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Abstract
We study superconformal indices of 4d compactifications of the 6d minimal
(DN+3, DN+3) conformal matter theories on a punctured Riemann surface. Intro-
duction of supersymmetric surface defect in these theories is done at the level of the
index by the action of the finite difference operators on the corresponding indices.
There exist at least three different types of such operators according to three types
of punctures with AN ,CN and (A1)

N global symmetries. We mainly concentrate on
C2 case and derive explicit expression for an infinite tower of difference operators
generalizing the van Diejen model. We check various properties of these operators
originating from the geometry of compactifications. We also provide an expression
for the kernel function of both our C2 operator and previously derived A2 generaliza-
tion of van Diejen model. Finally, we also consider compactifications with AN -type
punctures and derive the full tower of commuting difference operators corresponding
to this root system generalizing the result of our previous paper.
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1 Introduction

Intricate connection between supersymmetric gauge theories and integrable systems
plays an important role in modern theoretical physics and mathematics. From physics
point of view whenever some sector of the gauge theory is related to an integrable
system, observables in this sector can be computed using rich variety of integrability
techniques. Canonical example of this situation is the integrability of N = 4 super
Yang–Mills (SYM) theory [1, 2]. In particular, it connects calculation of the planar
scaling dimensions of N = 4 SYM to the integrable system of spin chains and
allows to compute these scaling dimensions at arbitrary coupling. On the other hand,
exploration of such connections can also shed light on some questions about integrable
systems and even lead to construction of new classes of such systems making this kind
of studies interesting from mathematics point of view.

In our work, we are exploring a particular class of connections between six-
dimensional (1, 0) superconformal field theories and elliptic quantum mechanics
Hamiltonians in the spirit of Bethe/gauge correspondence of Nekrasov and Shatashvili
[3–6]. In particular, we consider four-dimensional theories with four supercharges
obtained by compactification of a 6d SCFT on a punctured Riemann surface. In order
for an integrable model to emerge in this setting, we have to introduce surface defects
into our 4d theory and study its superconformal index.

This construction was first established in the context of compactifications of 6d
(2, 0) of ADE type [7, 8]. In particular, the corresponding 4d superconformal indices
with the defect were found to be closely related to the Ruijsenaars–Schneider (RS)
elliptic analytic finite difference operators (A�Os). Later these results were extended
to many other cases: class Sk 4d theories [9], compactifications of A2 and D4 minimal
6d SCFTs [10] and compactifications of rank one E-string theories [11]. In some of
these cases, the obtainedA�Oswere already known in the literature. For example in E-
string compactifications, van Diejen (vD) model [12, 13] was observed. But in some
cases operators were previously unknown as in the case of the minimal 6d SCFTs
compactifications. Study of such novel operators constitutes an interesting field of
research with some initial steps already taken in this direction [14, 15].

From the point of view of physics, the connection of superconformal indices in the
presence of defects with the integrable quantum mechanics Hamiltonians allows one
to bootstrap index of an arbitrary theory obtained by compactifying corresponding 6d
theory on a punctured Riemann surface. In particular, if we know the eigenfunctions
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of the corresponding A�O, we can compute the index of any theory obtained in such
compactifications including non-Lagrangian theories for which there are no other
methods of computing the index. As mentioned previously, the first setting where
these ideas were tested is 4d class-S theories obtained in the compactifications of 6d
(2, 0) theory [7]. In this case, the corresponding integrable systemwas given by elliptic
RS model. Eigenfunctions of the elliptic RS Hamiltonians are not known in general,
but some of their limits are well studied in the mathematical literature. These limits
were used in order to prove previously established relations [16–18] of superconformal
indices with the Macdonald and Schur polynomials allowing one to compute indices
of class S non-Lagrangian theories.

The construction outlined above relies on the intermediate 5d layer. For things
to work there should exist an effective 5d gauge theory obtained by compactifying
original 6d SCFT on a circle with a choice of holonomies for its global symmetries.
In particular, different 5d compactifications lead to different types of punctures on the
Riemann surfaces used to obtain 4d theories. One of the interesting problems related
to this fact is the compilation of the dictionary between known compactifications
of various 6d SCFTs and elliptic integrable systems. In our previous paper [19],
we have considered compactifications of the 6d minimal (DN+3, DN+3) conformal
matter theories [20, 21]. In particular, we have derived A�Os corresponding to the
intermediate 5d SU(N +1) gauge theory or equivalently the AN -type puncture on the
compactification surface. These elliptic A�Os appeared to be previously unknown
AN generalizations of vD model. On the other hand, there are at least two more
5d effective descriptions of 6d SCFTs corresponding to USp(2N ) and SU(2)N gauge
theories giving rise to the punctures with the sameCN and (A1)

⊗N global symmetries.
These two descriptions should lead to additional higher-rank generalizations of the
vD model.

In our present paper, we follow this line of research and closely study compactifi-
cations of the minimal (DN+3, DN+3) conformal matter theory on a Riemann surface
with the CN -type punctures. In particular, we concentrate on the next to simplest case
of N = 21 and derive corresponding infinite tower of A�Os. We also devote part of
the paper to the study and proof of some remarkable properties of these operators that
follow from the geometry of corresponding compactifications. In particular, we prove
the novel kernel property for two operators of different type but same rank. We also
discuss commutation property of obtained operators.

The paper is organized as follows. In Sect. 2, we review our previous results for
AN -type operators. In addition to the previous results, we also derive full tower of
such A�Os which was not obtained previously. In Sect. 3, we derive in details novel
generalization of vDoperators corresponding toC2 root system.2 In Sect. 4, we discuss
properties of derived C2 A�Os. In particular we pay special attention to a new kernel

1 The simplest case of N = 1, as well as the case of (A1)
1, was studied in our previous paper [19]. As a

result, we observed two alternative parametrizations of the standard BC1 vD model.
2 We would like to stress that the operator we derive is different from the standard higher-rank vD operator
[12, 13] since the latter one is associated with the affine BCn -type root system, while we discuss C2 root
system in our paper. We expect that the canonical BCn vDmodel can be obtained in a similar manner using
compactifications of the rank-Q E-string theory. Unfortunately so far only compactifications on the spheres
with two punctures are known for these theories so we are not able to prove this conjecture.
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function for simultaneously A2 and C2 operators and give fully analytic proof of the
corresponding kernel equation. We also briefly discuss commutation relations and
check them perturbatively in expansion. In Sect. 5, we briefly summarize our results
and discuss plans for the future research further developing these results. Finally, the
paper has a number of appendices collecting useful formulas as well as technical
details of various calculations in our paper.

2 AN operators

In this section, we will briefly review derivation of the AN generalization of the van
Diejen operator. So-called basic version3 of this operator has been derived in our
previous paper [19]. Here, we will extend this result to the full tower of operators.

Just as in [19] in order to derive A�O, we start with the 4d three-punctured sphere
theory which was first introduced in [21]. This theory is obtained in the compactifica-
tion of the 6d minimal (DN+3, DN+3) conformalmatter on a spherewith twomaximal
SU(N + 1) punctures and one minimal SU(2) puncture. The quiver of this theory is
shown in Fig. 1. In addition to the global symmetry, the punctures are characterized
by the moment map operators. In particular, both SU(N + 1) maximal and SU(2)
minimal punctures are characterized by (2N + 4) mesonic and 2 baryonic moment
maps:

Mu = N + 1x ⊗
(
2N + 4uN+3v−N−1w−2 ⊕ 1

(uvN+1)
2N+4

)
⊕ N + 1

x ⊗ 1
(uNw2)

2N+4 ,

Mv = N + 1y ⊗
(
2N + 4vN+3u−N−1w−2 ⊕ 1

(vuN+1)
2N+4

)
⊕ N + 1

y ⊗ 1
(vNw2)

2N+4 ,

Mw = 2z ⊗
(
2N + 4

(uvw−2)
−N−1 ⊕ 1

(wvN+1)
2N+4 ⊕ 1

(wuN+1)
2N+4

)
, (2.1)

where ai , u, v, w are fugacities of theCartans of the 6d global SO(4N+8) symmetry.
Subscripts of the moment maps written above denote their charges w.r.t. to these
symmetries.

Further S-gluing two such trinions along the maximal punctures, we can obtain
four-punctured sphere with zero flux two maximal and two minimal punctures. To
obtain the corresponding 4d gauge theory, we should just take two copies of trinion
theories shown in Fig. 1 and then identify and gauge corresponding global symmetries
of the maximal punctures. Here and everywhere else in the paper, all operations with
gauge theories are expressed in terms of the superconformal indices. In this language,
the gluing procedure takes the following form:

K A
4 (x, x̃, z, z̃) = κN

∮ N∏
i=1

dyi
2π iyi

N+1∏
i �= j

1

�e

(
yi
y j

) K̄ A
3 (x̃, y, z̃)K A

3 (x, y, z). (2.2)

3 See the definition of the basic operators and their towers below.

123



C2 generalization of the van Diejen model... Page 5 of 55 94

Fig. 1 a AN three-punctured sphere with two maximal and one minimal puncture. b AN four-punctured
sphere obtained by S-gluing two three-punctured spheres

where K A
3 (x, y, z) is the index of the trinion with y being fugacity of the global

SU(N + 1) symmetry of the puncture we glue along and K̄ A
3 is the index of the

conjugated trinion. Finally, κN is the usual constant given by:

κN ≡ (q; q)N∞ (p; p)N∞
(N + 1)! . (2.3)

Performing this S-gluing operation, we obtain the four-punctured sphere theory
shown in Fig. 1 with the corresponding superconformal index specified in (B.1). This
theory was previously obtained by us in [19] to derive basic AN A�Os. Now in order
to derive the operator, we should close two minimal punctures of this four-punctured
sphere. To do it, we should break the global symmetry of the puncture. This can be
achieved by giving a non-trivial vev 〈∂L

12∂
K
34M〉 �= 0 to the derivatives of one of the

moment map operators. When we close punctures with at least one of K or L not
equal to zero, i.e., vev is space-time dependent, we effectively insert defect into the
theory [7, 22]. At the level of the superconformal index, closing the puncture amounts
to giving a corresponding weight to the fugacity of the puncture’s global symmetry.
Once we do it, we hit a pole of the index. Then, computation of the residue of this
pole results in the superconformal index of the IR theory that the UV theory flowed
to due to the introduction of the vev. In our case, we choose to close SU(2)z minimal
puncture with the defect and SU(2)z̃ puncture without, i.e., choosing L = K = 0
in the vev. In particular, let’s say that we are going to compute A�O acting on the
puncture with the moment maps of charges h̃i and an overall U(1) charge

h̃ ≡
2N+6∏
i=1

h̃i . (2.4)
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For example, the moment maps of the SU(N + 1)x puncture of the trinion shown in
Fig. 1 correspond to Mu operators specified in (2.1) and have the following charges:

h̃i = uN+3v−N−1w−2ai , i = 1, . . . , 2N + 4,
2N+4∏
i=1

ai = 1,

h̃2N+5 =
(
uvN+1

)2N+4
, h̃2N+6 =

(
uNw2

)−2N−4
, h̃ =

(
uw−1

)8(N+2)
,

(2.5)

wherewe haveflipped the charge h̃2N+6 of the lastmomentmap since this parametriza-
tion will be more natural for our operators and in this case all of the moment maps of
the maximal puncture transform in the fundamental representation of SU(N + 1)x .
We can now notice from (2.1) that charges of the minimal puncture moment maps
are related to the charges of the moment maps of the maximal punctures by simple
relation

h̃SU(2)
i =

(
h̃SU(N+1)
i

)−1 (
h̃SU(N+1)

) 1
4
, (2.6)

So we can express everything in terms of only the moment maps of the maximal
puncture we act on. Now, assume we give vevs to the moment maps (mesonic or
baryonic) with charges h̃−1

i h̃1/4 of both SU(2)z and SU(2)z̃ . Moment maps we use
should be the same in order to keep total flux of the 6d global symmetries zero. At the
level of the index calculations, it corresponds to computing the residue of the index
of the four-punctured sphere theory at the pole

z = Z∗
i;L,M = (pq)−

1
2 h̃i h̃

− 1
4 q−M p−L ,

z̃ = Z̃∗
i;0,0 = (pq)−

1
2 h̃−1

i h̃
1
4 q−M̃ p−L̃ , (2.7)

where L, M, L̃, M̃ are positive integers corresponding to the powers of derivatives
inside the vev. As we mentioned previously, it is enough to introduce defect only for
one of the two punctures. Hence, we choose M̃ = L̃ = 0 and keep L, M general.
Then, we compute corresponding residues of the index of the four-punctured sphere
theory and obtain theory for the tube with two maximal SU(N + 1) punctures and a
codimension-two defect. Its superconformal index is given by4:

K A
(2;i;L,M)(x, x̃) ∼ Resz→Z∗

i;L,M ,z̃→Z̃∗
i;0,0

K A
4 (x, x̃, z, z̃) (2.8)

Finally in order to obtain desired A�O, we glue our tube with the defect to an arbitrary
Riemann surface with maximal SU(N + 1)x̃ puncture. As the result of this gluing,
we expect to obtain action of a finite difference operator on the index I(x̃) of this 4d

4 Here and further, we often omit some overall factors which are irrelevant for the derivations of A�Os.
Because of this, we use ∼ instead of strict equality here.
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N = 1 theory:

O(AN ;hk ;L,M)
x · I(x) = κN

∮ N∏
j=1

dx̃ j
2π i x̃ j

N+1∏
i �= j

1

�e

(
x̃i
x̃ j

)K A
(2;i;L,M)(x, x̃)I(x̃)

(2.9)

Details of all the calculations summarized above are given in Appendix B. They result
in the following operator:

O(AN ;h̃k ;M,L)
x =

∑

(
∑N+2

i=1 mi=M)

∑

(
∑N+2

i=1 li=L)

∑

(
∑N+1

i=1 si=M−mN+2)

∑

(
∑N+1

i=1 ri=L−lN+2)

C
�l, �m,�r ,�s
L,M

×
N+1∏
i=1

∏2N+6
b �=k

∏si−1
n=0 θp

(
(pq)

1
2 h̃−1

b x−1
i qn−mi p−li

)∏ri−1
n=0 θq

(
(pq)

1
2 h̃−1

b x−1
i qsi−mi pn−li

)

∏N+1
j �=i

∏m j−1
n=0 θp

(
qn−mi p−li x j /xi

) ∏l j−1
n=0 θq

(
qm j−mi pn−li x j /xi

)
∏M−si−1

n=0 θp

(
(pq)

1
2 h̃−1

k x−1
i pri−li qn+si−mi

) ∏L−ri−1
n=0 θq

(
(pq)

1
2 h̃−1

k x−1
i pn+ri−li qM−mi

)

∏mN+2−1
n=0 θp

(
(pq)− 1

2 h̃k h̃− 1
2 x−1

i p−L−li qn−M−mi

) ∏lN+2−1
n=0 θq

(
(pq)− 1

2 h̃k h̃− 1
2 x−1

i pn−L−li qmN+2−M−mi

)

∏M−mN+2−si−1
n=0 θp

(
(pq)

1
2 h̃−1

k h̃
1
2 xi pli qn+mi

)∏L−lN+2−ri−1
n=0 θq

(
(pq)

1
2 h̃−1

k h̃
1
2 xi pn+li qM−mN+2−si

)

∏mi−1
n=0 θp

(
(pq)

1
2 h̃−1

k h̃
1
2 xi pL−lN+2+li qn+M−mN+2

)∏li−1
n=0 θq

(
(pq)

1
2 h̃−1

k h̃
1
2 xi pn+L−lN+2qM−mN+2+mi

)

1∏N+1
j �=i

∏ri−1
n=0 θq

(
qm j−mi+si−s j pn+l j−li−r j x j /xi

)∏si−1
n=0 θp

(
qn+m j−mi−s j pl j−li−r j x j /xi

)

× �mi−si
q (xi )�

li−ri
p (xi ) , (2.10)

where C
�l, �m,�r ,�s
L,M are x-independent constant factors given by,

C
�l, �m,�r ,�s
L,M =

∏M−mN+2
n=1 θp

(
q−n

) ∏L−lN+2
n=1 θq

(
qmN+2−M p−n

)
∏si

n=1 θp
(
q−n p−ri

) ∏ri
n=1 θq

(
p−n

) ∏mi
n=1 θp

(
q−n p−li

)∏li
n=1 θq

(
p−n

)
∏2N+6

b �=k

∏mN+2−1
n=0 θp

(
h̃k h̃− 1

2 h̃bqn−M p−L
) ∏lN+2−1

n=0 θq

(
h̃k h̃− 1

2 h̃bqmN+2−M pn−L
)

∏mN+2
n=1 θp

(
pq h̃−2

k h̃
1
2 q2M−n p2L−lN+2

) ∏lN+2
n=1 θq

(
pq h̃−2

k h̃
1
2 q2M p2L−n

) (2.11)

Also �s are shift operators defined as follows:

�m
a (xi ) f (x) ≡ f

(
xi → amxi

)
, a = q, p. (2.12)

The operator contains all shifts of the form qmi pli xi where �m and �l are all possible
partitions of length N + 1 of M and L correspondingly. At each level, i.e., fixed M
and L , there are 2N + 6 operators due to 2N + 6 moment maps with the charges

h̃k h̃− 1
4 . There are also 2N + 6 other operators obtained by giving vevs to the flipped

moment maps of the charge h̃−1
k h̃

1
4 . They have similar form and properties so we do

not present them here. All the operators should commute with each other, and we
checked this in expansion in p, q for a few of the simplest cases. Now, we will refer to
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the case M = 1 and L = 0, or vice versa, as basic operators. These basic operators for
AN generalizations of vD model were derived by us previously in [19]. The operators
above also reproduce our previous results when we fix M = 1, L = 0 or M = 0, L =
1. Further in our paper, we will also need the basic operator obtained by closing
flipped moment maps. This operator can be found in [19] and has the following form:

O(AN ;h̃−1
i ;1,0)

x · I(x)

≡
⎛
⎝

N+1∑
l �=m

A
(AN ;h̃−1

i ;1,0)
lm (x)�−1

q (xl)�q(xm) + W (AN ;h̃−1
i ;1,0) (

x, h̃
)⎞
⎠ I(x) ,

(2.13)

where the shift part of this operator is given by

A
(AN ;h̃−1

i ;1,0)
lm (x) =

2N+6∏
j=1

θp

(
(pq)

1
2 h̃−1

j x−1
l

)

θp

(
xm
xl

)
θp

(
q xm

xl

)

N+1∏
k �=m �=l

θp

(
(pq)

1
2 h̃−1

i x−1
k

)
θp

(
(pq)

1
2 h̃−1

i h̃1/2xk
)

θp

(
xk
xl

)
θp

(
xm
xk

) ,

(2.14)

and the constant part is given by:

W (AN ;h̃−1
i ;1,0)(x, h̃) =

2N+6∏
j �=i

θp

(
q−1h̃i h̃ j h̃−1/2

)

θp

(
q−2h̃2i h̃

−1/2
)

N+1∏
k=1

θp

(
(pq)

1
2 h̃−1

i x−1
k

)

θp

(
(pq)− 1

2 h̃i h̃−1/2q−1x−1
k

)

+
N+1∑
m=1

2N+6∏
j �=i

θp

(
(pq)

1
2 h̃ j xm

)

θp

(
(pq)

1
2 h̃−1

i h̃1/2qxm
)

N+1∏
k �=m

θp

(
(pq)

1
2 h̃−1

i h̃1/2xk
)

θp

(
(pq)

1
2 h̃−1

i x−1
k

)

θp

(
q−1 xk

xm

)
θp

(
xm
xk

) . (2.15)

This constant part is elliptic function in each xi variable with periods 1 and p. It has
poles in the fundamental domain at the following positions:

xi = q±1xr , xi = sq± 1
2 P

− 1
2

i , xi = sq± 1
2 p

1
2 P

− 1
2

i , s = ±1, (2.16)
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where we defined

Pi ≡
N∏
j �=i

x j . (2.17)

From expression (2.15), it looks like there are extra poles in the constant part, but
careful examination shows that residues at these values of x’s are zero so there are no
real poles there. At the poles (2.16), we have the following residues:

Resxl=qxr W
(AN ;h̃−1

i ;1,0)(x, h̃)

= − qxr
(p; p)2∞ θp

(
q−1

)
2N+6∏
j=1

θp

(
(pq)

1
2 h̃ j xr

)

×
N+1∏
k �=l �=r

θp

(
(pq)

1
2 h̃−1

i h̃1/2xk
)

θp

(
(pq)

1
2 h̃−1

i x−1
k

)

θp

(
q−1 xk

xr

)
θp

(
xr
xk

)

Resxl=q−1xr W
(AN ;h̃−1

i ;1,0)(x, h)

= q−1xr
(p; p)2∞ θp

(
q−1

)
2N+6∏
j=1

θp

(
(pq)

1
2 h̃−1

j x−1
r

)

×
N+1∏
k �=l �=r

θp

(
(pq)

1
2 h̃−1

i h̃1/2xk
)

θp

(
(pq)

1
2 h̃−1

i x−1
k

)

θp

(
q−1 xr

xk

)
θp

(
xk
xr

)

Res
xl=sq− 1

2 P
− 1
2

l

W (AN ;h̃−1
i ;1,0)(x, h)

= s
q− 1

2 P
− 1

2
l

2 (p; p)2∞ θp
(
q−1

)
2N+6∏
j=1

θp

(
sp1/2h̃ j P

−1/2
l

)

×
N∏
k �=l

θp

(
(pq)

1
2 h̃−1

i h̃1/2xk
)

θp

(
(pq)

1
2 h̃−1

i x−1
k

)

θp

(
sq−1/2P−1/2

l x−1
k

)
θp

(
sq−1/2P1/2

l xk
) ,

Res
xl=sq

1
2 P

− 1
2

l

W (AN ;h̃−1
i ;1,0)(x, h̃)

= −s
q

1
2 P

− 1
2

l

2 (p; p)2∞ θp
(
q−1

)
2N+6∏
j=1

θp

(
sp1/2h̃ j P

−1/2
l

)

×
N∏
k �=l

θp

(
(pq)

1
2 h̃−1

i h̃1/2xk
)

θp

(
(pq)

1
2 h̃−1

i x−1
k

)

θp

(
sq−1/2P−1/2

l x−1
k

)
θp

(
sq−1/2P1/2

l xk
) ,
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Res
xl=sp

1
2 q− 1

2 P
− 1
2

l

W (AN ;h̃−1
i ;1,0)(x, h̃)

= s
q− 1

2 p
3
2 h̃− 1

2 P
1
2
l

2 (p; p)2∞ θp
(
q−1

)
2N+6∏
j=1

θp

(
sh̃ j P

−1/2
l

)

×
N∏
k �=l

θp

(
(pq)

1
2 h̃−1

i h̃1/2xk
)

θp

(
(pq)

1
2 h̃−1

i x−1
k

)

θp

(
sp−1/2q−1/2P−1/2

l x−1
k

)
θp

(
sp1/2q−1/2P1/2

l xk
) ,

Res
xl=sp

1
2 q

1
2 P

− 1
2

l

W (AN ;h̃−1
i ;1,0)(x, h̃)

= −s
q

1
2 p

3
2 h̃− 1

2 P
1
2
l

2 (p; p)2∞ θp
(
q−1

)
2N+6∏
j=1

θp

(
sh̃ j P

−1/2
l

)

×
N∏
k �=l

θp

(
(pq)

1
2 h̃−1

i h̃1/2xk
)

θp

(
(pq)

1
2 h̃−1

i x−1
k

)

θp

(
sp−1/2q−1/2P−1/2

l x−1
k

)
θp

(
sp1/2q−1/2P1/2

l xk
) , (2.18)

These are completely general expressions for the whole family of AN operators.

3 Derivation of C2 operators

In this section, wewill discuss derivation of theC-type rank-2 analytic finite difference
operators A�O. In our previous paper [19], we have already derived the basic operator
for AN generalization of van Diejen model and the calculation of the full tower of
these operators is summarized in Sect. 2. Unfortunately full CN generalization is still
out of reach for us due to technical complications but we can concentrate on the study
of rank-2 generalizations with C2 root system.

We will derive C2 operator corresponding to the insertion of the codimension-two
defect due to the non-trivial vev of the holomorphic derivatives of the moment maps
〈∂K± M〉 �= 0. To simplify our calculations of A�O, we will start with the derivation
of four- and three-punctured spheres with C2-type punctures.

The basicCN trinionwas already derived byus inAppendixB.5 of [19] and is shown
in Fig. 2b. Generalizations of this trinion to the cases of three maximal punctures and
higher numbers of minimal punctures can also be found in [23]. In order to derive
this trinion, we used a tube theory with one USp(2N ) and one SU(N + 1) maximal
punctures shown in Fig. 2a. This theory was first discussed in [24]. In order to obtain
trinion theory shown in Fig. 2b, we start with the three-punctured sphere with two
maximal SU(N + 1) and one minimal SU(2) punctures and glue two ANCN tubes
to the maximal punctures. The moment maps of the punctures of the resulting trinion
are given by (2N + 6) mesons both for maximal and minimal punctures:

Mx = 2Nx ⊗ (2N + 6)
w
2 (N+2)2

N+3
, My = 2Ny ⊗ (2N + 6)

w
2 (N+2)2

N+3
,
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Mz = 2z ⊗ (2N + 6)
w
2 (N+2)2

N+3
, (3.1)

where w is one of the parameters of Cartans of the global SO(4N + 8) symmetry
of the 6d minimal conformal matter theory. In general, we will use two types of
parametrization of 6d global symmetry in this paper. First one is natural to use in
compactifications with CN -type punctures, and it is given by

ãi , i = 1, . . . , 2N + 6,
2N+6∏
i=1

ãi = 1, w. (3.2)

Another parametrization is useful when we work with AN expressions and is given
by:

ai , i = 1, . . . , 2N + 4,
2N+4∏
i=1

ai = 1, u, v, w. (3.3)

These two parametrizations are related by the following map that we will often need
in our calculations:

ãl = (uv)−N−1 w− 2
N+3 al , l = 1, . . . , 2N + 4,

ã2N+6 = u2(N+1)(N+2)w2 N+2
N+3 , ã2N+5 = v2(N+1)(N+2)w2 N+2

N+3 . (3.4)

Now in order to derive finite difference operators, we should proceed in the same
way as in the case of AN operators summarized in Sect. 2. We start by taking two
CN trinion theories T A

x,y,z where A is the nonzero flux of the trinion and x, y, z
in the subscript are fugacities of the global symmetries of two maximal and one
minimal punctures correspondingly. Then, we take an arbitraryN = 1 theory obtained
in the compactification of the minimal (DN+3, DN+3) conformal matter theory on
the Riemann surface of genus g with s punctures denoted as Cg,s with at least one
USp(2N )x̃ maximal puncture. Gluing all three surfaces together along the maximal
punctures results in a Riemann surface of the same genus and global symmetry fluxes
but two extraminimal punctures.Wewill be performing all these operations at the level
of superconformal indices. There gluing amounts to identifying global symmetries of
the punctures we glue and gauging it. So for the indices we can write down the
following identity after gluing:

I
[
Cg,s(x̃) ⊕ T̄ A

x̃,y,z1
⊕ T A

y,x,z2

]

= (q; q)4∞ (p; p)4∞
24 · 2! · 2!

∮ 2∏
i=1

dx̃i
2π i x̃i

dyi
2π iyi

N∏
i=1

1

�e

(
y±2
i

)

×
N∏
i< j

1

�e

(
y±1
i y±1

j

)
N∏
i=1

1

�e

(
x̃±2
i

)
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Fig. 2 Tube and trinion with maximal CN punctures

N∏
i< j

1

�e

(
x̃±1
i x̃±1

j

)KC
3 (x, y, z2)K̄

C
3 (x̃, y, z1)I

[
Cg,s(x̃)

]
, (3.5)

where I
[
Cg,s

]
is the index of a theory obtained by compactifications of 6d theory on

the Riemann surface Cg,s and KC
3 (x, y, z) is the index of the trinion theory shown in

Fig. 2b, while K̄ C
3 (x, y, z) is its conjugate. Definition and properties of the elliptic �-

function �e (x) are given in Appendix A. Then, closing SU(2)z and SU(2)z̃ minimal
punctures with or without introduction of defects we can obtain finite difference oper-
ators. As discussed previously in order to close minimal punctures, we have to give
certain weights to corresponding global symmetry fugacities z1 and z2. As a result,
we get the following identity

lim
z1→Z∗

1 ,z2→Z∗
2

I
[
Cg,s(x) ⊕ T̄ A

x,y,z1 ⊕ T A
y,x̃,z2

]
∼ O · I [

Cg,s(x)
]
, (3.6)

where O is some finite difference operator, and in case we close punctures without
introducing defects we just obtain the identity operator.

Here for convenience, we will not compute the full expression (3.5) directly right
away. Just as for AN operators derived in Sect. 2, it appears to bemuch easier to perform
calculation in a slightly different way. First we derive the index of the four-punctured
sphere with zero flux, two maximal USp(2N ) and two minimal SU(2) punctures. For
this purpose, we perform S-gluing of two trinions T AC

x,y,z with SU(N+1) andUSp(2N )

maximal punctures and SU(2) minimal punctures each. This kind of trinions can be
derived by appropriate gluing of ANCN tube theory shown in Fig. 2a, to one of the
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maximal punctures of AN trinion introduced in [21]. Superconformal index of the
resulting four-punctured sphere theory is given by:

KC
4 (x, x̃, z, z̃) = κN

∮ N∏
i=1

dyi
2π iyi

N+1∏
i �= j

1

�e

(
yi
y j

) K̄ AC
3 (x̃, y, z̃)K AC

3 (x, y, z). (3.7)

where K AC
3 (x, y, z) is the index of the trinionwith y being SU(N+1) fugacity and κN

is the usual constant given in (2.3). Geometrically this operation is shown in Fig. 5a.
Next we close one of the two minimal punctures by giving nonzero vev to one of

the Mz moment maps given in (3.1). At the level of the index computations, this means
that the corresponding global symmetry fugacity should be consistent with the vev,
i.e., in our case we should fix z̃ fugacity to

z̃ = Z̃∗
i;K ,M ≡ (pq)−

1
2 w2 (N+2)2

N+3 ãi q
−K p−M , (3.8)

where ãi can be chosen arbitrary since all the expressions are symmetric w.r.t. permu-
tations of ãi . Integers K and M correspond to an order of the derivative of the moment
map in 34 and 12 planes correspondingly, i.e., we give vev to 〈∂M

12∂
K
34M̂i 〉 �= 0. Physi-

cally this corresponds to introducing various codimension two defects into 4d theory.
For the first SU(2)z̃ minimal puncture, we choose to close it without introducing any
defect, which in turn corresponds to K = M = 0 choice in (3.8).

At this value of z̃, the superconformal index (3.7) of the four-punctured sphere has
a pole. Computing the residue at this pole, we obtain the index of the three-punctured
sphere:

KC
(3;i,0)(x, y, z) ∼ Resz̃→Z̃∗

i;0,0
KC
4 (x, y, z, z̃) (3.9)

Here, subscript (3; i, 0) refers to the fact that we obtain three-punctured sphere by
closing minimal puncture of the four-punctured sphere choosing ãi for the vev in (3.8)
and not introducing a defect, which corresponds to the choice K = M = 0 in the
same equation.

Calculation of (3.7) and (3.9) results in the theory shown in Fig. 3. Detailed deriva-
tions of this section can be found in Appendix C.

Now that we have obtained the desired three-punctured sphere theory we are ready
to derive A�O. For this purpose, we should close the remaining minimal SU(2)z
puncture by giving non-trivial vev 〈∂M

12∂
K
34M〉 �= 0 to a derivative of one of its moment

maps. In order to get zero total flux through the resulting two-punctured sphere, we
should choose the same moment map as we did closing SU(2)z̃ minimal puncture
previously. The difference is that now we have to choose non-trivial derivative that is
at least one of K andM numbers is not zero. Physically this corresponds to introducing
codimension-two defect into the tube theory with two maximal punctures as shown in
Fig. 5b. At the level of the index, we should give the following value to the z-fugacity:

z = Z∗
i;K ,M ≡ (pq)−

1
2 w−2 (N+2)2

N+3 ã−1
i q−K p−M , (3.10)
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Fig. 3 Three-punctured sphere theory with two maximal USp(2N ) punctures and one minimal SU(2)
puncture obtained after gluing (3.7) and closing one minimal SU(2)z̃ puncture without defect. Solid and
dashed line attached to the gauge node denotes multiplet in AS and AS representation correspondingly

Then, according to (3.6), capturing the corresponding pole and gluing the resulting
tube with two maximal USp(2N ) punctures to an arbitrary theory with at least one
puncture of this type as shown in Fig. 5c, we obtain an A�O. However, technically
it sometimes appears not to be as straightforward. In particular, if we perform these
operations with the expression (C.12) instead of A�O, we obtain some integral-finite
difference operator. It is highly possible that in fact this operator can be written in the
form of A�O. However, technical issues make it too difficult task and we leave it for
future investigation.

Here, we will instead concentrate on the derivation of next to the lowest rank C2
operator. This case is simpler to analyze. For example, in our trinion theory shown in
Fig. 3, when N = 2, the ASmultiplet of the right SU(3) gauge node becomes just anti-
fundamental, and a chain of duality transformations can be used to simplify the theory.
These calculations are summarized in Appendix C. As a result, we obtain single-node
SU(6) gauge theory shown in Fig. 4 with the corresponding index specified in (C.13).

Finally, we can close SU(2)z puncture. In particular, we give the following weight
consistent with (3.8) to the fugacity z:

z = Z∗
i;K ,0 = (pq)−

1
2 w− 32

5 a−1
i q−K . (3.11)

Performing this closure, we obtain the index of the theory for two-punctured sphere
with two USp(4) maximal punctures

KC
(2;i;K ,0)(x, x̃) ∼ Resz→Z∗

i;K ,0
KC

(3;i,0)(x, x̃, z) (3.12)

The index itself is specified in (C.18). This time it does not have natural gauge theory
interpretation in case of general K due to the presence of the codimension-two defect.
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Fig. 4 Three-punctured sphere theorywith twomaximal USp(4) and oneminimal SU(2) punctures. Dashed
line starting and ending on the gauge SU(6) node as previously corresponds to the matter in the AS
representation

As a final step of our derivation, we glue the obtained tube with the defect to an
arbitrary N = 1 theory with at least one maximal USp(4) puncture and obtain A�O
as follows:

O(C2;hk ;K ,0)
x · I(x) ∼ (q; q)2∞ (p; p)2∞

22 · 2!
∮

dx̃1,2
2π i x̃1,2

1

�e

(
x̃±2
1,2

)
�e

(
x̃±1
1 x̃±1

2

)

×KC
(2;i;K ,0)(x, x̃)I(x̃) (3.13)

Details of this calculation can be found in Appendix C. It leads to the following
expression for A�O:

O(C2;hk ;K ,0)
x =

∑
�K

k1,−∑
m1=−k1,+

k2,−∑
m2=−k2,+

C̃k
�K

10∏
l �=k

2∏
i=1

∏
si=±1

2si mi−1∏
l1=−ki,si +si mi

θp

(
ql1 x−2si

i

)−1

×
si (ki,−−ki,+)−1∏

l2=−ki,si

θp

(
ql2 x−2si

i

)−1
s2m2−s1m1−1∏
l3=−k2,s2−s1m1

θp

(
ql3 xs11 x−s2

2

)−1

×
2∏
j �=i

ki,si −k j,s j −1∏
l4=−k j,s j

θp

(
ql4 xsii x

−s j
j

)−1
−k1,s1+s2m2−1∏
l5=−k1,s1−k2,s2

θp

(
ql5 x−s1

1 x−s2
2

)

×
K−ki,si −1∏

l6=K−ki,si −k5

θp

(
(pq)

1
2 hk x

−si
i ql6

) K−k5+ki,si −1∏
l7=K−k5

θp

(
(pq)

1
2 hk x

si
i q

l7
)−1
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Fig. 5 On the figures above we summarize all the steps we go through in order to derive C2 A�O given
in (3.14). First as shown on the (a), we glue two trinions with two maximal USp(4) (shown with green)
and one minimal SU(2) (shown with orange) punctures each. For one of the trinions we conjugate all the
charges in order to perform S-gluing. At the level of the superconformal index, this operation is expressed
in (3.7). Next, as shown on the (b), we close two minimal punctures of the four-punctured sphere. This
operation is performed by giving vev 〈∂K+ M̂i 〉 �= 0 to holomorphic derivative of one of the moment map
operators with theU (1) charge hi . As the result, we obtain tube theory with twomaximal USp(4) punctures
and codimension-two defect introduced. On the Figure we denote this defect with the red ring. Finally, as
the last step of our algorithm shown on the (c), we glue this tube with the defect to an arbitrary surface with
at least one maximal USp(4) puncture. This results in the action of the set of certain A�Os on the index of
the original theory (color figure online)

×
−K−ki,si +k5−1∏
l8=−K−ki,si

θp

(
(pq)−

1
2 h−1

k x−si
i ql8

) −ki,si +k6−1∏
l9=−ki,si

θp

(
p−1ql9−1h− 1

2 hk x
−si
i

)

×
ki,si −k6−1∏
l10=−k6

θp

(
q−1−l10h− 1

2 hk x
−si
i

)−1
−k1,s1+s2m2−1∏
l11=−k1,s1−k2,s2

θp

(
ql11 x−s1

1 x−s2
2

)

×
ki,si −1∏

l12=−si mi

θp

(
(pq)

1
2 hl x

si
i q

l12
) ki,si +k6−1∏
l13=k6−si mi

θp

(
h− 1

2 hk x
si
i q

l13
)

×
K−k5−si mi−1∏
l14=−si mi

θp

(
(pq)

1
2 hk x

si
i q

l14
)

�−m1
q (x1)�

−m2
q (x2) , (3.14)
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where the constant C̃k
�K is given by

C̃k
�K =

∏
l �=k

k5−K−1∏
l1=−K

θp

(
hlh

−1
k ql1

) k6−1∏
l2=0

θp

(
(pq)−

1
2 h− 1

2 hlhkq
l2
) −2K+k5−1∏

l3=−2K

θp

(
h−2
k ql7

)

×
K−k5+k6−1∏
l4=K−k5

θp

(
(pq)−

1
2 h− 1

2 h2kq
l5
)−1 K−1∏

l4=K−k6

θp

(
(pq)

3
2 h

1
2 ql4

)

×
−K+k5−k6−1∏
l6=−K−k6

θp

(
(pq)

1
2 h

1
2 h−2

k ql5
) −K+k5+k6−1∏

l7=−K

θp

(
(pq)−

1
2 h− 1

2 ql6
)

. (3.15)

We have also introduced notation hi , i = 1, . . . , 10 forU (1) charges of themoment
maps we act on. Notice that according to (3.1) moment maps of both minimal and
maximal punctures have the very same charges, so that in fact

hi = w
32
5 ãi , h ≡

10∏
j=1

h j = w64, (3.16)

for both charges of the maximal punctures we act on and minimal punctures we close.
We have also introduced here an overall U (1) charge h. The operator itself is labeled
by an index k according to the choice of U (1) charge hk of the moment map we give
vev to in order to close the minimal puncture and to introduce defects into the theory.

The first sum in the expression is performed over all possible partitions �K =
(k1, · · · , k6) of the integer K . Finally, the products in (3.14) should be understood as
ordered ones, i.e., one should assume

∏n2
i=n1

is just 1 if n2 < n1 since there are no

terms in the product. The coefficient C̃k
�K is chosen so that the x-independent factors

of the highest order shift terms �±K
q (y1,2) are just one.

As expected obtained operators differ from the canonical BCn vD. In order to
obtain the latter one, we should instead consider compactifications of 6d rank-Q E-
string theory using the very same approach described in details on our paper. One of
the most important difference from the BCn vD model is the number of parameters
it depends on. Higher-rank (i.e., rank higher than one) vD model depends on p, q
and another 9 parameters. This number of parameters is independent of the rank of
the BC-type root system. Meanwhile, our C2 operators depend on p, q and another
10 parameters. Moreover, in the present paper due to technical difficulties we failed
to derive higher-rank CN generalizations. But from our construction we can expect
them to depend on 2N + 6 parameters corresponding to U (1) charges of the moment
maps.5

Notice that the expression above is not the most general since we could have closed
SU(2)z minimal puncture using general K and M integers in (3.10), but we will

5 Similar comments hold for the previously discussed AN operators [19], which depend on p, q and
another 2N + 4 parameters.
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concentrate here only on the case of non-trivial K while putting M = 0. As we see,
the operator appears to be quite complicated and it is hard to analyze it. Instead it is
useful to write down basic operator corresponding to the choice of K = 1, i.e., the
simplest non-trivial case. Taking into account six possible partitions �K , we can write
down explicit form of A�O:

O(C2;hk ;1,0)
x =

2∑
i=1

(
A(C2;hk ;1,0)
i (x, h)�q (xi ) + A(C2;hk ;1,0)

i (xi → x−1
i , h)�−1

q (xi )
)

+ W (C2;hk ;1,0)(x, h) ,

A(C2;hk ;1,0)
i (x, h) =

2∏
j �=i

1

θp
(
x2i

)
θp

(
qx2i

)
θp

(
xi x

±1
j

) θp

(
(pq)

1
2 hk x

±1
j

) 10∏
l=1

θp

(
(pq)

1
2 h−1

l xi
)

,

W (C2;hk ;1,0)(x, h) =
⎡
⎣

2∑
i=1

2∏
j �=i

1

θp
(
x2i

)
θp

(
q−1x−2

i

)
θp

(
xi x

±1
j

)
θp

(
h− 1

2 hk xi
)

θp

(
q−1h− 1

2 hk x
−1
i

)

×
∏10

l �=k θp

(
(pq)

1
2 hl xi

)

θp

(
(pq)

1
2 hkqxi

)
2∏

m=1

θp

(
(pq)

1
2 hk x

±1
m

)
+

(
xi → x−1

i

)
⎤
⎦

+
2∏

i=1

10∏
l �=k

θp

(
hlh

−1
k q−1

)
θp

(
(pq)

3
2 h

1
2

)

θp

(
q−2h−2

k

)
θp

(
(pq)

1
2 q−1h

1
2 h−2

k

)
θp

(
(pq)

1
2 hk x

±1
i

)

θp

(
(pq)− 1

2 h−1
k q−1x±1

i

)

+
2∏

i=1

10∏
l �=k

θp

(
(pq)− 1

2 h− 1
2 hkhl

)

θp

(
(pq)− 1

2 h− 1
2 h2kq

)
θp

(
(pq)

1
2 hk x

±1
i

)

θp

(
p−1q−1h− 1

2 hk x
±1
i

) , (3.17)

One thing to be noticed is that just as in the case of vD model, the constant term
choice is not unique.What really defines this constant termare the followingproperties.
First of all it can be noticed that W (hk ;1,0)(x, h) is an elliptic function in both x1 and
x2 with periods 1 and p. In the fundamental domain, this elliptic function has poles
located at:

xi = sq± 1
2 , xi = sq± 1

2 p
1
2 , s = ±1, (3.18)

which are in fact exactly the same as the poles of vD model. Corresponding residues
are given by:

Res
xi=sq

1
2
W (C2;hl ;1,0)(x, h) = −s

q
1
2

10∏
k=1

θp

(
(pq)

1
2 sq− 1

2 hk
)

2 (p; p)2∞ θp
(
q−1

)
2∏
j �=i

θp

(
(pq)

1
2 hl x

±1
j

)

θp

(
sq− 1

2 x±1
j

) ,

Res
xi=sq− 1

2
W (C2;hl ;1,0)(x, h) = s

q− 1
2

10∏
k=1

θp

(
(pq)

1
2 sq− 1

2 hk
)

2 (p; p)2∞ θp
(
q−1

)
2∏
j �=i

θp

(
(pq)

1
2 hl x

±1
j

)

θp

(
sq− 1

2 x±1
j

) ,
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Res
xi=sp

1
2 q

1
2
W (C2;hl ;1,0)(x, h) = −s

ph− 1
2

10∏
k=1

θp (shk)

2 (p; p)2∞ θp
(
q−1

)
2∏
j �=i

θp

(
(pq)

1
2 hl x

±1
j

)

θp

(
(pq)− 1

2 sx±1
j

) ,

Res
xi=sp

1
2 q− 1

2
W (C2;hl ;1,0)(x, h) = s

pq−1h− 1
2

10∏
k=1

θp (shk)

2 (p; p)2∞ θp
(
q−1

)
2∏
j �=i

θp

(
(pq)

1
2 hl x

±1
j

)

θp

(
(pq)− 1

2 sx±1
j

) .

(3.19)

This concludes our derivation of the C2 A�O. All possible details of these deriva-
tions can be found in Appendix C.

4 Properties of the C2 operators

There is a number of interesting properties that the operatorswe derived should possess
by construction. In this section, we discuss checks and, where it is possible, give proofs
of these properties using explicit expressions we have derived.

The most important but also most complicated property to discuss is the so-called
kernel property of our operators. The main idea behind it is that the superconformal
index of anyN = 1 theory obtained in the compactifications of 6d minimal (D5, D5)

conformal matter theory is a kernel function of our operators. The kernel function is
defined by the following mathematical identity:

O(G1;hi ;r ,m)
z · I [

Cg,s[z, u]] = O(G2;hi ;r ,m)
u · I [

Cg,s[z, u]] . (4.1)

Physically we consider the superconformal index of the theory obtained in the 6d
compactification on the Riemann surface Cg,s[z, u] with at least two maximal punc-
tures parametrized by the fugacities z and u correspondingly. In general, there can be
as many punctures as we want. The claim here is that any such superconformal index
plays the role of the kernel function for the derived A�Os according to (4.1). Namely
we can act with our operators on different punctures and we should always obtain the
same result. This property is expected to hold due to an argument coming from the
geometry of compactification shown in Fig. 6. Equivalently, it can be understood from
the invariance of the superconformal indices under S duality transformations.

In principle, we can choose any sphere with multiple punctures to check the kernel
property. Natural simplest candidate would be WZW model for the two-punctured
sphere with two maximal USp(2N ) punctures for which the index is given in (C.18)
with K = 0. However, we will check a more interesting and trickier case where two
punctures are of different types. Namely we take the tube theory shown in Fig. 2a
which has one SU(N + 1) and one USp(2N ) maximal puncture. Then for N = 2, the
kernel property (4.1) in this case reads:

O(A2;h̃−1
i ;r ,m)

y K AC
2 (x, y) = O(C2;hi ;r ,m)

x K AC
2 (x, y), (4.2)
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where K AC
2 (x, y) is the index of the tube specified in (C.5) with x and y being

fugacities of USp(4) and SU(3) punctures correspondingly. Operators O(A2;h̃i ;1,0)
y

and O(C2;hi ;1,0)
x are given in (2.13) and (3.17) correspondingly. Notice that in order

for the kernel property to work we need to close minimal punctures in the same way
on two sides of the equation, i.e., we have to give vev to the same moment map of
the minimal puncture. In particular, in A2 case we should give vevs to the minimal

puncture moment map of the charge h̃−1
i h̃

1
4 where h̃i are given in (2.5). At the same

time, in C2 case minimal puncture is closed by giving vev to the moment map of
charge hi specified in (3.16). Using the map (3.4), we can see that the only map that
matches between the two is

h̃−1
10 h̃

1
4 = v−24w−8 = w− 32

5 ã−1
10 = h10. (4.3)

If we would like to check the kernel property for other ways of closing minimal
punctures, we should consider A2 operators (2.10) with the non-flipped moment maps
so that in this case we close the minimal puncture with the vevs of the moment map

with charge h̃i h̃− 1
4 . Because of this complication, here we consider only closing with

the vev given to themoment map of charge (4.3). The proofs for other operators should
work identically. Also in our proof we restrict ourselves to only basic operators (3.17)
and (2.13), i.e., we fix r = 1,m = 0 (or equivalently m = 1, r = 0 on both sides of
the kernel equation (4.2). We have to do it since higher operators specified in (3.14)
and (2.10) are too complicated for the analysis. However, the kernel property (4.2)
should also work for these higher operators as well.

Since we precisely know explicit expressions for both operators (2.13) and (3.17)
as well as supposed kernel function (C.5), it is straightforward to check this kernel
identity. Acting with finite difference operators of two kinds on the kernel, we get two
algebraic functions. Equality of these functions implies validity of the kernel property
(4.2). In Appendix D, we give details of the analytic proof of this identity.

Another important property of the derived A�Os is their commutation with each
other which also directly follows from the S duality of our compactification construc-
tion as shown in Fig. 7. Since it does not depend which duality frame we close the
minimal punctures in, it also does not matter in which order two different A�Os act
on the index. Hence, we conclude that all of operators we derived should commute
with each other:

[
O(C2;ha;K1,M1)

x , O(C2;hb;K2,M2)
x

]
= 0,

∀ a, b = 1, . . . , 10; K1,2 ≥ 0; M1,2 ≥ 0; (4.4)

Here, ha and hb are moment maps we give vev to in order to close two minimal
punctures and K1,2, M1,2 are numbers of holomorphic/anti-holomorphic derivatives.
Unfortunately it is very hard to prove or even to check these relations for general
operators (3.14) of the full tower. However, we can perform checks of the commutation
relations (4.4) for the basic operators, i.e., for the case when K1,2 and M1,2 are taking
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Fig. 6 On this figure, we represent the argument in favor of the kernel property ofN = 1 indices. For this,
we consider an index of a theory obtained in the compactification of theminimal (D5, D5) conformalmatter
theory on a generic Riemann surface with at least two maximal punctures (shown as colored disks on the
figure) of any types with fugacities x and y as well as one minimal SU(2) puncture (shown as red crosses)
with the fugacity z. For example in case of the A2C2 tube and kernel property (4.2), one maximal puncture
has USp(4) global symmetry, while the second one has SU(3) symmetry. Then, we close the minimal
puncture by giving space-dependent vev 〈∂m12∂k34M〉 �= 0 to one of the moment maps of this puncture. As
discussed in the paper, this corresponds to the introduction of the codimension-two defect into 4d effective
description and results in the action of the A�O on one of the maximal punctures of the index of the theory
corresponding to the Riemann surface with only two maximal punctures. This operation can be performed
in different duality frames. In each frame, we obtain operators acting on one of the two punctures. Since the
result of the calculation should not depend on the duality frame we choose, we conclude that the action of
two, possibly different operators, on two different punctures leads to two expressions equal to each other.
Hence, we arrive to the kernel property Eq. (4.1) (color figure online)

values 0 and 1. In particular, we show that:

[
O(C2;ha;1,0)

x , O(C2;hb;1,0)
x

]
=

[
O(C2;ha;0,1)

x , O(C2;hb;0,1)
x

]

=
[
O(C2;ha;1,0)

x , O(C2;hb;0,1)
x

]

= 0, ∀ a, b = 1, . . . , 10. (4.5)

In Appendix E, we check these relations. In particular, using ellipticity properties of
θp (x) function we prove that the action of the third type of the commutators on an
arbitrary trial function is zero. Hence, these commutators are zero themselves. For the
first and second type of commutators, it is hard to prove analytically that their action
on a trial function is zero. Instead we check these identities perturbatively in p and q
expansion. These checks performed up to a sufficiently high order suggest that both
of the commutators are indeed zero.
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Fig. 7 On this figure, we represent the argument in favor of commutation of A�Os derived in the present
paper. For this, we start with a theory obtained in compactification of 6d minimal (D5, D5) conformal
matter on an arbitrary Riemann surface. This surface has one maximal USp(4) puncture (orange disk) with
fugacity x and two minimal SU(2) punctures (red crosses)with fugacities z1 and z2 correspondingly. Then,
we introduce codimension-two defects into this theory giving space-dependent vevs to some of the moment
maps Mh1 and Mh2 correspondingly. Giving this vev is equivalent to closing puncture, and at the level of
the index computations leads to an action of two different A�Os. We can perform this operation in any
duality frame, and the result should not depend on the choice of a particular frame. Hence, the action of
operators on the index does not depend on their order. Since the compactification surface, and hence, the
effective 4d descriptions were chosen arbitrarily, we conclude that the operators themselves also commute
(color figure online)

5 Discussion and outlook

In this paper, we have considered 4d description of the compactification of the min-
imal (D5, D5) conformal matter theory on a Riemann surface with USp(4) maximal
punctures. Using this 4d description and introducing codimension-two defect in cor-
responding theory, we derive C2 generalization of the van Diejen model. In particular,
we obtain an infinite set of analytic difference operators acting on the maximal punc-
ture of C2 type. Different operators of our set correspond to different ways of closing
minimal punctures on the compactification surfaces. They are organized in a decuplet
of basic operators and an infinite tower of operators on top of each of the basic ones.

The operators we obtain are supposed to satisfy interesting and important properties
following directly from the geometry of compactifications. First such property is the
commutation of all operators. In our paper, using combination of residue computations
and perturbative expansions we show that at least all basic operators indeed commute
with each other. Second important property is that the superconformal index of any
compactification of the minimal (D5, D5) conformal matter theory on a surface with
several USp(4) punctures is the kernel function of our difference operators. As an
example of such kernel function, we considered a tube theory corresponding to the
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compactification on a sphere with one USp(4) and one SU(3) puncture. In order to
prove the kernel property, we should act on two punctures with two different operators:
A2 operator derived in [19] from one side andC2 operator derived in the present paper
from the other. This fact makes corresponding kernel function very interesting for the
study. In the paper, we managed to prove this kernel property fully analytically for the
basic A2 and C2 operators.

Another result of our paper is derivation of the full tower of AN generalization of van
Diejen operator originating from the compactification of the minimal (DN+3, DN+3)

conformalmatter theory on aRiemann surfacewith SU(N+1)maximal punctures.We
have already derived basic operators of this kind in our previous paper [19]. However,
the tower of operators was missing and we filled this gap in the present paper.

The present paper is another brick in our programof establishing dictionary between
compactifications of 6d SCFTs and integrable analytic difference operators and study-
ing this dictionary in details. There are plenty of ways this research can be continued
in. In particular, there should be separate difference operator for each possible 5d
compactification of 6d theory, or equivalently for each possible puncture type from
4d prospective. So far several results have been observed in this frame. First of all BC1
van Diejen model was observed in E-string compactifications in several ways [11, 19].
Also previously unknown A2 and A3 operators were derived using compactifications
of the minimal conformal matter theories of types SU(3) and SO(8) [10]. Finally, we
have considered compactifications of the minimal (DN+3, DN+3) conformal matter
theories on a Riemann surfaces with AN - and C2 (in case of (D5, D5) 6d theory)-type
punctures. However, there are plenty of examples of 6d SCFT compactifications that
are known up to date [25–34]. Our main goal is to extend our results to more examples
of compactifications and ideally establish a dictionary between them and integrable
models. Such dictionary can from one point of view shed light on physics of 6d, 5d
and 4d supersymmetric gauge theories. From the other point of view, this research
program can lead to important results in the field of integrable systems.

First of all as a continuation of the present paper, it is natural to consider compact-
ifications of the minimal (DN+3, DN+3) conformal matter on Riemann surfaces with
other types of punctures. In first place, these are of course punctures of CN type for
general N . In the present work, we failed to derive explicit form of the corresponding
A�O because of the technical difficulties but it is worth trying to overcome them.
Second candidate for the study is (A1)

N puncture. Corresponding 4d description was
derived in [20]. It would be interesting to derive explicit form of the corresponding
difference operators and study their properties. For example, we immediately know
examples of the kernel functions of these operators even before deriving them explic-
itly.

Second candidate for the studies are non-minimal (DN+3, DN+3) conformalmatter
theories, which are obtained as worldvolume theories of the stack of k M5 branes
probing DN+3 singularity [26]. In this case, the known 5d gauge theory, and hence
the puncture type on Riemann surface, is a direct generalization of (A1)

N case of
minimal conformal matter compactification discussed above. It corresponds to the
(Ak−1)

2 × (A2k−1)
N × (Ak−1)

2 gauge theory in 5d and hence the puncture type
with the same global symmetry. Trinion theories with two maximal and one minimal
punctures,which are building blocks in the construction ofA�Os, are also known [35].
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So construction of the corresponding difference operators should be straightforward
though can happen to be technically complicated.

Finally, one more thing to be made in this direction is the study of the rank-Q E-
string theory compactifications along the same lines of research. Unfortunately so far
corresponding trinion theories were not obtained but the tube theories were already
derived in [36, 37]. Although we cannot derive corresponding A�O using only tube
theories, in this case we can naturally conjecture it to be BCn van Diejen model. We
can at least test this conjecture by checking corresponding kernel property.

Another possible direction of the research is related to the study of the properties of
the operators we derived. Most interesting questions here are related to the eigenfunc-
tions of these operators. Deriving full eigenfunctions is of course difficult and most
probably impossible. Realistically we can try to derive certain limits of these eigen-
function. In case we succeed these eigenfunctions can play the same role for indices
of N = 1 theories as Macdonald and Schur polynomials played for the indices of
N = 2 theories [16–18].

It would also be interesting to establish connections of our research program with
other integrable models emerging in supersymmetric gauge theories. For example,
integrable systems derived using compactifications of the worldvolume theory of k
M5 branes probing AN−1 singularity were shown to be related to the set of transfer
matrices [9, 38–40]. Itwould be interesting to understand if similar connection emerges
in case of DN+3 singularity.

Also, a relation of E-string theory to the van Diejen model was observed in [41]
using quantization of the corresponding Seiberg–Witten curve. Later, authors of this
paper generalized their result to 6d (1, 0) SCFTswith SO(N ) gauge group and (N−8)
fundamental flavors obtaining yet another set of difference operators [42]. It would be
interesting to clarify precise relation of our construction with the methods and results
of these papers.
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Appendix

A Special functions

Here, we summarize some definitions and properties of special functions used in the
paper.

Elliptic gamma function is defined through the following infinite product:

�e (z) ≡
∞∏

k,m=0

1 − pk+1qm+1/z

1 − pkqmz
. (A.1)

It can be easily seen that the poles of this function are located at the following values
of the argument:

z = p−kq−m, k,m ∈ Z≥0. (A.2)

The following relation will be useful in our calculations:

�e

(
pq

z

)
�e (z) = 1. (A.3)

Also we will often deal with the elliptic beta integral formula

κ

∮
dz

4π i z

1

�e
(
z±2

)
6∏
j=1

�e

(
ti z

±1
)

=
∏
i< j

�e
(
ti t j

)
. (A.4)

Here, κ is defined to be

κ = (q; q)∞(p; p)∞ =
∞∏

�=0

(1 − q1+�)(1 − p1+�). (A.5)

AN generalization of this formula is

κN

N !
∮ N∏

i=1

dzi
2π i zi

N+1∏
i �= j

�e

(
zi
z j

)−1 N+2∏
i=1

N+1∏
j=1

�e
(
si z j

)
�e

(
ti z

−1
j

)

=
N+2∏
i=1

�e

(
Ss−1

i

)
�e

(
T t−1

i

) N+2∏
i, j=1

�e
(
si t j

)
,

(
T =

N+2∏
i=1

ti , S =
N+2∏
i=1

si

)
.
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(A.6)

The theta function is defined as follows:

θp (x) ≡ (x; p)∞
(
x−1 p; p

)
∞ , (A.7)

where (z; p)∞ is the usual q-Pochhammer symbol defined as follows:

(x; p)∞ =
∞∏
k=0

(
1 − xpk

)
. (A.8)

Following properties of theta function will be useful to us

θp (x) = �e (qx)

�e (x)
, θp

(
x−1

)
= −x−1θp (x) ,

θp
(
xpm

) = (−1)mx−m p− 1
2m(m−1)θp (x) ,

�e
(
pLqK x

)

�e (x)
=

K−1∏
j=0

θp

(
q j x

) L−1∏
j=0

θq

(
qK p j x

)
(A.9)

We will also use the following duality identity from [43]:

V (t) =
8∏

1≤ j<k≤4

�e
(
t j tk

)
�e

(
t j+4tk+4

)
V (s), (A.10)

where

V (t) ≡ κ

∮
dz

2π i z

8∏
j=1

�e
(
t j z±1

)

�e
(
z±2

) ,

8∏
j=1

ti = pq, |t j |, |s j | < 1.

s j = ρ−1t j , j = 1, 2, 3, 4; s j = ρt j ,

j = 5, 6, 7, 8; ρ ≡
√
t1t2t3t4
pq

(A.11)

B Derivation of higher tower AN operators

In this appendix, wewill give details of the derivation of AN A�Os that we summarize
in Sect. 2. We start with the four-punctured sphere theory whose quiver is shown in
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Fig. 1. This theory and its superconformal index were derived in [19]. The index is
given by the following expression:

K4(x, x̃, z, z̃) = κN+2

∮ N+2∏
i=1

dti
2π i ti

N+3∏
i �= j

1

�e

(
ti
t j

)

×
N+3∏
i=1

N+1∏
j=1

2N+4∏
k=1

�e

(
(pq)

1
N+3

(
u−1w

)4 N+2
N+3 x−1

j ti

)
�e

(
(pq)

1
N+3

(
uw−1)2 (N+2)(N+1)

N+3 z±1ti

)

×�e

(
(pq)

N+1
2(N+3) u− (N+1)2

N+3 vN+1w−2 N+1
N+3 a−1

k t−1
i

)
�e

(
(pq)

1
2 uN+3v−N−1w−2akx j

)

×�e

(
(pq)

N+1
2(N+3) u−2 (N+1)(N+2)

N+3 v−2(N+1)(N+2)w−4 N+2
N+3 t−1

i

)

×�e

(
(pq)

1
2 u2N+4v2(N+1)(N+2)x j

)
�e

(
(pq)

1
2
(
uvw−2)−N−1

al z
±1

)

×�e

(
(pq)

1
2 v2(N+1)(N+2)w2N+4z±1

)
�e

(
(pq)

N+1
2(N+3) u2

(N+1)(N+2)2
N+3 w4 (N+2)2

N+3 t−1
i

)

×�e

(
(pq)

1
2 u−2N (N+2)w−4N−8 x̃ j

)
�e

(
(pq)

1
2 u−2(N+1)(N+2)w−2N−4 z̃±1

)

×�e

(
(pq)

1
N+3

(
u−1w

)4 N+2
N+3 ti x̃

−1
j

)
�e

(
(pq)

1
N+3

(
uw−1)2 (N+1)(N+2)

N+3 ti z̃
±1

)
. (B.1)

This is an index of an SU(N + 3) SQCD with 2N + 6 flavors and a superpotential.
Variables x, x̃, z, z̃ are fugacities of the global symmetry of twomaximal SU(N+1)x,x̃
and two minimal SU(2)z,z̃ punctures correspondingly.
We close the two SU(2) punctures by setting z and z̃ to the values in (2.7). Performing
calculations for general values of the charges is complicated. So we will perform here

the calculation only for one of the charges fixing h̃i = h̃2N+6 = (
uNw2

)−2N−4
.

Corresponding positions of the poles are then given by

z = (pq)−
1
2

(
wuN+1

)−2N−4
q−M p−L ,

z̃ = (pq)−
1
2

(
wuN+1

)2N+4
q−M̃ p−L̃ . (B.2)

Also as discussed in Sect. 2, we will further consider L̃ = M̃ = 0.
The pole in z̃ is an explicit simple pole so we can just take the residue. The pole in

z, however, is due to contour pinching. To see this clearly, it is useful to first perform
a Seiberg duality leading to an index of SU (N +2) gauge theory with 2N +5 flavors,
with the following index,

K AN
(2;2N+6;L,M) (x, x̃) = κN+1

∮ N+1∏
i=1

dti
2π i ti

N+2∏
i �= j

1

�e

(
ti
t j

)

×
N+2∏
i=1

N+1∏
j=1

2N+4∏
k=1

�e

(
(pq)

1
2(N+2) u2N+4x j ti
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×�e

(
(pq)
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)
(B.3)

where we have already dropped irrelevant overall factors and substituted values of z
from (B.2). The subscript of the index as usually contains all the information of the
underlying theory. In particular, 2 stands for the number of punctures. Index 2N + 6
stands for the index of the moment map we give vev to in order to close the puncture

(moment map of charge h̃2N+6h̃− 1
4 in this case). Finally, (L, M) denotes derivative

powers in the vev and is the same as L and M integers in (B.2). As can be seen from
the expression above, the contour pinching is due to collision of poles at the following
values:

ti = (pq)
− 1

2(N+2) u−2(N+2)x−1
i q−mi p−li ,

tN+2 = (pq)
N+1

2(N+2) u2(N+1)(N+2)qM−mN+2 pL−lN+2 ,

or

ti = (pq)
− 1

2(N+2) u−2(N+2) x̃−1
i q−mi p−li ,

tN+2 = (pq)
N+1

2(N+2) u2(N+1)(N+2)qM−mN+2 pL−lN+2 ,

(B.4)

wheremi and li are partitions of M and L , respectively. There are (N +2)! such poles
coming from permutations of ti but they all give the same result and we are ignoring
overall factors. It can be checked that the two lines in (B.4) give the same result so
we will consider only the first set of poles. After computing the residue, we get the
following expression for particular partitions �l, �m,

K AN(
2;2N+6; �m,�l

)(x, x̃) = �e (pq)
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×�e
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)
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(B.5)

To get the A�O acting on SU(N+1)x puncture, we should S glue this tube to the index
of an arbitrary theory I(x̃) with SU (N + 1)x̃ puncture and sum over all partitions,

I1(x) = κN
∑

{mi },{li }

∮ N∏
i=1

dx̃i
2π i x̃i

N+1∏
i �= j

1

�e

(
x̃i
x̃ j

)K AN(
2;2N+6; �m,�l

)(x̃, x)I0(x̃),

(B.6)

Note that there is a zero in (B.5) coming from �e (pq) but this is canceled against the
pinching of x̃ at the following values,

x̃i = xiq
mi−si pli−ri ,

N+1∑
i=1

si = M − mN+2,

N+1∑
i=1

ri = L − lN+2, (B.7)

up to permutations of xi which give the same result due to the Weyl symmetry of AN

root system. If we specify x̃i to the values written above, we obtain double pole due
to the contour pinching of (B.6) but as we mentioned one of them is canceled by the
zero of�e (pq). Computing the residue of the remaining pole, we obtain the following
contribution of each individual partition:
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×�e
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)
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)
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Summing over all partitions and using properties of � and θ functions (A.9), we get
the difference operator given in (2.10) with the h̃k = h̃10. Operators obtained using
another ways to closeminimal punctures can be derived in absolutely identical manner
and lead to the same A�O (2.10).

C Derivation of C2 operator

In this section, we give details of the derivations of results summarized in Sect. 3 and
show in all details how to derive C2-type generalization of the van Diejen model.

Let’s startwith the derivation of the trinion that has onemaximalUSp(2N )puncture,
one maximal SU(N + 1) puncture and one minimal SU(2) puncture. It is important
since it will be later used by us to derive four-punctured sphere with two maximal
USp(2N ) and two minimal SU(2) punctures as specified in (3.7).

To obtain this kind of three-punctured sphere theory, we start with the trinion T A
x,y,z

with two maximal SU(N +1)x,y and one minimal SU(2)z punctures. This trinion was
derived in [21] and is shown in Fig. 1. Corresponding superconformal index is given
by:

K A
3 (x, y, z) = κN+1

∮ N+1∏
i=1

dti
2π i ti

N+2∏
i �= j

1

�e

(
ti
t j

)
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(
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)
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(
(pq)

1
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±1
)

×
2N+4∏
l=1
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(
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2(N+2) (uv)−N−1 w−2t−1

i al
)

, (C.1)
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where u, v, w and ai parametrize Cartans of the 6d SO(4N + 8) global symmetry.
SU(N + 2) gauge symmetry is parametrized by ti ’s with the relation

N+2∏
i=1

ti = 1. (C.2)

Global SU(N + 1) symmetries of the maximal punctures are parametrized by xi and
yi satisfying

N+1∏
j=1

x j =
N+1∏
j=1

y j = 1. (C.3)

Each puncture has (2N+6)moment map operators with the charges specified in (2.1).
Now in order to obtain desired trinion, we should turn one of the SU(N + 1)

punctures intoUSp(2N )-type puncture. For this purpose, we use an ANCN tube theory
introduced in [24] and shown in Fig. 2a. Chirals of these theory correspond to the
moment maps of punctures. For USp(2N ) puncture, these are just moment maps
specified in (3.1). For SU(N+1) puncture as specified in (2.1) butwith the lastmoment
map flipped so that all of them transform in the same fundamental representation of
SU(N + 1):

Mu = N + 1x ⊗
(
2N + 4uN+3v−N−1w−2 ⊕ 1

(uvN+1)
2N+4 ⊕ 1

(uNw2)
−2N−4

)
(C.4)

The index of this tube theory is given by:
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)

,

(C.5)

Now, we take this theory and glue it along the SU(N+1) puncture to the AN trinion
shown in Fig. 1. Consistent gluing in this case is the mixture of 
 and S-gluings. In
particular, we 
 glue all moment maps except 1

(uNw2)
2N+4 which is S glued. At the

level of the index, this operation corresponds to

K AC
3 (x, y, z) = κN

∮ N∏
i=1

dx̃i
2π i x̃i

N+1∏
i �= j

1

�e

(
x̃i
x̃ j

)K A
3 (x̃, y, z)K AC

2 (x̃, x)
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Fig. 8 Spiridonov–Warnaar–Vartanov (SWV) duality. On the picture, we also specify superpotentials, UV
on the left and dynamically generated on the right sides of dualities. The solid line starting and ending on
the same node denotes multiplet in rank-two antisymmetric representation (AS)

×
N+1∏
i=1

2N+4∏
l=1

�e

(
(pq)

1
2 u−N−3vN+1w2a−1

l x̃−1
i
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x̃−1
i

)
(C.6)

Substituting expressions (C.1) for AN trinion and (C.5) for the ANCN tube, we imme-
diately see that the SU(N+1)x̃ gauge theory appears to be S-confining. Corresponding
S-confining theory is depicted in Fig. 8. This dualitywas first introduced by Spiridonov
and Warnaar [44] as a mathematical identity for superconformal indices of the corre-
sponding theories:

κN

∮ N∏
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)
, (C.7)

where S = ∏N+3
i=1 si . Later Spiridonov and Vartanov [45] discussed physical

implications of the relation written above. We refer to this duality as Spiridonov–
Warnaar–Vartanov (SWV) duality. More detailed discussion about it can also been
found inAppendixB.5 of our previous paper [19].Using this duality for theSU(N+1)x̃
node in (C.6),we canfinallywrite down the index of the desired three-punctured sphere
as follows:

K AC
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Fig. 9 Trinion theory with USp(2N )x maximal puncture (light orange), SU(N + 1)y maximal punc-
ture (green) and SU(2)z minimal puncture (orange). U (1) global symmetries are parametrized using the
parametrization (3.3) more natural for the SU(N + 1)-type punctures. The index of the theory is given in
(C.8) (color figure online)

N+2∏
i< j

�e

(
(pq)

N+1
N+2 w−4N−8t−1

i t−1
j

)
, (C.8)

where we have omitted some of the USp(2N ) singlets, thus redefining type of the
puncture. Corresponding trinion theory is shown in Fig. 9.

Now, we can use this ANCN -type trinion theory in order to derive four-punctured
sphere theory with two USp(2N ) maximal punctures. For this purpose, we S glue
two copies of this trinion along AN -type puncture. At the level of the index, this
corresponds to the operation specified in (3.7). Substituting trinion index (C.8) into
this expression, we obtain the following four-punctured sphere index:
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(C.9)

Now, if we look on the SU(N + 1)y gauged node, we see that it corresponds to
the theory with N + 2 hypermultiplets, meaning the node is S-confining and can be
integrated out using the standard Seiberg duality. Performing this simple operation,
we land on the theory shown in Fig. 10 with the following superconformal index:
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, (C.10)

where we have also used dictionary (3.4) in order to express everything in terms of
CN parameterization (3.2) since now we have only this type of maximal punctures
and hence latter parametrization is more natural.

Now, we finally close one of the two SU(2)minimal punctures without introducing
the defect. As discussed in Sect. 3, this amounts to computing the residue of (C.10) at

the point z̃ = (pq)− 1
2 w2 (N+2)2

N+3 ãi . Indeed, it can be seen that at this value of z̃ there is
pole coming from the contour pinching at

t̃N+2 = (pq)−
N+1
2N+4 w−2 N+2

N+3 ãi , (C.11)

where t̃N+2 variable is chosen without loss of generality. In fact, we should compute
such pinchings for each t̃i variables and sum the results. But due to theWeyl symmetry
of the SU(N + 1) root system, all such contributions are the same and summing
them results in an overall factor of (N + 1)!. We omit such overall factors since they
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Fig. 10 Four-punctured sphere theory with two maximal USp(2N ) and two minimal SU(2) punctures. The
four-punctured sphere is derived by gluing two trinion theories shown in Fig. 9 and performing some duality
transformations specified in the text

are irrelevant for the structure of the A�O we get in the end. Computation of the
corresponding residue at the pinching point leads to the following expression for the
three-punctured sphere theory index:

KC
(3;i;0)(x, x̃, z)

= κN+1κN

∮ N+1∏
j=1

dt j
2π i t j

N∏
j=1

dt̃ j
2π i t̃ j

N+2∏
k �= j

1

�e
(
tk/t j

)
N+1∏
i �= j

1

�e
(
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)

×
N+2∏
m=1

N+1∏
j=1

N∏
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2N+6∏
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�e

(
(pq)

1
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k tm
)

�e

(
(pq)
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−1
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)

× �e

(
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1
2N+4 w2N+4tmz

±1
)

�e

(
w

−2 (N+2)3

(N+1)(N+3) ã
1

N+1
i x̃±1

k t̃−1
j

)

�e

(
(pq)

1
2 w−2 (N+2)2

N+3 ã−1
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k

)
�e

(
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1
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(
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×
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�e

(
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N+1
N+2 w−4N−8t−1
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j

) N+1∏
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�e

(
pqw

4 (N+2)3

(N+1)(N+3) ã
− 2

N+1
i t̃m t̃ j

)
.

(C.12)

Corresponding quiver diagram is shown in Fig. 3.
In case N = 1, it can be shown that the theory we derived reduces to the one

shown in Figure 22 (b) in our previous paper [19]. There we used it to derive C1 A�O
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Fig. 11 Chain of duality transformations of three-punctured sphere theory in C2 case. We start with the
theory derived by gluing two three-punctured sphere theories T AC along A-type puncture, integrating out
A2 node and closing SU(2)z̃ minimal puncture. This theory is shown in Figure (a) above, and corresponding
index is given by (C.13). Then, performing Seiberg duality on the right node of this theory we obtain the
quiver shown in Figure (b). Finally, we notice that right SU(4) gauge node of theory (b) is confining due
to SWV duality. Integrating it out we obtain theory shown in the Figure (c)

which appeared to be van Diejen operator. Studying general N case appears to be too
complicated since there is no clear way to further simplify theory (C.12). Instead we
concentrate here on C2 case. When N = 2 AS, representation of SU(N + 1) node
becomes anti-fundamental representation and the index of the theory reads:

KC
(3;i,0)(x, x̃, z)

= κ3κ2

∮ 3∏
m=1

dtm
2π i tm

2∏
i=1

dt̃m
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(
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)
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(
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×
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(
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× �e

(
w− 128

15 ã
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(
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)
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(
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1
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× �e

(
(pq)

1
8 w− 8

15 ã
1
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)
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(
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(
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,

(C.13)

with the corresponding quiver of the theory shown in Fig. 11a.
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At the next step, we perform Seiberg duality on the SU(3) gauge node of the theory
above. This node has 9 flavors so after dualizing it we obtain SU(6) node with the
superconformal index of the resulting theory given by

KC
(3;i,0)(x, x̃, z)

= κ3κ5

∮ 3∏
m=1

dtm
2π i tm

5∏
m=1

dt̃m
2π i t̃m
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m �= j

1
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)
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×
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(
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(
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)
,

(C.14)

and corresponding quiver is shown in Fig. 11 (b). We see that SU(4) gauge node of
this theory appears to be S-confining due to SWV duality. Hence, using SWV index
identity (C.7) we arrive to the gauge theory with the following superconformal index:

KC
(3;i,0)(x, x̃, z)

= κ5

∮ 5∏
i=1

dt̃i
2π i t̃i

6∏
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1
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(
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×�e

(
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)
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(
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1
4 w
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)
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(
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1
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k
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(
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1
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)
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(
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)

×
6∏
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(
(pq)
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2 w− 32

3 t̃i t̃ j
)

, (C.15)

with the quiver shown in Fig. 11c. Now, we are ready to close second minimal punc-
ture leaving us with the sphere with only two maximal USp(2N ) punctures left. As
discussed in Sect. 3, for this purpose we fix z fugacity to be

z = Z∗
i;K ,0 = (pq)−

1
2 w− 32

5 a−1
i q−K . (C.16)

Carefully studying expression (C.15), we see that at this value of z superconformal
index indeed has pole coming from the contour pinching at:

t̃1,2 = (pq)
1
4 w

16
3 y±1

1 qk1,± , t̃3,4 = (pq)
1
4 w

16
3 y±1

1 qk2,± ,

t̃5 = (pq)−
1
4 w− 16

5 a−1
i qk5−K , t̃6 = (pq)−

3
4 w− 304

15 aiq
k6 , (C.17)
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where {k1,±, k2,±, k5, k6} ≡ �K is partition of the integer K . Of course any permuta-
tion of (C.17) would also result in the same contour pinching and hence the pole of the
superconformal index. Due to theWeyl group symmetry contributions of all these per-
mutations into our operator are the same and taking them into account just results in an
overall factor which we omit. Substituting values (C.17) into three-punctured sphere
index (C.15), we get the following result for the index of the two-punctured sphere:

K(2;i;K ,0)(x, x̃)

=
∑

�K
C

( �K ;i)
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, (C.18)

where C
( �K ;i) is the following constant:

C
( �K ;i) =
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l �=i

�e
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3
2 w32qK−k6

)
�e

(
ãl ã
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, (C.19)
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where subscript contains all the information on how the tube was obtained. Inside this
subscript 2 means that we obtain two-punctured sphere (the tube) in the end. Index
i stands for the choice of the moment map we give vev to according to (3.8) and
(3.10). Finally, K denotes the power of holomorphic derivative of the moment map
we give vev to. Summation in (C.18) goes over all possible partitions of K integer.
Due to the presence of the defect, this index expression unlike our previous four- and
three-punctured sphere does not have nice gauge theory interpretation.

Now gluing tube (C.18) to an arbitraryN = 1 theory with one maximal USp(2N )

puncture we can obtain desired A�O. At the level of the superconformal index, the
gluing is performed as specified in (3.13):

O(C2;hk ;K ,0)
x · I(x) = κN

2N

∮
dx̃1,2
2π i x̃1,2

1

�e

(
x̃±2
1,2

)
�e

(
x̃±1
1 x̃±1

2

)KC
(2;i;K ,0)(x, x̃)I(x̃)

(C.20)

Notice that expression (C.18) for the tube index has zeroes coming from the last two
�-functions. Due to these zeroes, only the poles of the integral in (C.20) coming from
other � functions will contribute to the final expression. In particular, these poles are

coming from the �e

(
x̃±1
k x jq−k j,−

)
and �e

(
x̃±1
k x−1

j q−k j,+
)
terms and are located at

x̃i = (
xσ(i)q

−mi
)±1

, −kσ(i),+ ≤ mi ≤ kσ(i),−. (C.21)

where σ(i) is permutation of i . In the end, we should sum over such permutations
as well as over all combinations of ±1 powers in the expression above. Since the
tube expression (C.18) is symmetric w.r.t. permutations of x̃1 ↔ x̃2 and x̃i → x̃−1

i ,
every contribution of the pinchings specified above is the same and summation just
gives an irrelevant overall factor. So for simplicity we can consider only one of the
combinations

x̃i = xiq
−mi , −ki,+ ≤ mi ≤ ki,−. (C.22)

The condition on mi comes from the fact that both types of specified � functions
should have poles. Half of these terms should lead to integration contour pinching in
(C.20), while other half will cancel zeroes coming from the last two � functions in
the tube index expression (C.18).

Now computing the contribution of pinchings (C.22) into gluing (C.20) and using
� functions identity (A.9), we can directly obtain the full tower of operators (3.14).
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D Proof of the kernel property of A2C2 tube theory

Here, we give a proof of the kernel property (4.2) where we act with A2 operator
(2.13) and C2 operator (3.17) on the index (C.5) of the tube with SU(3) and USp(4)
maximal punctures.

Let’s start the proof of the kernel property by explicitly calculating action of our
A�Os on the tube index and write two sides of the equation in terms of algebraic
expressions. First of all we should fix the parametrization of the Cartans of global
6d symmetry. For this, it will be more convenient to use C2 parametrization given in
(3.2). We should also use the dictionary (3.4) between A2 and C2 parametrizations in
order to rewrite everything in terms of the latter one. Fixing N = 2 in the tube index
(C.5) and writing everything in terms of C2 parametrization, we obtain:

K A2C2
2 (x, y) =

3∏
i=1

2∏
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9∏
l=1
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15 ã
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15 ã
1
3
10ãl yi

)

×�e

(
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15 ã
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3
10 yi

)
�e

(
(pq)

1
2 w

32
5 ã10x

±1
j

)

�e

(
pqw− 256

15 ã
2
3
10y

−1
i

)
, (D.1)

where as previously x1,2 are fugacities for the global symmetry of theUSp(4) puncture,
while y1,2,3 are fugacities of the SU(3) puncture. Latter ones are as usually constrained
by the identity

∏3
i=1 yi = 1.

Now, we can start with the r.h.s. of (4.2) describing the action of C2 operator. Main
ingredient we need to find the action of the full operator is the action of the shift�q(xi )
on the tube index. Studying this action in (D.1), we obtain:

�q(xl)K
A2C2
2 (x, y) = Dl(x, y)K

A2C2
2 (x, y), (D.2)

where the function Dl(x, y) is given by:

Dl(x, y) =
3∏
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θp
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) (D.3)

Then, on the r.h.s. of (4.2) we obtain:

O(C2;h10;1,0)
x K A2C2

2 (x, y) =
[
F (C2;h10;1,0)(x, y) + W (C2;h10;1,0)(x)

]
K A2C2
2 (x, y)

F (C2;h10;1,0)(x, y) ≡
2∑

i=1

(
A(C2;h10;1,0)
i (x)Di (x, y) +

(
xi → x−1

i

))

123



C2 generalization of the van Diejen model... Page 41 of 55 94

=
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5 ã10q−1x−1

i

)
3∏

l=1

θp

(
w

128
15 ã
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. (D.4)

Now, we consider l.h.s. of the equation above. Similarly, we need to understand
action of �lm(y) operator on the A2C2 tube (4.2):

�lm(y)K A2C2
2 (x, y) = Dlm(x, y)K A2C2

2 (x, y), (D.5)

where
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) (D.6)

So the l.h.s. of (4.2) takes the following form:

O(A2;h̃−1
10 ;1,0)

y K A2C2
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1
3
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3∏
i �=m �=l
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(D.7)

Hence, kernel property (4.2) can be reduced to the following algebraic identity:

F (A2;h̃10;1,0)(x, y) + W (A2;h̃−1
10 ;1,0)(y)

= F (C2;h10;1,0)(x, y) + W (C2;h10;1,0)(x) (D.8)

It can be checked that both F (A2;h̃10;1,0)(x, y) and F (C2;h10;1,0)(x, y) functions
defined above are elliptic w.r.t both xi and yi variables with periods 1 and p. 6 In order
to prove the identity, we now need to check poles and residues in the fundamental
domain on two sides of equation.7 We already know the poles and residues of the

constant parts W (A2;h̃−1
10 ;1,0)(y) and W (C2;h10;1,0)(x) summarized in Sects. 2 and 3

correspondingly. Now, let’s study functions F (A2;h̃10;1,0)(x, y) and F (C2;h10;1,0)(x, y)
coming from the action of the shift parts.

We start with F (A2;h̃10;1,0)(x, y) function given in (D.7). This elliptic function
appears to have poles at the following positions:
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128
15 ã

− 1
3

10 q−1xsb, ya = qyb, ya = q−1yb, ya = sq
1
2 P

− 1
2

a , ya = sq− 1
2 P

− 1
2

a ,

ya = sq
1
2 p

1
2 P

− 1
2

a , ya = sq− 1
2 p

1
2 P

− 1
2

a , x j =
(

w
128
15 ã

− 1
3

10 q−1y−1
a

)±1

, (D.9)

where s = ± and Pa ≡
3∏

j �=a
y j . Seemingly there are more poles in expression (D.7)

but checking all residues shows that the only actual poles are the ones listed above.
Residues of poles (D.9) are given by

Res
ya=w

128
15 ã

− 1
3

10 q−1xsb

F (A2;h̃10;1,0)(x, y)

= w
128
15 ã

− 1
3

10 q−1xsb
(p; p)2∞

3∑
l �=a

9∏
k=1

θp

(
(pq)

1
2 w

32
5 ãkq−1xsb

)

θp

(
w

128
5 q−1

10 q
−1xsb

)

×
θp

(
w

256
15 ã

− 2
3

10 q−1yl

)

θp

(
w

128
15 ã

− 1
3

10 q−1y−1
l xsb

)
3∏

i �=l �=a

θp

(
(pq)

1
2 w

224
15 ã

2
3
10y

−1
i

)
θp

(
(pq)

1
2 w− 32

15 ã
4
3
10yi

)

θp

(
yi
yl

)
θp

(
w

128
15 q−1ã

− 1
3

10 y−1
i xsb

)

6 As usually when we discuss ellipticity w.r.t. A2 variables, we should keep in mind the constraint so when
we shift one of the variables, say yl → pyl we are forced to also make another shift ym → p−1ym for
some other variable.
7 We have complicated functions of many variables. Hence, when we speak about poles and corresponding
residues, we always consider our functions as functions of one chosen variable, while all other variables are
kept fixed. The poles and residues should be checked in this way for all variables of functions one by one.
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×
2∏

j �=b

θp

(
w

128
15 ã

− 1
3

10 y−1
l x±1

j

)
θp

(
w

128
15 ã

− 1
3

10 y−1
l x−s

b

)

θp

(
x−s
b x±1

j

)
θp

(
x−2s
b

) θp

(
(pq)

1
2 w− 32

15 ã−1
10 q

−1xsb

)
,

(D.10)

Res
x j=

(
w

128
15 ã

− 1
3

10 q−1 y−1
a

)s F (A2;h̃10;1,0)(x, y)

= s

(
w

128
15 ã

− 1
3

10 q−1y−1
a

)s

(p; p)2∞

×
3∑

l �=a

9∏
k=1

2∏
i �= j

θp

(
(pq)

1
2 w− 32

15 ã
1
3
10ãk ya

)

θp

(
q ya

yl

)
θp

(
ya
yl

)
θp

(
w

128
15 ã

− 1
3

10 y−1
l x±1

i

)

θp

(
w

128
15 ã

− 1
3

10 y−1
a q−1x±1

i

)

×
θp

(
w

256
15 ã

− 2
3

10 q−1y−1
l y−1

a

)
θp

(
w

256
15 ã

− 2
3

10 q−1yl

)

θp

(
w

256
15 ã

− 2
3

10 q−2y−2
a

)
θp

(
w

256
15 ã

− 2
3

10 ya

) θp

(
(pq)

1
2 w− 224

15 ã
− 2

3
10 ya

)

× θp

(
qy−1

l ya
) 3∏
k �=a �=l

θp

(
(pq)

1
2 w

224
15 ã

2
3
10y

−1
k

)
θp

(
(pq)

1
2 w− 32

15 ã
4
3
10yk

)

θp

(
yk
yl

)
θp

(
ya
yk

) (D.11)

Resya=qyb F
(A2;h̃10;1,0)(x, y)

= qyb
θp

(
q−1

)
(p; p)2∞

9∏
k=1

θp

(
(pq)

1
2 w− 32

15 ã
1
3
10ãk yb

)

× θp

(
(pq)

1
2 w− 224

15 ã
− 2

3
10 yb

) 3∏
j �=a �=b

θp

(
(pq)

1
2 w

224
15 ã

2
3
10y

−1
j

)
θp

(
(pq)

1
2 w− 32

15 ã
4
3
10y j

)

θp

(
q−1 y j

yb

)
θp

(
yb
y j

) ,

(D.12)

Resya=q−1 yb F
(A2;h̃10;1,0)(x, y)

= − q−1yb
θp

(
q−1

)
(p; p)2∞

9∏
k=1

θp

(
(pq)

1
2 w

32
15 ã

− 1
3

10 ã−1
k y−1

b

)

× θp

(
(pq)

1
2 w

224
15 ã

2
3
10y

−1
b

) 3∏
j �=a �=b

θp

(
(pq)

1
2 w

224
15 ã

2
3
10y

−1
j

)
θp

(
(pq)

1
2 w− 32

15 ã
4
3
10y j

)

θp

(
y j
yb

)
θp

(
q−1 yb

y j

) ,

(D.13)

Res
ya=sq

1
2 P

− 1
2

a

F (A2;h̃10;1,0)(x, y)

= s
q

1
2 P

− 1
2

a

2θp
(
q−1

)
(p; p)2∞

9∏
k=1

θp

(
sp

1
2 w− 32

15 ã
1
3
10ãk P

− 1
2

a

)
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× θp

(
sp

1
2 w− 224

15 ã
− 2

3
10 P

− 1
2

a

) θp

(
(pq)

1
2 w

224
15 ã

2
3
10P

−1
a

)
θp

(
(pq)

1
2 w− 32

15 ã
4
3
10Pa

)

θp

(
sq− 1

2 P
3
2
a

)
θp

(
sq− 1

2 P
− 3

2
a

) ,

(D.14)

Res
ya=sq− 1

2 P
− 1
2

a

F (A2;h̃10;1,0)(x, y)

= −s
q− 1

2 P
− 1

2
a

2θp
(
q−1

)
(p; p)2∞

9∏
k=1

θp

(
sp

1
2 w− 32

15 ã
1
3
10ãk P

− 1
2

a

)

× θp

(
sp

1
2 w− 224

15 ã
− 2

3
10 P

− 1
2

a

) θp

(
(pq)

1
2 w

224
15 ã

2
3
10P

−1
a

)
θp

(
(pq)

1
2 w− 32

15 ã
4
3
10Pa

)

θp

(
sq− 1

2 P
3
2
a

)
θp

(
sq− 1

2 P
− 3

2
a

) ,

(D.15)

Res
ya=sq

1
2 p

1
2 P

− 1
2

a

F (A2;h̃10;1,0)(x, y)

= s
p

3
2 q

1
2 P

1
2
a w

256
15 ã

− 2
3

10

2θp
(
q−1

)
(p; p)2∞

9∏
k=1

θp

(
sw− 32

15 ã
1
3
10ãk P

− 1
2

a

)

× θp

(
sw− 224

15 ã
− 2

3
10 P

− 1
2

a

) θp

(
(pq)

1
2 w

224
15 ã

2
3
10P

−1
a

)
θp

(
(pq)

1
2 w− 32

15 ã
4
3
10Pa

)

θp

(
sq− 1

2 p
1
2 P

3
2
a

)
θp

(
sq− 1

2 p− 1
2 P

− 3
2

a

) , (D.16)

Res
ya=sq− 1

2 p
1
2 P

− 1
2

a

F (A2;h̃10;1,0)(x, y)

= −s
p

3
2 q− 1

2 P
1
2
a w

256
15 ã

− 2
3

10

2θp
(
q−1

)
(p; p)2∞

9∏
k=1

θp

(
sw− 32

15 ã
1
3
10ãk P

− 1
2

a

)

× θp

(
sw− 224

15 ã
− 2

3
10 P

− 1
2

a

) θp

(
(pq)

1
2 w

224
15 ã

2
3
10P

−1
a

)
θp

(
(pq)

1
2 w− 32

15 ã
4
3
10Pa

)

θp

(
sq− 1

2 p
1
2 P

3
2
a

)
θp

(
sq− 1

2 p− 1
2 P

− 3
2

a

) , (D.17)

Looking on these residues, we immediately see that on the l.h.s. of (D.8)
there are vast cancelation of residues between F (A2;h̃10;1,0)(x, y) and constant part

W (A2;h̃−1
10 ;1,0)(y). Latter ones can be found from (2.18) upon charges identification

given in (3.4). In particular, the poles at ya = qyb , ya = q−1yb , ya = sq
1
2 P

− 1
2

a ,

ya = sq− 1
2 P

− 1
2

a , ya = sq
1
2 p

1
2 P

− 1
2

a , ya = sq− 1
2 p

1
2 P

− 1
2

a , get canceled. Hence, we
are left with the following poles and residues on the l.h.s. of (D.8):

Res
ya=w

128
15 ã

− 1
3

10 q−1xsb

[
F (A2;h̃10;1,0)(x, y) + W (A2;h̃−1

10 ;1,0)(y)
]

= w
128
15 ã

− 1
3

10 q−1xsb
(p; p)2∞

123



C2 generalization of the van Diejen model... Page 45 of 55 94

×
3∑

l �=a

9∏
k=1
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(pq)

1
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32
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)
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15 ã

− 2
3

10 q−1yl

)

θp

(
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)

×
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(pq)
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i
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(
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1
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4
3
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)
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(
yi
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)
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(
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i xsb

)

×
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j �=b
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(
w
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15 ã

− 1
3
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l x±1

j

)
θp

(
w
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15 ã

− 1
3
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l x−s

b

)

θp

(
x−s
b x±1

j

)
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(
x−2s
b

) θp

(
(pq)

1
2 w− 32

15 ã−1
10 q

−1xsb

)
, (D.18)
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x j=

(
w
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15 ã

− 1
3

10 q−1 y−1
a

)s

[
F (A2;h̃10;1,0)(x, y) + W (A2;h̃−1

10 ;1,0)(y)
]

= s

(
w
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15 ã
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a
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×
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θp

(
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1
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15 ã
1
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)
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(
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yl
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(
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(
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15 ã

− 1
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i
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(
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15 ã
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i

)
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(
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15 ã
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a
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15 ã
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)

θp

(
w
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15 ã
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15 ã
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15 ã
− 2

3
10 ya

)

× θp

(
qy−1

l ya
) 3∏
k �=a �=l
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) (D.19)

Now, let’s move to the C2 side of the kernel function Eq. (D.8). As mentioned
previously the function F (C2;h̃10;1,0)(x, y) defined in (D.4) is elliptic with periods 1
and p. In the fundamental domain, the poles of the function are located at

ya = w
128
15 ã

− 1
3

10 q−1xsb, xi = sq± 1
2 , xi = sq± 1

2 p
1
2 , x j =

(
w

128
15 ã

− 1
3

10 q−1y−1
a

)±1

,

(D.20)

where as usually s = ±1. The residues at the poles xi = sq± 1
2 and xi = sq± 1

2 p
1
2 are given

by

Res
xi=sq

1
2
F (C2;h10;1,0)(x, y)
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= s

q
1
2

10∏
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θp

(
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xi=sp

1
2 q

1
2
F (C2;h10;1,0)(x, y)

= s

pw−32
10∏
k=1

θp

(
sw

32
5 ãk
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) ,
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) . (D.21)

It can be easily seen that these residues are canceled by the corresponding residues (3.19)
of the constant part W (C2;h10;1,0). Hence, C2 side of kernel function Eq. (D.8) does not have

poles in xi = sq± 1
2 and xi = sq± 1

2 p
1
2 . The only poles are the same as on the A2 side and are

located in ya = w
128
15 ã

− 1
3

10 q−1xsb and x j =
(

w
128
15 ã

− 1
3

10 q−1y−1
a

)±1

. Corresponding residues

of F (C2;h10;1,0) and hence of the full function F (C2;h10;1,0) + W (C2;h10;1,0) are given by
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5 ã10x

−s
b

)

×
3∏

l �=a

θp

(
w

128
15 ã
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) , (D.22)
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×
2∏

j �=a

θp

(
(pq)

1
2 w

32
5 ã10x
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) . (D.23)

As the next step, we have to show that the residues in (D.22) and (D.23) coincide with the
residues (D.18) and (D.19) in order for the kernel identity (D.8) to work. Notice that in both
pairs (D.22),(D.23) and (D.18), (D.19) position of the poles is defined by a single equation

w
128
15 ã

− 1
3

10 q−1xsb y
−1
a = 1 (D.24)

The two residues in each of the pairs differ by the choice of the variables with respect to
which we compute this residue. It is either fixing xa variable and computing residue in ya
variable (like in (D.18) and (D.22)) or vice versa (like in (D.19) and (D.23)). Hence, it is
sufficient to prove equality of residues only in one of the variables. It then automatically
works for another variable since it is the very same pole. Let’s choose to study residues w.r.t.
xb.8 Also since all expressions are symmetric w.r.t. xi → x−1

i , we can perform the check
only for one of the signs s. The other one will work automatically. So let’s perform the check

only for the residue at xa = w
128
15 ã

− 1
3

10 q−1y−1
b Subtracting residue (D.19) from the residue

(D.23), we can obtain the following equation:
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where we have introduced an auxiliary function

Mab(x, y) =
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) . (D.26)

8 As a crosscheck we have also checked the residue w.r.t. ya
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It can be checked that this function is elliptic with periods 1 and p. Seemingly this function

has poles at x j =
[
(pq)

1
2 w

32
5 ã10

]±1
, ya = yc with a, c �= b and yb = w− 256

15 ã
2
3
10. However,

as it often happens in our calculations, accurate derivation of the corresponding residues
results in zeros for all of them.9 Hence, these are not really poles and our function M(x, y) is
an entire function for all its variables. Since function is entire elliptic function, we conclude
that it is just a constant.

In order to define which particular constant it is, we just need to put in some values for x
and y variables. Here, it is worth noticing that M(x, y) function is the sum of two products
of θ function. Without loss of generality, let’s choose the following values of y variables:

yc = (pq)−
1
2 w

32
15 ã

− 4
3

10 , yd = (pq)
1
2 w− 32

15 ã
4
3
10y

−1
b , (D.27)

where the c and d indices are any indices not equal to b. The second equality, i.e., value
of yd , follows from the first one and A2 constraint for y j variables. Now, if we look on the
definition (D.26) of M(x, y), we see the sum of two terms. First term is when l = c, k = d ,
and the second term is vice versa when l = d, k = c. However, we immediately see that

if yk = (pq)− 1
2 w

32
15 ã

− 4
3

10 in (D.26), we obtain zero of theta function. Hence, this second
term in the sum is automatically zero and that was the idea behind our choice (D.27). We
are now left only with the first term. Substituting chosen values into this term, we see vast
cancelations leading to

Mab(x, y)|
yc=(pq)

− 1
2 w

32
15 ã

− 4
3

10

= 1, (D.28)

and hence the Mab(x, y) function given in (D.26) is just 1, i.e., Mab(x, y) = 1. Notice that
to find the value of the constant Mab(x, y)we fixed only one of y variables. Other y’s as well
as all of x stayed random. Using our finding from (D.25), we immediately conclude that

Res
xa=w

128
15 ã

− 1
3

10 q−1 y−1
b

[
F (C2;h10;1,0)(x, y) + W (C2;h10;1,0)(x)

]

= Res
xa=w

128
15 ã

− 1
3

10 q−1 y−1
b

[
F (A2;h̃10;1,0)(x, y) + W (A2;h̃−1

10 ;1,0)(y)
]

. (D.29)

Now since both functions F (C2;h10;1,0)(x, y)+W (C2;h10;1,0)(x) and F (A2;h̃10;1,0)(x, y)+
W (A2;h̃−1

10 ;1,0)(y) are elliptic with the coinciding poles and residues in the fundamental
domain, we conclude that they can differ at most by additive constant. And just as we
did it with Mab(x, y) function in order to find this constant, we need to choose convenient
values of x and y variables. Here, it is a bit harder to do then in the case of Mab function.
However, first thing we can notice is that constant partW (C2;h10;1,0)(x) ofC2 operator (3.17)
has zero at the following value of variables:

x1 = (pq)
1
2 w

32
5 ã10, (D.30)

where we have chosen x1 variable without loss of generality (it can as well be x2 variable)

and the other x2 variable is kept arbitrary. At the same time, constant part W (A2;h̃−1
10 ;1,0)(y)

9 To calculate these residues, it is crucial to use the A2 constraint
∏3

j=1 y j = 1 for y variables.
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of A2 operator given in (2.15) has zero at the following value of variables:

y1 = (pq)
1
2 w

224
15 ã

2
3
10, y2 = (pq)−

1
2 w

32
15 ã

− 4
3

10 , y3 = w− 256
15 ã

2
3
10. (D.31)

It is natural to try these values and checkwhat happenswith the shift parts F (A2;h̃10;1,0)(y) and
F (C2;h10;1,0)(x) on two sides of the kernel identity (D.8). On theC2 side, it is straightforward
to see from (D.4) that simultaneous substitution of values specified in (D.31) and (D.30) leads
to zero of the shift part F (C2;h10;1,0)(x, y). With the A2 side, it is a bit more tricky since the

shift part F (A2;h̃10;1,0)(x, y) seemingly has singularity at y3 = w− 256
15 ã

2
3
10 due to theta function

θp

(
w

256
15 ã

− 2
3

10

)
in the denominator of the expression. However, accurate analysis shows that

this singularity is always canceled by zeros of other theta functions standing in the numerator
of the expression. Taking this into account, it is once again pretty easy to show that shift part
on A2 side of the kernel property also has zero at values (D.31) and (D.30).

Summarizingwehave shown that expressions on two sides of the kernel propertyEq. (D.8)
are elliptic functions with periods 1 and p and same sets of poles and residues in the funda-
mental domain given in (D.18), (D.19), (D.22) and (D.23). This means that the two functions
differ at most by constant. To fix this constant, we also notice that both functions on two
sides of the equation have zero at the same values of variables given in (D.31) and (D.30).
Hence, the constant two functions can differ by is just zero and the functions appear to be
the same. This concludes the proof of the kernel property (4.2).

E Commutators of C2 operators

In this appendix, we discuss commutation relations (4.5) of the basic C2 operators (3.17).
Let’s start with checking the following commutation relation:

[
O(C2;ha ;1,0)

x , O(C2;hb;0,1)
x

]
= 0, ∀ a, b = 1, . . . , 10. (E.1)

Using explicit expression (3.17), we can write out all the terms of the commutator:

[
O(C2;ha ;1,0)

x , O(C2;hb;0,1)
x

]
I(x)

=
2∑

i, j=1

[
A(C2;ha ;1,0)
i (xi )

(
�q(xi )A

(C2;hb;0,1)
j (x)

)
�q(xi )�p(x j )I(xi , x j )

+A(C2;ha ;1,0)
i (x)

(
�q(xi )A

(C2;hb;0,1)
j

(
x−1)) �q(xi )�

−1
p (x j )I(x)

+A(C2;ha ;1,0)
i

(
x−1) (

�−1
q (xi )A

(C2;hb;0,1)
j (x)

)
�−1

q (xi )�p(x j )I(x)

+ A(C2;ha ;1,0)
i

(
x−1) (

�−1
q (xi )A

(C2;hb;0,1)
j

(
x−1)) �−1

q (xi )�
−1
p (x j )I(x)

]

+
2∑

i=1

[
A(C2;ha ;1,0)
i (x)

(
�q(xi )W

(C2;hb;0,1)(x) − W (C2;hb;0,1)(x)
)

�q(xi )I(x)

+ A(C2;hb;0,1)
i

(
x−1) (

�−1
p (xi )W

(C2;ha ;1,0)(x) − W (C2;ha ;1,0)(x)
)

�−1
q (xi )I(x)

]
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−
(
p ↔ q
a ↔ b

)
, (E.2)

where in the last line we subtract all the terms written in the first six lines but with p and q
parameters as well as a and b indices exchanged. Now in order to compute this commutator,
we should find the action of the shift operators �q(xi ) and �p(xi ) on the shift part Ai (x)
and constant part W (x). Using explicit expressions from (3.17), we obtain:

�p(xi )W
(C2;ha ;1,0)(x) = W (C2;ha ;1,0)(x),

�p(xi )A
(C2;ha ;1,0)
j (x) = �p(xi )

−1A(C2;ha ;1,0)
j (x) = A(C2;ha ;1,0)

j (x),

�p(xi )A
(C2;ha ;1,0)
i (x) = (pq)−3hA(C2;ha ;1,0)

i (x),

�−1
p (xi )A

(C2;ha ;1,0)
i (x) = (pq)3h−1A(C2;ha ;1,0)

i (x), (E.3)

where h in the last expression is as usually total U (1) charge defined in (3.16). Completely
identical expressions can be written for p and q exchanged. Using these expressions for the
commutator action (E.2), it is straightforward to see that it is just zero:

[
O(C2;ha ;1,0)

x , O(C2;hb;0,1)
x

]
I(x) = 0. (E.4)

Since the test function I(x) is arbitrary, we can conclude that the commutator itself is also
zero.

Now, let’s move to the computation of more complicated type of commutators

[
O(C2;ha ;1,0)

x , O(C2;hb;1,0)
x

]
= 0, ∀ a, b = 1, . . . , 10. (E.5)

In this case, the proof is more complicated since the periodicity properties of θ functions
cannot be used anymore. Insteadwewill be using expansion in p and q parameters to perform
this check. Once again we will use action of the commutator on an arbitrary test function
I(x):

[
O(C2;ha ;1,0)

x , O(C2;hb;1,0)
x

]
I(x)

=
2∑

i, j=1

[
A(C2;ha ;1,0)
i (xi )

(
�q(xi )A

(C2;hb;1,0)
j (x)

)
�q(xi )�p(x j )I(xi , x j )

+A(C2;ha ;1,0)
i (x)

(
�q(xi )A

(C2;hb;1,0)
j

(
x−1)) �q(xi )�

−1
q (x j )I(x)

+A(C2;ha ;1,0)
i

(
x−1) (

�−1
q (xi )A

(C2;hb;1,0)
j (x)

)
�−1

q (xi )�q(x j )I(x)

+ A(C2;ha ;1,0)
i

(
x−1) (

�−1
q (xi )A

(C2;hb;1,0)
j

(
x−1)) �−1

q (xi )�
−1
q (x j )I(x)

]

+
2∑

i=1

[
A(C2;ha ;1,0)
i (x)

(
�q(xi )W

(C2;hb;1,0)(x) − W (C2;hb;1,0)(x)
)

�q(xi )I(x)

+ A(C2;hb;1,0)
i

(
x−1) (

�−1
q (xi )W

(C2;ha ;1,0)(x) − W (C2;ha ;1,0)(x)
)

�−1
q (xi )I(x)

]

− (
a ↔ b

)
, (E.6)
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Since the test function I(x) is arbitrary in order to perform our checks, we have to consider
contributions of all possible shifts of I(x) separately. Below we discuss such contributions
one by one.

(1) Terms with �q(xi )�q(x j )I(x). This kind of contributions in (E.6) comes from the
following terms:

[
O(C2;ha ;1,0)

x , O(C2;hb;1,0)
x

]
I(x) ∼

[
A(C2;ha ;1,0)
i (x)

(
�q(xi )A

(C2;hb;1,0)
j (x)

)

+ A(C2;ha ;1,0)
j (x)

(
�q(x j )A

(C2;hb;1,0)
i (x)

)
− (a ↔ b)

]
�q(xi )�q(x j )I(x).

(E.7)

In order for the prefactor to be zero, the following algebraic identity has to be satisfied:

F1(xi , x j , ha, hb) + F1(x j , xi , ha, hb) − F1(xi , x j , hb, ha) − F1(x j , xi , hb, ha) = 0,

F1(xi , x j , ha, hb)

=
θp

(
x j x

±1
i

)
θp

(
(pq)

1
2 hbqxi

)
θp

(
(pq)

1
2 hbq−1x−1

i

)
θp

(
(pq)

1
2 hax

±1
j

)

θp
(
qx j xi

)
θp

(
q−1x j x

−1
i

) . (E.8)

In order to check this equation, we expand all functions in p and q parameters. Since there
are just two variables x1 and x2 in this case, we can fix i = 1 and j = 2 without loss of
generality and check equality in expansion up to the order O

(
p3q3

)
. This check suggests

that indeed these kind of terms do not contribute to the commutator (E.6).
(2) Terms with �2

q(xi )I(x). This contribution comes from the following terms:

[
O(C2;ha ;1,0)

x , O(C2;hb;1,0)
x

]
I(x) ∼

[
A(C2;ha ;1,0)
i (x)

(
�q(xi )A

(C2;hb;1,0)
i (x)

)

− A(C2;hb;1,0)
i (x)

(
�q(xi )A

(C2;ha ;1,0)
i (x)

)]
�2

q(xi )I(x). (E.9)

We can now notice that

�q(xi )A
(C2;ha ;1,0)
i (x) =

2∏
j �=i

θp
(
x2i

)
θp

(
qx2i

)
θp

(
xi x

±1
j

)

θp
(
q2x2i

)
θp

(
q3x2i

)
θp

(
qxi x

±1
j

)

×
10∏
l=1

θp

(
(pq)

1
2 h−1

l qxi
)

θp

(
(pq)

1
2 h−1

l xi
) A(C2;ha ;1,0)

i (x), (E.10)

so that the overall factor we get after actingwith the shift�q(xi ) does not depend on the index
a. Due to this independence, it is clear that corresponding contribution to the commutator
(E.6) is zero.

(3) Terms with �q(xi )�−1
q (x j )I(x). These terms come from the contribution:

[
O(C2;ha ;1,0)

x , O(C2;hb;1,0)
x

]
I(x) ∼

[
A(C2;ha ;1,0)
i (x)

(
�q(xi )A

(C2;hb;1,0)
j

(
x−1))

+ A(C2;ha ;1,0)
j

(
x−1) (

�−1
q (x j )A

(C2;hb;1,0)
i (x)

)
− (a ↔ b)

]
�q(xi )�

−1
q (x j )I(x).
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(E.11)

In order for this term to vanish, we need the following equation to be satisfied:

F2(xi , x j , a, b) − F2(xi , x j , b, a) − F2(x
−1
j , x−1

i , b, a) + F2(x
−1
j , x−1

i , a, b) = 0,

F2(xi , x j , a, b)

=
θp

(
x−1
j x±1

i

)
θp

(
(pq)

1
2 hbqxi

)
θp

(
(pq)

1
2 hbq−1x−1

i

)
θp

(
(pq)

1
2 hax

±1
j

)

θp

(
qxi x

−1
j

)
θp

(
q−1x−1

i x−1
j

)

(E.12)

Just as previously, we check this identity in p and q expansion up to an order of O
(
p3q3

)
and thus show that corresponding contribution to the commutator is zero.

(4) Terms with �q(xi )I(x). This kind of terms comes from the contribution:

[
O(C2;ha ;1,0)

x , O(C2;hb;1,0)
x

]
I(x) ∼

[
A(C2;ha ;1,0)
i (x)

(
�q(xi )W

(C2;hb;1,0) (x)
)

+ W (C2;ha ;1,0) (x) A(C2;hb;1,0)
i (x) − (a ↔ b)

]
�q(xi )I(x). (E.13)

This expression is hard to simplify so we checked it directly fixing i = 1, j = 2 and
expanding up to an order O

(
p2q0

)
, O

(
p0q2

)
and O (pq) in p and q parameters. Up to

these orders in expansion, we confirmed that corresponding contribution to the commutator
is zero.

(5) Constant terms I(x). This term comes from the contribution of

[
O(C2;ha ;1,0)

x , O(C2;hb;1,0)
x

]
I(x) ∼

[
W (C2;ha ;1,0)(x)W (C2;hb;1,0) (x)

− W (C2;hb;1,0)(x)W (C2;ha ;1,0) (x)
]
I(x) = 0. (E.14)

This term is obviously zero since it does not involve any shift.
(6) Terms with �−1

q (xi )�−1
q (x j )I(x). These terms can be directly obtained from Type

1 terms containing �q(xi )�q(x j )I(x) by xi → x−1
i transformation of variables. Due to

the xi → x−1
i symmetry of A�O (3.17), we can immediately conclude that corresponding

contribution to the commutator action (E.6) is zero.
(7) Terms with �−2

q (xi )I(x). These terms can be directly obtained from Type 2 terms

containing �2
q(xi )I(x) by xi → x−1

i transformation of variables. Hence by the same sym-
metry argument as in the previous case, we can immediately conclude that corresponding
contribution to the commutator action (E.6) is zero.

(8) Terms with �−1
q (xi )I(x). Contributions to the commutator action (E.6) of this type

are also zero which follows from the same argument as previous two terms. In this case, it
can be obtained by using xi → x−1

i transformation in Type 4 terms.
Thus, all eight types of terms present in the commutator (E.6) give zero contribution and

the full commutator action, and hence, the commutator itself appears to be zero. So far we
have shown it only in p and q expansion. But in principle this can be also proven analytically
by computing positions of the poles and corresponding residues of all equalities we have
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checked in expansion. This way of proof is similar to the one we used in Appendix D to
prove kernel property (4.2).

The last type of commutator identities we would like to prove is

[
O(C2;ha ;0,1)

x , O(C2;hb;0,1)
x

]
= 0, ∀ a, b = 1, . . . , 10. (E.15)

But this commutator can be directly obtained from the previous commutator[
O(C2;ha ;1,0)

x , O(C2;hb;1,0)
x

]
by the exchange p ↔ q. Hence, all the arguments above work

also for this commutator which as result is indeed equal to zero.
To summarize, in this Appendix we gave arguments in favor of all commutation relations

(4.5). For the third commutator, we gave full analytic proof, while for the first and second
we checked commutation relations perturbatively in p and q expansion to sufficiently high
order.
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