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Abstract
We describe a procedure to deform the dynamics of a two-dimensional conformal net
to possibly obtain a Haag–Kastler net on the de Sitter spacetime. The new dynamics
is given by adding a primary field smeared on the time-zero circle to the Lorentz
generators of the conformal net. As an example, we take an extension of the chiral
U(1)-current net by a charged field with conformal dimension d < 1

4 . We show that
the perturbing operators are defined on a dense domain.

Keywords Modular Hamiltonian · Geodesic KMS condition · de Sitter space ·
Primary fields · Conformal field theory · Integrable perturbation
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1 Introduction

The first interacting quantum field theories, theP(φ)2-models, have been constructed
by starting with the free field on the Minkowski space, defining an interaction term,
perturbing the dynamics by it locally, finding the interacting vacuum and changing
the Hilbert space [11]. The P(φ)2-models have been constructed also on the de
Sitter space [10], then recently formulated into the operator-algebraic framework [5].
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Perturbing the dynamics on the deSitter space has the advantage that onemay construct
interacting models on the same Hilbert space, as one can avoid Haag’s theorem [24].

The procedure of perturbing the dynamics has been formulated in [13]: One starts
with a Haag–Kastler net on the de Sitter space (in the sense of [3]), then alters the
Lorentz boosts by defining the new ones as the modular groups for a rotation invariant,
interacting vacuum vector. The above P(φ)2-models fit in this programme. As the
arguments do not depend on the properties of free fields, one may wish to find other
examples. We propose such an example in this work, where the starting QFT is a two-
dimensional conformal field theory and the perturbation is given by a primary field.
Specifically, the conformal field theory is a two-dimensional extension of the chiral
U(1)-current algebra, and we take the charge-carrying field as the interaction term.
Such fields have been constructed recently as two-dimensional conformal Wightman
fields [1]. Such a conformal field can be seen as a field on the de Sitter space through
a conformal map.

The U(1)-current algebra is defined on the Hilbert space H0, and the two-
dimensional extension contains two copies of it as the left and right chiral components.
The chiral components have charged sectors Hα parametrized by α ∈ R. For a fixed
α0 ∈ R, we take

⊕
j∈ZH jα0 ⊗ H jα0 as the Hilbert space

1. For α ∈ α0Z, there is a
charged field Yα(z) that mapsHβ ⊗Hβ toHβ+α ⊗Hβ+α , β ∈ α0Z. This is the basis
of our perturbing field. We show that the symmetric field Yα(z)⊗Yα(z−1)+Yα(z)∗ ⊗
Yα(z−1)∗ can be added to the Lorentz generators of the de Sitter space, and they still
satisfy the Lorentz relations weakly.

From a physical point of view, perturbing the Hamiltonian of a CFT by a (relevant)
field has been proposed to obtain massive integrable models in [26]. Depending on
the initial CFT and the perturbing field, various integrable models should be obtained.
While our results are specific to the U(1)-current, the proof of (weak) Lorentz relations
depends essentially on the fact that we take a primary field that is commutative at the
time-zero circle. Therefore, the idea should generalize to many CFTs and primary
fields.

This paper is organized as follows. In Sect. 2, we briefly recall the algebraic frame-
work on the de Sitter spacetime, how a two-dimensional CFT can be considered on the
de Sitter spacetime and the perturbation of the dynamics by a local field. In Sect. 3, a
family of two-dimensional extensions of the U(1)-current net and their charged fields
are reviewed. In Sect. 4, we make estimates of the charged fields restricted to the
time-zero circle and show that the restriction defines operators if the charge α satisfies
|α| < 1√

2
. Section5 shows that the time-zero charged fields commute with each other.

In Sect. 6, we show that the Lorentz generators perturbed by the charged field still
satisfy the Lorentz relations weakly on a certain domain. In Sect. 7, we describe how
this programme can be completed.

1 From a general point of view, it is more natural to take
⊕

j∈ZH jα0 ⊗H− jα0 (cf.[16]). In this case, the
resulting net is unitarily equivalent through the map J (z) → −J (z), which can be unitarily implemented.
That is, by denoting θ the adjoint action by this unitary, one has ρα ◦ θ = θ ◦ ρ−α . This should be
distinguished from unitary (non)equivalence of sectors, AdU ◦ ρα �= ρ−α for any U if α �= 0. Note that
J (z) is defined in Sect. 3.1.
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2 General strategy

2.1 Haag–Kastler nets on the de Sitter space

The two-dimensional deSitter spacedS2 is embedded in the ambient three-dimensional
Minkowski space R

1+2 by the equation x20 − x21 − x22 = −r2, where r > 0. The

isometry group of dS2 is the (proper orthochronous) Lorentz group L↑
+ (the connected

component of the stabilizer subgroup of the point (0, 0, 0) in the three-dimensional
Poincaré group), also called the de Sitter group. On this space, the causal structure and
the metric can be introduced by restricting those of the ambient Minkowski space. The
region {(x0, x1, x2) ∈ R

1+2 | |x0| < x1} is called the wedge in the x1-direction. We
denote its intersection with dS2 byW1. Any image ofW1 by a Lorentz transformation
is called a wedge in dS2. For any wedge W , there is a one-parameter group �W (t) of
Lorentz boosts that fix W , which are referred to as the boosts associated with W .

The Haag–Kastler axioms, usually considered on theMinkowski space, can be also
formulated on dS2 [3], where the spectrum condition is replaced by the geodesic KMS
property as below. A Haag–Kastler net on dS2 is a triple (A,U ,�), where A is a
family of von Neumann algebras on a Hilbert space H parametrized by open regions
O ⊂ dS2,U is a unitary representation of L↑

+ onH (continuous in the strong-operator
topology) and � is a vector inH, such that

(HK1) Isotony: A(O1) ⊂ A(O2) for O1 ⊂ O2;
(HK2) Locality: If O1 and O2 are spacelike separated, then A(O1) ⊂ A(O2)

′;
(HK3) Lorentz covariance: A(gO) = AdU (g)(A(O)) for g ∈ L↑

+;
(HK4) Cyclicity: � is cyclic for each A(O);
(HK5) ThegeodesicKMSproperty:For anywedgeW , it holds thatU (�W (2π t)) =


−i t
W , where 
i t

W is the modular group of the algebra A(W ) with respect to
�.

The geodesic KMS property is equivalently stated by saying that U (�W (t)) satisfies
the KMS condition for A(W ) with temperature 2π with respect to � [3].

2.2 Two-dimensional conformal net on the de Sitter space

Our starting point is a two-dimensional conformal field theory. A two-dimensional
conformal field theory on the Minkowski space is a theory that is (locally) covariant
with respect not only to the Poincaré group but also to the universal covering Möb ×
Möb of the Möbius group Möb × Möb including special conformal transformations,
and often further to Diff+(S1) × Diff+(S1). It is known that any two-dimensional
conformal (Haag–Kastler) net, a priori defined on theMinkowski spaceR1+1, extends
to the Einstein cylinder [15] [17, Theorem A.5]. Then, the de Sitter space dS2 can be
embedded conformally in theEinstein cylinder, andwe can restrict the given conformal
net to this subset [12], see Fig. 1. Therefore, a two-dimensional CFT can be considered
as a QFT on dS2 in this natural sense. Let us briefly review how this is done.

In our framework, a conformal Haag–Kastler net can be described as follows.
First, we consider R1+1 as the product of two lightrays. Each lightray R has S1
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as the one-point compactification, and the group Diff+(S1) acts on it. Therefore,
Diff+(S1) × Diff+(S1) acts on R

1+1 locally in the sense of [4]. Furthermore, by
spacelike locality, this action factors through the subgroup R := {R2nπ × R−2nπ :
n ∈ Z} where Rt ∈ Diff+(S1) is the lift of the rotation by t [15, Proposition 2.1] (see
also [17, Theorem A.5]). We denote this group by C . The Minkowski space R

1+1

is conformally equivalent to the product I2π × I2π of open intervals of length 2π ,
and through the local action of C , the Haag–Kastler net can be extended to R × R

quotiented by the action of R, where R is the universal covering of S1. This space
is conformally equivalent to the Einstein cylinder E = S1 × R (the product structure
is different from the previous one). We say that two regions O1, O2 are spacelike
separated if there is a diamond obtained by shifting the Minkowski space I2π × I2π ,
which includes O1, O2 such that O1 and O2 are spacelike separated there.

To be precise, the axioms for conformal nets on E are the following: Let A be a
family of von Neumann algebras on H parametrized by open regions in E , let U be
a unitary projective representation of the group C on H (note that the restriction of
U to the subgroup Möb × Möb/R can be actually made into a true representation
of Möb × Möb [2, Theorem 7.1], and the generators of one-parameter subgroups in
Möb × Möb are uniquely defined) and let � be a vector inH such that

(CN1) Isotony: A(O1) ⊂ A(O2) for O1 ⊂ O2;
(CN2) Locality: If O1 and O2 are spacelike separated, then A(O1) ⊂ A(O2)

′;
(CN3) Conformal covariance: A(γ O) = AdU (γ )(A(O)) for γ ∈ C , and if O

is disjoint from supp γ , then AdU (γ )(x) = x for x ∈ A(O);
(CN4) Positive energy: The generators of the chiral rotation subgroups Rt × ι, ι ×

Rt , where ι ∈ Diff+(S1) is the unit element, are positive;
(CN5) Vacuum: � is cyclic for each A(O) and is a unique (up to scalar) vector

such that U (γ )� = � for γ ∈ Möb × Möb in the sense above.

In a conformal net, the Bisognano–Wichmann property holds automatically [4].
On the Einstein cylinder E , the strip of temporal width π , see Fig. 1, is conformally

equivalent to the de Sitter space [12] (for each radius r there are different de Sitter
spaces, but we do not specify r , because the only point is that any of such de Sitter
spaces is conformally equivalent to the same part of the cylinder). The time-zero circle
S1 (x0 = 0) in the de Sitter space is the (compactified) time-zero line (a0 = 0) on the
cylinder, and space rotations act on it. Other Lorentz transformations are contained
in the conformal group C . Indeed, the spacelike rotations Rt × R−t and Lorentz
boosts (that is the product of lightlike dilations with opposite sign) generate the three-
dimensional Lie group SO(2, 1) (the (2+ 1)-dimensional Lorentz group), also called
the 2d de Sitter group. Therefore, by restricting a conformal net to the de Sitter space,
it satisfies the axioms (HK1-5): the geodesic KMS property is satisfied because of the
Bisognano–Wichmann property.

In general, a two-dimensional conformal net A contains chiral components, that
are observables living on the lightrays and invariant under the action of ι ×Diff+(S1)
(Diff+(S1) × ι, respectively). They can be regarded as Haag–Kastler nets on the
lightraysR. They extend to S1 by conformal covariance and are called conformal nets
on S1. More precisely, a triple (A0,U0,�0), where A0 is a family of von Neumann
algebras on a Hilbert space H0 parametrized by open connected nonempty nondense
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Fig. 1 The Minkowski space M0 (cf. [1, Figure 1]) and the de Sitter space dS2 conformally embedded in
R
2. The cylinder is obtained by identifying the dotted lines. The dark grey region is a wedge W and the

light grey region is a double cone

intervals in S1, U0 is a unitary projective representation of Diff+(S1), and �0 is a
vector inH0, is called a conformal net on S1 if it satisfies

(CNS1) Isotony: A0(I1) ⊂ A0(I2) for I1 ⊂ I2;
(CNS2) Locality: If I1 and I2 are disjoint, then A0(I1) ⊂ A0(I2)′;
(CNS3) Conformal covariance: A0(γ I ) = AdU0(γ )(A0(I )) for γ ∈ Diff+(S1),

and if I is disjoint from supp γ , then AdU0(γ )(x) = x for x ∈ A0(I );
(CNS4) Positive energy: The generator of the rotation subgroup in Diff+(S1) is

positive;
(CNS5) Vacuum: �0 is cyclic for each A0(I ) and is a unique (up to a scalar) vector

such that U0(γ )�0 = �0 for γ ∈ Möb;

A two-dimensional conformal net A contains both left and right chiral components.
Indeed, the operators U (γ0 × ι),U (ι × γ0) are such elements. In addition, left and
right chiral components commute with each other [20].

The positive-energy representation U0 is associated with a positive-energy repre-
sentation of the Virasoro algebra {Lm} [7, Appendix]:

[Lm, Ln] = (m − n)Lm+n + c

12
m(m2 − 1)δm,−n,

for a certain value c > 0 (by an abuse of notations, we use the symbols {Lm} both
for abstract Lie algebra elements and for unbounded operators satisfying the above
relations). The self-adjoint operators t = 1

2 L0 − 1
4 (L1 + L−1), d = i

2 (L−1 − L1) are
the generators of translations and dilations ofR ⊂ S1 (in the sense thatR is embedded
in S1 by the stereographic projection), respectively [23, Appendix A].

The two-dimensional conformal group C has the tensor product {Lm ⊗1,1⊗ Ln}
as the Lie algebra. The Lorentz boosts are generated by k1 := d ⊗ 1 − 1 ⊗ d, while
the rotations of the time-zero circle of the Einstein cylinder (identified with that of the
de Sitter space) are generated by k0 := L0 ⊗ 1 − 1 ⊗ L0. Note that the second boost
is given by k2 := i[k1, k0].

For z ∈ S1, one can consider the operator-valued distribution T (z) = ∑
n Lnz−n ,

called the Virasoro field (the convention of the exponent is the one such that
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T (z)∗ = T (z) [9], different from L(z) = ∑
n Lnz−n−2 in vertex algebras [14]).

The two-dimensional stress–energy tensor Tμν has four components, and the fields
T (z) ⊗ 1 + 1 ⊗ T (z−1) and T (z) ⊗ 1 − 1 ⊗ T (z−1) correspond to the components
of the stress–energy tensor T 01 and T 00 [19].

2.3 Perturbation by a local field

As we saw above, a two-dimensional conformal net can be considered as a Haag–
Kastler net on dS2 and hence as a starting point for a new construction in the sense
of [13]. We take a starting Haag–Kastler net A on dS2, a unitary representation U of
the (2 + 1)-dimensional Lorentz group and a vacuum vector �. We call “time-zero
wedges” wedge regions whose end points reside on S1.

The general strategy of [13, Theorem 4.1] goes as follows:

• Assume there is a rotation-invariant vector �̃ cyclic for A(W1) in the natural
positive cone P(A(W1),�) associated with the pair A(W1) and the free vacuum
vector �. The rotation-invariance of �̃ implies that �̃ ∈ P(A(W ),�0) for all
time-zero wedges W .

• Assume there exists a new (interacting) representation Ũ of the Lorentz group
such that

– its restriction to the rotation subgroup coincides with that of U ;
– its (interacting) Lorentz boost associated with the wedge W1 is implemented
by the modular group for the pair A(W1) and (the interacting vacuum vector)
�̃;

– it satisfies the finite speed of light condition [13, Definition 3.3], which roughly
says that the action of Ũ on the time-zero algebras A(OI ), with OI a double
cone given by the intersection of time-zero wedges, preserves locality.

The last two assumptions should be satisfied automatically if the new representa-
tion Ũ is generated from a local field, as below.2.

• The Lorentz covariance of the new net is given by Ũ . For any wedge region W ,
Ã(W ):=Ad Ũ (g)(A(W1)) (by definition), where g is such that gW1 = W (this
is well defined by finite speed of propagation, in particular, the free time-zero
wedge algebras are preserved by the new boosts). Any double cone is written as
O = ⋂

W⊃O W , and accordingly we define Ã(O) = ⋂
W⊃O Ã(W ). This satisfies

locality again by finite speed of propagation.

Then, (Ã, Ũ , �̃) is a newHaag–Kastler net on dS2. This construction avoidsHaag’s
theorem [24], because the spacetime is compact and there is no dilation covariance
that pushes a double cone to infinity.

Assume that the net A is generated by a conformal Wightman field ψ and it has
a well-defined restriction to the x0 = 0 circle, which we denote by ψ(0, θ). The
field ψ(0, θ) smeared by a test function f on the circle is denoted by ψ(0, f ). Let
en(θ) = einθ . We find interesting candidates for such Ũ by addingψ(0, e1), ψ(0, e−1)

2 For this implication, Trotter’s product formula was used in [5, Theorem 10.1.1]. For this, it is necessary
that the new generators are essentially self-adjoint on the same domain. Otherwise, new techniques would
be needed.
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to the building blocks l1 := L1 ⊗ 1 + 1 ⊗ L−1, l−1 := L−1 ⊗ 1 + 1 ⊗ L1 of the
generators

k1 = 1
2 (l1 + l−1), k2 = 1

2i (l1 − l−1),

of the Lorentz boosts and ψ(0, e0) to the generator of the rotations L0 ⊗ 1− 1⊗ L0
leaving the x0 = 0 circle invariant. By definition, l1 = k1 + ik2 and l−1 = k1 − ik2,
and consequently, l∗1 = l−1.

Below we take concrete examples of two-dimensional CFTs and a candidate for Ũ
using the charged fields in it.

3 The U(1)-current and its two-dimensional extension

3.1 Chiral components

To make the programme concrete, we consider a two-dimensional CFT, whose chiral
components are the U(1)-current nets on S1 [6]. It is generated by the current (the
derivative of the massless free field) J (z) = ∑

n Jnz−n−1, where z ∈ S1, and its
Fourier coefficients Jn satisfy the commutation relations

[Jm, Jn] = mδm,−n . (1)

There is a representation of this algebra with a unique vacuum vector �0 such that
Jn�0 = 0 for n ≥ 0. The Hilbert space H0 is spanned by the vectors of the form

J−n1 · · · J−nk�0,

where n1 ≥ n2 ≥ · · · ≥ nk . We denote byHfin
0 the linear span of these vectors.H0 is

equipped with an inner product 〈·, ·〉 with respect to which it holds that J ∗
n = J−n .

This current can be smeared by a smooth function f and gives an unbounded
operator J ( f ) = ∑

n fn Jn , where fn = 1
2π

∫
e−inθ f (θ)dθ are the Fourier compo-

nents. The exponential W ( f ) = ei J ( f ) is called a Weyl operator. One can construct
a conformal net on S1 by A0(I ) = {ei J ( f ) : supp f ⊂ I }′′. A representation of the
Virasoro algebra {Ln} is given by the Sugawara formula Ln = 1

2

∑
k : Jn−k Jk :,

and it integrates to a projective unitary representation U0 of Diff+(S1). With this U0,
(A0,U0,�0) is called the U(1)-current net.

A representation of a conformal netA0 on S1 is a family of isomorphisms {ρI } of
local algebras {A0(I )} to von Neumann algebras on a certain Hilbert space Hρ that
satisfy the compatibility condition

ρI1(a) = ρI2(a) for a ∈ A(I1), I1 ⊂ I2.

For eachα ∈ R, theU(1)-current net admits a representationρα . This representation
ρα can be realized on the same Hilbert space H0 as the vacuum representation, but
to distinguish them we denote it by Hα and the lowest weight vector by �α . The
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assignment W ( f ) �→ ρα(W ( f )) = eiα
∫

f (θ)dθW ( f ) gives the representation. This
is an automorphism of each local algebra A0(I ). In terms of generators, it amounts
to replacing J0 (which acts as the zero operator in the vacuum representation) by the
scalar α. We denote the generator of the current algebra (1) on this space by Jα,n .
By the Sugawara formula Lα,n = 1

2

∑
k : Jα,n−k Jα,k :, there is also a representation

of the Virasoro algebra with the same central charge c = 1. We denote by Hfin
α the

subspace spanned by vectors of the form Jα,−n1 · · · Jα,−nk�α .
Two such automorphismsρα1 , ρα2 can be composed, and yield a new automorphism

(representation) ρα1+α2 . This composition law is called the fusion rule for the U(1)-
current. For a fixed α0 ∈ R, the family {ρ jα0} j∈Z on {H jα0} is closed under fusion,
indeed, ρ j1α0ρ j2α0 = ρ( j1+ j2)α0 .

3.2 Charged primary fields

Let us fix α0 ∈ R with |α0| ≤ 1, α0 �= 0. We now construct3 for α ∈ α0Z, on a dense
domain in the Hilbert space Ĥ = ⊕

j∈ZH jα0 , a formal series4 by

Yα(z) =
∑

s∈R
Yα,s z

−s−d , (2)

where d = α2

2 , as follows. On Ĥ, the operators

Ĵn =
⊕

j∈Z
J jα0,n , L̂n =

⊕

j∈Z
L jα0,n

can be definednaturally (depending onα0, they act on aHilbert space Ĥ = ⊕
j∈ZH jα0

which also depends implicitly on α0). Let cα be the unitary charge shift operator
Hβ → Hβ+α defined by cα Ĵ−n1 · · · Ĵ−nk�β = Ĵ−n1 · · · Ĵ−nk�β+α , n j > 0. We can
regard cα as an operator on Ĥ = ⊕

j∈ZH jα0 . Following [22], we define

E±(α, z) = exp
(
∓

∑

n>0

α Ĵ±n

n
z∓n

)
. (3)

The operators Yα(z) are now specified by

Yα(z) = cαE
−(α, z)E+(α, z)zα J0 , (4)

where zα J0 means zαβ on Hβ . Each coefficient Yα,s is the direct sum of maps Hβ →
Hβ+α and on eachHβ, β ∈ α0Z, only Yα,s with s ∈ Z− αβ − α2

2 = Z− αβ − d are
nonzero.

3 The case α = 0 is possible but uninteresting because Y0(z) = 1, thus we do not consider it although not
explicitly excluded.
4 Recall [1] that we use formal series

∑
s∈R As zs for a family of operators {As }s∈R (actually the formal

series is just the parametrized family {As } itself, but certain operations on them are implicit).
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The operators L̂n generate a projective unitary representation Û0 of Diff+(S1). We
know from [1] (see [22] and [21] for the original references) that, if |α| ≤ 1, then Yα

satisfies, with d = α2

2 as above,

[L̂m,Yα,s] = ((d − 1)m − s)Yα,m+s, (5)

‖Yα,s‖ ≤ 1. (6)

By (6), we can smear the field by a test function supported in R and obtain a bounded
operator Yα( f ) (even for |α| > 1 one can define Yα( f ), but they are unbounded). By
(5), it is conformally covariant with respect to Û with the conformal dimension d. The
formal series Yα(z) = ∑

s∈R Yα,s z−s−d is not local with itself, but satisfies a braiding
relation.

From the construction (4), it is easy to see the commutation relation [ Ĵm,Yα(z)] =
αYα(z)zm , or equivalently,

[ Ĵm,Yα,s] = αYα,m+s . (7)

This implies that Yα(z) is relatively local to J (w).

3.3 Two-dimensionalWightman field

From two copies of a conformal nets A0 on S1, one can construct a two-dimensional
conformal net by tensor product: A0(I+ × I−) := A0(I+) ⊗ A0(I−). The unitary
representation ofC is given byU0(γ+)⊗U0(γ−) and the vacuumby�0⊗�0. Forα0 ∈
R, |α0| fixed above, there is an extension of this net on the space ⊕

j∈ZH jα0 ⊗H jα0
[1, 18]: on each direct summand H jα0 ⊗ H jα0 , the tensor product net A0 acts by the
representation ρ jα0 ⊗ ρ jα0 .

Furthermore, for α ∈ α0Z, let Yα,s as above on Ĥ = ⊕
j∈ZH jα0 . The components

Yα,s ⊗ 1 of the charged field Yα(z) ⊗ 1 of the left chiral component act on Ĥ ⊗ Ĥ
trivially on the right chiral component. Similarly, the components 1 ⊗ Yα,s of the
charged field 1 ⊗ Yα(z) of the right chiral component act on Ĥ ⊗ Ĥ, trivially on the
left chiral component.

For α ∈ α0Z, we consider the combined charged field

ψ̃α(w, z) = Yα(w) ⊗ Yα(z) + (Yα(w) ⊗ Yα(z))∗,

which is a formal series whose coefficients are operators acting on Ĥ ⊗ Ĥ. Actually,
as the components of Yα(w) ⊗ Yα(z) raise (respectively the components of (Yα(w) ⊗
Yα(z))∗ lower) the left and right charges by α at the same time, they restrict to H̃ =⊕

j∈ZH jα0 ⊗ H jα0 . As we take |α| ≤ 1, by [1, Theorem 5.9], the field ψ̃α(w, z)
is a two-dimensional conformal Wightman field that generates a two-dimensional
Haag–Kastler net. Let us call this net Ã.
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4 Estimates for the charged fields

As we wish to perturb the conformal net by a charged field, we are interested in the
time-zero restriction of ψ̃α(w, z) = Yα(w)⊗Yα(z)+(Yα(w)⊗Yα(z))∗. This amounts
to taking z = w−1. However, it is a priori unclear whether this is possible, because
taking z = w−1 should give a formal series of z alone, but each component is an
infinite sum of components of ψ̃α(w, z):

Yα(w) ⊗ Yα(z) =
∑

s∈R
Yα,sw

−s−d ⊗
∑

t∈R
Yα,t z

−t−d

Therefore, by substituting z = w−1,

Yα(w) ⊗ Yα(w−1) =
∑

s∈R
Yα,sw

−s−d ⊗
∑

t∈R
Yα,tw

t+d

=
∑

s∈R

∑

t∈R
Yα,t ⊗ Yα,t−sw

−s

and we have to make sure that the sum
∑

t∈R Yα,t ⊗ Yα,t−s (the sum is countable
on each H jα0 ⊗ H jα0 ) gives a finite result on a certain dense domain. As the dense
domain, we take

⊕
j,algHfin

jα0
⊗alg Hfin

jα0
where

⊕
j,alg denotes the algebraic direct

sum and ⊗alg denotes the algebraic tensor product. We show that the above sum is
convergent if |α| < 1√

2
.

For this purpose, we need a general result on primary fieldswith conformalweight d
[8, Appendix B (141)]. This is proven for fields with integer d, but it is straightforward
to generalize it (because one only needs the primarity). It states that

‖Yα,−n−d�‖2 =
(
2d + n − 1

n

)

= �(2d + n)

�(n + 1)�(2d)
∼ n2d−1, (8)

where the last asymptotic follows from the Stirling’s approximation of the Gamma
function �(x) with complex variable [25, 12.33].

We first observe that, for |α| ≥ 1√
2
, d = α2

2 ≥ 1
4 , thus

∑
n∈Z Yα,−n ⊗ Yα,−n−s

does not converge on �0 ⊗ �0. Indeed, ‖Yα,−n−d ⊗ Yα,−n−d−s · �0 ⊗ �0‖2 =
(2d+n−1

n

)(2d+n+s−1
n+s

) ∼ n4d−2 (for a fixed s, as n → ∞) and these vectors are orthog-
onal to each other, hence the sum

∑
n∈Z Yα,−n−d ⊗ Yα,−n−d−s diverges on �0 ⊗ �0.

This means that, if |α| ≥ 1√
2
, there is no hope to define an operator of the form

∑
n Yα,−n−d ⊗ Yα,−n−d−s on a domain containing �0 ⊗ �0.
On the other hand, if d < 1

4 , there is still hope that we can carry through the general
programme of Sect. 2.3.
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Theorem 4.1 Let5 |α| < 1√
2
. Then, each coefficient of ws in the formal series

ψ̃α(w,w−1), applied to any vector in
⊕

j,algHfin
jα0

⊗alg Hfin
jα0

, is convergent.

Proof We note first that a general vector in one tensor component is a linear combi-
nation of c jα Ĵ−m1 · · · Ĵ−mk�0, where m� > 0 and c jα commutes with Ĵm,m �= 0.
Therefore, it is enough to prove the convergence on vectors inHfin

0 ⊗alg Hfin
0 .

We claim that ‖Yα,−n−d Ĵ−m1 · · · Ĵ−mk�0‖2 ≤ C1(n + C2)
4d−2 where C1,C2

depend on the vector but not on n. This is clear for k = 0. To prove the claim by
induction on k, let us observe that Yα,−n−d Ĵ−m1 · · · Ĵ−mk�0 can be reduced, using the
commutation relations (7), [Yα,−n−d , Ĵm] = −αYα,−n+m−d , as follows:

Yα,−n−d Ĵ−m1 · · · Ĵ−mk�0 = ([Yα,−n−d , Ĵ−m1 ] + Ĵ−m1Yα,−n−d) Ĵ−m2 · · · Ĵ−mk�0

= (−αYα,−n+m1−d + Ĵ−m1Yα,−n−d) Ĵ−m2 · · · Ĵ−mk�0 .

Using ‖�1 + �2‖2 ≤ 2(‖�1‖2 + ‖�2‖2), it is enough to show that the norm of
each term decays as desired. The first term decays by the induction hypothesis. Let us
calculate the norm of the second term:

‖ Ĵ−m1Yα,−n−d Ĵ−m2 · · · Ĵ−mk�0‖2
= 〈Yα,−n−d Ĵ−m2 · · · Ĵ−mk�0, ([ Ĵm1 , Ĵ−m1 ] + Ĵ−m1 Ĵm1)Yα,−n−d Ĵ−m2 · · · Ĵ−mk�0〉
= 〈Yα,−n−d Ĵ−m2 · · · Ĵ−mk�0, (m1 + Ĵ−m1 Ĵm1)Yα,−n−d Ĵ−m2 · · · Ĵ−mk�0〉
= m1‖Yα,−n−d Ĵ−m2 · · · Ĵ−mk�0‖2 + ‖ Ĵm1Yα,−n−d Ĵ−m2 · · · Ĵ−mk�0‖2
= m1‖Yα,−n−d Ĵ−m2 · · · Ĵ−mk�0‖2

+ ‖(αYα,−n+m1−d + Yα,−n−d Ĵm1) Ĵ−m2 · · · Ĵ−mk�0‖2
≤ m1‖Yα,−n−d Ĵ−m2 · · · Ĵ−mk�0‖2

+ 2‖αYα,−n+m1−d Ĵ−m2 · · · Ĵ−mk�0‖2 + 2‖Yα,−n−d Ĵm1 Ĵ−m2 · · · Ĵ−mk�0‖2 .

The last term can be reduced, using [ Ĵm, Ĵn] = mδm,−n and Ĵm�0 (as m > 0), to
a sum of norms of vectors of the above form. This completes the induction. That is,
the norm of Yα,−n−d Ĵ−m1 · · · Ĵ−mk�0 is a linear combination of terms that decay like
(n + C2)

2d−1.
When the operator Yα,−n−d ⊗ Yα,−n−d−s for a fixed s is applied to a vector that is

the tensor product of two such vectors, the norm decays as C1(n +C2)
4d−2, which is

summable in n. Therefore, this operator is defined on
⊕

j,algHfin
jα0

⊗alg Hfin
jα0

. ��

5 Commutativity of the time-zero charged field

Now we know that, for |α| < 1√
2
, Yα(w) ⊗ Yα(w−1) makes sense as a formal series

whose coefficients are (unbounded) operators on the dense domain
⊕

j,algHfin
jα0

⊗
5 As α ∈ α0Z, we can take such an α if |α0| < 1√

2
.
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Hfin
jα0

. Next we show that it is not only local but also commutative, and moreover,

Yα(w) ⊗ Yα(w−1) and Yβ(z) ⊗ Yβ(z−1) commute for possibly different α, β ∈ α0Z.
More precisely, we have the following result.

Theorem 5.1 As formal series, it holds that (Yα(w) ⊗ Yα(w−1)∗ = Y−α(w) ⊗
Y−α(w−1) under the convention w∗ = w−1 and Yα(w) ⊗ Yα(w−1) and Yβ(z) ⊗
Yβ(z−1) commute on the domain

⊕
j,algHfin

jα0
⊗alg Hfin

jα0
weakly, that is, as sesquilin-

ear forms.

Proof The first claim follows easily from the definitions (3)(4) and c∗
α = c−α .

Let us denote by Ĵm⊗1 the operator on
⊕

j,algHfin
jα0

⊗algHfin
jα0

that acts as Ĵ jα,m⊗1

on each component Hfin
jα0

⊗alg Hfin
jα0

. We calculate the commutator as a sesquilinear
form, that is, we apply the operators to a vector and take a scalar product with another
vector, but we omit them. We have [ Ĵm,Yα,s] = αYα,m+s . In terms of formal series,
this amounts to [Yα(w), Ĵm] = −αYα(w)wm . Thus, it holds that, by the derivation
property of the commutator with the generator,

−[[Yα(w) ⊗ Yα(w−1),Yβ(z) ⊗ Yβ(z−1)], Ĵm ⊗ 1]
= [[ Ĵm ⊗ 1,Yα(w) ⊗ Yα(w−1)],Yβ(z) ⊗ Yβ(z−1)]

+ [[Yβ(z) ⊗ Yβ(z−1), Ĵm ⊗ 1],Yα(w) ⊗ Yα(w−1)]
= (αwm + βzm)[Yα(w) ⊗ Yα(w−1),Yβ(z) ⊗ Yβ(z−1)],

and similarly, with 1 ⊗ Ĵm that acts as 1 ⊗ Ĵm on each component Hfin
jα0

⊗alg Hfin
jα0

,

− [[Yα(w) ⊗ Yα(w−1),Yβ(z) ⊗ Yβ(z−1)],1 ⊗ Ĵm]
= (αw−m + βz−m)[Yα(w) ⊗ Yα(w−1),Yα(z) ⊗ Yα(z−1)] .

We observe that, upon commuting with Ĵm ⊗1 or 1⊗ Ĵm , we obtain the same operator
[Yα(w) ⊗ Yα(w−1),Yα(z) ⊗ Yα(z−1)] multiplied by a scalar.

Now, to show that the commutator [Yα(w)⊗Yα(w−1),Yα(z)⊗Yα(z−1)] vanishes,
we only have to check that the matrix element vanishes. It is easy to check that
Yα(w) ⊗ Yα(w−1) commutes with cα ⊗ cα; therefore, we only have to consider pairs
of vectors in H0 ⊗ H0 and Hα ⊗ Hα . Furthermore, due to the above commutation
relations, the linear functional

〈 Ĵ−m1 · · · Ĵ−mk�2α ⊗ Ĵ−n1 · · · Ĵ−n�
�2α, · Ĵ−m′

1
· · · Ĵ−m′

k′
�0 ⊗ Ĵ−n′

1
· · · Ĵ−n′

�′
�0〉

can be reduced to the case 〈�2α ⊗ �2α, · �0 ⊗ �0〉.
Let us put Y α(z) = E−(α, z)E+(α, z) and Ỹ α(z) = Y α(z) ⊗ Y α(z−1). As we

have E+(α, z)∗ = E−(−α, z) (with the convention that z∗ = z−1), it follows that
Y α(z)∗ = Y−α(z) and Ỹ α(z)∗ = Ỹ−α(z), or equivalently Ỹ

†
m,α = Ỹ−m,−α .
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Expand Ỹ α(z) as Ỹ α(z) = ∑
m∈Z Ỹ α,mz

−m = ∑
m

∑
k Y α,k ⊗ Y α,k−mz

−m . Then,
we have

Yα(z) ⊗ Yα(z−1) = (cα ⊗ cα)zα J0 z−α J0Y α(z) ⊗ Y α(z−1)

= (cα ⊗ cα)Ỹ α(z).

Therefore, the question is further reduced to 〈�0 ⊗ �0, [Ỹ α,m, Ỹ β,n]�0 ⊗ �0〉 = 0
for all m, n.

Note that, with F the flip operator between the left and right tensor components in
H0 ⊗ H0 (which is a unitary operator),

Ỹ α,m�0 ⊗ �0 =
∑

k

Y α,k ⊗ Y α,k−m�0 ⊗ �0 = F ·
∑

k

Y α,k−m ⊗ Y α,k�0 ⊗ �0

= F ·
∑

k

Y α,k ⊗ Y α,k+m�0 ⊗ �0 = F · Ỹ α,−m�0 ⊗ �0 .

This implies that

〈Ỹ α,m�0 ⊗ �0, Ỹ β,n�0 ⊗ �0〉 = 〈F · Ỹ α,−m�0 ⊗ �0, F · Ỹ β,−n�0 ⊗ �0〉
= 〈Ỹ α,−m�0 ⊗ �0, Ỹ β,−n�0 ⊗ �0〉 .

Moreover, note that the map Jm �→ −Jm is a vacuum-preserving automorphism
implemented by a unitary (the multiplication by (−1)k on the k-particle space), and
its tensor product maps

Ỹ α(z) = E−(α, z)E+(α, z) ⊗ E−(α, z−1)E+(α, z−1)

�−→ E−(−α, z)E+(−α, z) ⊗ E−(−α, z−1)E+(−α, z−1) = Ỹ−α(z) .

That is, Ỹ α,m is mapped to Ỹ−α,m , therefore, by the invariance of �0 ⊗ �0 by this
unitary,

〈Ỹ α,m�0 ⊗ �0, Ỹ β,n�0 ⊗ �0〉 = 〈Ỹ−α,m�0 ⊗ �0, Ỹ−β,n�0 ⊗ �0〉 .

From this, we can compute the commutator (as a sesquilinear form)

〈�0 ⊗ �0, [Ỹ α,m, Ỹ β,n]�0 ⊗ �0〉
= 〈�0 ⊗ �0, (Ỹ α,mỸ β,n − Ỹ β,nỸ α,m)�0 ⊗ �0〉
= 〈Ỹ−α,−m�0 ⊗ �0, Ỹ β,n�0 ⊗ �0〉 − 〈Ỹ−β,−n�0 ⊗ �0, Ỹ α,m�0 ⊗ �0〉
= 〈Ỹ−α,m�0 ⊗ �0, Ỹ β,−n�0 ⊗ �0〉 − 〈Ỹ−β,−n�0 ⊗ �0, Ỹ α,m�0 ⊗ �0〉
= 〈Ỹ α,m�0 ⊗ �0, Ỹ−β,−n�0 ⊗ �0〉 − 〈Ỹ−β,−n�0 ⊗ �0, Ỹ α,m�0 ⊗ �0〉.
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Furthermore, by construction (4) of Ỹ m = ∑
k∈R Y α,k ⊗ Y α,k−m , these expectation

values give only real numbers. Therefore, by hermitianity of the scalar product, this
commutator vanishes on the vacuum state. ��

6 Perturbation by charged fields

According to the general idea of Sect. 2, we wish to perturb the net Ã by a field by
the methods of Barata-Jäkel-Mund [5]. That is, while keeping the T 11 component of
the stress–energy tensor, we add a smeared local field to the T 00 component on the
time-zero circle S1.

The necessary condition for it to work is that the new operators satisfy the Lorentz
relations (the generators of the Lorentz group are complex linear combinations of
lm,m = −1, 0, 1, cf.Sect. 2.3):

[lm, ln] = (m − n)lm+n, m, n = −1, 0, 1.

As we do not know whether the smeared field can be multiplied on the domain of the
old generators,we consider theweak commutation relation: for two vectors�1, �2,we
compute 〈A∗�1, B�2〉 − 〈B∗�1, A�2〉. Obviously, if the commutator [A, B] can be
defined on the domain and calculated, then it implies the weak commutation relation.

We pick the symmetric field

ψ̃α(w, z) = Yα(w) ⊗ Yα(z) + (Yα(w) ⊗ Yα(z))∗

= Yα(w) ⊗ Yα(z) + Y−α(w) ⊗ Y−α(z),

restrict it to the time-zero circle z = w−1 and smear it with e j (θ), n = −1, 0, 1.
Correspondingly, we consider the coefficients of z−n :

∑

k∈R
Yα,k ⊗ Yα,−n+k +

∑

s∈R
Y−α,s ⊗ Y−α,−n+s =

∑

k∈R,ε=±1

Yεα,k ⊗ Yεα,−n+k .

Theorem 6.1 The Lorentz relations are weakly satisfied for

L̂1 ⊗ 1 + 1 ⊗ L̂−1 + λ
∑

k∈R,ε=±1

Yεα,k ⊗ Yεα,−1+k ,

L̂0 ⊗ 1 − 1 ⊗ L̂0 ,

L̂−1 ⊗ 1 + 1 ⊗ L̂1 + λ
∑

k∈R,ε=±1

Yεα,k ⊗ Yεα,1+k ,

where k runs in R, but there are only countable nonzero terms on eachHβ ⊗ Hβ , on

the domain
⊕

j,algHfin
jα0

⊗alg Hfin
jα0

.
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Proof It is clear that, if λ = 0, these are the old generators and they satisfy the Lorentz
relations on the domain

⊕
j,algHfin

jα0
⊗alg Hfin

jα0
. The new terms commute with each

other in the weak sense as we have seen in Sect. 5; hence, we only have to check the
commutation relations between the old terms and the new terms.

One new term can be applied to a vector in the domain and gives a convergent
series; hence, we can compute the weak commutator term by term. For a primary field
Yα(z), it holds that [L̂m,Yα,n] = ((d − 1)m − n)Yα,m+n in the operator sense, and
hence also in the weak sense. Therefore, we have the following commutation relation
in the weak sense:

[

L̂m ⊗ 1 + 1 ⊗ L̂−m ,
∑

k∈R
Yα,k ⊗ Yα,−n+k

]

=
∑

k∈R

(

((d − 1)m − k)Yα,k+m ⊗ Yα,−n+k

+ ((d − 1)(−m) − (−n + k))Yα,k ⊗ Yα,−m−n+k

)

=
∑

k∈R

((
(d − 1)m − (k − m)

)
Yα,k ⊗ Yα,−m−n+k

+ ((d − 1)(−m) − (−n + k))Yα,k ⊗ Yα,−m−n+k

)

=
∑

k∈R
(m + n − 2k)Yα,k ⊗ Yα,−m−n+k .

As α is arbitrary, this holds even if α is replaced by −α. Furthermore,
∑

k∈R Yα,k ⊗
Yα,−n+k and

∑
k∈R Y−α,k ⊗ Y−α,−n+k commute by Theorem 5.1. Altogether,

⎡

⎣L̂m ⊗ 1 + 1 ⊗ L̂−m + λ
∑

k∈R,ε=±1

Yεα,k ⊗ Yεα,−m+k,

L̂n ⊗ 1 + 1 ⊗ L̂−n + λ
∑

k∈R,ε=±1

Yεα,k ⊗ Yεα,−n+k

⎤

⎦

= (m − n)L̂m+n ⊗ 1 − (m − n)1 ⊗ L̂−m−n

+ λ
∑

k∈R,ε=±1

(m + n − 2k)Yεα,k ⊗ Yεα,−m−n+k

− λ
∑

k∈R,ε=±1

(n + m − 2k)Yεα,k ⊗ Yεα,−n−m+k

= (m − n)L̂m+n ⊗ 1 − (m − n)1 ⊗ L̂−m−n ,

and for m = 1, n = −1, this is 2(L̂0 ⊗ 1 − 1 ⊗ L̂0).
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On the other hand,⎡

⎣L̂0 ⊗ 1 − 1 ⊗ L̂0, L̂m ⊗ 1 + 1 ⊗ L̂−m + λ
∑

k∈R,ε=±1

Yεα,k ⊗ Yεα,−m+k

⎤

⎦

= (−m)L̂m ⊗ 1 − (m)1 ⊗ L̂−m

+ λ
∑

k∈R,ε=±1

(
(−k)Yεα,k ⊗ Yεα,−m+k − (−(−m + k))Yεα,k ⊗ Yεα,−m+k

)

= (−m)

⎛

⎝L̂m ⊗ 1 + 1 ⊗ L̂−m + λ
∑

k∈R,ε=±1

Yεα,k ⊗ Yεα,−m+k

⎞

⎠ .

For m = 1,−1, we obtain the right commutation relations between l0 and lm . ��
Note that the Lorentz relations do not extend beyond m = 1, 0,−1, that is, they do

not satisfy the Virasoro relations.
In order to implement the perturbation by this commutative field, we need to solve

the following problems: show that the above generators are self-adjoint on a certain
domain and generate a dynamics that satisfies finite speed of propagation.

On the other hand, on the time-zero circle, there is a new representation of the
Virasoro algebra (with non-positive energy) with c = 0, or the Witt algebra.

Proposition 6.2 The Virasoro relations are weakly satisfied with c = 0 for

L̂m ⊗ 1 − 1 ⊗ L̂−m + iλm
∑

k∈R,ε=±1

Yεα,k ⊗ Yεα,−m+k,

where k runs in R, but there are only countable nonzero terms on each Hβ ⊗ Hβ .

Proof As before, we compute the commutation relations weakly. First, with d = α2

2 =
(−α)2

2 ,

⎡

⎣L̂m ⊗ 1 − 1 ⊗ L̂−m,
∑

k∈R,ε=±1

Yεα,k ⊗ Yεα,−n+k

⎤

⎦

=
∑

k∈R,ε=±1

(
((d − 1)m − k)Yεα,k+m ⊗ Yεα,−n+k

− ((d − 1)(−m) − (−n + k))Yεα,k ⊗ Yεα,−m−n+k

)

=
∑

k∈R,ε=±1

(
((d − 1)m − (k − m))Yεα,k ⊗ Yεα,−m−n+k

− ((d − 1)(−m) − (−n + k))Yεα,k ⊗ Yεα,−m−n+k

)

=
∑

k∈R,ε=±1

((2d − 1)m − n)Yεα,k ⊗ Yεα,−m−n+k
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and by plugging this into the full expressions,

⎡

⎣L̂m ⊗ 1 − 1 ⊗ L̂−m + iλm
∑

k∈R,ε=±1

Yεα,k ⊗ Yεα,−m+k ,

L̂n ⊗ 1 − 1 ⊗ L̂−n + iλn
∑

k∈R,ε=±1

Yεα,k ⊗ Yεα,−n+k

⎤

⎦

= (m − n)L̂m+n ⊗ 1 + (−m − n)1 ⊗ L̂−m+n

+ iλ
∑

k∈R,ε=±1

(n((2d − 1)m − n) − m((2d − 1)n − m))Yεα,k ⊗ Yεα,−m−n+k

= (m − n)

⎛

⎝L̂m+n ⊗ 1 − 1 ⊗ L̂−m−n + iλ(m + n)
∑

k∈R,ε=±1

Yεα,k ⊗ Yεα,−m−n+k

⎞

⎠ .

��
The combination iλm means that we are taking the derivative −i∂θ ψ̃

α(eiθ , e−iθ ).
The operators L̂m ⊗ 1− 1⊗ L̂−m are the generators of the time-zero Virasoro (Witt)
algebra, and Proposition 6.2 tells that there are different actions of the Virasoro algebra
with c = 0.

In addition, a formal calculation shows that, for d = 1
2 (and only for this case),

there is another set of expressions having similar relations. That is, for

L̂m ⊗ 1 − 1 ⊗ L̂−m + λ
∑

k∈R,ε=±1

Yεα,k ⊗ Yεα,−m+k,

we calculate formally the commutators (this is only formal because for d = 1
2 we do

not have the convergence for the product of two such expressions evaluated in a pair
of vectors). In Proposition 6.2, we have seen that

⎡

⎣L̂m ⊗ 1 − 1 ⊗ L̂−m,
∑

k∈R,ε=±1

Yεα,k ⊗ Yεα,−n+k

⎤

⎦

=
∑

k∈R,ε=±1

((2d − 1)m − n)Yεα,k ⊗ Yεα,−m−n+k

and the full commutators are now

⎡

⎣L̂m ⊗ 1 − 1 ⊗ L̂−m + λ
∑

k∈R,ε=±1

Yεα,k ⊗ Yεα,−m+k,

L̂n ⊗ 1 − 1 ⊗ L̂−n + λ
∑

k∈R,ε=±1

Yεα,k ⊗ Yεα,−n+k

⎤

⎦
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= (m − n)L̂m+n ⊗ 1 + (−m − n) ⊗ L̂−m+n

+ λ
∑

k∈R,ε=±1

(((2d − 1)m − n) − ((2d − 1)n − m))Yεα,k ⊗ Yεα,−m−n+k

= (m − n)
(
L̂m+n ⊗ 1 − ⊗L̂−m−n + 2dλ

∑

k∈R,ε=±1

Yεα,k ⊗ Yεα,−m−n+k

)
.

The last expression in the bracket coincides with L̂m+n ⊗ 1 − 1 ⊗ L̂−m−n +
λ

∑
k∈R,ε=±1 Yεα,k ⊗ Yεα,−m−n+k if and only if d = 1

2 . The case d = 1
2 is related to

free fermions. This might indicate a hidden symmetry for free fermions.

7 Outlook

Weneed that the above generators are self-adjoint on a certain domain. This is open. To
show that they are essentially self-adjoint on our domain, one way would be to use the
analytic vector theorem, but it is unclear whether even �0 ⊗ �0 is an analytic vector.
Therefore, we need better estimates of the time-zero restriction Yα(w) ⊗ Yα(w−1).
Such estimates will be needed also to show that the perturbed Lorentz generators do
generate a new representation of the Lorentz group, that we can construct a newHaag–
Kastler net on dS2 and to find the interacting vacuum. For this purpose, studying the
Euclidean models of these two-dimensional CFT might help.

There aremany two-dimensional CFTs and some of the charged primary fields have
been relatively well understood. It might be a good idea to take other models where
charged fields allow better control.
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