫

R3N−6
|F̂2(ω, Z)|2

(∫

R3N−6
|F̂3(ω, Z)|2dZ

)

dZdω

≤ sup
ω∈R3

∫

R3N−6
|F̂3(ω, Z)|2dZ

∫

R3N−6

∫

R3
|F̂2(ω, Z)|2dZdω
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≤
∫

R3N−6
sup

ω∈R3
|F̂3(ω, Z)|2dZ

∫

R3N−6
(2π)3

(∫

R3
|F2(y1, Z)|2dy1

)

dZ

≤ (2π)3
∫

R3N−6

(∫

R3
|F̂3(x2, Z)|dx2

)2

dZ
∫

R3N−6

∫

R3
|F2(y1, Z)|2dy1dZ

≤ (2π)3‖φ‖6L2(R3)
‖φ‖2L∞(R3)

‖�N‖4HN
.

Therefore, the map

ω �→
∫

R3N−6
F̂2(ω, Z)F̂3(ω, Z)dZ

belongs to L2 ∩ L∞(R3). Since V̂ ∈ L2(R3) + L1(R3), this implies that

ω �→ V̂
∫

R3N−6
F̂2(ω, Z)F̂3(ω, Z)dZ

belongs to L1(R3), thereby leading to a definition of (II).

4 An operator inequality. Application to themean-field limit

First consider the Cauchy problem for the time-dependent Hartree equation (5).
Assuming that the potential V satisfies (8) and (12), for each φin ∈ H2(R3), there
exists a unique solution φ ∈ C(R, H2(R3)) of (5) by Theorems 1.4 and 1.3 of [11].

Pickl’s key idea in his proof of the mean-field limit in quantum mechanics is to
consider the following functional (see Definition 2.2 and formula (6) in [18], with the
choice n(k) := k/N , in the notation of [18]):

αN (�N , ψ) :=
〈

�N

∣
∣
∣
1

N

N∑

k=1

Jk(IH − |ψ〉〈ψ |)
∣
∣
∣�N

〉

= 〈�N |Min
N (IH − |ψ〉〈ψ |)|�N 〉

for all �N ∈ HN and ψ ∈ H.
Assuming that ψ ≡ ψ(t, x) is a solution of (5) while �N (t, ·) := UN (t)� in

N , Pickl
studies in section 2.1 of [18] the time-dependent function t �→ αN (�N (t, ·), ψ(t, ·)),
and proves that it satisfies some Gronwall inequality.

Observe first that Pickl’s functional αN (�N (t, ·), ψ(t, ·)) can be recast in terms of
the quantum Klimontovich solution MN (t) as follows

αN (UN (t)� in
N , ψ(t, ·)) =〈UN (t)� in

N |Min
N (IH − |ψ(t, ·)〉〈ψ(t, ·)|)|UN (t)� in

N 〉
=〈� in

N |UN (t)∗
(
Min

N (IH − |ψ(t, ·)〉〈ψ(t, ·)|)
)
UN (t)|� in

N 〉
=〈� in

N |MN (t)(IH − |ψ(t, ·)〉〈ψ(t, ·)|)|� in
N 〉 .

(18)
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This identity suggests therefore to deduce from (13) and (5) the expression of

d
dtMN (t)(IH − |ψ(t, ·)〉〈ψ(t, ·)|)

in terms of the interaction operator C defined in (15).
This is done in the first part of the next theorem, which is our second main result

in this paper.

Theorem 4.1 Assume that the (real-valued) interaction potential V , viewed as an
(unbounded) multiplication operator acting on H := L2(R3), satisfies the parity
condition (12) and (17).

Letψ in ∈ H2(R3) satisfy ‖ψ in‖H = 1, letψ be the solution of the Cauchy problem
(5) for the time-dependent Hartree equation, and set

R(t) := |ψ(t, ·)〉〈ψ(t, ·)| , and P(t) := IH − R(t) . (19)

Then,

(1) the N-body quantum Klimontovich solution t �→ MN (t) satisfies

i�∂t (MN (t)(P(t))) = C(V ,MN (t) − R(t),MN (t))(R(t)),

where

R(t)A := 〈ψ(t, ·)|A|ψ(t, ·)〉IHN = traceH(R(t)A)IHN ;

(2) the operator C(V ,MN (t) − R(t),MN (t))(P(t)) is skew-adjoint on HN and
satisfies the operator inequality

±iC(V ,MN (t) − R(t),MN (t))(R(t)) ≤ 6L(t)
(
MN (t)(P(t)) + 2

N IHN

)
,

where3

L(t) := 2max(1,CS)‖V ‖L2(R3)+L∞(R3)‖ψ(t, ·)‖H2(R3) , (20)

and where CS is the norm of the Sobolev embedding H2(R3) ⊂ L∞(R3).

Theoperator inequality for quantumKlimontovich solutions in the case of potentials
with Coulomb-type singularity obtained in part (2) of Theorem 4.1 can be thought of as

3 We recall that, if E, F are Banach spaces

‖v‖E∩F := max(‖v‖E , ‖v‖F ),

and

‖ f ‖L p(Rd )+Lq (Rd )
= inf{‖ f1‖L p(Rd )

+‖ f2‖Lq (Rd )
s.t. f = f1+ f2 with f1∈ L p(Rd ), f2∈ Lq (Rd )}.
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the reformulation of Pickl’s argument in terms of the quantum Klimontovich solution
MN (t).

Indeed, we deduce from parts (1) and (2) in Theorem 4.1 the operator inequality

d
dtMN (t)(P(t)) ≤ 6L(t)

�

(
MN (t)(P(t)) + 2

N IHN

)
. (21)

Then, evaluating both sides of this inequality on the initial N -particle state � in
N and

taking into account the identity (18) lead to the Gronwall inequality

d
dt αN (UN (t)� in

N , ψ(t, ·)) ≤ 6L(t)
�

(
αN (UN (t)� in

N , ψ(t, ·)) + 2
N

)

satisfied by Pickl’s functional αN (UN (t)� in
N , ψ(t, ·)). This last inequality corresponds

to inequality (11) and Lemma 3.2 in [18].
In the sequel, we shall denote by Lp(H) for p ≥ 1 the Schatten two-sided ideal of

L(H) consisting of operators T such that

‖T ‖p :=
(
traceH((T ∗T )p/2)

)1/p
< ∞.

In particular, L1(H) is the set of trace-class operators on H and ‖ · ‖1 the trace norm,
whileL2(H) is the set ofHilbert–Schmidt operators onH and ‖·‖2 theHilbert–Schmidt
norm.

Corollary 4.2 Under the same assumptions and with the same notations as in Theorem
4.1, consider the N-body wave function �N (t, ·) := UN (t)(ψ in)⊗N , and the N-body
density operator FN (t) := |�N (t, ·)〉〈�N (t, ·)|. For each m = 1, . . . , N, the m-
particle reduced density operator FN :m(t), defined by the identity

traceHm (FN :m(t)A1 ⊗ . . . ⊗ Am) = 〈�N (t, ·)|A1 ⊗ . . . ⊗ Am ⊗ IHN−m |�N (t, ·)〉

for all A1, . . . , Am ∈ L(H), satisfies

‖FN :m(t) − R(t)⊗m‖1 ≤ 4

√
m

N
exp

(
3
�

∫ t

0
L(s)ds

)

,

with L given by (20).

As already mentioned at the end of the introduction (Sect. 1), the results discussed
here apply to the case of bosons, and one reason for this is that the analysis in the
present paper is not uniform in � (exactly as in [18]). In particular, one cannot consider
the distinguished limit h ∼ N−1/3 which is typical of themean-field limit for fermions.
Another reason is that the initial condition for�N is of the form�N (0, ·) = (ψ in)⊗N ,
which is an example of pure state for bosons.

Let us briefly indicate how one arrives at the operator inequality in part (2) of
Theorem 4.1. Let 	1,	2 ∈ L(L(H),L(HN )) be such that

ω �→ 〈�N |	1(E
∗
ω)	2(Eω)|�N 〉 belongs to L1 ∩ L2(R3) (22)
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for all �N ∈ HN . For all V satisfying (12) and (17), define T (V ,	1,	2) ∈ L(HN )

by polarization of the formula

〈�N |T (V ,	1,	2)|�N 〉 := 1
(2π)d

∫

Rd
V̂ (ω)〈�N |	1(E

∗
ω)	2(Eω)|�N 〉dω.

In other words,

T (V ,	1,	2) := 1
(2π)d

∫

Rd
V̂ (ω)	1(E

∗
ω)	2(Eω)dω (23)

where the integral on the right hand is to be understood in the ultraweak sense (see
footnote 3 on p. 1032 in [8]).

For each A ∈ L(H), denote by 	 j (•A) and 	 j (A•) the linear maps

	 j (•A) : L(H) � B �→ 	 j (BA) ∈ L(HN )

	 j (A•) : L(H) � B �→ 	 j (AB) ∈ L(HN )

respectively. If A ∈ L(H) is such that 	1,	2(•A) and 	2(A•),	1 satisfy (22), then
one has

C(V ,	1,	2)A = T (V ,	1,	2(•A)) − T (V ,	2(A•),	1) . (24)

Lemma 4.3 Let 	1,	2 ∈ L(L(H),L(HN )) be ∗-homomorphisms, in other words

	 j (A
∗) = 	 j (A)∗, j = 1, 2

for all A ∈ L(H). Assume that 	1,	2 satisfy (22). Then

T (V ,	2,	1) = T (V ,	1,	2)
∗.

Proof Indeed

T (V ,	2,	1) = 1
(2π)d

∫

Rd
V̂ (ω)	2(E

∗
ω)	1(Eω)dω

= 1
(2π)d

∫

Rd
V̂ (ω)	2(Eω)∗	1(E

∗
ω)∗dω = T (V ,	1,	2)

∗

where the first equality follows from the fact that 	1 and 	2 are *-homomorphisms,
while the second equality uses the fact that V̂ is real-valued, since V is real-valued
and even. ��

An easy consequence of (24) and of this lemma is that, for each A = A∗ ∈ L(H)

such that 	1,	2 ∈ L(L(H),L(HN )) are ∗-homomorphisms such that 	1,	2(•A)

satisfy (22), then
(C(V ,	1,	2)A)∗ = −C(V ,	1,	2)A . (25)
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The key observations leading to Theorem 4.1 are summarized in the two following
lemmas. In the first of these two lemmas, the interaction operator is decomposed into
a sum of four terms.

Lemma 4.4 Under the same assumptions and with the same notations as in Theorem
4.1, the interaction operator satisfies the identity

C(V ,MN (t) − R(t),MN (t))(R(t)) = T1 + T2 + T3 + T4,

with

T1 :=T (V ,MN (t)(P(t)•P(t)),MN (t)(P(t)•R(t))

− T (V ,MN (t)(R(t)•P(t)),MN (t)(P(t)•P(t)),

T2 :=MN (t)(R(t)VR(t)P(t))MN (t)(P(t))

− MN (t)(P(t))MN (t)(P(t)VR(t)R(t)),

T3 :=T (V ,MN (t)(P(t)•R(t)),MN (t)(P(t)•R(t))

− T (V ,MN (t)(R(t)•P(t)),MN (t)(R(t)•P(t)),

T4 := 1
NMN (t)[VR(t), R(t)].

All the terms involved in this decomposition can be defined by the same method
already used in the proof of Theorem 3.1. Indeed, one can check that all these terms
involve only expressions of the type (I), (II) or (III) in the Remark following Theorem
3.1. This easy verification is left to the reader, and we shall henceforth consider this
matter as settled by the detailed explanations concerning (I), (II) and (III) given in the
previous section.

Each term in this decomposition satisfies an operator inequality involving only the
operator norm of the “mean-field squared potential” (V 2)R(t), instead of the “bare”
interaction potential V itself.

Lemma 4.5 Under the same assumptions and with the same notations as in Theorem
4.1, set

�(t) := ‖V 2�|ψ(t, ·)|2‖ 1
2 . (26)

Then

±iT1 ≤2�(t)
(
(1 − 1

N )MN (t)(P(t)) + 4
N IHN

)
,

±iT2 ≤2�(t)(MN (t)(P(t)) + 1
N IHN ),

±iT3 ≤2�(t)((1 − 1
N )MN (t)(P(t)) + 1

N IHN ),

±iT4 ≤ 2
N �(t)IHN .

Remarks on �(t) in (26) and L(t) in (20).

(1) If V satisfies condition (17) in Theorem 3.1, then V ∈ L2(R3)+L∞(R3), so that
V 2∈ L1(Rd) + L∞(Rd). Thus (V 2)R(t), which is the multiplication operator by
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the function V 2�|ψ(t, ·)|2, satisfies

�(t)2 := ‖V 2�|ψ(t, ·)|2‖L∞(R3) ≤‖V 2‖L1(R3)+L∞(R3)‖ψ(t, ·)‖2L1∩L∞(R3)

≤2‖V ‖2L1(R3)+L∞(R3)
max(1, ‖ψ(t, ·)‖L∞(R3))

2

≤2C2
S‖V ‖2L1(R3)+L∞(R3)

‖ψ(t, ·)‖2H2(R3)

wherewe recall thatCS is the normof the Sobolev embedding H2(R3) ⊂ L∞(R3).
(2) If V satisfies (8), then ‖V (I − �)−1‖ ≤ M for some positive constant M (see the

discussion in §5.3 of chapter V in [13], so that

V 2 ≤ M2(I − �)2.

In this remark, we shall make a slightly more restrictive assumption, namely that
V 2 satisfies

V 2 ≤ C(I − �) . (27)

In space dimension d = 3, the Hardy inequality, which can be put in the form4

1

|x |2 ≤ 4(−�)

implies that the Coulomb potential satisfies the assumption above on V . If the
potential V satisfies the (operator) inequality (27), then

0 ≤ (V 2)R(t)(x) =
∫

Rd
V 2(y)|ψ(t, x − y)|2dy = 〈ψ(t, x − ·)|V 2|ψ(t, x − ·)〉

≤ C〈ψ(t, x − ·)|(I − �)|ψ(t, x − ·)〉 = C‖ψ(t, x − ·)‖2L2

+ C‖∇ψ(t, x − ·)‖2L2

= C‖ψ(t, ·)‖2L2 + C‖∇ψ(t, ·)‖2L2 .

Thus, if ψ ∈ C(R; H1(Rd)) is a solution of the Hartree equation,

�(t) ≤ √
C‖ψ(t, ·)‖H1(R3).

(3) A bound on �(t) in terms of ‖ψ(t, ·)‖H1(R3) instead of ‖ψ(t, ·)‖H2(R3) is advan-
tageous since the former quantity can be controlled rather explicitly by means of
the conservation of energy for the Hartree equation (5). This explicit control is
useful in particular to assess the dependence in � of the convergence rate for the
mean-field limit obtained in Corollary (4.2).

4 To see that 4 is optimal, minimize in α > 0 the expression

∫

R3

∣
∣
∣
∣∇u + α

x

|x |2 u
∣
∣
∣
∣

2
dx .

123



   51 Page 20 of 44 I. B. Porat, F. Golse

Clearly, the convergence rate for the quantum mean-field limit in Corollary 4.2 is
not uniform in the semiclassical regime, in the first place because of the factor 3/� on
the right-hand side of the upper bound for ‖FN :m(t) − R(t)⊗m‖1, which comes from
the i�∂t part of the quantum dynamical equation.

However, one should expect that the function �(t), or at least the upper bound for
�(t) obtained in (2), grows at least as 1/�, since it involves ‖∇xψ(t, ·)‖L2 , expected
to be of order 1/� for semiclassical wave functions ψ (think for instance of a WKB
wave function, or of a Schrödinger coherent state).

We shall discuss this issue by means of the conservation of energy satisfied by the
Hartree solution ψ (see formula (5.2) in [3]):

1
2�

2‖∇ψ(t, ·)‖2L2 + 1
2

∫

Rd
|ψ(t, x)|2(V �|ψ(t, x)|2)dx

= 1
2�

2‖∇ψ in‖2L2 + 1
2

∫

Rd
|ψ in(x)|2(V �|ψ in(x)|2)dx .

Observe that

|V �|ψ(t, x)|2| ≤ ‖ψ(t, ·)‖L2‖(V 2�|ψ(t, x)|2)1/2‖L∞ = �(t) , (28)

so that

1
2�

2‖∇ψ(t, ·)‖2L2 + 1
2

∫

Rd
|ψ(t, x)|2(V �|ψ(t, x)|2)dx

≤ 1
2�

2‖ψ(t, ·)‖2H1 + 1
2�(t) ≤ 1

2�
2‖ψ in‖2H1 + 1

2

√
C‖ψ in‖H1 .

Thus, if V ≥ 0, or if V̂ ≥ 0, one has

∫

Rd
|ψ(t, x)|2(V �|ψ(t, x)|2)dx = 1

(2π)d

∫

Rd
V̂ (ω)|F(|ψ(t, ·)|2)|2(ω)dω ≥ 0

(where F designates the Fourier transform on Rd ), so that the conservation of mass
and energy for the Hartree solution implies that

�
2‖ψ(t, ·)‖2H1 ≤ �

2‖ψ in‖2H1 + √
C‖ψ in‖H1 .

In that case

�(t) ≤ 1
�

√

C(�2‖ψ in‖2
H1 + √

C‖ψ in‖H1).

Typical states used in the semiclassical regime (WKB or coherent states, for instance)
satisfy �‖∇ψ in‖L2 = O(1). Thus, in that case

�(t) ≤ �
−3/2

√

C(�3‖ψ in‖2
H1 + √

C�‖ψ in‖H1) = O(�−3/2).
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Things become worse if the potential energy is a priori of indefinite sign.With (28),
the energy conservation implies that

�
2‖ψ(t, ·)‖2H1 ≤�

2‖ψ in‖2H1 + √
C‖ψ in‖H1 + √

C‖ψ(t, ·)‖H1

≤�
2‖ψ in‖2H1 + √

C‖ψ in‖H1 + C
2�2 + 1

2�
2‖ψ(t, ·)‖2H1 ,

so that

�
2‖ψ(t, ·)‖2H1 ≤ 2

(
�
2‖ψ in‖2H1 + √

C‖ψ in‖H1 + C
2�2

)
≤ 3�2‖ψ in‖2H1 + 2 C

�2 ,

and thus

�(t) ≤ �
−2

√

C(3�4‖ψ in‖2
H1 + 2C) = O(�−2).

Therefore, the exponential amplifying factor in Corollary 4.2 is exp(Kt/�
5/2) in

the first case, and exp(Kt/�
3) in the second. These elementary remarks suggest that

Pickl’s clever method for proving the quantum mean-field limit with singular poten-
tials including the Coulomb potential (see [15, 18]) is not expected to give uniform
convergence rates (as in [7, 8] in the case of regular interaction potentials) for the
mean-field limit in the semiclassical regime.

5 Proof of part (1) in Theorem 4.1

For each σ ∈ SN and each �N ∈ HN , set

(Uσ �N )(x1, . . . , xN ) = �N (xσ−1(1), . . . , xσ−1(N )).

Since ψ(t, ·) ∈ H2(R3), the commutator [�, R(t)] is a bounded operator on H.
According to formula (25) in [8], denoting by Vkl the multiplication operator

(Vkl�N )(x1, . . . , xN ) = V (xk − xl)�N (x1, . . . , xN ) , (29)

one has

traceHN ((i�∂tMN (t) − ad∗(− 1
2�

2�)MN (t))(P(t))FN )

= − traceHN ( N−1
N ([V12, J1P(t)])FN ) = traceHN ( N−1

N ([V12, J1R(t)])FN )
(30)

for all FN ∈ L(HN ) such that

FN = F∗
N ≥ 0 , traceHN (FN ) = 1 , and Uσ FNU

∗
σ = FN for all σ ∈ SN .

(31)
The core result in the proof of Theorem 3.1 is that the function

ω �→ 〈�N |Jk([Eω, R(t)])Jl(E∗
ω)|�N 〉 ∈ L2 ∩ L∞(R3)
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for each k �= l ∈ {1, . . . , N }. Since V̂ ∈ L1(R3) + L2(R3), this has led us to define

〈�N |[Vkl , Jk R(t)]|�N 〉 := 1
(2π)3

∫

R3
V̂ (ω)〈�N |Jk([Eω, R(t)])Jl(E∗

ω)|�N 〉dω,

and more generally, using a spectral decomposition of the trace-class operator FN ,

traceHN ([Vkl , Jk R(t)]FN ) := 1
(2π)3

∫

R3
V̂ (ω) traceHN (Jk([Eω, R(t)])Jl(E∗

ω)FN )dω

with

ω �→ traceHN (|Jk([Eω, R(t)])Jl(E∗
ω)FN ) ∈ L2 ∩ L∞(R3).

Since Uσ FNU∗
σ = FN for all σ ∈ SN , for each m �= n ∈ {1, . . . , N }, one has

traceHN ( N−1
N ([V12, J1R(t)])FN )

= traceHN ( N−1
N ([Vmn, Jm R(t)])FN )

= 1
N2

∑

1≤k �=l≤N

1
(2π)3

∫

R3
V̂ (ω) traceHN (Jk([Eω, R(t)])Jl(E∗

ω)FN )dω

= 1
(2π)3

∫

R3
V̂ (ω) traceHN (SN [ψ(t, ·)](ω)FN )dω.

With the definition of C in Theorem 3.1, we conclude that the operator

XN = (i�∂tMN (t) − ad∗(− 1
2�

2�)MN (t))(P(t)) − C(V ,MN (t),MN (t))(R(t))

satisfies

traceHN (XN FN ) = 0

for each operator FN ∈ L(HN ) satisfying (31). One easily checks that

U∗
σ XNUσ = XN for all σ ∈ XN .

Let DN ∈ L(HN ) be a density operator on HN , i.e.

DN = D∗
N ≥ 0 and traceHN (DN ) = 1 . (32)

Obviously

FN := 1
N !

∑

σ∈XN

Uσ DNU
∗
σ
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satisfies (31), so that

0 = traceHN (XN FN ) = 1
N !

∑

σ∈XN

traceHN (U∗
σ XNUσ DN ) = traceHN (XN DN )

for all DN ∈ L(HN ) satisfying (32). Since any trace-class operator on HN is a linear
combination of 4 density operators, we conclude that

traceHN (XNTN ) = 0 for all TN ∈ L1(HN ),

so that
XN = 0 . (33)

On the other hand,

MN (t)(i�∂t P(t)) = MN (t)([− 1
2�

2� + V �|ψ(t, ·)|2, P(t)])
= MN (t)([− 1

2�
2�, P(t)]) − MN (t)([V �|ψ(t, ·)|2, R(t)])

so that

i�∂t (MN (t)(P(t))) =ad∗(− 1
2�

2�)MN (t)(P(t)) + C(V ,MN (t),MN (t))(R(t))

+ MN (t)([− 1
2�

2�, P(t)]) − MN (t)([V �|ψ(t, ·)|2, R(t)])
=C(V ,MN (t),MN (t))(R(t))−MN (t)([V �|ψ(t, ·)|2, R(t)]) .

(34)
Finally, by condition (17) on V , one has

ψ(t, ·) ∈ H2(R3) ⊂ L2 ∩ L4(R3) 	⇒ V �|ψ(t, ·)|2 ∈ FL1(R3)

so that

V �|ψ(t, ·)|2 = 1
(2π)3

∫

R3
V̂ (ω)F(|ψ(t, ·)|2)(ω)Eωdω

= 1
(2π)3

∫

R3
V̂ (ω)〈ψ(t, ·)|E∗

ω|ψ(t, ·)〉Eωdω

= 1
(2π)3

∫

R3
V̂ (ω)R(t)(E∗

ω)Eωdω .

(35)

Hence

MN (t)([V �|ψ(t, ·)|2, R(t)]) = 1
(2π)3

∫

R3
V̂ (ω)R(t)(E∗

ω)MN (t)[Eω, R(t)]dω
=C(V ,R(t),MN (t))(R(t))

(36)
so that, returning to (34), one arrives at the equality

i�∂t (MN (t)(P(t))) = C(V ,MN (t),MN (t))(R(t)) − C(V ,R(t),MN (t))(R(t)),

which proves part (1) in Theorem 4.1.
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Remark In [8], the equality

i�∂tMN (t)(A) = ad∗ (
− 1

2�
2�

)
MN (t)(A) − C(V ,MN (t),MN (t))(A)

is proved for all A ∈ L(H) such that [�, A] ∈ L(H), assuming that V ∈ FL1(R3).
This argument cannot be used here since V /∈ FL1(R3). Besides, the definition of the
operator C(V ,MN (t),MN (t))(R(t)) in Theorem 3.1 makes critical use of the fact
that R(t) = |ψ(t, ·)〉〈ψ(t, ·)| with ψ(t, ·) ∈ L2 ∩ L∞(R3). This is the reason for the
rather lengthy justification of (33) in this section.

6 Proof of Lemma 4.4

In the sequel, we seek to “simplify” the expression of the interaction operator

C(V ,MN (t) − R(t),MN (t))(R(t)).

This will lead to rather involved computations which do not seem much of a simpli-
fication. However, we shall see that the final result of these computations, reported in
Lemma 4.4, although algebraicallymore cumbersome, has better analytical properties.

6.1 A first simplification

First we decompose EωR(t) and R(t)Eω in the terms MN (t)(EωR(t)) and
MN (t)(R(t)Eω) as

EωR(t) = P(t)EωR(t) + R(t)EωR(t),

and observe that

C(V ,MN (t) − R(t),MN (t))(R(t))

= 1
(2π)3

∫

R3
V̂ (ω)((MN (t) − R(t))(E∗

ω)MN (t)(P(t)EωR(t))

− MN (t)(R(t)EωP(t))(MN (t) − R(t))(E∗
ω))dω

+ 1
(2π)3

∫

R3
V̂ (ω)[(MN (t) − R(t))(E∗

ω),MN (t)(R(t)EωR(t))]dω.

All the terms in the right-hand side of the equality above are either similar to the
one considered in Theorem 3.1, or of the type denoted (III) in the Remark following
Theorem 3.1.
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An elementary computation shows that, for all ω ∈ Rd ,

[(MN (t) − R(t))(E∗
ω),MN (t)(R(t)EωR(t))]

= [MN (t)(E∗
ω),MN (t)(R(t)EωR(t))]

= 1
NMN (t)[E∗

ω, R(t)EωR(t)].

Recall indeed that, for each A, B ∈ L(H), one has

[MN (t)A,MN (t)B] = 1
NMN (t)([A, B])

— see formula before (41) on p. 1041 in [8]. On the other hand,

R(t)EωR(t) = |ψ(t, ·)〉〈ψ(t, ·)|Eω|ψ(t, ·)〉〈ψ(t, ·)| = F(|ψ(t, ·)|2)(−ω)R(t) ,

(37)
so that

[(MN (t) − R(t))(E∗
ω),MN (t)(R(t)EωR(t))]

= 1
NF(|ψ(t, ·)|2)(−ω)MN (t)[E∗

ω, R(t)].

Besides

(MN (t) − R(t))(E∗
ω) =MN (t)E∗

ω − 〈ψ(t, ·)|E∗
ωψ(t, ·)|〉 IHN

=MN (t)E∗
ω − F(|ψ(t, ·)|2)(ω)IHN

=MN (t)(E∗
ω − F(|ψ(t, ·)|2)(ω)IH).

Indeed,

Min
N IH = IHN 	⇒ MN (t)IH = UN (t)∗(Min

N IH)UN (t) = IHN (38)

where we recall that UN (t) := e−i tHN /�, whileHN is the N -body Hamiltonian.
Therefore,

C(V ,MN (t) − R(t),MN (t))(R(t))

= 1
(2π)3

∫

R3
V̂ (ω)((MN (t)(E∗

ω − F(|ψ(t, ·)|2)(ω)IH)MN (t)(P(t)EωR(t))

− MN (t)(R(t)EωP(t))(MN (t)(E∗
ω − F(|ψ(t, ·)|2)(ω)IH))dω

+ 1
(2π)3

∫

R3
V̂ (ω)F(|ψ(t, ·)|2)(ω) 1

NMN (t)[Eω, R(t)]dω,
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in view of (12). With the formula (36), we conclude that

C(V ,MN (t) − R(t),MN (t))R(t)

= 1
(2π)3

∫

R3
V̂ (ω)((MN (t)(E∗

ω − F(|ψ(t, ·)|2)(ω)IH)MN (t)(P(t)EωR(t))

− MN (t)(R(t)EωP(t))(MN (t)(E∗
ω − F(|ψ(t, ·)|2)(ω)IH))dω

+ 1
NMN (t)[V �|ψ(t, ·)|2, R(t)] .

(39)

6.2 A second simplification

Next we decompose E∗
ω inMN (t)(E∗

ω) as

E∗
ω = P(t)E∗

ωP(t) + P(t)E∗
ωR(t) + R(t)E∗

ωP(t) + R(t)E∗
ωR(t).

The identity (37) shows that

R(t)E∗
ωR(t) = F(|ψ(t, ·)|2)(ω)R(t),

and hence

R(t)(E∗
ω − F(|ψ(t, ·)|2)(ω)IH)R(t) = 0.

Therefore,

MN (t)(E∗
ω − F(|ψ(t, ·)|2)(ω)IH) =MN (t)(P(t)E∗

ωP(t) − F(|ψ(t, ·)|2)(ω)P(t))

+ MN (t)(P(t)E∗
ωR(t) + R(t)E∗

ωP(t)),

since R(t)P(t) = P(t)R(t) = 0. Thus,

C(V ,MN (t) − R(t),MN (t))(R(t))

=
∫

R3
V̂ (ω)((MN (t)(P(t)E∗

ωP(t) − F(|ψ(t, ·)|2)(ω)P(t))MN (t)(P(t)EωR(t))

− MN (t)(R(t)EωP(t))(MN (t)(P(t)E∗
ωP(t) − F(|ψ(t, ·)|2)(ω)P(t))) dω

(2π)3

+
∫

R3
V̂ (ω)(MN (t)(P(t)E∗

ωR(t) + R(t)E∗
ωP(t))MN (t)(P(t)EωR(t))

− MN (t)(R(t)EωP(t))MN (t)(P(t)E∗
ωR(t) + R(t)E∗

ωP(t))) dω
(2π)3

+ 1
NMN (t)[(V �|ψ(t, ·)|2), R(t)].

123



Pickl’s proof of the quantum mean-field... Page 27 of 44    51 

Using again (12) implies that

∫

R3
V̂ (ω)(MN (t)(R(t)E∗

ωP(t))MN (t)(P(t)EωR(t))dω

=
∫

R3
V̂ (ω)(MN (t)(R(t)EωP(t))MN (t)(P(t)E∗

ωR(t))dω,

so that

C(V ,MN (t) − R(t),MN (t))(R(t))

=
∫

R3
V̂ (ω)((MN (t)(P(t)E∗

ωP(t) − F(|ψ(t, ·)|2)(ω)P(t))MN (t)(P(t)EωR(t))

− MN (t)(R(t)EωP(t))(MN (t)(P(t)E∗
ωP(t) − F(|ψ(t, ·)|2)(ω)P(t))) dω

(2π)3

+
∫

R3
V̂ (ω)(MN (t)(P(t)E∗

ωR(t))MN (t)(P(t)EωR(t))

− MN (t)(R(t)EωP(t))MN (t)(R(t)E∗
ωP(t))) dω

(2π)3

+ 1
NMN (t)[(V �|ψ(t, ·)|2), R(t)].

By (35), one can further simplify the term

∫

R3
V̂ (ω)F(|ψ(t, ·)|2)(ω)MN (t)(P(t))MN (t)(P(t)EωR(t))

− MN (t)(R(t)EωP(t))(MN (t)(P(t))) dω
(2π)3

= MN (t)(P(t))MN (t)(P(t)(V �|ψ(t, ·)|2)R(t))

− MN (t)(R(t)(V �|ψ(t, ·)|2)P(t))MN (t)(P(t)).

Finally

C(V ,MN (t) − R(t),MN (t))(R(t)) = T1 + T2 + T3 + T4

with

T1 :=
∫

R3
V̂ (ω)((MN (t)(P(t)E∗

ωP(t))MN (t)(P(t)EωR(t))

− MN (t)(R(t)EωP(t))(MN (t)(P(t)E∗
ωP(t))) dω

(2π)3

T2 :=MN (t)(R(t)(V �|ψ(t, ·)|2)P(t))MN (t)(P(t))

− MN (t)(P(t))MN (t)(P(t)(V �|ψ(t, ·)|2)R(t))

T3 :=
∫

R3
V̂ (ω)(MN (t)(P(t)E∗

ωR(t))MN (t)(P(t)EωR(t))

− MN (t)(R(t)EωP(t))MN (t)(R(t)E∗
ωP(t))) dω

(2π)3

T4 := 1
NMN (t)[(V �|ψ(t, ·)|2), R(t)].
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Observe again that all the integrals in the right-hand side of the equalities defining T1
and T3 are of the form defined in Theorem 3.1, or of the form (I), (II) or (III), or their
adjoint, in the Remark following Theorem 3.1.

That

T1 =T (V ,MN (t)(P(t)•P(t)),MN (t)(P(t)•R(t)))

− T (V ,MN (t)(R(t)•P(t)),MN (t)(P(t)•P(t)))

T3 =T (V ,MN (t)(P(t)•R(t)),MN (t)(P(t)•R(t)))

− T (V ,MN (t)(R(t)•P(t)),MN (t)(R(t)•P(t)))

follows from (12) and the definition (23). This concludes the proof of Lemma 4.4.

7 Proof of Lemma 4.5

In the sequel, we shall estimate these four terms in increasing order of technical
difficulty.

7.1 Bound for T4

The easiest term to treat is obviously T4. We first recall that

‖MN (t)(A)‖ ≤ ‖A‖ for each A ∈ L(H) (40)

— see the formula following (41) on p. 1041 in [8]. Thus

‖T4‖ ≤ 1
N ‖[V �|ψ(t, ·)|2, R(t)]‖ ≤ 1

N (‖R(t)V �|ψ(t, ·)|2‖ + ‖(V �|ψ(t, ·)|2)R(t)‖)
= 2

N ‖(V �|ψ(t, ·)|2)R(t)‖,

where the equality follows from the fact that R(t) = R(t)∗, which implies that

((V �|ψ(t, ·)|2)R(t))∗ = R(t)(V �|ψ(t, ·)|2) . (41)

On the other hand, by Jensen’s inequality

(|V |�|ψ(t, ·)|2)2 ≤ V 2�|ψ(t, ·)|2,

so that

‖(V �|ψ(t, ·)|2)R(t)‖2 ≤‖V �|ψ(t, ·)|2‖2L∞

≤‖ |V |�|ψ(t, ·)|2 ‖2L∞ ≤ ‖(V 2)�|ψ(t, ·)|2‖L∞ = �(t)2 ,

(42)
and therefore

‖T4‖ ≤ 2
N �(t) . (43)
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Finally, we recall that

(Min
N A)∗ = 1

N

N∑

k=1

(Jk A)∗ = 1
N

N∑

k=1

Jk(A
∗) = Min

N (A∗)

for each A ∈ L(H), so that

(MN (t)A)∗ =(UN (t)∗(Min
N A)UN (t))∗ = UN (t)∗(Min

N A)∗UN (t)

=UN (t)∗Min
N (A∗)UN (t) = MN (t)(A∗) .

(44)

Then, (41) and (44) imply that

(MN (t)[V �|ψ(t, ·)|2, R(t)])∗ =MN (t)([V �|ψ(t, ·)|2, R(t)]∗)
=MN (t)(−[V �|ψ(t, ·)|2, R(t)])
= − MN (t)([V �|ψ(t, ·)|2, R(t)])

so that T ∗
4 = −T4. Hence, ±iT4 are self-adjoint operators on HN , so that

‖T4‖ ≤ 2
N �(t) 	⇒ ±iT4 ≤ 2

N �(t)IHN . (45)

7.2 Bound for T2

Set
S2 := MN (t)(P(t))MN (t)(P(t)(V �|ψ(t, ·)|2)R(t)) . (46)

One has

S2 =UN (t)∗Min
N (P(t))Min

N (P(t)(V �|ψ(t, ·)|2)R(t))UN (t)

= 1
N

N∑

k=1

UN (t)∗(Jk P(t))Min
N (P(t)(V �|ψ(t, ·)|2)R(t))(Jk P(t))UN (t)

+ 1
N

N∑

k=1

UN (t)∗(Jk P(t))[Jk P(t),Min
N (P(t)(V �|ψ(t, ·)|2)R(t))]UN (t).

Then

[Jk P(t),Min
N (P(t)(V �|ψ(t, ·)|2)R(t))]

= 1
N [Jk P(t), Jk(P(t)(V �|ψ(t, ·)|2)R(t))]

= 1
N Jk(P(t)(V �|ψ(t, ·)|2)R(t)),
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so that

S2 = 1
N

N∑

k=1

UN (t)∗(Jk P(t))Min
N (P(t)(V �|ψ(t, ·)|2)R(t))(Jk P(t))UN (t)

+ 1
N2

N∑

k=1

UN (t)∗ Jk(P(t)(V �|ψ(t, ·)|2)R(t))UN (t).

By cyclicity of the trace, for each Fin
N satisfying (31), denoting

FN (t) := UN (t)Fin
N UN (t)∗,

one has

traceHN (S2F
in
N )

= 1
N

N∑

k=1

traceHN (Min
N (P(t)(V �|ψ(t, ·)|2)R(t))(Jk P(t))FN (t)(Jk P(t)))

+ 1
N2

N∑

k=1

traceHN (Jk(P(t)(V �|ψ(t, ·)|2)R(t))FN (t)),

so that

| traceHN (S2F
in
N )|

≤ 1
N

N∑

k=1

‖Min
N (P(t)(V �|ψ(t, ·)|2)R(t))‖‖(Jk P(t))FN (t)(Jk P(t)))‖1

+ 1
N2

N∑

k=1

‖Jk(P(t)(V �|ψ(t, ·)|2)R(t))‖‖FN (t)‖1

≤ ‖(V �|ψ(t, ·)|2)R(t)‖ 1
N

N∑

k=1

traceHN ((Jk P(t))FN (t)(Jk P(t))))

+ ‖(V �|ψ(t, ·)|2)R(t)‖ 1
N2

N∑

k=1

‖FN (t)‖1

= ‖(V �|ψ(t, ·)|2)R(t)‖(traceHN (MN (t)(P(t))Fin
N ) + 1

N ‖Fin
N ‖1) .

(47)

By (44),

S∗
2 = MN (t)(R(t)(V �|ψ(t, ·)|2)P(t))MN (t)(P(t)),
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so that

T2 = S∗
2 − S2 = −T ∗

2 .

Thus,

| traceHN (T2F
in
N )| ≤| traceHN (S∗

2 F
in
N )| + | traceHN (S2F

in
N )|

=| traceHN (Fin
N S2)| + | traceHN (S2F

in
N )| = 2| traceHN (S2F

in
N )|,

so that

| traceHN (T2F
in
N )|

≤ 2‖(V �|ψ(t, ·)|2)R(t)‖(traceHN (MN (t)(P(t))Fin
N ) + 1

N ‖Fin
N ‖1)

≤ 2�(t)(traceHN (MN (t)(P(t))Fin
N ) + 1

N traceHN (Fin
N ))

(48)

by (42).
Next we use the following elementary observation.

Lemma 7.1 Let T = T ∗ ∈ L(HN ) satisfy

Uσ TU
∗
σ = T for all σ ∈ SN , and traceHN (T F) ≥ 0

for each F ∈ L(HN ) satisfying (31). Then T ≥ 0.

Proof Indeed, we seek to prove that

〈�|T |�〉 ≥ 0 for each � ∈ HN .

For each � ∈ HN such that ‖�N‖HN = 1, set

F = 1
N !

∑

σ∈SN

|Uσ �〉〈Uσ �|.

Then F satisfies (31), so that

0 ≤ trace(T F) = 1
N !

∑

σ∈SN

〈Uσ �|T |Uσ �〉 = 1
N !

∑

σ∈SN

〈�|U∗
σ TUσ |�〉 = 〈�|T |�〉

since U∗
σ TUσ = T for each σ ∈ SN . Thus, 〈�|T |�〉 ≥ 0 for each � ∈ HN such

that ‖�N‖HN = 1, and thus for each � ∈ HN \ {0} by normalization. ��
The inequality (48) implies that

2�(t) traceHN ((MN (t)(P(t)) + 1
N IHN )Fin

N ) ≥| traceHN (T2F
in
N )|

≥ traceHN (±iT2F
in
N ),
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and we conclude from Lemma 7.1 that

± iT2 ≤ 2�(t)(MN (t)(P(t)) + 1
N IHN ) . (49)

7.3 Bound for T1

Next we estimate

S1 :=T (V ,MN (t)(P(t)•P(t)),MN (t)(P(t)•R(t)))

=UN (t)∗T (V ,Min
N (P(t)•P(t)),Min

N (P(t)•R(t)))UN (t)

= 1
N

N∑

k=1

UN (t)∗T (V , Jk(P(t)•P(t)),Min
N (P(t)•R(t)))UN (t).

Observe that

T (V , Jk(P(t)•P(t)),Min
N (P(t)•R(t)))

=
∫

R3
V̂ (ω)(Jk P(t))Jk(P(t)E∗

ωP(t))Min
N (P(t)EωR(t))(Jk P(t)) dω

(2π)3

+ 1
N

∫

R3
V̂ (ω)(Jk P(t))Jk(P(t)E∗

ωP(t))[Jk P(t), Jk(P(t)EωR(t))] dω
(2π)3

,

since P(t) = P(t)2, so that Jk P(t) = (Jk P(t))2. Then

[Jk P(t), Jk(P(t)EωR(t))] = Jk(P(t)EωR(t)),

so that

Jk(P(t)E∗
ωP(t))[Jk P(t), Jk(P(t)EωR(t))]

= Jk(P(t)E∗
ωP(t)EωR(t))

= Jk(P(t)E∗
ω(I − R(t))EωR(t)) = −F(|ψ(t, ·)|2)(−ω)Jk(P(t)E∗

ωR(t)).

Hence, (12) implies that

1
N

∫

R3
V̂ (ω)(Jk P(t))Jk(P(t)E∗

ωP(t))[Jk P(t), Jk(P(t)EωR(t))] dω
(2π)3

= − 1
N (Jk P(t))Jk(P(t)(V �|ψ(t, ·)|2)R(t)).
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On the other hand,
∫

R3
V̂ (ω)(Jk P(t))Jk(P(t)E∗

ωP(t))Min
N (P(t)EωR(t))(Jk P(t)) dω

(2π)3

= 1
N

∫

R3
V̂ (ω)(Jk P(t))Jk(P(t)E∗

ωP(t))
N∑

l=1
l �=k

Jl(P(t)EωR(t))Jk P(t) dω
(2π)3

= 1
N

∫

R3
V̂ (ω)(Jk P(t))Jk(E

∗
ω)

N∑

l=1
l �=k

Jl(P(t)EωR(t))Jk P(t) dω
(2π)3

= (Jk P(t))

⎛

⎜
⎜
⎝

1
N

N∑

l=1
l �=k

(Jk P(t))(Jl P(t))Vkl(Jl R(t))(Jk P(t))

⎞

⎟
⎟
⎠ (Jk P(t)),

since Jk(P(t)EωR(t))Jk(P(t)) = 0, with Vkl defined as in (29).
Hence,

S1 = 1
N2

∑

1≤k �=l≤N

UN (t)∗(Jk P(t))2(Jl P(t))Vkl(Jl R(t))(Jk P(t))2UN (t)

− 1
N2

N∑

k=1

UN (t)∗(Jk P(t))Jk(P(t)(V �|ψ(t, ·)|2)R(t))UN (t).

Therefore, by cyclicity of the trace, for each Fin
N ∈ L(HN ) satisfying (31), denoting

FN (t) := UN (t)Fin
N UN (t)∗, one has

traceHN (S1F
in
N )

= 1
N2

∑

1≤k �=l≤N

traceHN ((Jk P(t))(Jl P(t))Vkl(Jl R(t))(Jk P(t))2FN (t)(Jk P(t)))

− 1
N2

N∑

k=1

traceHN (Jk(P(t)(V �|ψ(t, ·)|2)R(t))FN (t)(Jk P(t))),

so that

| traceHN (S1F
in
N )|

≤ 1
N2

∑

1≤k �=l≤N

‖(Jk P(t))(Jl P(t))Vkl(Jl R(t))(Jk P(t))‖‖(Jk P(t))FN (t)(Jk P(t)))‖1

+ 1
N2

N∑

k=1

‖Jk(P(t)(V �|ψ(t, ·)|2)R(t))‖‖FN (t)‖1‖Jk P(t))‖
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≤ (1 − 1
N )‖V12 J2R(t)‖ traceHN (Fin

N MN (t)(P(t)))

+ 2
N ‖(V �|ψ(t, ·)|2)R(t)‖‖FN (t)‖1. (50)

Finally

T1 =T (V ,MN (t)(P(t)•P(t)),MN (t)(P(t)•R(t)))

− T (V ,MN (t)(R(t)•P(t)),MN (t)(P(t)•P(t))) = S1 − S∗
1 = −T ∗

1

because of Lemma 4.3, so that

| traceHN (T1F
in
N )| ≤2(1 − 1

N )‖V12 J2R(t)‖ traceHN (Fin
N MN (t)(P(t)))

+ 4
N ‖(V �|ψ(t, ·)|2)R(t)‖‖FN (t)‖1.

Since R(s) is a rank-one orthogonal projection

‖V12(J2R(t))‖2 =‖(J2R(t))V 2
12(J2R(t))‖

=‖(V 2�|ψ(t, ·)|2) ⊗ R(s)‖ ≤ ‖(V 2�|ψ(t, ·)|2‖L∞ = �(t)2 .
(51)

Thus,

| traceHN (T1F
in
N )| ≤2�(t)

(
(1− 1

N ) traceHN (Fin
N MN (t)(P(t)))+ 2

N ‖Fin
N ‖1

)

=2�(t)
(
(1− 1

N ) traceHN (Fin
N MN (t)(P(t)))+ 2

N traceHN (Fin
N )

)
.

(52)
In particular,

2�(t) traceHN

(
Fin
N

(
(1− 1

N )MN (t)(P(t))) + 2
N IHN

)) ≥ traceHN (±iT1F
in
N )

and since this inequality holds for each Fin
N ∈ Ls(HN ) such that Fin

N = (Fin
N )∗ ≥ 0,

we conclude from Lemma 7.1 that

± iT1 ≤ 2�(t)
(
(1− 1

N )MN (t)(P(t))) + 2
N IHN

)
. (53)

7.4 The operator5N

In order to treat the last term T3, we need the following auxiliary lemma—see the
formula preceding (13) in [18].

Lemma 7.2 Let R = R∗ be a rank-one projection on H and let P := I − R. Set
�N := Min

N P. For each N > 1,

�∗
N = �N , �2

N ≥ 1
N �N , and Ker�N = Ker(I − R⊗N ),
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so that

�N ≥ 1
N (1 − R⊗N ).

In particular, there exists a pseudo-inverse �−1
N : (Ker�N )⊥ → (Ker�N )⊥, with

extension by 0 on Ker�N also (abusively) denoted �N , such that

�−1
N �N = �N�−1

N = I − R⊗N . (54)

In [18], the definition of the pseudo-inverse of �N immediately follows from for-
mula (6), which can be viewed as the spectral decomposition of �N . The proof below
is quite straightforward and avoids using the clever argument leading to formula (6)
in [18], which is not entirely obvious unless one already knows the result.

Proof That �N is self-adjoint is obvious by definition of Min
N . Then,

�2
N = 1

N 2

⎛

⎝
N∑

k=1

Jk P + 2
∑

1≤k<l≤N

Jk P Jl P

⎞

⎠ ≥ 1

N 2

N∑

k=1

Jk P = 1

N
�N .

If X ∈ Ker�N , one has, for each k = 1, . . . , N ,

0 =
N∑

k=1

〈X |Jk P|X〉 	⇒ 〈X |Jk P|X〉 = 0 	⇒ Jk PX = 0.

Hence,

X = JN RX = JN−1RX = . . . = J2RX = J1RX

so that

X = JN RX = JN RJN−1RX = . . . = JN RJN−1R . . . J2RJ1RX = R⊗N X .

Thus, Ker�N = Ker(I − R⊗N ). Finally,

�3
N = �

1/2
N �2

N�
1/2
N ≥ 1

N
�

1/2
N �N�

1/2
N = 1

N
�2

N .

Therefore, for each X ∈ HN , one has

〈�N X |�N |�N X〉 ≥ 1

N
‖�N X‖2.

Since �N = �∗
N , one has

Im�N = (Ker�N )⊥
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(see for instance Corollary 2.18 (iv) in chapter 2 of [5]). Since

〈Y |�N |Y 〉 ≥ 1

N
‖Y‖2, Y ∈ Im�N ,

and since one has obviously ‖�N‖ ≤ 1, a straightforward density argument shows
that

〈Y |�N |Y 〉 ≥ 1

N
‖Y‖2, Y ∈ (Ker�N )⊥.

Hence

�N ≥ 1
N (1 − R⊗N ).

The existence of the pseudo-inverse �−1
N follows from this inequality. ��

7.5 Bound for T3

Finally, we treat the term T3. Set

S3 =T (V ,MN (t)(P(t)•R(t)),MN (t)(P(t)•R(t)))

=UN (t)∗T (V ,Min
N (P(t)•R(t)),Min

N (P(t)•R(t)))UN (t).

One easily checks that

T (V ,Min
N (P(t)•R(t)),Min

N (P(t)•R(t)))

=
∫

R3
V̂ (ω)Min

N (P(t)E∗
ωR(t))Min

N (P(t)EωR(t)) dω
(2π)3

= 1
N2

∑

1≤k �=l≤N

(Jl P(t))(Jk P(t))Vkl(Jk R(t))(Jl R(t)).

At this point, we set �N (t) := Min
N P(t) and use Lemma 7.2 to define the pseudo-

inverse �N (t)−1. One has �N (t) = �N (t)∗ ≥ 0, thus �N (t)−1 = (�N (t)−1)∗ ≥ 0
on Ker(I − R(t)⊗N ). Abusing the notation �N (t)−1/2 to designate the linear map
(�N (t)−1)1/2, we deduce from (54) that

�N (t)1/2�N (t)−1/2 = I − R(t)⊗N ,

so that

(Jk P(t))�N (t)1/2�N (t)−1/2 = �N (t)1/2�N (t)−1/2(Jk P(t)) = Jl P(t).
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Hence,

T (V ,Min
N (P(t)•R(t)),Min

N (P(t)•R(t)))

= 1
N2

∑

1≤k �=l≤N

(Jl P(t))(Jk P(t))�N (t)−
1
2 �N (t)

1
2 Vkl(Jk R(t))(Jl R(t)),

and we study the quantity

traceHN (S3F
in
N ) = traceHN ((Fin

N )
1
2 S2(F

in
N )

1
2 )

= traceHN (FN (t)
1
2 T (V ,Min

N (P(t)•R(t)),Min
N (P(t)•R(t)))FN (t)

1
2 ),

where FN (t) = UN (t)Fin
N UN (t)∗, for each Fin

N ∈ L(HN ) satisfying (31). Observe
that

|traceHN(FN (t)
1
2(Jl P(t))(Jk P(t))�N (t)−

1
2�N (t)

1
2Vkl(Jk R(t))(Jl R(t))FN (t)

1
2)|

≤ ‖�N (t)−
1
2 (Jk P(t))(Jl P(t))FN (t)

1
2 ‖2‖�N (t)

1
2 Vkl(Jk R(t))(Jl R(t))FN (t)

1
2 ‖2,

so that, by the Cauchy–Schwarz inequality,

| traceHN (S3F
in
N )| ≤ 1

N2

⎛

⎝
∑

1≤k �=l≤N

‖�N (t)−
1
2 (Jk P(t))(Jl P(t))FN (t)

1
2 ‖22

⎞

⎠

1/2

×
⎛

⎝
∑

1≤k �=l≤N

‖�N (t)
1
2 Vkl(Jk R(t))(Jl R(t))FN (t)

1
2 ‖22

⎞

⎠

1/2

.

First, one has

‖�N (t)−
1
2 (Jk P(t))(Jl P(t))FN (t)

1
2 ‖22

= traceHN (FN (t)
1
2 (Jl P(t))(Jk P(t))�N (t)−1(Jk P(t))(Jl P(t))FN (t)

1
2 )

= traceHN (FN (t)
1
2 �N (t)−1(Jk P(t))(Jl P(t))FN (t)

1
2 )

= traceHN (�N (t)−1(Jk P(t))(Jl P(t))FN (t)),

(the second equality follows from the fact that Jk(P(t)) commutes with �N (t) and
�N (t)−1), so that

∑

1≤k �=l≤N

‖�N (t)−
1
2 (Jk P(t))(Jl P(t))FN (t)

1
2 ‖22

≤ traceHN

⎛

⎝�N (t)−1
∑

1≤k,l≤N

(Jk P(t))(Jl P(t))FN (t)

⎞

⎠

= N 2 traceHN (�N (t)−1�N (t)2FN (t)) = N 2 traceHN (�N (t)FN (t)).
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The inequality above follows from the fact that

traceHN (�N (t)−1(Jk P(t))2FN (t))

= traceHN (FN (t)
1
2 (Jk P(t))�N (t)−1(Jk P(t))FN (t)

1
2 ) ≥ 0.

On the other hand,

∑

1≤k �=l≤N

‖�N (t)
1
2 Vkl(Jk R(t))(Jl R(t))FN (t)

1
2 ‖22

=
∑

1≤k �=l≤N

trace(FN (t)
1
2 (Jl R(t))(Jk R(t))Vkl�N (t)Vkl(Jk R(t))(Jl R(t))FN (t)

1
2 )

= 1
N

∑

1≤k �=l≤N

‖Jk(P(t))Vkl(Jk R(t))(Jl R(t))FN (t)
1
2 ‖22

+ 1
N

∑

1≤k �=l≤N

‖Jl(P(t))Vkl(Jk R(t))(Jl R(t))FN (t)
1
2 ‖22

+ 1
N

∑

1≤m �=k �=l≤N

‖(Jm P(t))Vkl(Jk R(t))(Jl R(t))FN (t)
1
2 ‖22

≤ 2
N

∑

1≤k �=l≤N

‖Vkl(Jk R(t))(Jl R(t))FN (t)
1
2 ‖22

+ 1
N

∑

1≤m �=k �=l≤N

‖(Jm P(t))Vkl(Jk R(t))(Jl R(t))FN (t)
1
2 ‖22.

Now, m /∈ {k, l} implies that Jm P(t) commutes with Vkl , Jk R(t) and Jl R(t), so that

‖(Jm P(t))Vkl(Jk R(t))(Jl R(t))FN (t)
1
2 ‖22

= ‖Vkl(Jk R(t))(Jl R(t))(Jm P(t))FN (t)
1
2 ‖22

≤ ‖Vkl(Jk R(t))(Jl R(t))‖2‖(Jm P(t))FN (t)
1
2 ‖22

= ‖V12R(t) ⊗ R(t)‖2 traceHN ((Jm P(t))FN (t)(Jm P(t)))

= ‖V12R(t) ⊗ R(t)‖2 traceHN (�N (t)FN (t)).

Therefore,

| traceHN (S3F
in
N )|

≤ 1
N2 · N traceHN (�N (t)FN (t))

1
2

(
2N (N−1)

N ‖V12R(t)⊗R(t)‖2‖FN (t)‖1

+N (N−1)(N−2)
N ‖V12R(t)⊗R(t)‖2 traceHN (�N (t)FN (t))

) 1
2

≤ 1√
N

‖V12R(t)⊗R(t)‖ traceHN (MN (t)(P(t))Fin
N )

1
2

×
(
2‖FN (t)‖1 +(N−2)traceHN (MN (t)(P(t))Fin

N )
) 1

2
.

(55)
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Now

T3 =T (V ,MN (t)(P(t)•R(t)),MN (t)(P(t)•R(t)))

− T (V ,MN (t)(R(t)•P(t)),MN (t)(R(t)•P(t))) = S3 − S∗
3 = −T ∗

3 ,

according to Lemma 4.3. Thus, (55) implies that

| traceHN (T3F
in
N )| ≤2‖V12R(t)⊗R(t)‖ traceHN (MN (t)(P(t))Fin

N )
1
2

×
(

2
N ‖FN (t)‖1 + N−2

N traceHN (MN (t)(P(t))Fin
N )

) 1
2
.

According to (51)

‖V12R(t) ⊗ R(t)‖ = ‖V12(J1R(t))(J2R(t))‖ ≤ ‖V12 J2R(t)‖ ≤ �(t),

so that

| traceHN (T3F
in
N )| ≤ 2�(t)

(
(1 − 1

N ) traceHN (MN (t)(P(t))Fin
N ) + 2

N ‖Fin
N ‖1

)
.

(56)
In particular,

traceHN (±iT3F
in
N )| ≤ 2�(t) traceHN

(
Fin
N

(
(1 − 1

N )MN (t)(P(t)) + 1
N IHN

))
.

Since this last inequality holds for each Fin
N ∈ L(HN ) satisfying (31), we deduce from

Lemma 7.1 that

± iT3 ≤ 2�(t)
(
(1 − 1

N )MN (t)(P(t)) + 1
N IHN

)
. (57)

8 Proofs of part (2) in Theorem 4.1 and Corollary 4.2

8.1 Proof of part (2) in Theorem 4.1

Applying Lemma 4.4 shows that

±iC(V ,MN (t) − R(t),MN (t))(R(t)) = ±i(T1 + T2 + T3 + T4).

With Lemma 4.5, this shows that

(±iC(V ,MN (t) − R(t),MN (t))(R(t)))∗ = ±iC(V ,MN (t) − R(t),MN (t))(R(t))

and that

±iC(V ,MN (t) − R(t),MN (t))(R(t)) ≤ 6�(t)
(
MN (t)(P(t)) + 2

N IHN

)
.
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It remains to bound the function

�(t) := ‖V 2�|ψ(t, ·)|2‖1/2
L∞(R3)

.

Since

V = V1 + V2 with V1 ∈ FL1(R3) ⊂ L∞(R3) and V2 ∈ L2(R3)

one has

0 ≤V 2�|ψ(t, ·)|2 ≤ 2V 2
1 �|ψ(t, ·)|2 + 2V 2

2 �|ψ(t, ·)|2
≤2‖V1‖2L∞(R3)

‖ψ(t, ·)‖2L2(R3)
+ 2‖V2‖2L2(R3)

‖ψ(t, ·)‖2L∞(R3)
.

Minimizing‖V1‖L∞(R3)+‖V2‖L2(R3) over all possible decompositions ofV = V1+V2
as above, one has

0 ≤ V 2�|ψ(t, ·)|2 ≤4‖V ‖2L2(R3)+L∞(R3)
max(‖ψ(t, ·)‖2L2(R3)

, ‖ψ(t, ·)‖2L∞(R3)
)

≤4‖V ‖2L2(R3)+L∞(R3)
max(‖ψ(t, ·)‖2L2(R3)

,C2
S‖ψ(t, ·)‖2H2(R3)

)

≤4max(1,CS)
2‖V ‖2L2(R3)+L∞(R3)

‖ψ(t, ·)‖2H2(R3)
=: L(t)2.

8.2 Proof of Corollary 4.2

Pickl’s functional defined in [18] and recalled in formula (18) can be recast as

αN (t) := traceH(FN :1(t)P(t)) (58)

(see Definition 2.2 and formula (6) in [18]), where FN :1(t) is the single-body reduced
density operator deduced from

FN (t) := UN (t)Fin
N UN (t)∗,

where Fin
N ∈ L(HN ) satisfies (31). Specifically, FN :1(t) is defined by the formula

traceH(FN :1(t)A) = traceHN (FN (t)J1A), for all A ∈ L(H).

Since FN (t) satisfies (31), it holds

traceH(FN :1(t)A) = traceHN (FN (t)Min
N A)

= traceHN (Fin
N MN (t)A) , for all A ∈ L(H) .

(59)

This is Lemma 2.3 in [8], and the raison d’être of MN (t). Thus, formula (18) and
(58) are indeed equivalent.
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8.2.1 The Gronwall inequality for Pickl’s functional

One deduces from part (2) in Theorem 4.1 that

MN (t)(P(t)) =Min
N (P(0)) + 1

�

∫ t

0
−iC(V ,MN (s) − R(s),MN (s))(R(s))ds

≤Min
N (P(0)) + 6

�

∫ t

0
L(s)

(
MN (s)(P(s)) + 2

N IHN

)
ds.

This inequality implies that

traceHN ((Fin
N )

1
2MN (t)(P(t))(Fin

N )
1
2 )

≤ traceHN ((Fin
N )

1
2Min

N (P(0))(Fin
N )

1
2 )

+ 6
�

∫ t

0
L(s)

(
traceHN ((Fin

N )
1
2MN (s)(P(s))(Fin

N )
1
2 ) + 2

N traceHN (Fin
N )

)
ds.

Now, by cyclicity of the trace and (59),

traceHN ((Fin
N )

1
2MN (t)(P(t))(Fin

N )
1
2 ) = traceHN (Fin

N MN (t)(P(t)))

= traceH(FN :1(t)P(t)) = αN (t),

so that, by Gronwall’s inequality,

αN (t) ≤ αN (0) exp

(
6
�

∫ t

0
L(s)ds

)

+ 2
N

(

exp

(
6
�

∫ t

0
L(s)ds

)

− 1

)

.

For instance, if Fin
N = |ψ in〉〈ψ in|⊗N with ψ in ∈ H and ‖ψ in‖H = 1, one has

αN (0) = traceHN (R(0)⊗NMin
N (P(0))) = traceH(R(0)P(0)) = 0,

so that

αN (t) ≤ 2

N

(

exp

(
6
�

∫ t

0
L(s)ds

)

− 1

)

= O

(
1

N

)

.

8.2.2 Pickl’s functional and the trace norm

How the inequality above implies the mean-field limit is explained by the following
lemma, which recaps the results stated as Lemmas 2.1 and 2.2 in [15], and whose
proof is given below for the sake of keeping the present paper self-contained.

If Fin
N ∈ L(HN ) satisfies (31), for each m = 1, . . . , N , we denote by FN :m(t) the

m-particle reduced density operator deduced from FN (t) = UN (t)Fin
N UN (t)∗, i.e.

traceHm (FN :m(t)A1 ⊗ . . . ⊗ Am) = traceHN (FN (t)(J1A1) . . . (Jm Am))
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for all A1, . . . , Am ∈ L(H).

Lemma 8.1 The Pickl functional satisfies the inequality

‖FN :m(t) − R(t)⊗m‖1 ≤ 2
√
2m traceH(FN :1(t)P(t)), m = 1, . . . , N .

Proof Call P− the spectral projection on the direct sums of eigenspaces of the trace-
class operator FN :m(t) − R(t)⊗m corresponding to negative eigenvalues. Then, the
self-adjoint operator

P−FN :m(t)P− − P−R(t)⊗mP− = P−FN :m(t)P− − |P−ψ(t, ·)⊗m〉〈P−ψ(t, ·)⊗m |

must have only negative eigenvalues by definition ofP− and is obviously nonnegative
on the orthogonal complement of P−ψ(t, ·)⊗m in the range of P−. By definition of
P−, this orthogonal complement must be {0}. Hence, P− is a rank-one projection,
so that FN :m(t) − R(t)⊗m has only one negative eigenvalue λ0, with all its other
eigenvalues λ1, λ2, . . . being nonnegative. Since

traceHm (FN :m(t) − R(t)⊗m) =
∑

j≥1

λ j + λ0 = 0,

one has5

‖FN :m(t) − R(t)⊗m‖1 =
∑

j≥1

λ j + |λ0| = 2|λ0| =2‖FN :m(t) − R(t)⊗m‖

≤2‖FN :m(t) − R(t)⊗m‖2.

Now FN :m(t) is self-adjoint, and therefore

‖FN :m(t) − R(t)⊗m‖22 = traceHm ((FN :m(t) − R(t)⊗m)2)

= traceHm (FN :m(t)2 + R(t)⊗m)

− traceHm (FN :m(t)R(t)⊗m + R(t)⊗mFN :m(t))

≤2 − 2 traceHm (R(t)⊗mFN :m(t)R(t)⊗m)

=2 traceHm (FN :m(t)(I⊗m
H − R(t)⊗m)).

Hence,

‖FN :m(t) − R(t)⊗m‖1 ≤ 2
√

2 traceHm (FN :m(t)(I⊗m
H − R(t)⊗m)).

5 This observation is attributed to Seiringer on p. 35 in [20].
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Since R(t) = |ψ(t, ·)〉〈ψ(t, ·)| is a self-adjoint projection

R(t) ⊗ I⊗(m−1)
H − R(t)⊗m

= (I⊗m
H − IH ⊗ R(t)⊗(m−1))R(t) ⊗ I⊗(m−1)

H (I⊗m
H − IH ⊗ R(t)⊗(m−1))

≤ (I⊗m
H − IH ⊗ R(t)⊗(m−1))2 = (I⊗m

H − IH ⊗ R(t)⊗(m−1)),

so that

traceH(FN :1(t)R(t)) − traceHm (FN :m(t)R(t)⊗m)

= traceHm (FN :m(t)(R(t) ⊗ I⊗(m−1)
H − R(t)⊗m))

≤ traceHm (FN :m(t)(I⊗m
H − IH ⊗ R(t)⊗(m−1)))

= 1 − traceHm−1(FN :m−1(t)R(t)⊗(m−1)).

Since Fin
N satisfies (31), the reduced m-particle operator FN :m(t) ∈ L(Hm) also

satisfies (31) (with N replaced by m), and hence,

traceHm (FN :m(t)(I⊗m
H − R(t)⊗m)) ≤1 − traceH(FN :1(t)R(t))

+ 1 − traceHm−1(FN :m−1(t)R(t)⊗(m−1))

≤m(1 − traceH(FN :1(t)R(t)))

=m traceH(FN :1(t)P(t)),

by induction, which implies the inequality in the lemma. ��
With this lemma, the consequence of the Gronwall inequality above implies that,

under the assumptions of Corollary 4.2,

‖FN :m(t) − R(t)⊗m‖1 ≤ √
8mαN (t) ≤ 4

√
m

N
exp

(
3
�

∫ t

0
L(s)ds

)

.

This completes the proof of Corollary 4.2.
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