
Letters in Mathematical Physics (2023) 113:90
https://doi.org/10.1007/s11005-023-01711-w

Renewal approach for the energy–momentum relation of
the Fröhlich polaron

Steffen Polzer1

Received: 22 July 2022 / Revised: 7 July 2023 / Accepted: 22 July 2023 /
Published online: 18 August 2023
© The Author(s) 2023

Abstract
We study the qualitative behaviour of the energy–momentum relation of the Fröhlich
polaron at fixed coupling strength. Among other properties, we show that it is non-
decreasing and that the correction to the quasi-particle energy is negative. We give a
proof that the effective mass lies in (1,∞) that does not need the validity of a central
limit theorem for the path measure.
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1 Introduction and results

The polaron models the interaction of an electron with a polar crystal. The Fröhlich
Hamiltonian describing the interaction of the electron with the lattice vibrations has a
fibre decomposition in terms of the Hamiltonians

H(P) = 1

2
(P − Pf )

2 + N +
√

α√
2π

∫
R3

1

|k| (ak + a∗
k ) dk

at fixed total momentum P ∈ R
3 that act on the bosonic Fock space over L2(R3).

Here a∗
k and ak are the creation and annihilation operators satisfying the canonical

commutation relations [a∗
k , ak′ ] = δ(k− k′),N ≡ ∫

R3 a∗
k ak dk is the number operator,

Pf ≡ ∫
R3 ka∗

k akdk is the momentum operator of the field and α > 0 is the coupling
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constant. Of particular interest has been the energy–momentum relation

E(P) := inf spec(H(P)).

For small |P| the system is believed to behave like a free particle with an increased
“effective mass”. E is known to have a strict local minimum at P = 0 and to be
smooth in a neighbourhood of the origin. The effective mass is defined as the inverse
of the curvature at the origin such that

E(P) − E(0) = 1

2meff
|P|2 + o(|P|2) (1)

in the limit P → 0. While significant effort has been put into the study of the asymp-
totic behaviour of E(0) and meff in the strong coupling limit α → ∞ (see e.g. [3,
5, 7, 13–15, 22]), we will be interested in the qualitative behaviour of E at a fixed
value of the coupling constant. One valuable tool for the analysis of E(0) andmeff has
been their probabilistic representation obtained via the Feynman–Kac formula. The
approach taken below extends the probabilistic methods developed for the analysis of
the effective mass to the whole energy–momentum relation. Let

Eess(P) := inf ess spec(H(P))

be the bottom of the essential spectrum. It is known [24] that

Eess(P) = E(0) + 1

for all P . From now on, we will often abuse notation and identify a radially symmetric
function on R

3 with a function on [0,∞). Keeping that in mind, let

I0 := {P ∈ [0,∞) : E(P) < E(0) + 1}

(which is known to contain a neighbourhood of the origin). For Hamiltonians with
stronger regularity assumptions (e.g. the Fröhlich polaron with an ultraviolet cutoff),
it is known [17] that the spectral gap closes in the limit, i.e. that limP→∞ E(P) =
Eess(0). For the Fröhlich polaron in dimensions 1 and 2 it is known [24] that I0 =
[0,∞), i.e. that the spectral gap does not close in a finite interval. In dimension 3,
however, it has been predicted in the physics literature that I0 is bounded [9]. For
sufficiently small coupling constants, this has been shown in [6]. In the framework
presented below, the question whether I0 is bounded or unbounded reduces to the
study of the tails of a probability distribution on (0,∞)2. There does not seem to be
known much about the behaviour of E in the intermediate P-regime. In [8] it was
shown that E is real analytic on I0 with E(0) ≤ E(P) for all P and that the inequality
is strict for P outside of a compact set. In recent work, it has been shown [11] that E has
indeed a strict global minimum in 0. In the present text, we will prove some previously
unknown properties of E , namely monotonicity and concavity of P 
→ E(

√
P) on
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[0,∞), both of which are strict on I0. The (strict) monotonicity additionally allows
us to replicate the result of [11]. We denote by cl(I0) the closure of I0.
Theorem 1 The following holds.

(i) P 
→ E(P) is non-decreasing on [0,∞) and strictly increasing on I0. In par-
ticular, I0 is an (potentially unbounded) interval.

(ii) P 
→ E(
√
P) is strictly concave on I0. In particular,

E(P) − E(0) <
1

2meff
P2

for all P > 0, i.e. the correction to the quasi-particle energy is negative and[
0,

√
2meff

) ⊂ I0.
(iii) For |P| /∈ cl(I0) we have limλ↑E(P)〈�, (H(P)−λ)−1�〉 < ∞, where � is the

Fock vacuum and in particular H(P) does not have a ground state.

For the polaronwith an ultraviolet cut-off and in dimensions 3 and 4, the non-existence
of a ground state for |P| /∈ I0 has been shown in [17]. In a certain limit of strong
coupling, the negativity of the correction to the quasi-particle energy has been shown
in [15]. In (iii), we used that if H(P) has a ground state, then it is non-orthogonal
to �: The operator eiπNe−T H(P)e−iπN is for all T > 0 positivity improving [16,
Theorem 6.3] which in turn implies that if there exists a ground state ψP of H(P),
then it is unique (up to a phase) and can be chosen such that eiπNψP is strictly positive
[16, Theorem 2.12]. In [16, Theorem 6.4], it was shown that there exists a ground
state of H(P) for |P| <

√
2. Part (ii) of our Theorem 1 allows us to improve this to

existence of a ground state for |P| <
√
2meff.

Before starting with the proof of Theorem 1, we give a brief summary of our
approach. An application of the Feynman–Kac formula to the semigroup generated
by the Hamiltonian yields [8]

〈�, e−T H(P)�〉 =
∫
C([0,∞),R3)

W(dX) e−iP·X0,T exp

(
α

2

∫ T

0

∫ T

0
dsdt

e−|t−s|

|Xs,t |
)

for all P ∈ R
3 and T ≥ 0, where � is the Fock vacuum, W is the distribution of

a three-dimensional Brownian motion started in the origin and Xs,t := Xt − Xs for
X ∈ C([0,∞),R3) and s, t ≥ 0. After normalizing the expression above by dividing
by 〈�, e−T H(0)�〉, one can study E by looking at the large T asymptotics of Brownian
motion perturbed by a pair potential. Herbert Spohn conjectured in [23] convergence of
the resulting path measure under diffusive rescaling to Brownian motion and showed
that the respective diffusion constant is then the inverse of the effective mass, see also
[8]. The validity of this central limit theorem was shown in [2, 19, 20] by using the
point process representationof the pathmeasure that has been introducedbyMukherjee
and Varadhan [20]. There the path measure is represented as a mixture of Gaussian
measures, where the mixing measure can be expressed in terms of a perturbed birth
and death process. An application of renewal theory then yielded the existence of an
infinite volume measure and a central limit theorem provided that a certain technical
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condition holds. The validity of said condition was first verified for sufficiently small
α in [20] and then for all α in [2] (where known spectral properties of H(0) are
used) and independently in [19] (where a purely probabilistic proof is given). The
proof given in [2] uses the point process representation in order to derive a renewal
equation for T 
→ 〈�, e−T H(0)�〉. The condition of Mukherjee and Varadhan was
then shown to be equivalent to the known existence of a ground state of H(0) that is
non-orthogonal to �. We will use a similar approach and derive renewal equations for
T 
→ 〈�, e−T H(P)�〉 for any P . We arrive at our results by comparing the asymptotic
behaviour of the solutions in dependency of P .

In our units, the free electron has mass 1 and physically one would expect that
1 < meff < ∞. The proof of the central limit theorem entails a formula for the
diffusion constant that directly implies that this indeed holds.Wewill give an additional
proof that yields (essentially) the same formula for the effective mass but that does
not rely on the validity of a central limit theorem. Numerous efforts have been made
to establish central limit theorems for related models (see e.g. [2, 4, 10, 18]) and a
generalization of the method presented below may be a viable alternative to study the
effective mass with probabilistic methods.

2 Proof of Theorem 1

We define � := {(s, t) ∈ [0,∞)2 : s < t} and Y := ⋃∞
n=0(� × [0,∞))n , and equip

the latter with the disjoint-union σ -algebra (i.e. the final σ -algebra with respect to the
canonical injections (� × [0,∞))n ↪→ Y , n ∈ N). For ζ = ((si , ti , ui ))1≤i≤n ∈ Y
let

T1(ζ ) := sup
i

ti , σ 2(ζ ) := distL2

(
BT1(ζ ), span{ui Bsi ,ti + Zi : 1 ≤ i ≤ n}

)2

where (Bt )t≥0 is a one-dimensional Brownian motion and (Zn)n is an iid sequence of
centred Gaussian random variables with variance 1 that is independent of (Bt )t≥0.
For a measure μ on Y and a measurable function f : Y → R we abbrevi-
ate μ( f ) := ∫

Y μ(dζ ) f (ζ ) provided that the integral exists. Additionally, we set

fP (T ) := 〈�, e−T H(P)�〉 for P ∈ R
3, T ≥ 0.

Proposition 2 There exists a measure μ on Y such that

fP (T ) = μ
(
e−P2σ 2/2 fP (T − T1)1{T1≤T }

) + e−P2T /2

holds for all P ∈ R
3 and T ≥ 0.

Proof We define

FP (T1, T2, ξ) :=
∫

W(dX) e−iP·XT1,T2

n∏
i=1

|Xsi ,ti |−1
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for T1, T2 ≥ 0 and ξ = ((si , ti ))1≤i≤n such that the integral is well defined. Let
νT (dsdt) := αe−|t−s|1{0<s<t<T }dsdt . Expanding the exponential into a series and
exchanging the order of integration leads to1

fP (T ) =
∫

W(dX) e−iP·X0,T exp

(∫
νT (dsdt)|Xs,t |−1

)

=
∞∑
n=0

1

n!
∫

ν⊗n
T (ds1dt1, . . . , dsndtn)

∫
W(dX) e−iP·X0,T

n∏
i=1

|Xsi ,ti |−1

= ecT
∫


T (dξ)FP (0, T , ξ) (2)

where 
T is the distribution of a Poisson point process on R
2 with intensity measure

νT and cT := νT (R2). Let 
 be the distribution of a Poisson point process on R
2

with intensity measure ν(dsdt) := αe−|t−s|1{0<s<t}dsdt . By the marking theorem
for Poisson point processes (see e.g. [12, Theorem 5.6]), the measure 
 can be seen as
the distribution of a birth and death process with birth rate α and death rate 1 (started
with no individual alive at time 0) by identifying an individual that is born at s and
that dies at t with the point (s, t). For t ≥ 0 and a configuration ξ = ((si , ti ))i of
individuals let Nt (ξ) := |{i : si ≤ t < ti }| be the number of individuals alive at time
t . By the restriction theorem for Poisson point processes (see e.g. [12, Theorem 5.2]),

T can be obtained by restricting 
 to the process of all individuals that are born
before T conditional on the event that no individual is alive at time T . One can easily
verify that

ecT = eαT e−ν([0,T ]×(T ,∞)) = eαT
(NT = 0).

Hence, if we denote by ξt1,t2 the restriction of ξ to all individuals born in [t1, t2), we
can rewrite

fP (T ) = eαT
∫


(dξ)FP (0, T , ξ0,T )1{NT (ξ)=0}.

Let

τ(ξ) := inf

{
t ≥ inf

i
si : Nt (ξ) = 0

}

be the first time after the first birth at which no individual is alive. By independence
of Wiener increments

FP (0, T , ξ0,T ) = FP (0, τ (ξ), ξ0,τ (ξ))FP (τ (ξ), T , ξτ(ξ),T ),

for all ξ ∈ {τ ≤ T } such that the left hand side is well defined. Let� be the distribution
of ξ 
→ ξ0,τ (ξ) under 
. The process 
 regenerates after τ and by the translation

1 Using that the integral is finite for P = 0 shows that this is indeed justified.
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invariance of FP under a simultaneous time shift in all variables and since eαT =
eατ eα(T−τ)

fP (T ) =
∫

�(dξ)1{τ(ξ)≤T }eατ(ξ)FP (0, τ (ξ), ξ) fP (T − τ(ξ))

+ eαT
∫

�(dξ)1{τ(ξ)>T , NT (ξ)=0}FP (0, T , ξ0,T ).

The event {τ > T , NT = 0} happens if and only if there is no birth until time T .
Then, ξ0,T is the empty configuration and hence

FP (0, T , ξ0,T ) = EW
[
e−iP·XT

] = e−P2T /2

for ξ ∈ {τ > T , NT = 0}. Under �, the time until the first birth is Exp(α) distributed
and hence �(τ > T , NT = 0) = e−αT . Combined, this gives us

fP (T ) = e−P2T /2 +
∫

�(dξ)eατ(ξ)1{τ(ξ)≤T }FP (0, τ (ξ), ξ) fP (T − τ(ξ)).

For (ξ, u) ∈ �n × [0,∞)n , we define Pξ,u by

Pξ,u(dX) := 1

φ(ξ, u)
e−∑n

i=1 u
2
i |Xsi ,ti |2/2W(dX)

where φ(ξ, u) is a normalization constant. Then, Pξ,u is a centred and rotationally
symmetric Gaussian measure and

1

3
EPξ,u

[|X0,t |2
] = distL2

(
Bt , span{ui Bsi ,ti + Zi : 1 ≤ i ≤ n}

)2 =: σ 2
t (ξ, u)

for all t ≥ 0, see the proof of Proposition 3.2 in [3]. We thus have

FP (0, t, ξ) =
∫

W(dX)

∫
[0,∞)n

du (2/π)n/2 e−iP·X0,t e−∑n
i=1 u

2
i |Xsi ,ti |2/2

=
∫

[0,∞)n
du (2/π)n/2φ(ξ, u)e−P2σ 2

t (ξ,u)/2.

Hence, the measure we are looking for is given by

μ(dξdu) := �(dξ)du (2/π)n(ξ)/2eατ(ξ)φ(ξ, u) (3)

under the identification of �n × [0,∞)n with (� × [0,∞))n . ��
Proposition 3 We have μ(e−σ 2P2/2+E(P)T1) ≤ 1 for all P ∈ R

3 and for λ < E(P)

we have

〈�, (H(P) − λ)−1�〉 = 1

P2/2 − λ
· 1

1 − μ(e−P2σ 2/2+λT1)
.
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If |P| ∈ I0 then E(P) is the unique real number satisfying

μ(e−P2σ 2/2+E(P)T1) = 1.

Proof For P ∈ R
3, let νP be the image measure of e−P2σ 2(ζ )/2μ(dζ ) under the map

T1 and let zP (T ) := e−P2T /2 for T ≥ 0. By Proposition 2, for any P ≥ 0 the renewal
equation

fP = νP ∗ fP + zP (4)

holds, where the convolution νP ∗ fP is defined as

(νP ∗ fP )(T ) :=
∫

[0,T ]
νP (dt) fP (T − t)

for T ≥ 0. As fP is continuous and strictly positive, inf0≤t≤T fP (t) > 0 and hence the
measure νP is locally finite. Renewal theory implies that the unique locally bounded
solution to (4) is given by

fP =
∞∑
n=0

ν∗n
P ∗ zP ,

(see e.g. [1, Theorem 2.4]). Taking the Laplace transform leads to

〈�, (H(P) − λ)−1�〉 = L( fP )(−λ) = 1

P2/2 − λ

∞∑
n=0

L(νP )n(−λ)

for2 λ < E(P). In particular, L(νP )(−λ) < 1 for λ < E(P) and

〈�, (H(P) − λ)−1�〉 = 1

P2/2 − λ
· 1

1 − μ(e−P2σ 2/2+λT1)
.

As mentioned earlier, if there exists a ground state of H(P) then it is unique and non-
orthogonal to �. In combination with the spectral theorem, this implies for |P| ∈ I0
that

lim
λ↑E(P)

〈�, (H(P) − λ)−1�〉 = ∞

and thus μ(e−σ 2P2/2+E(P)T1) = 1 by the monotone convergence theorem. ��
2 The inequality E(P) < P2/2 follows from the considerations above and can also be obtained directly
from the definition of the Hamiltonians by using E(0) < 0 and the estimate E(P) ≤ 〈ψ0, H(P)ψ0〉, where
ψ0 is the ground state of H(0).
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Remark 4 Let P ∈ R
3 such that |P| ∈ I0 and let ψP be the unique ground state of

H(P). Then, by the spectral theorem,

lim
T→∞ fP (T )eT E(P) = lim

T→∞〈�, e−T (H(P)−E(P))�〉 = |〈�,ψP 〉|2.

On the other hand, we can calculate this limit by using renewal theory. The key renewal
theorem (see e.g. [1, Theorem 4.3]) states that for a non-lattice probability measure ν

on (0,∞) and a directly Riemann integrable (e.g. Lebesgue integrable, non-negative
and non-increasing) function z : [0,∞) → R the unique locally bounded solution
f : [0,∞) → R of the renewal equation f = ν ∗ f + z satisfies3

lim
T→∞ f (T ) =

∫ ∞
0 z(t) dt∫ ∞
0 t ν(dt)

.

Let zP and νP are defined as in the proof of Proposition 3 and set

f̂ P (t) := eE(P)t fP (t) = 〈�, e−t(H(P)−E(P))�〉,
ẑ P (t) := eE(P)t zP (t) = e−(P2/2−E(P))t ,

ν̂P (dt) := eE(P)tνP (dt).

Then,

eE(P)t · (νp ∗ fP )(t) = (ν̂p ∗ f̂ P )(t)

for all t ≥ 0 and hence (4) gives

f̂ P = f̂ P ∗ ν̂P + ẑ P .

The key renewal theorem yields

|〈�,ψP 〉|2 = lim
T→∞ f̂ P (T ) = 1

P2/2 − E(P)

1

μ(T1e−P2σ 2/2+E(P)T1)
. (5)

Corollary 5 E is non-decreasing and strictly increasing on I0. For |P| /∈ cl(I0) we
have limλ↑E(P)〈�, (H(P) − λ)−1�〉 < ∞ and H(P) does not have a ground state.

Proof The strict monotonicity on I0 follows directly from Proposition 3. For P1, P2 /∈
I0 with P1 < P2, we always have

μ(e−P2
2 σ 2/2+Eess(0)T1) < μ(e−P2

1 σ 2/2+Eess(0)T1) ≤ 1

and hence

μ(e−P2σ 2/2+Eess(0)T1) < 1

3 where the right hand side is by definition zero in case of an infinite denominator.
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for all P ∈ R
3 such that |P| /∈ cl(I0). Hence, for those P

lim
λ↑E(P)

〈�, (H(P) − λ)−1�〉 = 1

P2/2 − Eess(0)
· 1

1 − μ(e−P2σ 2/2+Eess(0)T1)

and H(P) does not have a ground state (since it would need to be non-orthogonal
to �). If E would be not non-decreasing, then I0 would not be an interval, i.e. there
would exist P1 ∈ [0,∞)\I0 and P2 ∈ I0 such that P1 < P2. This, however, would
imply

1 = μ(e−P2
2 σ 2/2+E(P2)T1) < μ(e−P2

1 σ 2/2+Eess(0)T1) ≤ 1.

��
Corollary 6 The interval I0 is bounded if and only if there exists a P ≥ 0 such that

μ(e−P2σ 2/2+Eess(0)T1) = μ̂(e−P2σ 2/2+T1) < ∞
where μ̂ is the probability measure defined by μ̂(dζ ) := eE(0)T1(ζ )μ(dζ ).

Proof This easily follows from the monotone convergence theorem. ��
Corollary 7 We have

meff = μ̂(T1)

μ̂(σ 2)
∈ (1,∞). (6)

Proof Let P ∈ I0 and λ < E(P). Then,

μ(e−P2σ 2/2+λT1) = 1 − 1

P2/2 − λ
· 1

〈�, (H(P) − λ)−1�〉 .

The function λ 
→ 〈�, (H(P)−λ)−1�〉−1 has a removable singularity in E(P) since
E(P) is for P ∈ I0 an isolated eigenvalue.4 This implies that there exists an ε̃ > 0
such that μ(e−P2σ 2/2+(E(P)+ε̃)T1) < ∞. Since σ 2 ≤ T1 there thus exist ε, δ > 0 such
that

μ(e−(P−δ)2σ 2/2+(E(P)+ε)T1) < ∞.

Hence, we may differentiate under the integral. Differentiating

1 = μ(e−P2σ 2/2+E(P)T1)

twice with respect to P and evaluating at P = 0 yields the equality in (6). Notice
that both integrals are finite by the previous considerations (or by (5) for that matter).
Since σ 2 ≤ T1 and μ(σ 2 < T1) > 0, the quotient is strictly larger than 1. ��
4 Then E(P) is contained in the discrete spectrum which coincides (for self-adjoint operators) with the set
isolated eigenvalues of finite multiplicity [21, Theorem VII.10].
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Corollary 8 P 
→ E(
√
P) is strictly concave on I0. In particular,

E(P) − E(0) <
1

2meff
P2

for all P > 0, i.e. the correction to the quasi-particle energy is negative and[
0,

√
2meff

) ⊂ I0.

Proof For λ ∈ Ĩ0 := {P2 : P ∈ I0} let h(λ) be the unique solution to

μ(e−λσ 2/2+h(λ)T1) = 1,

i.e. h = E ◦ √·. Then, for λ1, λ2 ∈ Ĩ0 with λ1 �= λ2 and β ∈ (0, 1) we get with
Hölders inequality with dual exponents 1/β and 1/(1 − β)

μ(e−(βλ1+(1−β)λ2)σ
2/2+(βh(λ1)+(1−β)h(λ2))T1)

< μ(e−λ1σ
2/2+h(λ1)T1)βμ(e−λ2σ

2/2+h(λ2)T1)1−β = 1

which means h(βλ1 + (1 − β)λ2) > βh(λ1) + (1 − β)h(λ2). Hence, h is strictly
concave on I0, which implies for all P ∈ I0\{0}

E(P) − E(0) = h(P2) − h(0) < h′(0)P2 = 1

2
E ′′(0)P2

where we used in the last equality that E ′(0) = 0. ��
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15. Mitrouskas, D., Myśliwy, K., Seiringer, R.: Optimal parabolic upper bound for the energy-momentum

relation of a strongly coupled polaron. arXiv:2203.02454 (2022)
16. Miyao, T.: Nondegeneracy of ground states in nonrelativistic quantum field theory. J. Oper. Theory

64(1) (2010)
17. Møller, J.S.: The Polaron revisited. Rev. Math. Phys. 18(5) (2006)
18. Mukherjee, C.: Central limit theorem for Gibbs measures on path spaces including long range and

singular interactions and homogenization of the stochastic heat equation. Ann. Appl. Probab. 32(3)
(2022)

19. Mukherjee, C., Varadhan, S.R.S.: Corrigendum and addendum: identification of the Polaron measure
I: fixed coupling regime and the central limit theorem for large times. Commun. Pure Appl. Math.
75(7), 1642–1653 (2022)

20. Mukherjee, C., Varadhan, S.R.S.: Identification of the polaron measure I: fixed coupling regime and
the central limit theorem for large times. Commun. Pure Appl. Math. 73(2), 350–383 (2019)

21. Reed, M., Simon, B.: Functional Analysis: Volume 1 of Methods of Modern Mathematical Physics
(Revised and Enlarged Edition). Academic Press, London (1980)

22. Sellke, M.: Almost Quartic Lower Bound for the Fröhlich Polaron’s Effective Mass via Gaussian
Domination. arXiv:2212.14023 (2022)

23. Spohn, H.: Effective mass of the polaron: a functional integral approach. Ann. Phys. 175(2), 278–318
(1987)

24. Spohn, H.: The polaron at large total momentum. J. Phys. A: Math. Gen. 21(5) (1988)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s00220-022-04553-0
http://arxiv.org/abs/2211.03353
http://arxiv.org/abs/2206.14708
http://arxiv.org/abs/2203.02454
http://arxiv.org/abs/2212.14023

	Renewal approach for the energy–momentum relation of the Fröhlich polaron
	Abstract
	1 Introduction and results
	2 Proof of Theorem 1
	Acknowledgements
	References




