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Abstract
We give a mathematically precise review of a diagrammatic language introduced by
Friedrichs in order to simplify computations with creation and annihilation operator
products. In that language,we establish explicit formulas and algorithms for evaluating
bosonic and fermionic commutators. Further, as an application, we demonstrate that
the nonlinear Hartree dynamics can be seen as a subset of the diagrams arising in the
time evolution of a Bose gas.

Keywords Friedrichs diagrams · Many-body physics · Quantum field theory ·
Hartree equation · Feynman diagrams

Mathematics Subject Classification 81Q12 · 81S05 · 81T18

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Diagrams and contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1 Hartree equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Multicommutators and bosonization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
A Heuristic motivation of fermionic contraction signs . . . . . . . . . . . . . . . . . . . . . . . . . 23
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

B Sascha Lill
sascha.lill@unimi.it

Morris Brooks
Morris.Brooks@math.uzh.ch

1 Institute of Mathematics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich,
Switzerland

2 Dipartimento di Matematica, Università degli Studi di Milano, Via Cesare Saldini 50, 20133 Milan,
Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11005-023-01715-6&domain=pdf
http://orcid.org/0000-0002-9474-9914


101 Page 2 of 26 M. Brooks, S. Lill

1 Introduction

The evaluation of products or commutators between creation and annihilation opera-
tors, a∗, a is a frequently occurring task in many-body quantum physics and quantum
field theory (QFT). In 1965, Friedrichs [1] suggested a diagrammatic method to track
and simplify these calculations. A Friedrichs diagram represents a normal ordered
product

A =
∫

f A(X A,Y A)a∗
xA,nA

. . . a∗
xA,1

a yA,1
. . . a yA,mA

dX AdY A

by a graph with nA legs (or “prongs” in Friedrichs’ original language) that point to
the left and represent creation operators, as well as mA legs that point to the right and
represent annihilation operators, see Fig. 1.

Formulas for evaluating certain bosonic products in terms of diagrams have been
derived in [1, 2] and were subsequently applied in the context of constructive QFT
[2–5]. In particular, [2, Thm. 1.1] and [7, Thm. 20.18] imply a simple formula (22) for
the commutator [A, B] of two operators A and B that involves a “sum over all ways to
contract legs of the diagrams corresponding to A and B” (we specify in Sect. 2, what
is meant by that, mathematically). A mathematically precise account of Friedrichs
Diagrams, among other diagrammatic types, can be found in [7, Ch. 20].
Friedrichs diagrams have also been used within mathematical investigations on the
Yukawa model in 1 + 1 spacetime dimensions [8–11], which includes fermions. For
fermionic operators, one may expect a formula similar to (22) to be true, up to the
multiplication of certain contributions by a factor of (−1). However, we are not aware
of such an explicit formula in the existing literature1.

In the present work, we therefore provide an analogue to the bosonic commutator
formula (22) in the fermionic case, which is (23). This fermionic formula is our main
result and given in Theorem 3.2. We also state the bosonic commutator formula in
Theorem 3.1 and give two different proofs for it.

The bosonic formula is based on a so-called attached product A B (17), which
is essentially a sum over all possible ways to contract legs of the diagrams of A and B
in a certain way. Its fermionic analogue, A B (20) agrees with A B up to sign
changes.
Further, the bosonic formula always holds for commutators [A, B], while the fermionic
analogue describes either [A, B] or the anticommutator {A, B}, depending on the
numbers of legs.

We believe that the above-mentioned formulas can be useful for speeding up
commutator calculations as they frequently appear when conjugating operators (e.g.,
Hamiltonians) with exponentials, such as in dressing or generalized Bogoliubov trans-
formations. Recent examples for such conjugations can be found in the context of
Bose gases [12–14] and Fermi gases [15–19] for investigating the ground state and
low-excitation spectrum of a given Hamiltonian. Friedrichs diagrams provide a quick
insight into which kinds of terms appear, and can also be used to anticipate and check

1 In principle, such a formula could be derived from [7, Thm. 20.18] after plugging in all definitions for
the fermionic case which is, however, not explicitly done in that reference.
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Fig. 1 A Friedrichs diagram

results that are obtained non-diagrammatically. We comment further on this within
Sect. 5.2.

The mathematical description used in this article slightly differs from the one used
in [7]:We keep it less general to allow for an easier access to the topic and to a practical
employment of Friedrichs diagrams.
Further, we remark that the Friedrichs diagrams as in Fig. 1 may closely resemble the
so-called Feynman diagrams, which are ubiquitous in the QFT literature [20–23]. For
a mathematical discussion on Feynman diagrams, see also [7, 24–28]. Typically, in
Feynman diagrams, internal lines translate into spacetime propagators or covariance
matrices, while for Friedrichs diagrams, they correspond to spacelike Dirac distribu-
tions. Further, Feynman diagrams appearing in the literature usually represent complex
numbers or distributions, while Friedrichs diagrams are typically employed in oper-
ator calculations. However, the term “Feynman diagram” is sometimes also used in
a more restrictive sense (e.g., only denoting diagrams in QFT or those with time
ordered propagators) or it may include certain diagrams representing operators, see
[7, Sect. 20.6.2].

The rest of this article is structured as follows: In Sect. 2, we introduce the notation
and give the rules for translating diagrams into mathematical expressions. In Sect. 3,
we state our main results, including formulas for [A, B], {A, B} and AB in terms of
normal ordered products, and provide algorithms for their practical employment in
commutator computations. Proofs of the main results are given in Sect. 4. Section5
concerns applications of the graphical framework presented here.We demonstrate that
the various contributions arising in the nonlinear Hartree dynamics can naturally be
identified as a subset of all the diagrams arising in the quantum time evolution and
sketch how to evaluate multicommutators using Friedrichs diagrams.

2 Diagrams and contractions

In this section, we give a mathematically precise description of the diagrammatic
formalism following [1], that encodes normal ordered products of bosonic or fermionic
creation and annihilation operators. We consider a general description of quantum
many-body systems, where the degrees of freedom per particle are modeled by a
measure space (X , μ) with either X = N (where μ is the counting measure) or
X = R

d (where μ is the Lebesgue measure). The one particle Hilbert space and Fock
space are then given by
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h := L2(X , μ), F± :=
∞⊕
N=0

S±h⊗N , (1)

where S+ is the symmetrization operator and S− is the anti-symmetrization operator.
For some � ∈ F±, we denote the N–particle sector by �(N ) ∈ h⊗N . The finite-
particle space is then defined as

Ffin := {� ∈ F± | ∃Nmax ∈ N : �(N ) = 0 ∀N > Nmax}. (2)

On this space one defines the operator-valued distribution a∗ by

a∗( f )�(N ) := √
N + 1 S±

(
f ⊗ �(N )

)
, f ∈ h, (3)

and a( f ) as the adjoint of a∗( f ). Further, we write the smeared-out operators as a
formal integral a∗( f ) = ∫

f (x)a∗
xdx, respectively a( f ) = ∫

f (x)axdx, over some
(formal) pointwise operators a∗

x and ax . We further define for nA,mA ∈ N0 the
operator valued distribution D(nA,mA) acting on h⊗nA ⊗ h⊗mA as

D(nA,mA)
(
f1 ⊗ · · · ⊗ fnA ⊗ g1 ⊗ · · · ⊗ gmA

) := a∗( fnA ) . . . a∗( f1)a(g1) . . . a(gmA ).

(4)

So for any f A ∈ h⊗nA ⊗ h⊗mA and nA,mA ∈ N0, the normal ordered distribution
pairing

A := D(nA,mA) ( f A) =
∫

f A(X A,Y A)a∗
xA,nA

. . . a∗
xA,1

a yA,1
. . . a yA,mA

dX AdY A

(5)

renders a well-defined operator A : Ffin → Ffin, where we have written the smeared-
out operator D(nA,mA) ( f A) as a formal integral over the pointwise operators. Here,
we used the abbreviations

X A := (x1, . . . , xnA) ∈ XnA , Y A := ( y1, . . . , ymA
) ∈ XmA . (6)

a∗
x and ax satisfy the canonical commutation/anticommutation relations (CCR/CAR)

in the sense of distributions2:

[ax, a∗
y]± = δ(x − y), [ax, a y]± = [a∗

x, a
∗
y]± = 0, (7)

where the commutator (for bosons) is given by [A, B]+ := [A, B] = AB − BA and
the anticommutator (for fermions) is given by [A, B]− := {A, B} = AB + BA. The

2 That means, (7) entails rigorous commutation relations for the operators defined in (5).
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Fig. 2 Left: A vertex with connectors representing f A(X A,Y A). Right: A Friedrichs diagram including
external vertices and legs

set of operators A of the form (5) generates a CCR/CAR ∗–algebra A±.

As in [1], we represent an operator of the form (5) by a diagram (see Fig. 2) con-
sisting of

• One central vertex, representing f A, with nA “connectors”3 to the left and mA

“connectors” to the right, representing the coordinates xA, j and yA,k . The con-
nectors are arranged, with respect to j and k, from bottom to top for X A and from
top to bottom for Y A.

• nA external vertices on the left of the diagram, representing the expressions a∗
x

and ordered from top to bottom in the same order as they appear in (5).
• mA external vertices on the right of the diagram, representing the expressions a y
and ordered from top to bottom in the same order as they appear in (5).

• nA + mA edges (called “external legs”) connecting each external vertex to a con-
nector, and thus specifying which coordinate x or y to plug into a∗

x or a y.

To simplify the notation, we will also write a∗
xA, j

=: a∗
A, j and a yA,k

:= aA,k ,
whenever it is obvious whether an x– or a y–coordinate is used.

When computing commutators of operators (5), factors of the form δ(x − y) will
appear naturally. These δ(x− y) can be viewed as “contractions” between the operators
a�
x and a�

y or between the coordinates x and y. As in [1], we represent them by
internal lines between the connectors representing the coordinates x and y: Consider
a set of operators A1, . . . , AV of the form (5) with kernels (“vertices”) { fv}Vv=1, fv ∈
h⊗nv ⊗ h⊗mv . The sets

I := {(v, j) | 1 ≤ v ≤ V , 1 ≤ j ≤ nv}, I ′ := {(v, k) | 1 ≤ v ≤ V , 1 ≤ k ≤ mv}
(8)

index all left/right pointing connectors and hence all coordinates. We would now like
to contractC ∈ N0 pairs of coordinates

{
(xπ(c), yπ ′(c))

}C
c=1, determined by the pairing

maps

π : {1, . . . ,C} → I, π ′ : {1, . . . ,C} → I ′. (9)

3 Connectors on vertices are necessary to keep track of the order of the coordinates xA, j , yA,k , since those
can generally not be commuted in f A(X A,Y A). In the language of graph theory, a “vertex with n left– and
m right-connectors” can be defined as a sub-graph with n + m vertices that are colored in 2 colors.
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101 Page 6 of 26 M. Brooks, S. Lill

To indicate the order of external legs corresponding to uncontracted coordinates, we
introduce the ordering maps

σ : {1, . . . , |I| − C} → I \ imag(π), σ ′ : {1, . . . , |I ′| − C} → I ′ \ imag(π ′).
(10)

Further, we use the abbreviations

Xv := (xv,1, . . . , xv,nv ), Yv := ( yv,1, . . . , yv,mv
), dX :=

V∏
v=1

dXv, dY :=
V∏

v=1

dYv.

(11)

The final contracted operator corresponding to { fv}Vv=1, π, π ′, σ, σ ′ is then given by

G =
∫ (

V∏
v=1

fv(Xv,Yv)

)(
C∏
c=1

δ(xπ(c) − yπ ′(c))

)⎛
⎝|I|−C∏

�=1

aσ(�)

⎞
⎠

∗ ⎛
⎝|I′ |−C∏

�′=1

aσ ′(�′)

⎞
⎠ dXdY .

(12)

We represent G by a diagram (see Fig. 3) with:

• V internal vertices, each having nv connectors to the left andmv connectors to the
right, encoding the functions fv and their coordinates xv, j , yv,k .

• |I| − C external vertices on the left of the diagram, encoding the expressions a∗
x ,

ordered from bottom to top by σ (with a∗
σ(|I|−C)

on top and a∗
σ(1) at the bottom).

• |I ′|−C external vertices on the right of the diagram, encoding the expressions a y,
ordered from top to bottom by σ ′ (with aσ ′(1) on top and aσ ′(|I ′|−C) at the bottom).

• C internal lines between pairs of connectors (xπ(c), yπ ′(c)), encoding the factors
δ(xπ(c) − yπ ′(c)) and thus representing the contractions.

• |I| + |I ′| − 2C external lines between a left-connector and an external vertex
on the left or a right-connector and an external vertex on the right. Those specify
σ, σ ′, and thus, which coordinates xv, j = σ(c), yv,k = σ ′(c) have to be plugged
into a∗

σ(c) and aσ ′(c).

Every G as in (12) can again be written as an operator of the form (5), i.e.,
with one single integral kernel. If we split X,Y into contracted coordinates Xπ :=
(xπ(c))

C
c=1,Yπ := (xπ(c))

C
c=1 and uncontracted coordinates X ′ := X\Xπ ,Y ′ :=

Y\Yπ , then the kernel associated with G is given by

fG(X ′,Y ′) =
∫ (

V∏
v=1

fv(Xv,Y v)

)(
C∏
c=1

δ(xπ(c) − yπ ′(c))

)
dXπdYπ ′ . (13)

In particular, fG ∈ L2. SoG can also be represented by a diagramwith a single vertex,
as depicted in Fig. 4.
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Fig. 3 Left: An example of V = 3 internal vertices with connectors. Right: An example of a contracted
diagram corresponding to some G

Fig. 4 The diagram corresponding to G is equivalent to a single-vertex diagram

In order to formulate the commutator formulas, we will introduce the notion of an
attached product as in [1]: Consider two operators A, B of form (5), with kernels f A
and fB . The coordinate index sets will be denoted by

IA := {(A, 1), . . . , (A, nA)}, I ′
A := {(A, 1), . . . , (A,mA)} (14)

and the same for B. Further, we introduce a set that indexes all possible ways to
contract the y–coordinates of A to the x–coordinates of B:

C := {
(π, π ′)

∣∣ π : {1, . . . ,C} → IB, π ′ : {1, . . . ,C} → I ′
A,

1 ≤ C ≤ min(mA, nB), |imag(π ′)| = C, π(1) > . . . > π(C)
}
,

(15)

where the ordering relation (B, j) > (B, j ′) is to be understood as j > j ′. Diagram-
matically, (π, π ′) ∈ C is represented by C lines, each from connector π ′(c) of A to
connector π(c) of B. Here, (π, π ′) ∈ C is also called a “contraction configuration”, or
“config” for short. For a given config (π, π ′), we denote the sets of indices belonging
to contractable but uncontracted left/right-connectors by

U := {
(B, j) ∈ IB | � c ∈ {1, . . . ,C} : π(c) = (B, j)

}
,

U ′ := {
(A, k) ∈ I ′

A | � c ∈ {1, . . . ,C} : π ′(c) = (A, k)
}
.

(16)
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Fig. 5 Left: A maximally crossed Friedrichs diagram. Right: There are 3 swaps necessary in σ ′ to achieve
a maximally crossed form. So sgn(σ ′) = −1

Further, we set X := (X A, X B) ∈ XnA+nB ,Y := (Y A,Y B) ∈ XmA+mB . Then, the
bosonic attached product is defined as

A B :=
∑

(π,π ′)∈C

∫
f A(X A,Y A) fB(X B,Y B)

C∏
c=1

δ(xπ(c) − yπ ′(c))

×
( nA∏

�=1

aA,�

)∗ (∏
u∈U

au

)∗ ∏
u′∈U ′

au′
mB∏
�′=1

aB,�′ dXdY .

(17)

Here, we use the convention that, within products over a set (like
∏

u′∈U ′ or
∏

u∈U ), the
indices (A, k) or (B, j) are arranged in increasing order in k or j . Diagrammatically,
(17) corresponds to a sum over all different diagrams in which at least one right-
connector of A is contracted with a left-connector of B. Uncontracted connectors are
turned into external legs while keeping their order.

In the fermionic version of the commutator formula, we will encounter a similar
sum over all possible contraction configs, which differs from (20) by a sign change for
certain configs. To specify the signs, we introduce the notion of a “maximally crossed”
diagram, as shown in Fig. 5: A diagram together with its contribution, indexed by the
config (π, π ′) ∈ C, is called maximally crossed if π(c) = (B, nB −c+1) and π ′(c) =
(A,mA − c + 1) for all 1 ≤ c ≤ C . So we have a “maximal crossing of contraction
lines” in the sense that the c-th bottom-most right-connector of A is exactly contracted
to the c-th top-most left-connector of B. Now, let σ : IB → IB, σ ′ : I ′

A → I ′
A be

the unique index permutations that take the diagram into a maximally crossed form
while preserving the order of all uncontracted indices, that is,

σ(π(c)) = (B, nB − c + 1) and u1 < u2 ⇒ σ(u1) < σ(u2) ∀ u1, u2 ∈ U ,

σ (π ′(c)) = (A,mA + c − 1) and u′
1 < u′

2 ⇒ σ ′(u′
1) < σ ′(u′

2) ∀ u′
1, u

′
2 ∈ U ′.

(18)

By sgn(σ ), sgn(σ ′) ∈ {1,−1}, we denote the signs of these permutations (see also
Fig. 5). Then, the sign of the config (π, π ′) ∈ C is defined as

sgn(π, π ′) = sgn(π, π ′,mA, nB) := (−1)(mA−C)(nB−C) · sgn(σ ) · sgn(σ ′). (19)
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In Appendix 1, a heuristic motivation for how this sign function arises can be found.
We now define the fermionic attached product as

A B :=
∑

(π,π ′)∈C
sgn(π, π ′)

∫
f A(X A,Y A) fB(XB ,Y B)

C∏
c=1

δ(xπ(c) − yπ ′(c))

×
⎛
⎝ nA∏

�=1

aA,�

⎞
⎠

∗ ⎛
⎝∏
u∈U

au

⎞
⎠

∗ ∏
u′∈U ′

au′
mB∏
�′=1

aB,�′ dXdY .

(20)

Finally, we define the normal ordered product as

: AB ::=
∫

f A(X A,Y A) fB(X B,Y B)

×
( nA∏

�=1

aA,�

)∗ ( nB∏
�=1

aB,�

)∗ ( mA∏
�′=1

aA,�′

)( mB∏
�′=1

aB,�′

)
dXdY .

(21)

3 Main results

Recall the definitions of the bosonic/fermionic attached products A B (17) and
A B (20), as well as the normal ordered product : AB : (21). Our two main com-
mutator formulas are now the following.

Theorem 3.1 (Bosonic Commutator Formula) Consider A, B ∈ A+ of the form (5),
i.e., the CCR hold. Then,

[A, B] = A B − B A. (22)

Theorem 3.2 (Fermionic Commutator Formula)Consider A, B ∈ A− of the form (5),
i.e., the CAR hold. Then,

[A, B] = A B − B A if (mAnB + mBnA) is even,

{A, B} = A B + B A if (mAnB + mBnA) is odd.
(23)

These theorems are immediate consequences of the following two lemmas:

Lemma 3.1 (Bosonic Contraction Formula, [1, p. 54], [2, Thm. 1.1])Consider A, B ∈
A+, i.e., the CCR hold. Then,

AB = : AB : +A B. (24)
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Lemma 3.2 (Fermionic Contraction Formula) Consider A, B ∈ A−, i.e., the CAR
hold. Then,

AB = (−1)mAnB : AB : +A B. (25)

Remarks.

1. Algorithm for commutator evaluation: As formulas (22) and (23) are rather abstract,
let us briefly sketch the algorithms to be used for practical evaluations of (anti–)
commutators by means of Friedrichs diagrams. A fermionic (anti–) commutator is
evaluated as shown in Algorithm 1.
In the bosonic case, only commutators may be evaluated by (22). The algorithm is
much simpler, see Algorithm 2.

2. Distributions as integral kernels: In more physical situations, such as many-body
systems with Coulomb interaction or QFT models, one may encounter operator
products of the form (5), where the integral kernel f A is not an element of L2,
but rather a distribution, e.g., a tempered distribution in S ′(R(nA+mA)d). In that
case, a contraction as in (12) may or may not make sense, depending on whether
the distribution multiplication is allowed, see also [29, Chap. 8]. If the distribution
multiplication is allowed for all contractions in all A B or A B, then the
respective formulas in Lemmas 3.1 and 3.2, as well as in Theorems 3.1 and 3.2
remain valid.

3. Number of contractions: In each attached product A B or A B, the num-
ber of contributions, here called N(A,B), is easily obtained combinatorically: If
a diagram shall have C contractions, then there are

(nB
C

)
choices for the values

nB ≥ π(1) > . . . > π(C) ≥ 1. The number of choice options for associated
indices for contraction π ′(1), . . . , π ′(C) is mA · (mA − 1) · . . . · (mA −C + 1). So
the total number of contributions is

N(A,B) =
min(mA,nB )∑

C=1

(
nB

C

)
· mA · . . . · (mA − C + 1)

=
min(mA,nB )∑

C=1

nB !mA!
(nB − C)!C !(mA − C)! =

min(mA,nB )∑
C=1

C !
(
nB

C

)(
mA

C

)
.

(26)

4 Proofs

The bosonic contraction formula (Lemma 3.1) was already stated in [1] and [2], where
[2, p. 13] provides the idea for a proof by induction. For completeness, we give the
explicit proof by induction here, as well as a second proof based on exponentials of
derivatives.
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Algorithm 1 Fermionic Commutator/Anticommutator Evaluation

1: Check whether (23) is valid for commutators or anticommutators: If mAnB +mBnA is even, it applies
to commutators; if it is odd, then it applies to anticommutators.

2: Draw all diagrams corresponding to A B and B A, i.e., which involve at least one contraction,
and translate them into contributions (12). IfmAnB +mBnA is even, then the contributions of B A
get a factor of (−1).

3: For each diagram, multiply its contribution by (−1) for each swap of connectors necessary to take the
diagram into a maximally crossed form.

4: For each diagram, multiply its contribution by a “normal ordering factor” of (−1)(mA−C)(nB−C) (here,
(mA−C)(nB−C) is the product of the numbers of potentially contractable but uncontracted connectors).

5: Add up all contributions.

Algorithm 2 Bosonic Commutator Evaluation

1: Draw all diagrams corresponding to A B and B A and translate them into a contribution (12).
The contribution B A always gets a factor of (−1).

2: Add up all contributions.

Proof of Lemma 3.1 Plugging in the definitions of A, B (5), : AB : (21) and A B
(17), we can equivalently transform the statement to be shown (24) into

aA,1 . . . aA,mAa
∗
B,nB

. . . a∗
B,1

= a∗
B,nB

. . . a∗
B,1aA,1 . . . aA,mA +

∑
(π,π ′)∈C

C∏
c=1

δ(xπ(c) − yπ ′(c))

⎛
⎝∏
u∈U

au

⎞
⎠

∗ ∏
u′∈U ′

au′ .

(27)

The proof of (27) is done by an induction over nB,mA ∈ N0. We start with the case
where nB = 0 or mA = 0, corresponding to the axes of the mA–nB–quadrant. Then
we establish that (27) holds for (mA, nB), assuming that it holds for (mA, nB − 1)
and (mA − 1, nB − 1). With this induction step, we can “fill up” the quadrant of index
pairs (mA, nB), for which (27) is valid, line by line.

On the axes nB = 0 or mA = 0, the statement is trivially satisfied, since AB is
already normal ordered and the sum over C in (27) is empty.

For the induction step (mA −1, nB −1)∧ (mA, nB −1) �→ (mA, nB), we consider
the left-hand side of (27) and commute a∗

B,nB
to the very left, before using the induction

assumption:
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aA,1 . . . aA,mAa
∗
B,nB

. . . a∗
B,1

=
mA∑
k=1

aA,1 . . . [aA,k , a
∗
B,nB

] . . . aA,mAa
∗
B,nB−1 . . . a∗

B,1 + a∗
B,nB

aA,1 . . . aA,mAa
∗
B,nB−1 . . . a∗

B,1

=
mA∑
k=1

δ(xB,nB − yA,k )

⎛
⎜⎝ ∑

(π,π ′)∈C̃k

C∏
c=1

δ(xπ(c)− yπ ′(c))
(∏
u∈Ũ

au

)∗∏
u′∈Ũ ′

k

au′ +
( ∏
u �=(B,nB )

au

)∗ ∏
u′ �=(A,k)

au′

⎞
⎟⎠

︸ ︷︷ ︸
1

+
∑

(π,π ′)∈C̃

C∏
c=1

δ(xπ(c) − yπ ′(c))a∗
B,nB

⎛
⎝∏
u∈Ũ

au

⎞
⎠

∗ ∏
u′∈U ′

au′

︸ ︷︷ ︸
2

+ a∗
B,nB

. . . a∗
B,1aA,1 . . . aA,mA︸ ︷︷ ︸

3

.

(28)

Here, we used the modified sets of contraction configs and uncontracted legs

C̃k :={
(π, π ′)

∣∣π : {1, . . . ,C} → IB \ {(B, nB)}, π ′ : {1, . . . ,C} → I ′
A \ {(A, k)},

1 ≤ C ≤ min(mA, nB) − 1, |imag(π ′)| = C, π(1) > . . . > π(C)
}
,

C̃ :={
(π, π ′)

∣∣π : {1, . . . ,C} → IB \ {(B, nB)}, π ′ : {1, . . . ,C} → I ′
A,

1 ≤ C ≤ min(mA, nB − 1), |imag(π ′)| = C, π(1) > . . . > π(C)
}
,

(29)

Ũ ′
k = Ũ ′

k,π ′ :={
(A, k′) �= (A, k) | �c ∈ {1, . . . ,C} : π ′(c) = (A, k′)

} ⊆ I ′
A,

Ũ = Ũπ :={
(B, j) �= (B, nB) | �c ∈ {1, . . . ,C} : π(c) = (B, j)

} ⊆ IB .

(30)

Now in (28), the term 1 comprises all those contraction configs between all coor-
dinates of I ′

A and IB into which (B, nB) is involved: The sum over C̃k contains all
terms where there is at least one further contraction in addition to the one involving
(B, nB), and the operator product over u �= (B, nB), u′ �= (A, k) is that term, where
(B, nB) is involved into the only contraction.
The term 2 comprises all configs of I ′

A and IB , into which (B, nB) is not involved.
So 1 + 2 just amounts to all contraction configs, i.e., to the second term on the r.h.s
of (27).
Finally, 3 is the normal ordered first term on the r.h.s of (27). This establishes (27)
for (mA, nB) and thus the induction step. ��

Proof of Theorem 3.1 Keeping in mind that definition (21) entails : AB :=: BA :,
Lemma 3.1 readily implies
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[A, B] = AB − BA = : AB : +A B− : BA : −B A = A B − B A.

(31)

��
Before we are going to verify the fermionic case, let us present an alternative proof

of Lemma 3.1 based on coherent state techniques.

Alternative proof of Lemma 3.1 As in the previous proof, let us assume w.l.o.g. that A
and B are of the form A = aJ1 . . . aJmA

and B = a∗
InB

. . . a∗
I1
. Since A and B only

involve the finitely many modes {J1, . . . , JmA , I1, . . . InB }, we can further assume
that the one particle Hilbert space is finite dimensional, i.e., given by h = C

N . In the
following, let |z〉 denote the coherent state corresponding to z ∈ C

N defined (modulo
a complex phase) by the eigen-equations ak |z〉 = zk |z〉, and let us define the lower
symbol of an operator X as the function z �→ 〈z|X |z〉. Clearly the lower symbol of
the operator : AB : is given by 〈z| : AB : |z〉 = ∏nB

i=1 z Ii
∏mA

j=1 z J j , and therefore the
lower symbol of AB reads

〈z|AB|z〉=e∇z∇z

⎛
⎝ nB∏

i=1

z Ii

mA∏
j=1

z J j

⎞
⎠=〈z| : AB : |z〉 +

min{nB ,mA}∑
C=1

(∇z∇z)
C

C !

⎛
⎝ nB∏

i=1

z Ii

mA∏
j=1

z J j

⎞
⎠ ,

(32)

see e.g., Proposition 4.4 in [6]. We are going to prove by induction in C that

(∇z∇z)
C

⎛
⎝ nB∏

i=1

z Ii

mA∏
j=1

z J j

⎞
⎠ =

∑
π∈CB

C ,π ′∈CA
C

fπ,π ′(z), (33)

where CA
C := {

π ′ ∣∣ π ′ : {1, . . . ,C} → {1, . . . ,mA}, π ′ is injective
}
, CB

C := {
π
∣∣ π :

{1, . . . ,C} → {1, . . . , nB}, π is injective
}
and fπ,π ′ is defined as

fπ,π ′(z) :=
C∏
p=1

δ
(
Iπ(p) − Jπ ′(p)

) ∏
i /∈imag(π)

z Ii
∏

j /∈imag(π ′)
z J j . (34)

The case C = 0 is trivial. The induction step C �→ C + 1 follows from

the observation that we can express the term (∇z∇z)
C+1

(∏nB
i=1 z Ii

∏mA
j=1 z J j

)
=∑

π∈CB
C ,π ′∈CA

C
∇z∇z fπ,π ′(z) as

∑
π∈CB

C ,π ′∈CA
C

C∏
p=1

δ
(
Iπ(p) − Jπ ′(p)

) ∑
�/∈imag(π),k /∈imag(π ′)

δ (I� − Jk)
∏

i /∈imag(π)∪{�}
z Ii

∏
j /∈imag(π ′)∪{k}

z J j

=
∑

π∈CB
C ,π ′∈CA

C

∑
�/∈imag(π),k /∈imag(π ′)

fπ�,π
′
k
(z) =

∑
�∈CB

C+1,�
′∈CA

C+1

f�,�′ (z), (35)
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where π� : {1, . . . ,C + 1} → {1, . . . , nB} is an extension of the function π by
π�(C + 1) := �, and π ′

k is an extension of the function π ′ by π ′
k(C + 1) := k. This

finishes the induction.
Combining Eq. (33) with the observation that any pair (�,�′) ∈ CB

C × CA
C can be

uniquely written as � = π̃ ◦ σ and �′ = π̃ ′ ◦ σ , where (π̃, π̃ ′) ∈ CC := {
(π̃, π̃ ′) ∈

C ∣∣ |imag(π̃)| = C
}
and σ ∈ SC is a permutation of the set {1, . . . ,C}, yields

(∇z∇z)
C

C !

⎛
⎝ nB∏

i=1

z Ii

mA∏
j=1

z J j

⎞
⎠ =

∑
(π̃,π̃ ′)∈CC

∑
σ∈SC

1

C ! fπ̃◦σ,π̃ ′◦σ (z) =
∑

(π̃,π̃ ′)∈CC
fπ̃ ,π̃ ′(z),

(36)

where we have used fπ̃◦σ,π̃ ′◦σ = fπ̃ ,π̃ ′ . Since
∑

(π̃,π̃ ′)∈C fπ̃ ,π̃ ′(z) is the lower sym-

bol of the operator A B = ∑
(π̃,π̃ ′)∈C

∏C
p=1 δ

(
Iπ(p) − Jπ ′(p)

) (∏
i /∈imag(π̃) aIi

)∗
∏

j /∈imag(π̃ ′) aJj , we obtain by Eq. (32) that 〈z|AB|z〉 = 〈z| : AB : |z〉 + 〈z|A B|z〉
for all z ∈ C

N , and therefore AB =: AB : +A B. ��

The proofs for the fermionic cases are similar to those for the bosonic cases, subject
to sign changes.

Proof of Lemma 3.2 The definitions of A, B (5), : AB : (21) and A B (20) allow to
equivalently reformulate the target formula (25) into

aA,1 . . . aA,mAa
∗
B,nB . . . a∗

B,1 = (−1)mAnB a∗
B,nB . . . a∗

B,1aA,1 . . . aA,mA

+
∑

(π,π ′)∈C
sgn(π, π ′)

C∏
c=1

δ(xπ(c) − yπ ′(c))

(∏
u∈U

au

)∗ ∏
u′∈U ′

au′ ,
(37)

with sgn(π, π ′) = sgn(π, π ′,mA, nB) given by (19).As in the proof ofLemma3.1,we
perform an induction overmA, nB ∈ N0, which amounts to verifying (37) formA = 0
or nB = 0 and then establishing the induction step (mA−1, nB−1)∧(mA, nB−1) �→
(mA, nB).

The cases mA = 0 and nB = 0 are trivial, since the sum over (π, π ′) ∈ C is empty.
The induction step (mA − 1, nB − 1)∧ (mA, nB − 1) �→ (mA, nB) is performed in

similarity to (28). We pull a∗
B,nB

to the left, which generates several anticommutators

aA,1 . . . aA,mAa
∗
B,nB . . . a∗

B,1

=
mA∑
k=1

(−1)mA−kaA,1 . . . {aA,k , a
∗
B,nB } . . . aA,mAa

∗
B,nB−1 . . . a∗

B,1

+ (−1)mAa∗
B,nB aA,1 . . . aA,mAa

∗
B,nB−1 . . . a∗

B,1

=
mA∑
k=1

(−1)mA−kδ(xB,nB − yA,k)

( ∑
(π,π ′)∈C̃k

sgn(π, π ′,mA − 1, nB − 1)
C∏
c=1

δ(xπ(c) − yπ ′(c))
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Fig. 6 Left to right: Taking the diagram into a maximally crossed form

×
⎛
⎝∏

u∈Ũ
au

⎞
⎠

∗ ∏
u′∈Ũ ′

k

au′ + (−1)(mA−1)(nB−1)
( ∏

u �=(B,nB )

au

)∗ ∏
u′ �=(A,mA)

au′
)

+ (−1)mA
∑

(π,π ′)∈C̃
sgn(π, π ′,mA, nB − 1)

C∏
c=1

δ(xπ(c) − yπ ′(c))a
∗
B,nB

⎛
⎝∏

u∈Ũ
au

⎞
⎠

∗ ∏
u′∈U ′

au′

+ (−1)mA (−1)mA(nB−1)a∗
B,nB . . . a∗

B,1aA,1 . . . aA,mA , (38)

using the contraction config sets C̃k, C̃ (29) and the uncontracted leg sets Ũ ′
k, Ũ (30). In

the last step, we applied (37) with coefficient pairs (mA−1, nB −1) and (mA, nB −1),
which makes it necessary to adjust the respective indices in sgn(π, π ′).
We now include the contraction δ(xB,nB − yA,k) into each config in C̃k . This way, the
set of configs C̃k changes to

C̃k,+ :={
(π+, π ′+)

∣∣ π+ : {1, . . . ,C} → IB , π ′+ : {1, . . . ,C} → I ′
A, π+(1) = (B, nB),

π ′+(1) = (A, k), 2 ≤ C ≤ min(mA, nB), |imag(π ′)| = C, π+(1) > . . . > π+(C)
}
.

(39)

Concerning the sign of (π+, π ′+), it is easy to see that under the change C̃k �→ C̃k,+, the
uncontracted leg number product (mA − C)(nB − C) stays invariant. Since π+(1) =
(B, nB), it is not necessary to additionally swap left-connectors of B to get amaximally
crossed form, so sgn(σ ) also stays invariant. However, in order to achieve a maximally
crossed form, the right-connector of A corresponding to (A, k) must be moved by
(mA − k) positions down to get to the bottom, before the original σ ′ can be applied
for bringing all other connectors into the correct position (see Fig. 6). So the sign of
(π+, π ′+) amounts to

sgn(π+, π ′+,mA, nB) = (−1)mA−ksgn(π, π ′,mA − 1, nB − 1). (40)

Further, the sum over configs in C̃ with π : {1, . . . ,C} → IB\{(B, nB)}, can be
recast into a sum with π+ : {1, . . . ,C} → IB over contractions in

C̃+ :={
(π+, π ′+)

∣∣ π+ : {1, . . . ,C} → IB , π ′+ : {1, . . . ,C} → I ′
A, π+(c) �= (B, nB),

1 ≤ C ≤ min(mA, nB − 1), |imag(π ′)| = C, π(1) > . . . > π(C)
}
.

(41)
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Fig. 7 Left to right: Taking the diagram into a maximally crossed form

Replacing C̃ by C̃+, (B, nB) becomes an additional uncontracted connector, so we
have to replace Ũ by U (compare definitions (30) and (16)). Concerning the sign
of (π+, π ′+), the additional uncontracted connector (B, nB) leads to a replacement
(−1)(mA−C)(nB−1−C) �→ (−1)(mA−C)(nB−C) in the definition of (19), which renders
an additional factor of (−1)mA−C . Since there are no changes in the right-connectors
of A, sgn(σ ′) stays invariant. However, the inclusion of (B, nB) makes it necessary to
pull the associated connector down, past all C contracted connectors (see Fig. 7), in
order to get the diagram into a maximally crossed form. Hence, we gain an additional
factor of (−1)C in sgn(σ ). The overall sign change is thus given by

sgn(π+, π ′+,mA, nB) = (−1)mAsgn(π, π ′,mA, nB − 1). (42)

Performing the summation replacements C̃k �→ C̃k,+ and C̃ �→ C̃+, we end up with

aA,1 . . . aA,mAa
∗
B,nB

. . . a∗
B,1

=
mA∑
k=1

( ∑
(π+,π ′+)∈C̃k,+

sgn(π+, π ′+,mA, nB)

C∏
c=1

δ(xπ+(c) − yπ ′+(c))

⎛
⎝∏
u∈Ũ

au

⎞
⎠

∗ ∏
u′∈Ũ ′

k

au′

︸ ︷︷ ︸
1a

+ (−1)mA−k(−1)(mA−1)(nB−1)δ(xB,nB − yA,k)

⎛
⎝ ∏
u �=(B,nB )

au

⎞
⎠

∗ ∏
u′ �=(A,mA)

au′

︸ ︷︷ ︸
1b

)

+
∑

(π+,π ′+)∈C̃+

sgn(π+, π ′+,mA, nB)

C∏
c=1

δ(xπ+(c) − yπ ′+(c))a
∗
B,nB

⎛
⎝∏
u∈U

au

⎞
⎠

∗ ∏
u′∈U ′

au′

︸ ︷︷ ︸
2

+ (−1)mAnB a∗
B,nB

. . . a∗
B,1aA,1 . . . aA,mA︸ ︷︷ ︸

3

.

(43)
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Comparing with (37), the term 1a contains all configs (π, π ′) ∈ C̃, where (B, nB)

is contracted to some connector (A, k), and at least one further contraction exists.
The term 1b contains exactly those configs where only (B, nB) is contracted to
some (A, k). In this case, a maximal crossing can be achieved by pulling the (A, k)–
connector down by mA − k positions, so following (19), the sign of these configs
amounts to

sgn(π, π ′) = (−1)(mA−1)(nB−1) · 1 · (−1)mA−k, (44)

which coincides with the sign factor in (43). 2 consists of exactly those configs where
(B, nB) is not contracted at all. Since all signs sgn(π+, π ′+,mA, nB) = sgn(π, π ′)
agree, the sum 1a + 1b + 2 equals the second term on the r.h.s. of (37).

Finally, 3 is just the normal ordered first term on the r.h.s. of (37), which establishes
the equality and thus the induction step. ��

Proof of Theorem 3.2 In casemAnB+mBnA is even, we have (−1)mAnB = (−1)mBnA ,
so with : AB :=: BA :, we obtain

[A, B] = (−1)mAnB : AB : +A B − (−1)mBnA

: BA : −B A = A B − B A. (45)

If mAnB + mBnA is odd, then (−1)mAnB = −(−1)mBnA , so

{A, B} = (−1)mAnB : AB : +A B + (−1)mBnA

: BA : +B A = A B + B A. (46)

��

5 Applications

5.1 Hartree equation

In the following section we are going to use our diagrammatic approach in order
to justify the time-dependent Hartree approximation. For this purpose, let T be a
self-adjoint operator on the one particle Hilbert space h and let V be a bounded
and self-adjoint operator on h⊗2, which in addition is symmetric under a coordi-
nate permutation and which we will refer to as the interaction potential. Moreover

we define the second-quantized version of T as T̂ := ⊕∞
N=0

(∑N
j=1 Tj

)
, where

Tj acts on the j-th factor in the tensor product h⊗N and T̂ can be realized as a
self-adjoint operator on F+. The potential in the interaction picture is given by a

bounded operator V (t) := e−i t(T1+T2)Veit(T1+T2) with second quantization V̂ (t) :=∫
V (t)(x1, x2, y1, y2)a∗

x2a
∗
x1ay1ay2dx1dx2dy1dy2, where we write V

(t)(x1, x2, y1, y2)
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A A

V (t1) V (t1)

V (t2) V (t2)

V (t3) V (t3)

Fig. 8 Examples of an acyclic graph (left) and a graph containing a cycle (right) arising as part of the time
evolution in Eq. (47)

for the integral kernel of the operator V (t). Let furthermore A be an operator with inte-
gral kernel f A ∈ h ⊗ h and let us write the conjugation with the (interaction picture)
time evolution Ut := e−i t(T̂+V̂ )eit T̂ using Duhamel’s formula as

U−1
t AUt =

∞∑
k=0

1

i k

∫

0≤t1≤···≤tk≤t

[
. . .

[
A,

1

2
V̂ (t1)

]
, . . . ,

1

2
V̂ (tk)

]
dt1 . . . dtk

=
∞∑
k=0

k+1∑
�=1

∫

0≤t1≤···≤tk≤t

At1,...,tk
k,� dt1 . . . dtk .

(47)

Here, At1,...,tk
k,� is defined as containing all contributions in 1

i k

[
. . .

[
A, 1

2 V̂
(t1)

]
, . . . ,

1
2 V̂

(tk )
]
whose diagrams have � incoming and outgoing legs. That means, we write

the nested commutator according to Theorem 3.1 as a sum of connected diagrams, see
also the definition of the bosonic attached product in Eq. (17) and the comment below.
Each of the k newly added vertices can be contracted to one or two of the existing
ones, so we finally end up with a diagram having � ∈ {2, . . . , k+1} uncontracted legs
on each side (i.e., incoming/outgoing legs). In the subsequent Proposition 5.1, we are
going to verify that the sum over all acyclic graphs (i.e., those with � = k + 1 legs on
both sides) appearing in Eq. (47) amounts to the time evolution given by the nonlinear
Hartree dynamics (see also Fig. 8). In order to formulate Proposition 5.1, let us define
the mean field potential Vu associated with a one particle state u via its integral kernel
as Vu(x, y) := ∫

V (x, x ′, y, y′)u(x ′)u(y′)dx ′dy′.

Proposition 5.1 Assume that ut is a solution to the Hartree equation i d
dt ut = (T +

Vut )ut for t ∈ (−L, L) and L := 1
2‖V ‖‖u0‖2 . Then we obtain for all |t | < L

〈A〉u⊗N
t

=
∞∑
k=0

∫

0≤t1≤···≤tk≤t

〈At1,...,tk
k,k+1 〉

(e−i tTu0)
⊗N dt1 . . . dtk, (48)

where ‖V ‖ denotes the operator norm.

Proof Let us introduce for a fixed t ∈ (−L, L) the family of one particle states
vs := ei(s−t)T us , which interpolates between the states v0 = e−i tT u0 and vt = ut . In
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the following we want to verify that the expression

∞∑
k=0

∫

0≤t1≤···≤tk≤t−s

〈At1,...,tk
k,k+1 〉

v⊗N
s

dt1 . . . dtk (49)

is constant with respect to s, which immediately concludes the proof by plugging in the
values s = 0 and s = t (note that for k = 0, A0,1 = A). In order to do this, we define
{A, B}∗ as the sum over all graphs appearing in the expression A B − B A
that have only a single connection between the connectors of f A and fB , where
we add the subscript ∗ in order to distinguish {A, B}∗ from the anti-commutator
and we purposefully use curly brackets in analogy to the Poisson bracket from clas-
sical mechanics. Using this notation, we obtain At1,...,tk

k,k+1 = 1
2i

{
At1,...,tk−1
k−1,k , V (tk )

}
∗.

Since there are 4k different graphs appearing in
{
At1,...,tk−1
k−1,k , V (tk)

}
∗, we have the

estimate ‖At1,...,tk
k,k+1 ‖ ≤ 4k 1

2‖V ‖‖At1,...,tk−1
k−1,k ‖, where we have used that the opera-

tor norm of a contracted operator, defined in Eq. (12), is bounded from above
by the product of the operator norms of the individual operators. Consequently,
‖At1,...,tk

k,k+1 ‖ ≤ k!‖A‖(2‖V ‖)k . Using the control of the norm and ‖vs‖ = ‖u0‖, we
immediately obtain

∣∣∣∣
∫

0≤t1≤···≤tk≤t−s

〈At1,...,tkk,k+1 〉
v⊗N
s

dt1 . . . dtk

∣∣∣∣ ≤
∫

0≤t1≤···≤tk≤t−s

k!‖A‖(2‖V ‖)k‖u0‖2(k+1) dt1 . . . dtk

≤‖A‖‖u0‖2
(
2(t − s)‖V ‖‖u0‖2

)k
.

(50)

Therefore the sum in Eq. (49) converges absolutely for |t − s| < 1
2‖V ‖‖u0‖2 , and we

can express the derivative d
ds

(∑∞
k=0

∫
0≤t1≤···≤tk≤t−s

〈At1,...,tk
k,k+1 〉

v⊗N
s

dt1 . . . dtk

)
as

∞∑
k=0

∫

0≤t1≤···≤tk≤t−s

d

ds
〈At1,...,tkk,k+1 〉

v⊗N
s

dt1. . .dtk−

∞∑
k=1

∫

0≤t1≤···≤tk−1≤t−s

1

2i
〈{At1,...,tk−1

k−1,k , V (t−s)}∗〉
v⊗N
s

dt1. . .dtk−1

=
∞∑
k=0

∫

0≤t1≤···≤tk≤t−s

(
d

ds
〈At1,...,tkk,k+1 〉

v⊗N
s

− 1

2i
〈{At1,...,tkk,k+1 , V (t−s)}∗〉

v⊗N
s

)
dt1. . .dtk = 0.

(51)
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In order to show the last equality, we use that i d
ds vs = V (t−s)

vs vs , with V (t)
u (x, y) :=∫

V (t)(x, x ′, y, y′)u(x ′)u(y′)dx ′dy′, which allows us to express d
ds 〈B〉

v⊗N
s

for any

fB ∈ h⊗n ⊗ h⊗n as

1

i

n∑
j=1

∫
fB(X , Y )

n∏
k=1

vs(xk)vs(y1) . . . vs(y j−1)(V
(t−s)
vs

vs)(y j )vs(y j+1) . . . vs(yn)dXdY

− 1

i

n∑
j=1

∫
fB(X , Y )vs(x1) . . . vs(x j−1)(V

(t−s)
vs vs)(x j )vs(x j+1) . . . vs(xn)

n∏
k=1

vs(yk)dXdY

= 1

i

n∑
j=1

∫
fB(X , Y )V (t−s)(xn+1, xn+2, yn+1, yn+2)δ(y j − xn+2)

n+1∏
k=1

vs(xk)

∏
�∈{1,...,n+2}\{ j}

vs(y�)dX
′dY ′

− 1

i

n∑
j=1

∫
fB(X , Y )V (t−s)(xn+1, xn+2, yn+1, yn+2)δ(x j − yn+2)

∏
k∈{1,...,n+2}\{ j}

vs(xk)
n+1∏
�=1

vs(y�)dX
′dY ′

= 1

2i
〈{B, V (t−s)}∗〉v⊗N

s
, (52)

with X ′ = (x1, . . . , xn+2) and Y ′ = (y1, . . . , yn+2). Note that in the last line, we have
used our definition of {·, ·}∗ in terms of the attached product defined in Eq. (17).

��
Proposition 5.1 states that every acyclic graph appearing in the quantum time evolu-

tion has to be considered as a contribution coming from the Hartree dynamics, while
graphs having at least one cycle constitute the quantum correction to the Hartree
dynamics. Since cyclic graphs have less open connectors relative to their number
of vertices (see also Fig. 8), and each open connector is of order

√
N , one observes

that the quantum corrections are of subleading order in case V is small compared to
the number of particles N . While this approach of establishing the nonlinear Hartree
dynamics is comparable to the one presented in [30], we want to stress the graphical
interpretation of the Hartree dynamics as a subset of the diagrams arising in the quan-
tum time evolution. Furthermore, we want to note that Friedrichs diagrams have been
used previously to establish the classical limit of non-relativistic bosons in [31].

5.2 Multicommutators and bosonization

Let us comment a bit more on how calculations from the recent literature on Bose
and Fermi gases can be re-phrased in terms of Friedrichs diagrams. A situation that
often appears, e.g., in [12, Sect. 3], [13, Sect. 3], [17, Sect. 4], [18, Sect. 5], [19,
Sect. 7] is the evaluation of an expectation value of some operator A inside some trial
state ψ := e−B
 with B being an antisymmetric operator and 
 ∈ F− the vacuum
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Fig. 9 The Friedrichs vertices (without external legs) of the example operators for A and B. Note that the
B–operators are differences of two vertices, respectively

Fig. 10 Left: The two diagrams appearing within the n = 7-fold multicommutator for eB2a∗
k e

−B2 and

eB2ake
−B2 , respectively. Right: A diagram appearing for n = 6, when evaluating 〈
, eB4N e−B4
〉

vector of Fock space. Typically, a momentum lattice X = Z
d is chosen with momenta

denoted k, p ∈ Z
d . The operator A could be, for instance, a∗

k , ak or the number
operator N = ∑

k a
∗
k ak and B could be a quadratic/cubic/quartic transformation of

the form

B2 :=
∑

k1,k2∈Zd

ηk1,k2
(
a∗
k1a

∗
k2 − h.c.

)
,

B3 :=
∑

k1,k2,k3∈Zd

ηk1,k2,k3
(
a∗
k1a

∗
k2a

∗
k3 − h.c.

)
,

B4 :=
∑

k1,k2,k3,k4∈Zd

ηk1,k2,k3,k4
(
a∗
k1a

∗
k2a

∗
k3a

∗
k4 − h.c.

)
, (53)

see Fig. 9, with suitable integral kernels η. Here, e−B2 is a Bogoliubov transformation,
while e−B3 and e−B4 can be seen as “generalized Bogoliubov transformations”.

Recursive application of Duhamel’s formula renders the multicommutator series

〈
, eB Ae−B
〉 =
∞∑
n=0

1

n! 〈
, [B, . . . [B, [B, A]] . . .]︸ ︷︷ ︸
n commutators


〉. (54)

The n-th term in this series can be written as a sum over all diagrams, which are built,
starting from an A-vertex and successively contracting n vertices of type B into it.

Figure10 shows certain diagrams appearing for A = a∗
k , ak and B = B2, which

arise when Bogoliubov-transforming the operators a∗
k and ak . Every new B2-vertex

can only be contracted to exactly one leg, leaving again exactly one external leg. So
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Fig. 11 For [c, c] and [c∗, c∗], there are no legs to contract, so these terms vanish. For [c, c∗], there are 6
contributions to the commutator

inductively, one quickly sees that both eB2a∗
k e

−B2 and eB2ake−B2 must again be linear
combinations of a∗– and a–operators.
By contrast, for other choices of A and B, e.g., A = N and B = B4, a much bigger
number of contractions occurs, which leads to more diagrams, one of them being
shown in Fig. 10. However, when evaluating the expectation value with respect to 
,
all diagrams with at least one external leg vanish as ak
 = 0.

For fermions, commutator evaluations can be strongly simplified by a bosonization
technique, whichwas recently applied in [15–19]. Introducing the bosonized operators
for f ∈ �2(Zd),

c∗
k ( f ) :=

∑
p∈Zd

f pa
∗
pa

∗
p−k, ck( f ) :=

∑
p∈Zd

f pap−kap, (55)

we have the following commutation relations, which are a generalized case of [18,
(4.16)] and [19, (5.6)] with f , g ∈ �2(Zd):

[ck( f ), ck′(g)] = [c∗
k ( f ), c

∗
k′(g)] = 0,

[ck( f ), c∗
k′(g)] = δk,k′ 〈 f , g〉 −

∑
p

f pgp−kδk,−k′ −
∑
p

f pgpa
∗
p−k′ap−k

−
∑
p

f pgp−k+k′a∗
p−k+k′ap

+
∑
p

f pgp−ka
∗
p−k−k′ap +

∑
p

f pgp+k′a∗
p+k′ap−k

(56)

In fact, the first line can easily be seen diagrammatically, as there are no legs to
contract between the corresponding Friedrichs vertices, see Fig. 11. The Friedrichs
diagrams for the second line are shown in the same figure. Here, the second term
typically vanishes due to constraints, forcing the momenta to be inside or outside the
Fermi ball. For the same reason, two of the last four terms typically vanish, while the
other two can be seen as error terms. They become small, whenever taking expectation
values within states ψ ∈ F− with ‖Nψ‖ being small. In that case, (56) becomes
approximately equivalent to the CCR (7), so c∗

k ( f ), ck( f ) can be viewed as almost-
bosonic operators. The process of re-expressing operators in terms of c∗

k ( f ), ck( f ) is
exactly the above-mentioned “bosonization” technique.
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Appendices

A Heuristic motivation of fermionic contraction signs

The fermionic sign factors sgn(π, π ′) in (19) and (20), as well as the factor (−1)nBmA

in (25) play a central role in the evaluation of fermionic commutators. Here, we provide
a simple heuristic motivation of how these factors come about. We believe that these
heuristics might be useful to quickly determine the fermionic signs within practical
fermionic commutator evaluations.
In order to arrive at the fermionic product formula (25), we could also have taken the
following approach: Starting from AB, we successively pull creation operators to the
left by “adding smart zeros”, until we end up with : AB :. As a simple example, let us
consider A = a1a2, B = a∗

3a
∗
4 , so mA = nB = 2:

AB =a1a2a
∗
3a

∗
4

=a1a2a
∗
3a

∗
4 + a1a

∗
3a2a

∗
4 − a1a

∗
3a2a

∗
4 − a∗

3a1a2a
∗
4

+ a∗
3a1a2a

∗
4 + a∗

3a1a
∗
4a2 − a∗

3a1a
∗
4a2 − a∗

3a
∗
4a1a2 + a∗

3a
∗
4a1a2

={a2, a∗
3 }a1a∗

4 − {a1, a∗
3 }a2a∗

4 + {a2, a∗
4 }a∗

3a1 − {a1, a∗
4 }a∗

3a2 + a∗
3a

∗
4a1a2︸ ︷︷ ︸

=:AB:
.

(57)

For general A, B of the form (5), we have to pull mA creation operators past nB

annihilation operators, so the normal ordered term in the end picks up a factor of
(−1)mAnB , which is the same one as in (25). Note that the nA creation operators of A
and the mB annihilation operators of B are already in their normal ordered positions.
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• So, the factor of (−1)mAnB in front of : AB : in (25) heuristically arises when
pulling the a, a∗–operators into their normal ordered positions.

Now, consider some generic A and B, involving operator products aA,1 . . . aA,nA and
a∗
B,nB

. . . a∗
B,1. The product AB then takes the form:

AB = A B + (−1)mAnB : AB :=
∑

(π,π ′)∈C
sgn(π, π ′)Gπ,π ′ + (−1)mAnB : AB :,

(58)

where Gπ,π ′ is an abbreviation for the diagram with contractions described by the
maps π and π ′ as in (20). Our goal is to determine sgn(π, π ′). We first consider the
easier case where (π, π ′) corresponds to amaximally crossed diagram and then reduce
the generic case to the maximally crossed one. A “smart zero insertion” as in (57) will
produce many anticommutators, where the first term appearing is

{aA,mA , a
∗
B,nB }aA,1 . . . aA,mA−1a

∗
B,nB−1 . . . a∗

B,1, (59)

with a sign of +1. In order to arrive at (25), the remaining products of (mA − 1) +
(nB − 1) operators as in (59) also have to be brought in a normal ordered form, which
is done by repeatedly applying the zero insertion procedure as in (57). After C ∈ N

insertion procedures, the appearing terms have C anticommutators (taken “from the
inside out”), where the first appearing term is

{aA,mA , a
∗
B,nB } . . . {aA,mA−C , a∗

B,nB−C }aA,1 . . . aA,mA−C−1a
∗
B,nB−C−1 . . . a∗

B,1.

(60)

This term carries a sign of +1 and contains the same contractions as a maximally
crossed diagram, e.g., as in Figs. 5, 6 and 7. One further application of the zero
insertion procedure now takes (60) into normal ordered form, where it exactly corre-
sponds to a maximally crossed diagram. In this last procedure, we pick up a factor of
(−1)(mA−C)(nB−C).

• So, the factor of (−1)(mA−C)(nB−C) in (19) heuristically arises from pulling the
uncontracted a, a∗–operators into their normal ordered positions.

If a generic Gπ,π ′ in A B is not maximally crossed, then there are permutations
σ, σ ′ of the index sets (1, . . . ,mA) and (1, . . . , nB) that take Gπ,π ′ into maximally
crossed form. That means, we define σ and σ ′ such that σ ′(mA) is contracted to
σ(nB), σ ′(mA − 1) to σ(nB − 1), and so on. If we apply σ and σ ′ to the indices of
aA,1 . . . aA,mA and a∗

B,nB
. . . a∗

B,1 before the evaluation, then within

aA,σ ′(1) . . . aA,σ ′(mA)a
∗
B,σ (nB ) . . . a∗

B,σ (1), (61)

Gπ,π ′ appears with contractions being taken “from the inside out”, and hence as a
maximally crossed diagram carrying a sign of (−1)(mA−C)(nB−C). Now, since AB
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includes the product

aA,1 . . . aA,mAa
∗
B,nB . . . a∗

B,1

= sgn(σ )sgn(σ ′)aA,σ ′(1) . . . aA,σ ′(mA)a
∗
B,σ (nB ) . . . a∗

B,σ (1) (62)

and the order of all uncontracted operators is untouched by σ and σ ′, the overall sign
ofGπ,π ′ appearing in AB is given by sgn(π, π ′) = sgn(σ )sgn(σ ′)(−1)(mA−C)(nB−C).
This is the same factor as in (19).

• So, the factor sgn(σ )sgn(σ ′) in (19) is heuristically required to permute the oper-
ators such that contractions can be taken “from the inside out”. More generally,
maximal crossing just corresponds to taking contractions “from the inside out”.
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