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Abstract
We prove that any analytic vacuum spacetime with a positive cosmological constant
in four and higher dimensions, that contains a static extremal Killing horizon with
a maximally symmetric compact cross-section, must be locally isometric to either
the extremal Schwarzschild de Sitter solution or its near-horizon geometry (the Nariai
solution). In four-dimensions, this implies these solutions are the only analytic vacuum
spacetimes that contain a static extremal horizon with compact cross-sections (up to
identifications). We also consider the analogous uniqueness problem for the four-
dimensional extremal hyperbolic Schwarzschild anti-de Sitter solution and show that
it reduces to a spectral problem for the laplacian on compact hyperbolic surfaces, if a
cohomological obstruction to the uniqueness of infinitesimal transverse deformations
of the horizon is absent.

Mathematics Subject Classification Primary: 83C57 ’Black holes’ · Secondary:
83C05 ’Einstein’s equations’

1 Introduction

The celebrated no-hair theorem establishes uniqueness of asymptotically flat, station-
ary, electro-vacuum black holes, under certain assumptions, see e.g. [1]. The original
theorems were established for non-extremal black holes, although in recent years
these have been extended to the extremal case after an improved understanding of
their near-horizon geometry [2–5]. In fact, for static extremal black holes or super-
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symmetric black holes, uniqueness fails if one allows for multiple black holes, with
the general solution given by the Majumdar–Papapetrou solution in both cases [6, 7].
In higher dimensional general relativity, black hole uniqueness no longer holds even in
vacuum gravity [8, 9]. Nevertheless, a number of higher-dimensional black hole clas-
sification theorems have been derived under various symmetry assumptions [10], with
the most complete results known for static black holes [11–14] and supersymmetric
black holes [15, 16].

If a cosmological constant is present, direct analogues of the black hole uniqueness
theorems are not known, except in a few limited cases. For a positive cosmologi-
cal constant, uniqueness theorems for the non-extremal Schwarzschild de Sitter (dS)
black holes have been established within the class of static spacetimes, under various
assumptions on the level sets of the lapse function [17]. Remarkably, recent numer-
ical evidence has been presented for the existence of static binary black holes in de
Sitter, which evade these assumptions [18]. Therefore, even the classification of static
black hole spacetimes in de Sitter is not fully understood. On the other hand, for neg-
ative cosmological constant, the only known black hole uniqueness theorem is for the
nonpositive mass hyperbolic Schwarzschild anti-de Sitter (AdS) black holes [19, 20].
Uniqueness of the spherical Schwarzschild-AdS black holes remains a notable open
problem (see e.g. [21, 22] and references therein for some results in this direction).

In this note we consider the classification of extremal black holes with a cosmologi-
cal constant.An important feature of extremal horizons is that they admit awell-defined
near-horizon geometry that itself is a solution of the Einstein equations. Therefore,
near-horizon geometries may be classified independently of any parent black hole
spacetime. Indeed, many such near-horizon classifications have been established [23],
even for solutionswith a cosmological constantwhere the traditionalmethods for prov-
ing black hole uniqueness fail. However, not all near-horizon geometries are realised
as near-horizon limits of black hole solutions, and even if they are, the corresponding
solutions might not be unique. A natural question thus arises: can one determine all
spacetimes that contain an extremal horizon with a given near-horizon geometry? The
systematic study of this question was initiated in [24, 25], where the concept of trans-
verse deformations of an extremal horizon was introduced. This involves expanding
the Einstein equation in a parameter that controls deformations of the metric that are
transverse to the extremal horizon (i.e. in the direction away from the horizon). At
first order in this expansion the deformations are governed by the linearised Einstein
equations in the background near-horizon geometry, and have been largely determined
under various symmetry assumptions in vacuum and electro-vacuum gravity in four-
dimensions including a cosmological constant [24–26] (see also [27, 28]).

The purpose of this note is to show that for certain simple near-horizon geometries
one can in fact determine all the higher order deformations. Therefore, for analytic
spacetimes this allows one to deduce all possible exact transverse deformations. This
offers a new method to establish uniqueness theorems for extremal black holes with
prescribed near-horizon geometries. In particular, our main result is the following.

Theorem 1 Let (M, g) be an analytic spacetime that obeys the d ≥ 4-dimensional
vacuum Einstein equation with cosmological constant � > 0 and contains a static
degenerate Killing horizon with a maximally symmetric compact cross-section. Then
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(M, g) is locally isometric either to the extremal Schwarzschild de Sitter solution or
its near-horizon geometry (the Nariai solution).

This is the first uniqueness theorem for extremal vacuum black holes with a cos-
mological constant in four or higher dimensions. The proof is elementary and runs
as follows. Previously, it has been shown that the first-order transverse deformations
for the near-horizon geometry dS2 × Sd−2, also known as the Nariai solution, are
unique and if nonvanishing correspond to the first order deformations of the extremal
Schwarzschild-dS solution [25]. We show that this result persists at second order and
via an inductive argument to all orders. The key point is that at any order the Einstein
equations are sourced by the lower order deformations and reduce to an eigenvalue
equation for the laplacian on Sd−2 acting on a (traceless) part of the metric perturba-
tion. For� > 0 these eigenvalues are strictly negative and hence the Einstein equations
only admit the trivial solution.

Our proofwas inspiredby a similar analysis of four-dimensional vacuumspacetimes
with extremal toroidal horizons, which established that the only solution is a plane
wave spacetime [29]. Their result can be interpreted as an explicit proof that there are
no four-dimensional extremal toroidal vacuum black holes.1 The idea of determining
a spacetime from its near-horizon geometry alone has also been successfully applied
to three-dimensional vacuum solutions with a cosmological constant [30], and five-
dimensional supersymmetric black holes in AdS [31, 32], although in these cases there
is no need to expand the Einstein equations order by order.

For d = 4 spacetime dimensions, static near-horizon geometries with compact
cross-sections have been shown to be unique [6]. Therefore, combining this with The-
orem 1, implies that any analytic spacetime containing a static extremal horizon with
compact cross-sections must be locally isometric to either the extremal Schwarzschild
de Sitter solution or theNariai solution. In particular, this solves the classification prob-
lem for static extremal vacuum black holes in de Sitter, assuming analyticity, although
our result in fact only assumes staticity of the Killing field at the horizon and not
globally.2

We emphasise that the above result does not make any global assumptions on the
spacetime such as asymptotics or the number of black holes. It therefore rules out the
possibility of extremal multi-black holes in de Sitter at least for analytic spacetimes.
This is particularly interesting in view of the above-mentioned fact that non-extremal
static binary black holes have been recently constructed numerically [18]. This should
also be contrasted with the static extremal Majumdar–Papapetrou multi-black holes
in Einstein-Maxwell theory (no cosmological constant), which are analytic in four-
dimensions but not in higher dimensions [14, 33, 34]. Furthermore, it has been argued
that extremal black holes with a cosmological constant are generically not smooth at

1 Although their analysis assumes the generators of the horizon are periodic, this assumption is only used
for proving existence of a Killing vector field tangent to the generators. Thus, their argument also applies to
extremal Killing horizons with a toroidal cross-section, without any assumptions on the horizon generators.
2 By static we mean that the Killing field that is null on the horizon is everywhere hypersurface orthogonal,
but not necessarily timelike anywhere. Indeed, for the extremal Schwarzschild-dS solution, this Killing
field is strictly spacelike away from the horizon.
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the horizon [35]. It is therefore possible that extremal multi-black holes in de Sitter
may exist under weaker differentiability assumptions.3

The above method can also be applied to � < 0 spacetimes that contain static
extremal horizons with hyperbolic compact cross-sections.4 However, in contrast to
the � > 0 case, we find that if � < 0 the transverse deformations are not unique even
at first order; interestingly, the additional solutions correspond to harmonic 1-forms on
the cross-section of the horizon. Therefore, the (first order) transverse deformations are
determined by the first cohomology of the corresponding compact hyperbolic surface
of genus g ≥ 2, which is 2g-dimensional. Furthermore, even if we restrict to the trivial
first-order deformation (these correspond to the extremal hyperbolic Schwarzschild-
AdS solutions), we are unable to prove that the higher order deformations are unique
as in the � > 0 case. In particular, the Einstein equations also reduce to an eigenvalue
equation for the laplacian, except for � < 0 the eigenvalues are now positive. We find
that a uniqueness theorem analogous to Theorem 1, for the extremal Schwarzschild-
AdS solutionswith a given compact hyperbolic cross-section, can be proven if and only
if the first-order deformations are trivial and the spectrum of the scalar laplacian on
the corresponding compact hyperbolic surface does not contain any eigenvalues of the
form λn = n2 +n−2 for integer n ≥ 2 (if the curvature is unit normalised). However,
determining the spectrum of the laplacian on compact hyperbolic surfaces is an open
problem, so we are unable to prove any definite uniqueness result for � < 0. For
certain special points in the moduli space of compact hyperbolic surfaces eigenvalues
of this form can be realised [37], however, presumably this is not the case generically
and therefore we still expect uniqueness to hold in this sense. We discuss this further
at the end of Sect. 3.

The organisation of this article is as follows. In Sect. 2we review the Schwarzschild-
(A)dS solutions. In Sect. 3 we introduce the notion of transverse deformations of
extremal horizons and determine them to all orders for the extremal Schwarzschild-
(A)dS horizons. In Appendix A we give the Ricci tensor in Gaussian null coordinates.
In Appendix B we prove a decomposition theorem for traceless symmetric 2-tensors
on compact hyperbolic surfaces.

2 Extremal Schwarzschild (anti)-de Sitter solutions

In this section we review the d ≥ 4-dimensional Schwarzschild solutions with a
cosmological constant � and examine their extremal limits. Our conventions are such
that the solutions satisfy the Einstein equation Rμν = �gμν .

For � > 0, the d-dimensional Schwarzschild-dS solutions are given by [38]

g = −
(
1 − m

rd−3 − �r2

d − 1

)
dt2 +

(
1 − m

rd−3 − �r2

d − 1

)−1

dr2 + r2d�2
d−2,

(1)

3 These would be different to the dynamical multi-black holes in de Sitter [36].
4 The spherical Schwarzschild-AdS black hole does not have an extremal limit.
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Fig. 1 Penrose diagrams for a extremal Schwarzschild-dS [39, 40] and b extremal hyperbolic
Schwarzschild-AdS solutions [41]

where d�2
d−2 is the unit metric on the (d − 2)-sphere Sd−2, and 0 ≤ m ≤ mmax is a

mass parameter with

mmax := 2rd−3
0

d − 1
, r0 :=

(
d − 3

�

)1/2

. (2)

For m = 0 this gives de Sitter space, for 0 < m < mmax the Schwarzschild-dS black
hole, which contains a black hole horizon and a cosmological horizon. Form = mmax
one obtains the extremal Schwarzschild-dS solution, for which these two horizons
coincide such that there is a degenerate horizon at r = r0. The Penrose diagram5

of its maximal analytic extension can be seen in Fig. 1a [39, 40]. Note that P are
asymptotic points which can be reached by causal geodesics with t = const and for
such observers r = r0 is an event horizon.

One can also take the m → mmax limit and simultaneously ‘blow up’ the outer
region between the cosmological and black hole horizons [42] to obtain the Nariai
solution [43–45]. This is simply the vacuum solution dS2 × Sd−2 with constant radii,
which also arises as the near-horizon geometry of the extremal Schwarzschild-dS
solution.

For � < 0 the hyperbolic Schwarzschild-AdS solution is given by

g = −
(

−1 − m

rd−3 − �r2

d − 1

)
dt2 +

(
−1 − m

rd−3 − �r2

d − 1

)−1

dr2 + r2d�2
d−2,

(3)

5 One can also draw a time-reversed Penrose diagram, with the singularity at the bottom, and J+ at the
top.
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where d�2
d−2 is the metric of (d − 2)-dimensional unit hyperbolic space Hd−2 and

mmin ≤ m with

mmin := −2rd−3
0

d − 1
, r0 :=

(
d − 3

|�|
)1/2

. (4)

(Note that mmin < 0.) To obtain horizons with compact cross-sections one takes a
discrete quotient of the d − 2 dimensional hyperbolic space. For d = 4, it is known
that one can obtain compact hyperbolic surfaces with any genus g ≥ 2, hence these
black holes are also known as topological black holes. In the extremal casem = mmin
one obtains a solution with a degenerate horizon at r = r0 and its Penrose diagram
is depicted in Fig. 1b [41]. Its near-horizon geometry is AdS2 × Hd−2 with constant
radii, sometimes called the anti-Nariai solution [46].

The extremal Schwarzschild-dS and hyperbolic Schwarzschild-AdS solutions can
be written in a unified way as

g = −s f (r)dt2 + s f (r)−1dr2 + r2γs, (5)

with s = ±1, where γ1 = d�2
d−2 and γ−1 = d�2

d−2, so Ric(γs) = s(d − 3)γs , and

f (r) := 1 − 2

d − 1

(r0
r

)d−3 − d − 3

d − 1

(
r

r0

)2

. (6)

It is easy to check that f (r) has a double zero at r = r0 and can be written as

f (r) = − (r − r0)2

(d − 1)r20

[
(d − 3) + 2

d−3∑
k=1

k

(
r

r0

)k−d+2
]

, (7)

which also shows that it is strictly negative away from the horizon. Thus, in the s = 1
case (extremal Schwarzschild-dS) the Killing vector field ∂t is spacelike outside the
horizon and r acquires the interpretation of a time coordinate.

3 Transverse deformations of static extremal horizons

3.1 Einstein equations near an extremal horizon

Let (M, g) be a d-dimensional spacetime satisfying the Einstein equation

Rμν = �gμν, (8)

that contains a smooth degenerate (extremal) Killing horizon H of a Killing field K
with a compact spacelike cross-section S. In a neighbourhood of H we introduce
Gaussian null coordinates (v, ρ, xa) in terms of which the metric takes the form [23,

123



Uniqueness of the extremal Schwarzschild de Sitter spacetime Page 7 of 21 18

29],

g = φdv2 + 2dvdρ + 2βadx
adv + μabdx

adxb, (9)

where K = ∂v is the Killing field, L := ∂ρ is a transverse null geodesic field synchro-
nised so the horizon is at ρ = 0, (xa) are an arbitrary chart on S, and φ, βa vanish
at the horizon ρ = 0. Furthermore, degeneracy of the horizon implies that ∂ρφ must
also vanish at the horizon, so we can introduce smooth functions F, ha , such that

φ =: ρ2F , βa =: ρha . (10)

This coordinate system is unique up to a choice of cross-section S and coordinates on
S. The quantities F , h = hadxa , μ = μabdxadxb can be identified with a function,
1-form and Riemannian metric on the codimension-2 surfaces Sv,ρ of constant (v, ρ)

which include the cross-section S at ρ = 0.
The near-horizon geometry is defined as follows. Consider the 1-parameter family

of metrics gε := φ∗
ε g defined by the scaling diffeomorphism φε : (v, ρ, xa) �→

(v/ε, ερ, xa) with ε > 0. The near-horizon geometry is the limit ε → 0 of gε , which
gives

g[0] = ρ2 F̊(x)dv2 + 2dvdρ + 2ρh̊a(x)dx
adv + μ̊ab(x)dx

adxb, (11)

where the superscript ◦ denotes the value of the quantity at ρ = 0, i.e. F̊(x) = F(0, x)
etc. The near-horizon data (F̊, h̊, μ̊) correspond to a function, 1-form and Riemannian
metric on S. TheEinstein equation (8) for the near-horizon geometry (which itselfmust
be a solution), or the restriction of the Einstein equation for full spacetime metric (9)
to ρ = 0, are equivalent to the following equations for the near-horizon data on S,

R̊ab = 1

2
h̊a h̊b − ∇̊(ah̊b) + �μ̊ab, F̊ = 1

2
h̊a h̊a − 1

2
∇̊ah̊

a + � , (12)

where ∇̊a, R̊ab are the metric connection and Ricci tensor of the metric μ̊ on S. The
classification of solutions to these horizon equations has been extensively studied in
the literature [23].

The first order transverse deformation of an extremal horizon was introduced in
[24]. It is defined by g[1] := d

dε gε |ε=0 and encodes the first transverse derivatives

of the metric data at the horizon, that is, F (1) := (∂ρF)ρ=0, h
(1)
a := (∂ρha)ρ=0

and μ
(1)
ab := (∂ρμab)ρ=0. The Einstein equation (8) implies g[1] satisfies a linearised

Einstein equation in the background near-horizon geometry and it was shown that this
is equivalent to μ

(1)
ab satisfying a linear elliptic PDE (once gauge fixed) on (S, μ̊) with

the rest of the first-order data then determined algebraically.
We define the higher order transverse deformations of an extremal horizon similarly

by

g[n] := dngε

dεn

∣∣∣∣
ε=0

(13)
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so g[0] agrees with the near-horizon geometry, g[1] with the first-order deformation,
and n ≥ 2 gives the higher order deformations. Explicitly, the n-th order deformation
g[n] encodes the n-th transverse derivatives at the horizon of the metric data, that is,

F (n) := (∂nρ F)ρ=0, h(n)
a := (∂nρha)ρ=0, μ

(n)
ab := (∂nρμab)ρ=0 . (14)

(Note that this is equivalent to φ(n+2), β
(n+1)
a , μ

(n)
ab ). In general for any function X ,

we will adopt the notation X (n) := (∂nρ X)ρ=0 for n ≥ 0. Therefore, for analytic
spacetimes, if all higher order transverse deformations of an extremal horizon are
known, the exact solution is fully determined.

TheEinstein equation (8) implies that the n-th order transverse deformation satisfies
Ric[n](g) = �g[n] for all n ≥ 0, where Ric[n](g) := dn

dεnRic(g
ε)|ε=0. In fact, we will

implement the Einstein equations more directly and simply evaluate the ρ-derivatives
at ρ = 0 of the components of the Einstein equation (8) in Gaussian null coordinates,
that is,

R(n)
μν = �g(n)

μν , (15)

where the notation is as above so R(n)
μν := (∂nρ Rμν)ρ=0 and similarly for gμν . For this

computation we need the Ricci tensor for a general metric in Gaussian null coordinates
(9). This has been written down in a convenient form in [29] (see also the Appendix
of [47]). The components of the Ricci tensor of (9) relevant for our calculation are
given in Appendix A.

3.2 Horizon geometry and first-order transverse deformations

For every dimension d ≥ 4, we consider the following near-horizon data

F̊ = �, h̊a = 0, R̊abcd = �

d − 3
(μ̊acμ̊bd − μ̊ad μ̊bc) , (16)

where R̊abcd is the Riemann tensor of (S, μ̊), so in particular R̊ab = �μ̊ab, which cor-
responds to the most general static near-horizon geometry with maximally symmetric
compact cross-sections S [6, 48, 49]. In fact, ford = 4 and any�, it has been shown that
this is the most general static near-horizon geometry with compact S [6]. Furthermore,
(16) corresponds to the near-horizon data of the d ≥ 4 extremal Schwarzschild-(A)dS
solution (5). To see this, switch to (ingoing) Eddington-Finkelstein coordinates defined
by dv = dt + s f (r)−1dr , ρ = r − r0, so (5) becomes

g = −s f (r0 + ρ)dv2 + 2dvdρ + (r0 + ρ)2γs, (17)

and using (7) one can immediately read off that the nearhorizon data is (16) with
μ̊ = r20γs .
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For the near-horizon geometry (16) with � > 0, the first-order transverse defor-
mations have been determined [25]. For completeness, we will now give an alternate
derivation of this result.

Proposition 1 Consider a spacetime that satisfies the Einstein equation (8) and con-
tains an extremal horizon with a compact cross-section S with near-horizon data (16).
If d ≥ 4 and � > 0, the first-order transverse deformations are given by

μ
(1)
ab = Cμ̊ab , β(2)

a = 0 , φ(3) = −C(d − 2)� , (18)

where C is an arbitrary constant.

Proof As discussed in [24], there is a gauge freedom that leaves the near-horizon
data invariant, but changes the first (and higher) order deformations. This freedom
corresponds to a change in the spatial cross-section S, analogous to ‘supertranslations’
in asymptotic symmetries. For the horizon data (16), the first transverse deformation
of μab transforms under such a gauge transformation as

μ
′(1)
ab = μ

(1)
ab + ∇̊a∇̊b f , (19)

where f is an arbitrary function on S that generates the gauge transformation.Wemay
fix this gauge by requiring that

μ̊abμ
(1)
ab = C(d − 2) , (20)

for some constant C , which is always possible by existence results for the Poisson-
equation on compact manifolds. Note that this completely fixes the Gaussian null
coordinates (up to choice of coordinates on S).

Nowwe implement the Einstein equations (15) for the first-order deformation of the
near-horizon data (16), where recall that the Ricci tensor in Gaussian null coordinates
is given in Appendix A. We find that the Einstein equations R(0)

ρa = 0 and R(1)
vρ = 0

yield

φ(3) = −C(d − 2)� − ∇̊aβ(2)
a , (21)

β(2)
a = −∇̊bμ

(1)
ab , (22)

respectively, hence φ(3) and β(2) (or by (10) equivalently F (1) and h(1)) are determined
by μ

(1)
ab . Next, we find that the Einstein equation R(1)

ab = �μ
(1)
ab gives

R(1)
ab = ∇̊(a∇̊cμ

(1)
b)c, (23)

where Rab is the Ricci tensor of the codimension-2 surfaces (Sv,ρ, μ) and we have

used (16) and (22) to eliminate β
(2)
a . The variation of the Ricci tensor is given by

R(1)
ab = 
̊Lμ

(1)
ab + ∇̊(av

(1)
b) , (24)
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where 
̊L is the Lichnerowicz operator of (S, μ̊) which explicitly is


̊Lμ
(1)
ab := −1

2
∇̊2μ

(1)
ab − R̊a

c
b
dμ

(1)
cd + R̊c

(aμ
(1)
b)c, (25)

and

v
(1)
b := ∇̊cμ

(1)
bc − 1

2
∇̊b

(
μ̊cdμ

(1)
cd

)
. (26)

Finally, using (24), (20) and (16), equation (23) reduces to

− ∇̊2μ̂
(1)
ab = −2�

d − 2

d − 3
μ̂

(1)
ab , (27)

where μ̂
(1)
ab := μ

(1)
ab − Cμab is the traceless part of μ

(1)
ab .

The laplacian −∇̊2 is positive-definite for a compact manifold, hence for � > 0
the only solution is μ̂

(1)
ab = 0. Therefore, for the d ≥ 4 extremal Schwarzschild-dS

horizon (� > 0) the first-order transverse deformations are given by (18), where the
rest of the first-order data is fixed by (21), (22), which establishes Proposition 1. 
�

This result shows that the only nonvanishing first-order transverse deformations to
the extremal Schwarzschild-dS horizon are those corresponding to the full extremal
Schwarzschild-dS solution.

The above argument fails for � < 0 because the eigenvalue in (27) are in this
case positive. In the four-dimensional case, the first-order deformations are given as
follows.

Proposition 2 Consider a spacetime that satisfies the Einstein equation (8) and con-
tains an extremal horizon with a compact cross-section S with near-horizon data (16).
If d = 4 and � < 0, the first-order deformations are given by

μ
(1)
ab = Cμ̊ab +

2g∑
i=1

Ci ∇̊(aξ
i
b) , β(2)

a = −�

2g∑
i=1

Ciξ
i
a , φ(3) = −C(d − 2)� ,

(28)

where g ≥ 2 is the genus of the hyperbolic surface S, C and Ci are constants, and
{ξ i }2gi=1 is a basis of harmonic 1-forms on S with respect to the Hodge–de Rham
laplacian.

Proof As in the � > 0 case, the first-order deformations are determined by solutions
to (27) through (21–22). In Appendix B we show that the space of traceless symmetric
(0, 2) tensor fields on S is spanned by

S{λ+4}
ab := ∇̊a∇̊b f

{λ} − 1

2
μ̊ab∇̊2 f {λ} , P{λ+4}

ab := ∇̊(a ε̊b)c∇̊c f {λ} ,

V {4},i
ab := ∇̊(aξ

i
b) , Y {2}

ab , (29)
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where ε̊ is the volume form of (S, μ̊), f {λ} are eigenfunctions of−∇̊2 with eigenvalues
λ|�| > 0, {ξ i }2gi=1 is a basis of harmonic 1-forms on S with respect to the Hodge–de
Rham laplacian 
 = −∇̊2 + �, and Y {2} is a divergence-free traceless symmetric
(0, 2) tensor. Note that the space of harmonic 1-forms for a genus g hyperbolic surface
is 2g-dimensional. Furthermore, S{λ+4}, P{λ+4}, V {4},Y {2} are eigentensors of −∇̊2

with eigenvalues (λ+4)|�|, (λ+4)|�|, 4|�| and 2|�|, respectively. Now, comparison
with (27) yields that μ̂(1)

ab must be in the span of V {4}
ab . The form of β(2) and φ(3) follows

from (21–22). 
�
The first-order deformations with Ci = 0 in Proposition 2 correspond to

those of the extremal hyperbolic Schwarzschild-AdS solution. Therefore, the above
result shows that the first-order transverse deformations of the extremal hyperbolic
Schwarzschild-AdS horizon are not unique, but parameterised by harmonic 1-forms
on S. Interestingly, the first cohomology of S provides an obstruction to the uniqueness
of these deformations. This non-uniqueness was not found in [25] since that work did
not consider the tensors V {4}.

3.3 Second and higher order transverse deformations

We now consider higher order transverse deformations of extremal horizons with
near-horizon data (16) and first-order data (18). It is convenient to first consider the
second-order deformations.

Proposition 3 Consider a spacetime with an extremal horizon as in Proposition 1 and
� > 0. The second-order transverse deformations are given by

μ
(2)
ab = C2

2
μ̊ab , β(3)

a = 0 , φ(4) = 1

2
C2�d(d − 2) . (30)

Proof Consider the Einstein equation (15) for the second-order deformation of the
near-horizon data (16), assuming the first-order data (18), where recall the components
of the Ricci tensor are given in Appendix A. Firstly, we note that R(0)

ρρ = 0 reduces to

μ̊abμ
(2)
ab = 1

2
C2(d − 2) , (31)

where we have used (20), which shows that the trace of the second-order deformation
of μab is also a constant. Next, we find that the Einstein equations R(2)

vρ = 0 and

R(1)
ρa = 0 reduce to

φ(4) = 1

2
C2�d(d − 2) − ∇̊aβ(3)

a , (32)

β(3)
a = −∇̊bμ

(2)
ab , (33)

respectively, where we have used (31) together with the lower order data. Thus anal-
ogously to the first-order deformations, we deduce that φ(4) and β(3) (that is F (2) and
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h(2)) are determined in terms of μ(2). The Einstein equation R(2)
ab = �μ

(2)
ab yields

R(2)
ab + 2�μ

(2)
ab − �C2μ̊ab + ∇̊(aβ

(3)
b) = 0. (34)

We may evaluate the second variation of the Ricci tensor R(2)
ab as follows.

First note that we have so far shown that

μab = μ̊ab + Cρμ̊ab + 1

2
ρ2μ

(2)
ab + O(ρ3), (35)

Now define a rescaled metric by μ = (1 + Cρ)μ̃ so that

μ̃ab = μ̊ab + εμ
(2)
ab + O

(
ε3/2

)
, (36)

where we have introduced a new expansion parameter ε := 1
2

ρ2

1+Cρ
. Thus we can

expand the Ricci tensor of μab as

Rab = R̃ab = R̊ab + ε

(
d

dε
R̃ab

)
ε=0

+ O
(
ε3/2

)
, (37)

where R̃ab is the Ricci tensor of μ̃ab. Thus, recalling that R(2)
μν = (∂2ρRμν)ρ=0 and

ε = 1
2ρ

2 + O(ρ3), we deduce that the second variation of the Ricci tensor is given
by the usual first variation of the Ricci tensor applied to the second variation of the
metric, that is,

R(2)
ab = d

dε
R̃ab

∣∣∣∣
ε=0

= 
̊Lμ
(2)
ab + ∇̊(av

(2)
b) , (38)

where v
(2)
a = ∇̊bμ

(2)
ba − 1

2 ∇̊a(μ̊
cdμ

(2)
cd ).

We now have all the required ingredients. Using (38), (33), (31) and (16), we find
that (34) simplifies to

− ∇̊2μ̂
(2)
ab = −2�

3d − 8

d − 3
μ̂

(2)
ab , (39)

where μ̂
(2)
ab := μ

(2)
ab − C2

2 μ̊ab is the traceless part of μ
(2)
ab (recall (31)). Therefore, for

� > 0 we again deduce that the solution is unique and in this case given by μ̂
(2)
ab = 0.

The rest of the second order data is fixed by (32), (33) which gives (30). 
�
This shows that for the d ≥ 4 extremal Schwarzschild-dS horizon the nonzero

second-order transverse deformations are also uniquely given by the full extremal
Schwarzschild-dS solution.

We will now turn to higher order deformations. Our main result is the following.
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Proposition 4 Consider a spacetime with an extremal horizon as in Proposition 1 and
� > 0. The n-th order transverse deformations for n ≥ 3 are given by

μ
(n)
ab = 0 , β(n+1)

a = 0 , φ(n+2) = (−1)n
2

d − 1

(d − 2 + n)!
(d − 3)!

(
C

2

)n

� .

(40)

Proof We prove this by induction. Thus let n ≥ 3 and for the induction hypothesis
assume that to (n − 1)-th order

μ
(k)
ab =

⎧⎪⎪⎨
⎪⎪⎩

μ̊ab if k = 0
Cμ̊ab , if k = 1
C2

2 μ̊ab , if k = 2
0 , if 3 ≤ k ≤ n − 1,

(41)

β(k) = 0 , if 0 ≤ k ≤ n (42)

φ(k) =
{
0 , if 0 ≤ k ≤ 1[
2δ2k
d−1 + (−1)k 2

d−1
(d−4+k)!
(d−3)!

(C
2

)k−2
]
� , if 2 ≤ k ≤ n + 1 .

(43)

The base case n = 3 is established in Propositions 1 and 3.
The method is identical to that for the second-order calculation. We implement the

Einstein equation (15) for the n-th order data assuming the above induction hypoth-
esis, again using the components of the Ricci tensor in Appendix A. Firstly, we find
R(n−2)

ρρ = 0 determines the trace of n-th order deformation of μab to be

μ̊abμ
(n)
ab = 0. (44)

Then R(n)
vρ = 0 and R(n−1)

ρa = 0 determine φ(n+2) and β(n+1) (F (n) and h(n)) uniquely
in terms of μ(n) to be

φ(n+2) = −∇̊aβ(n+1)
a + 2�

d − 1

(
−C

2

)n
(d − 2 + n)!

(d − 3)! , (45)

β(n+1)
a = −∇̊bμ

(n)
ab , (46)

where we have used (41–43) for the lower order terms. Next, R(n)
ab = �μ

(n)
ab yields

∇̊(aβ
(n+1)
b) + R(n)

ab − �μ
(n)
ab + 1

2
(φμ̇ab)

(n+1)

= −1

4

[
φμcd(μ̇cd μ̇ab − 2μ̇acμ̇bd)

](n)

, (47)

where · denotes the ρ-derivative (without evaluating at ρ = 0). To evaluate the right-
hand side of (47) it is useful to note that the induction hypothesis (41) is equivalent
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to

μab =
(
1 + Cρ

2

)2

μ̊ab + O(ρn). (48)

Indeed, upon substituting (48) and its inverse into (47), the ρ-dependent prefactors
cancel thus simplifying the calculation. Using (41), we can evaluate

1

2
(φμ̇ab)

(n+1) =
[
C

2
φ(n+1) + n + 1

4
C2φ(n)

]
μ̊ab + n(n + 1)

2
�μ

(n)
ab . (49)

Substituting (49) into (47), the lower order terms (right-hand side of (47) and first term
of (49)) cancel by the induction hypothesis (41–43). Thus, using (46), (47) reduces to

R(n)
ab − ∇̊(a∇̊cμ

(n)
b)c = −

(
n(n + 1)

2
− 1

)
�μ

(n)
ab . (50)

Using the same method for evaluating R(n)
ab as for the second variation (see (38)) we

find

R(n)
ab = 
̊Lμ

(n)
ab + ∇̊(av

(n)
b) , (51)

where v
(n)
a = ∇̊bμ

(n)
ba − 1

2 ∇̊a(μ̊
cdμ

(n)
cd ).

Finally, using (44), (51), (16), we find that (50) reduces to a simple eigenvalue
equation

− ∇̊2μ
(n)
ab = −

(
n2 + n + 2

d − 3

)
�μ

(n)
ab . (52)

For � > 0 the only solution is therefore μ
(n)
ab = 0. Then substituting back into (46)

and (45) we find that the rest of the n-th order data is

β(n+1)
a = 0, φ(n+2) = 2�

d − 1

(
−C

2

)n
(d − 2 + n)!

(d − 3)! . (53)

Therefore, the claim follows by induction. 
�
Wecannowdeduceourmain resultwhich is amore detailed statement ofTheorem1.

Theorem 2 Consider an analytic spacetime that satisfies the Einstein equation (8)
with � > 0, containing an extremal Killing horizon with a compact cross-section S
and near-horizon data (16). Then the metric is given by (9) where

φ =
⎧⎨
⎩

− 4
C2

�
d−3

[
1 − 2

d−1

(
1 + Cρ

2

)−d+3 − d−3
d−1

(
1 + Cρ

2

)2]
for C �= 0 ,

�ρ2 for C = 0 ,
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β = 0 , (54)

μ = r20

(
1 + Cρ

2

)2

d�2
d−2 ,

C is a constant, and r0 is defined in (2). If C = 0 this is the near-horizon geometry
dS2 × Sd−2 (Nariai solution). If C �= 0, this is the d ≥ 4 extremal Schwarzschild de
Sitter spacetime.

Proof The assumption of analyticity means that metric components can be expressed

as Taylor series φ = ∑
n≥0

φ(n)

n! ρn and similarly for βa, μab. The coefficients φ(n) etc.
are given by Propositions 1, 3 and 4 and the resulting series can be summed to obtain
(54). For C = 0 one obtains dS2 × Sd−2 where the 2d de Sitter space dS2 is written
in coordinates adapted to an extremal horizon. For C �= 0, one can rescale ρ and v by

v′ = 2

r0C
v , ρ′ = r0C

2
ρ , (55)

so that the solution explicitly becomes the extremal Schwarzschild-dS solution (17),
(6). 
�

Finally, we consider higher order deformations in the d = 4, � < 0 case. In
Proposition 2 we have seen that there is a nontrivial space of first-order transverse
deformations of the horizon of extremal hyperbolic Schwarzschild-AdS, which are
determined by the cohomology of the corresponding hyperbolic surface. It is an inter-
esting question what solutions to the Einstein equation, if any, these cohomological
first-order deformations correspond to, but we will not pursue this here.

Let us suppose that the first-order deformation is that of the extremal Schwarzschild-
AdS solution, that is, restrict to the Ci = 0 deformations in Proposition 2. For such
solutions, the proofs of Propositions 3 and 4 show that non-trivial deformations starting
at order n ≥ 2 exist, if and only if nontrivial eigentensors of−∇̊2 on S with eigenvalue
(n2 + n + 2)|�| exist. We can again expand the deformation μ

(n)
ab in the basis (29) to

deduce that nontrivial solutions starting at n-th order exist, if and only if there exist
eigenvalues of the scalar laplacian of the form

λn = (n2 + n − 2)|�| , (56)

for n ≥ 2. Therefore, for d = 4,� < 0 one is not guaranteed uniqueness at any order.
Nevertheless, we may state the following conditional result.

Proposition 5 Consider a spacetime with an extremal horizon as in Proposition 2 and
assume that the first-order deformation is given by that of the extremal hyperbolic
Schwarzschild-AdS solution (so Ci = 0). Then Theorem 2 is valid if the spectrum of
the scalar laplacian on the hyperbolic surface (S, μ̊), where Ric(μ̊) = −|�|μ̊, does
not contain any eigenvalue of the form (56) for integer n ≥ 2. In this case, the solution
is either the near-horizon geometry AdS2 × H2 (C = 0) or the extremal hyperbolic
Schwarzschild-AdS spacetime (C �= 0).
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Interestingly, the spectrum of the laplacian on compact hyperbolic surfaces is an
open problem and we are not aware of any analytic results that would in general rule
out the eigenvalues (56). For certain symmetric hyperbolic surfaces, including the
Bolza surface and the Klein quartic, the first couple hundred eigenvalues have been
computed numerically [50], and none of them are of the form (56) (in fact, none of
them are integers in units of |�|). It is well-known that compact hyperbolic surfaces
of genus g have a (6g−6)-dimensional moduli space. It is natural to expect that, for a
fixed genus, the spectrum is (generically) a continuous function of the moduli. In fact,
it has been shown that non-degenerate eigenvalues are analytic functions of the moduli
[51]. Interestingly, numerical results suggest that for special points in themoduli space
of hyperbolic surfaces, eigenvalues of the form (56) can be realised [37]. However,
at generic points in the moduli space we expect that this is not the case. Therefore,
it seems reasonable to conjecture that, for generic compact hyperbolic surfaces, such
eigenvalues do not occur and hence uniqueness of higher order deformations holds
(assuming the first-order deformation is as stated in Proposition 5). On the other
hand, if one drops the assumption that S is compact, then eigenvalues of the scalar
laplacian on hyperbolic space of the form (56) do always exist and therefore in this
case uniqueness may be violated at all orders.
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A Ricci tensor in Gaussian null coordinates

The components of the Ricci tensor for a general metric in Gaussian null coordinates
can be found in [29] and also6 in [47]. The metric reads (9) where recall we also we
assume ∂v is a Killing vector field. Then, the components of the Ricci tensor of g

6 We noticed that a 1
2∇a ḣa term is missing in the ρv component in [47].
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which we need are

Rρρ = −1

2
μabμ̈ab + 1

4
μacμbd μ̇abμ̇cd , (57)

Rρv = 1

2
√
detμ

[√
detμ

(
φ̇ − βa β̇a

)]• + 1

2
∇a β̇a , (58)

Rρa = 1

2
√
detμ

[√
detμ

(
β̇a − βbμ̇ab

)]• + 1

2
∇bμ̇ab − 1

2
∇a(μ

bcμ̇bc) , (59)

Rab = 1

2
√
detμ

[√
detμ

(
2∇(aβb) + φμ̇ab − βcβcμ̇ab

)]•

+ 1

2
∇c

(
βcμ̇ab

) + Rab − 1

2

[
β̇a − βcμ̇ac

] [
β̇b − βcμ̇bc

]

− μ̇c(a∇cβb) + 1

2
(βcβc − φ)μ̇acμ̇bdμ

cd , (60)

where · denotes a ρ-derivative,∇a andRab are the metric connection and Ricci tensor
of μab on the codimension-2 surfaces Sv,ρ of constant (v, ρ).

B Symmetric traceless 2-tensors on hyperbolic surfaces

In this section we prove the following decomposition for traceless symmetric tensor
fields on a compact hyperbolic surface.

Proposition 6 The space of traceless symmetric (0, 2) tensor fields on a compact
hyperbolic surface (S, μ̊), with constant scalar curvature R = 2� < 0, is spanned
by eigentensors of −∇̊2,

S{λ+4}
ab := ∇̊a∇̊b f

{λ} − 1

2
μ̊ab∇̊2 f {λ} , P{λ+4}

ab := ∇̊(a ε̊b)c∇̊c f {λ} ,

V {4},i
ab := ∇̊(aξ

i
b) , Y {2}

ab , (61)

where ε̊ is the volume form, f {λ} are eigenfunctions of −∇̊2 with eigenvalues
−λ� > 0, {ξ i }2gi=1 is a basis of harmonic 1-forms with respect to the Hodge–de Rham
laplacian, and Y {2} is a traceless symmetric divergence-free (0, 2) tensor. In particu-
lar, S{λ+4}, P{λ+4}, V {4},Y {2} are eigentensors of −∇̊2 with eigenvalues −(λ + 4)�,
−(λ + 4)�, −4� and −2�, respectively.

Proof For any traceless symmetric tensor Tab we claim that there exists a 1-form Xa

such that

Yab := Tab − ∇̊(a Xb) + 1

2
μ̊ab∇̊cXc (62)
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is divergence-free (note that it is also trace-free by construction). Taking the divergence
of (62) and requiring that ∇̊bYab = 0 we obtain that such X must satisfy

(
−∇̊2 − �

)
Xa = −2∇̊bTab. (63)

This equation always has a unique solution for X and compact S, since the operator on
the left-hand side is elliptic and self-adjoint and has a trivial kernel (see e.g. Theorem
5.22 in [52]). This establishes the claim of existence of the 1-form X above.

Next, by the Hodge-decomposition theorem X = d f + �dg + ξ , where f , g are
functions on S, � is the Hodge operator on S, and ξ is a harmonic 1-form with respect
to the Hodge–de Rham laplacian (d+�d�)2 = −∇̊2+� (for 1-forms on S). It follows
that we can always decompose a traceless symmetric tensor Tab in terms of functions
f , g, a harmonic 1-form ξ , and a divergence-free traceless symmetric tensor Yab, as

Tab = ∇̊a∇̊b f − 1

2
μ̊ab∇̊2 f + ∇̊(a ε̊b)c∇̊cg + ∇(aξb) + Yab . (64)

The functions f , g can be each expanded in a basis of eigenfunctions f {λ} of −∇̊2.
The space of harmonic 1-forms on a hyperbolic surface of genus g ≥ 2 corresponds to
the first cohomology which is 2g-dimensional. Thus, using the above decomposition,
we deduce that (61) span the space of traceless symmetric tensor fields.

Finally, the claim that (61) are all eigentensors of −∇̊2 with the stated eigenvalues
follows by explicit calculation using the fact that (S, μ̊) is maximally symmetric. 
�

Interestingly, the above decomposition for traceless symmetric tensors on hyper-
bolic surfaces is more complicated than for the sphere S2. As is well known, on S2

the scalar-derived tensor harmonics (i.e. S{λ+4}, P{λ+4}) span the space of traceless
symmetric tensor fields. This can be shown using similar arguments as above, noting
that there are no harmonic 1- forms or divergence-free traceless symmetric tensors on
S2.
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