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Abstract
We study geodesics flows on curved quantum Riemannian geometries using a recent
formulation in terms of bimodule connections and completely positive maps. We
complete this formalismwith a canonical∗ operation on noncommutative vector fields.
We show on a classical manifold how the Ricci tensor arises naturally in our approach
as a term in the convective derivative of the divergence of the geodesic velocity field
and use this to propose a similar object in the noncommutative case. Examples include
quantum geodesic flows on the algebra of 2 × 2 matrices, fuzzy spheres and the q-
sphere.

Keywords Noncommutative geometry · Quantum gravity · Ricci tensor · Quantum
mechanics · Fuzzy sphere · Quantum group · Quantum sphere

Mathematics Subject Classification Primary 83C65 · 81R50 · 58B32 · 46L87

1 Introduction

Noncommutative geometry is the idea that we can extend geometric concepts to
the case where ‘coordinate algebras’ are noncommutative. On the physics side, a
motivation is the quantum spacetime hypothesis that spacetime is better modelled by
noncommutative coordinates due to quantumgravity effects. Thiswas speculated upon
at various points since the early days of quantum mechanics [23] but in a modern era
specific proposals for models appeared in [10, 12, 17, 18] among others, but without
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the machinery of quantum Riemannian geometry as now available in a constructive
form [2]. Rather, such models were dictated by ideas from quantum groups such as
Hopf algebra duality and Born reciprocity [17], quantum group symmetry [18] and
classical symmetry [10, 12]. By now, a great many models are known with quantum
metrics and quantum Riemannian curvature, including black hole models and finite
models of quantum gravity, e.g. [1, 6, 13, 20]. The constructive formalism used in these
works follows a ‘ground up’ approach where we start with the ‘coordinate algebra’ A,
define a differential structure in terms of a differential graded algebra (�, d) of ‘dif-
ferential forms’, then a quantum metric g ∈ �1 ⊗A �1, then a quantum Levi-Civita
or other connection ∇ : �1 → �1 ⊗A �1, its curvature R∇ : �1 → �2 ⊗A �1, etc.
There is also a practical ‘working definition’ of Ricci and in some cases Einstein ten-
sorswhich sometimes produces reasonable results in the sense of vanishing divergence
with respect to∇ but which is not canonical. One of our goals in the present paper is to
come at the Ricci tensor from another angle for this reason. There is also a well-known
and more sophisticated Connes approach to noncommutative geometry coming out
of cyclic cohomology and K-theory [8] and with examples such as the noncommu-
tative torus, as well as physical applications including ideas for the standard model
of particle physics [9]. This particularly makes use of the notion of a ‘spectral triple’
or abstract Dirac operator to implicitly encode the quantum geometry. Sometimes,
Connes spectral triples can be realised within the constructive quantum Riemannian
geometry [7, 14], i.e. there is a useful intersection between these approaches.

Working in the constructive formalism as in [2], we continue in the present work to
explore the recently introduced notion of a ‘quantum geodesic’ [3, 5] and particularly
how it interacts with curvature. Until now, only quantum geodesics on flat examples
were worked out, such as the equilateral triangle [3] and the Heisenberg algebra with
a flat linear connection [5]. We now study quantum geodesic flows on known quantum
Riemannian geometries on M2(C) and the fuzzy sphere, and we write down but do
not explicitly solve for quantum geodesics on the q-sphere Cq [S2]. A parallel work
[15] covers quantum-Minkowski space from the point of view of physical predictions
and also a curved (but not quantum Levi-Civita) connection on the noncommutative
torus.

In studying our models, we are led to considerably improve the quantum geodesic
formalism itself, solving two fundamental problems in the original work [3]. The first
is about the ∗-operation needed for a unitary theory over C, which previously was
proposed via some requirements but without a canonical choice. This is now rectified
in Theorem 4.7 under the assumption that the positive linear functional

∫ : A → C

needed for the theory is a twisted trace
∫
ab = ∫

ς(b)a for an algebra automorphism
ς . This is a common enough situation in noncommutative geometry. The other issue
that we address is an auxiliary braid condition in [3, 5] which is empty in the classical
case but which turns out in our examples to be too restrictive. In Corollary 4.12, we
now understand this condition as sufficient but not necessary for compatibility of the
geodesic evolution with our canonical ∗-structure and propose a weaker ‘improved
auxiliary condition’ to replace it.

The formalism of quantum geodesics will be outlined in the preliminaries Sect. 2,
with the new general results in Sect. 4. The formalism itself involves a radically new
way of thinking about geodesics, even classically, and Sect. 3 provides new results for
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the formalism applied in the classical case to a Riemannian manifold. Qualitatively
speaking, the idea of quantum geodesics is not to follow one particle at a time but
to think of a ‘fluid of particles’ each moving along geodesics. In reality, what would
be the density will actually be a quantum mechanical probability density ρ = |ψ |2
for a complex wave function over the manifold. However, keeping the fluid analogy
in mind, the tangent vectors to all the geodesic motions can be viewed together as a
velocity vector field X on the manifold. The key point in [3] is that this vector field is
characterised by a geodesic velocity equation as autoparallel with respect to a linear
connection and can be solved for first, independently of the particles themselves. A
further equation, which we call the amplitude flow equation, is a Schrodinger-like
equation on the wave function ψ relative to X that evolves it in such a way that ρ

corresponds to the particles at each point of the manifold having velocity given by
X at that point. Thus, we rip apart the usual notion of a geodesic into the particle
locations and the particle velocities and then we put them back in reverse order, first
solving for X and then for ψ . This is a radically different approach, and some detailed
examples even on flat Rn are provided in [15] to help with this conceptual transition.
Our new result in Sect. 3 in this context is that if X is a geodesic velocity field, then
the convective derivative D/Dt along X (defined as usual in fluid dynamics) obeys

D

Dt
div(X) = −(∇μX

ν)(∇νX
μ) − RμνX

μXν

where X has components Xμ in local coordinates and Rμν is theRicci tensor associated
with the connection. The latter would normally be the Levi-Civita connection but in
fact the theory at this level does not require ametric, just a linear connection. This gives
a striking new way of thinking about the familiar connection in GR between the Ricci
tensor and the change of position of nearby objects in geodesic motion. We also show
how the classical role of the Riemann curvature as controlling geodesic deviation looks
in this new language. In Sect. 4.4, we propose noncommutative versions of the two
terms displayed above as −F(X) and −R(X), respectively, with the split suggested
by good properties with respect to ∗. We see in the noncommutative examples how
the ‘Ricci quadratic form’ R(X) compares with the naive Ricci tensor in the current
noncanonical approach. We do not believe this to be the last word on the topic, but it
can be viewed as a first look at the problem from a fresh angle. The 2 × 2 quantum
matrices are treated in Sect. 5, the fuzzy sphere in Sect. 6 and the q-sphere in Sect. 7.
By fuzzy sphere, we mean the standard quantisation of a coadjoint orbit in su∗

2 as a
quotient of U (su2) by a fixed value of the quadratic Casimir, equipped now with the
3-dimensional but rotationally invariant differential calculus [2, Example 1.46] and
quantum Riemannian geometry from [13]. But the theory also applies to its finite-
dimensional matrix algebra quotients which are also of interest [16, 24, 25]. By q-
sphere, we mean the base of the q-Hopf fibration as a subalgebra of the standard
quantum group Cq [SU2] in the theory of quantum principal bundles and with the
quantum Riemannian geometry introduced in [19]. It is a member of the more general
2-parameter Podlès spheres [22] but the only one for which the quantum Riemannian
geometry has been explored. The paper has some concluding remarks in Sect. 8 with
a discussion of directions for further work.
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2 Preliminaries

Here, we recall in more detail what a quantum geodesic is as proposed in [3] and
studied further in [5, 15]. We explain the algebraic point of view which works even
when the ‘coordinate algebra’ of the spacetime is a possibly noncommutative unital
algebra A.

2.1 Quantum Levi-Civita connections

We suppose a differential structure in the form of an A-bimodule �1 of differential
forms equipped with a map d : A → �1 obeying the Leibniz rule

d(ab) = adb + (da)b

and such that�1 is spanned by elements of the form adb for a, b ∈ A. This can always
be extended to a full differential graded ‘exterior algebra’ though not uniquely. (There
is a unique maximal one.) In the ∗-algebra setting, we say we have a ∗-differential
structure if ∗ extends to � (or at least �1) as a graded-involution (i.e. with an extra
minus sign on swapping odd degrees) and commutes with d. A full formalism of
quantum Riemannian geometry in this setting can be found in [2]. In particular, a
metric means for us an element g ∈ �1 ⊗A �1 which is invertible in the sense of a
bimodule map ( ) : �1 ⊗A �1 → A obeying the usual requirements as inverse to g.
This forces g in fact to be central. Then, a QLC or quantum Levi-Civita connection is
a bimodule connection (∇, σ ) on �1 which is metric compatible and torsion free in
the sense

∇g := ((id⊗ σ)(∇ ⊗ id) + id⊗ ∇)g = 0, T∇ := ∧∇ + d = 0. (1)

Here, we prefer right bimodule connections ∇ : �1 → �1 ⊗A �1 characterised by

∇(ω.a) = ω ⊗ da + (∇ω).a, ∇(a.ω) = σ(da ⊗ ω) + a∇ω, (2)

where the ‘generalised braiding’ bimodule map σ : �1 ⊗A �1 → �1 ⊗A �1 is
assumed to exist and is uniquely determined by the second equation. Connections
with the first, usual, Leibniz rule are standard while bimodule connections with the
further rule from the other side appeared in [11, 21].

There is an analogous theory of left bimodule connections with left and right
swapped. In this paper, as in [5], we mostly prefer right bimodule connections, but
we note that in the context where the generalised braiding is invertible we can go
freely back and forth between a right (∇, σ ) as above and an equivalent left bimodule
connection (∇L , σL) according to

∇L = σ−1∇, σL = σ−1, ∇ = σ−1
L ∇L , σ = σ−1

L . (3)

It will be useful to use both versions related in this way. We will also have recourse
to a space of ‘left quantum vector fields’ defined as the A-bimodule of left A-module
maps
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X = A hom(�1, A), (a.X .b)(ω) = (X(ω.a))b

for all ω ∈ �1, a, b ∈ A and X ∈ X. Moreover, if (∇L , σL) is a left bimodule
connection on �1 and the latter is finitely generated projective (f.g.p.) as a left A-
module, thenX canonically acquires a right bimodule connection∇X : X → X⊗A �1

with σX : �1 ⊗A X → X⊗A �1. Here, ∇X obeys Leibniz rules as in (2) but with
ω ∈ �1 replaced by X ∈ X and σ replaced by σX. We refer to [2, Prop. 3.32] for
details, but the key idea is that ∇X is characterised as preserving the evaluation map
ev : �1 ⊗A X → A, i.e.

d ev(ω ⊗ X) = (id⊗ ev)(∇L(ω)⊗ X) + (ev⊗ id)(ω ⊗ ∇X(X)),

for all ω ∈ �1 and X ∈ X. The map σX is uniquely determined from ∇X but likewise
obtained by dualisation of σL , see [2, Prop. 3.80].

2.2 A-B bimodule connections and geodesic bimodules

So far we have discussed only linear connections ∇ on �1 and ∇X on X, but similar
notions apply for (right) bimodule connections ∇E : E → E ⊗A �1 on any A-
bimodule E . Here, E is thought of as the space of sections of a vector bundle if A
is thought of as the coordinate algebra on the base. The generalised braiding σE :
�1 ⊗A E → E ⊗A �1 is a bimodule map, and the two Leibniz rules follow the
same form as (2). One has a notion of tensor product of A-bimodules with bimodule
connection following the same form as ∇g in (1). Details are in [2] but omitted since
we will need in fact a relative version, of which this is just the diagonal case.

Thus, we will need the notion of an A-B bimodule connection ∇E on an A-B
bimodule E , where (B,�1

B) is another algebrawith differential calculus [2, Def. 4.69].
This is a novel concept even in the classical case. For the right-handed theory, ∇E :
E → E ⊗B �1

B and

∇E (eb) = e⊗ db + (∇Ee)b, ∇E (ae) = σE (da ⊗ e) + a∇Ee

for all e ∈ E , a ∈ A and b ∈ B, for some A-B bimodule map σE : �1 ⊗A E →
E ⊗B �1

B . Moreover, if E, F are, respectively, an A-B bimodule with bimodule con-
nection and a B-C bimodule with bimodule connection (there are now potentially
three algebras A, B,C with differential calculi), then E ⊗B F is an A-C bimodule
with bimodule connection by

∇E ⊗ F = (id⊗ σF )(∇E ⊗ id) + id⊗ ∇F , σE ⊗ F = (id⊗ σF )(σE ⊗ id),

giving the structure of a 2-category. In particular, given an A-B bimodule with bimod-
ule connection, both domain �1 ⊗A E and codomain E ⊗B �1

B of σE acquire tensor
product A-B bimodule connections given one on E , a bimodule connection ∇ on �1

(it does not have to be a QLC) and a bimodule connection ∇B on �1
B .
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The other ingredient we need is that if E, F are A-B bimodules with bimodule
connections, then the set of A-B bimodule maps φ : E → F acquires a ‘covariant
derivative’

∇∇(φ) = ∇Fφ − (φ ⊗ id)∇E : E → F ⊗
B

�1
B, (4)

which is easily seen to be a right B-module map. This is more familiar in the diagonal
case, where classically it has the meaning of the covariant derivative of φ viewed as
an element of the dual of E tensor with F . We then define a strict geodesic differential
bimodule as an A-B bimodulewith bimodule connection (∇E , σE ) such that∇∇(σE ) =
0. We now weaken this condition.

Lemma 2.1 (1) Let E be an A-B bimodule with bimodule connection and (∇, σ ),
(∇B, σB) (right) bimodule connections on�1,�1

B, respectively. Then, the obstruc-
tion to ∇∇(σE ) being a left A-module (and hence A-B bimodule) map is the mixed
braid relations:

∇∇(σE )(a ω ⊗ e) − a ∇∇(σE )(ω ⊗ e)

= (
(id⊗ σB)(σE ⊗ id)(id⊗ σE ) − (σE ⊗ id)(id⊗ σE )(σ ⊗ id)

)
(da ⊗ω ⊗ e)

for all a ∈ A, ω ∈ �1, e ∈ E.
(2) Suppose further that σ is invertible and E also has a (possibly unrelated) left A-B

bimodule connection (∇̂E , σ̂E ). Let α : �1 ⊗A E → E ⊗B �1
B ⊗B �1

B be

α := ∇∇(σE ) − (
(id⊗ σB)(σE ⊗ id)(id⊗ σE ) − (σE ⊗ id)(id⊗ σE )(σ ⊗ id)

)∇̂�1 ⊗ E ,

where we use the left tensor product connection on�1 ⊗A E with∇L = σ−1∇ the
associated left connection on�1. This is a left A-module map, and the obstruction
to being a right B-module (and hence A-B bimodule) map is

α(ω ⊗ e.b) − α(ω ⊗ e).b

= −
((

(id⊗ σB)(σE ⊗ id)(id⊗ σE )

− (σE ⊗ id)(id⊗ σE )(σ ⊗ id)
)
(σ−1 ⊗ id)(id⊗ σ̂E )

)
(ω ⊗ e⊗ db)

for all b ∈ B, ω ∈ �1, e ∈ E.

Proof We begin with (4) and use the a result from [2, p. 302], but in the right-handed
version, to give

∇∇(φ)(a e) − a ∇∇(φ)(e) = (
σF (id⊗ φ) − (φ ⊗ id)σE

)
(da ⊗ e).

If we set φ to be σE and use the appropriate σ for its domain and codomain, then
we get the first displayed equation. From this, it follows that α is a left A-module
map, given the left Leibniz rule. The last equation then follows because ∇∇(σE ) is
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necessarily a right module map, while ∇̂�1 ⊗ E is a left bimodule connection requiring
(σ−1 ⊗ id)(id⊗ σ̂E ) from its generalised braiding. �	

Part (1) of the lemma says that a slight generalisation of a strict geodesic bimodule,
namely to just require that∇∇(σE ) be a bimodule map, is equivalent to the mixed braid
relation between σB, σE , σ . This braid relation appeared as an ‘auxiliary condition’
in the analysis of the ∇∇(σE ) = 0 case in previous work [3, 5]. In this slightly more
general case, α := ∇∇(σE ) is a bimodule map and has the interpretation of an external
driving force, but we still have the auxiliary braid condition which turns out to be too
restrictive for key examples of interest in this paper.

We therefore have to drop that ∇∇(σE ) is a bimodule map. Part (2) of the lemma
says that we can then modify α as stated to potentially still obtain a bimodule map if
we have the additional data of a second connection (∇̂E , σ̂E ) subject to the weaker
braid condition stated. For example, σ̂E = 0 would automatically ensure that α is a
bimodule map, again interpreted as an external driving force. We refer to this situation
where the braid relation is not entailed as a nonstrict geodesic bimodulewith orwithout
external force α. Being a bimodule map, it is only then natural to set α = 0 if we
want. Note that σE , σ̂E have no reason to be invertible when A 
= B, as they map to
very different spaces.

2.3 Geodesic velocity field equations

Having prepared the algebraic background, we now see how these ideas relate to
geodesic flows. Here and for the rest of the paper, we focus on the case E = A⊗ B
with its canonical A-B bimodule structure. In this case,

∇̂E (a ⊗ b) = da ⊗ 1⊗ b, σ̂E = 0

is a natural reference connection for our nonstrict geodesic bimodule, and we fix this
throughout. We also identify �1 ⊗A E = �1 ⊗ B in the standard way, and in this
case, since ∇̂E (1⊗ b) = 0, we have

∇̂�1 ⊗ E (ω ⊗ b) = ∇Lω ⊗ b,

where we assume throughout that σ is invertible so that ∇L = σ−1∇ is an equivalent
left connection on �1. Moreover, α being a bimodule map needs only to be specified
on �1 ⊗ 1, where we see that

α(ω ⊗ 1) = ∇∇(σE )(ω ⊗ 1) − (
(id⊗ σB)(σE ⊗ id)(id⊗ σE )

−(σE ⊗ id)(id⊗ σE )(σ ⊗ id)
)
(∇Lω ⊗ 1).

Of interest for geodesics, and which we also fix now for the rest of the paper, is
the choice B = C∞(R) where R refers to the geodesic time t . We fix the classical
calculus �1

B = Bdt with a central basis dt and ∇Bdt = 0. The map σB is the classical
‘flip’ but �1

B ⊗B �1
B = Bdt ⊗ dt so that σB = id after these identifications. Hence,
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in this case

α(ω ⊗ 1) = ∇∇(σE )(ω ⊗ 1) − (σE ⊗ id)(id⊗ σE )
(
(id − σ)∇Lω ⊗ 1

)
, (5)

which is the equation that we will use. Setting α = 0 will describe quantum geodesics
but fixing α as an external bimodule map is a natural generalisation beyond this. We
no longer entail the braid relations discussed above because the correction term in the
expression for α compensates for the failure of this.

Next, for our choice of E , we can also take ∇E in a standard form [3, Prop. 5.1]

∇Ee = (ė + Xt (de) + eκt )⊗ dt, σE (ω ⊗ e) = Xt (ω.e)⊗ dt (6)

given by a time-dependent left quantum vector field Xt and a time-dependent element
κt of A. We similarly note that an A-B bimodule map α : �1 ⊗ B → A⊗ Bdt ⊗ dt
just amounts to a fixed (not time dependent) left quantum vector field Y : �1 → A.

Proposition 2.2 For E = A⊗ B in the setting above, the requirement of a nonstrict
geodesic bimodule with external driving force Y ∈ X reduces to the geodesic velocity
equations

Ẋt (ω) + [Xt , κt ](ω) + Xt (dXt (ω)) − Xt (id⊗ Xt )∇Lω = Y (ω)

for all ω ∈ �1.

Proof The calculation is essentially the same as a right-handed version of the start of
the proof of [3, Prop. 5.2] before ∇∇(σE ) = 0 was imposed there. Namely, omitting
the t on Xt for brevity and identifying ω ⊗A 1E = ω ⊗ 1 where 1E = 1⊗ 1 ∈ A⊗ B,
we have

∇∇(σE )(ω ⊗ 1) = (∇E ⊗�1
B
σE − (σE ⊗ id)∇�1 ⊗ E )(ω ⊗ 1)

= ∇E ⊗�1
B
(X(ω)⊗ dt) − (σE ⊗ id)(id⊗ σE )(∇ω ⊗ 1)

− (σE ⊗ id)(ω ⊗ κ ⊗ dt)

since ∇�1 ⊗ E = (id⊗ σE )(∇ ⊗ id) + id⊗ ∇E and ∇E1E = κ ⊗ dt . We put this and
α(ω ⊗ 1) = Y (ω)⊗ dt ⊗ dt into Eq. (5) to obtain

Y (ω)⊗ dt ⊗ dt = ∇∇(σE )(ω ⊗ 1) − (σE ⊗ id)(id⊗ σE )
(
(id − σ)∇Lω ⊗ 1

)

= ∇E ⊗�1
B
(X(ω)⊗ dt) − (σE ⊗ id)(id⊗ σE )(∇Lω ⊗ 1)

− σE (ω ⊗ κ)⊗ dt

= (
Ẋ(ω) + X(d(X(ω))) + X(ω) κ − X(id⊗ X)∇Lω − X(ω κ)

)

⊗ dt ⊗ dt

as stated. Here, σ∇L = ∇ was used in the cancellation for the second equality and
we then further substituted ∇E , σE in terms of X , κ . �	
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If �1 is f.g.p., then the geodesic velocity equation in Proposition 2.2 is equivalent
by a straightforward dualisation (following analogous steps to those in the proof of
[5, Cor. 2.3]) to

Ẋt + [Xt , κt ] + (id⊗ Xt )∇X(Xt ) = Y (7)

in terms of the right connection on X dual to ∇L explained at the end of Sect. 2.1. We
see that the case Y = 0 says in the classical limit that X is autoparallel with respect to
∇X, i.e. the tangent vector field to a field of generalised geodesics in this sense (and
in the usual sense if the connection is the Levi-Civita one). By analogous steps to the
rest of the proof of [5, Cor. 2.3], the auxiliary braid condition, which we have now
seen is equivalent to ∇∇(σE ) being a bimodule map (such as zero), can be written as

σXX(X ⊗ X) = X ⊗ X (8)

for a certain generalised braiding σXX. This equation will turn out to be too strong in
key examples and forces us to the nonstrict case. We will, however, meet σXX later,
in Corollary 4.12 in relation to ∗-operations.

Proceeding with Y = 0, flows are then obtained by ‘integrating’ Xt and are char-
acterised in a quantum mechanical Schrodinger’s equation like manner by ∇Ee = 0.
Here, ρ = e∗e depends on t as e depends on t and evolves in the classical limit as
one might expect for the density of a fluid, where each particle moves with tangent
vector Xt evaluated at the location of the particle. (This is geodesic flow if Xt obeys
the geodesic velocity equation but applies generally for any flow of this type.) There
is, however, one condition we need to ensure, which is that there is a positive linear
functional, which we will denote

∫ : A → C, such that
∫

ρ is constant in time (so
can be normalised to 1). For this to happen, we need the hermitian inner product
〈e, f 〉 := ∫

(e∗ f ) on E to be preserved by∇E , which comes down to the two unitarity
conditions

∫
(
κ∗
t a + aκt + Xt (da)

) = 0,
∫

(
Xt (ω

∗) − Xt (ω)∗
) = 0 (9)

for all a ∈ A, ω ∈ �1. In the classical limit and in the case of the Levi-Civita
connection, we would take for

∫
the Riemannian measure defined by the metric.

Moreover, the first of (9) for all a would amount in the classical limit to the local
condition

κt + κ∗
t = div∇Xt (10)

(as reviewed in Lemma 3.1). In the quantum case, we can replace div∇ by a divergence
naturally defined by

∫
, and in this case we can set κt to be 1

2 of this divergence to
similarly solve the first condition. Classically, this means choosing κt real and in this
case ∇Ee = 0 reduces to

De

Dt
+ e

2
div∇Xt = 0

123



73 Page 10 of 44 E. Beggs, S. Majid

as expected classically for a half-density. Here, if we have a dust of particles moving
with (possibly time dependent) velocity field Xt , then the rate of change of any time-
dependent scalar field e on the manifold as computed moving with the flow is the
convected derivative

D f

Dt
:= ḟ + X(d f ).

The second part of the unitarity condition (9) in the quantum case, being true for all ω,
determines how ∗ acts on the Xt and reduces in the classical case to Xt a real vector
field if we take the standard measure.

3 States and divergence of the velocity equation on a classical
manifold

In order to progress the quantum geometry further in the present paper, we first revisit
the classical case of our point of viewwith somenewclassical results, notably involving
the Ricci tensor. We then look at what we can say in the quantum case.

3.1 Classical divergence, fluid dust and the Ricci tensor

Consider an orientatedRiemannianmanifoldM withmetric g and its standardmeasure
μ, which is given on each coordinate chart by

∫

M
f dμ =

∫
f
√|g| dx1 · · · dxn,

where f is a function on M supported in the chart and |g| = | det(gi j )|. We use
local coordinates and index comma notation for partial derivative and semicolon for
covariant derivative. The geometric divergence of a vector field X with respect to a
connection is then defined as usual by div∇X = Xi ;i . We start by recalling a well-
known lemma needed for the exposition. We use the Levi-Civita connection.

Lemma 3.1 For the standard measure μ on a Riemannian manifold, any vector field
X on M and any f ∈ C∞(M), we have

∫
(X(d f ) + Xi ;i f ) dμ = 0.

Proof The property we want to prove is linear in X , so without loss of generality we
choose the support of X to be contained in a particular coordinate chart. Then, by
usual integration by parts,

∫ √|g| Xi f,idx
1 · · · dxn = −

∫
f

(

Xi
,i
√|g| + Xi ∂

∂xi
√|g|

)

dx1 · · · dxn
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and
(

Xi
,i + Xi

(
∂

∂xi
√|g|

)

/
√|g|

)

=
(
Xi

,i + Xi
 j
j i

)
= Xi ;i .

We used the usual formula for the Christoffel symbols for the Levi-Civita connection.
�	

We now examine the dynamic behaviour of this divergence when the vector field
is our time-dependent Xt . The classical limit of the geodesic velocity equation is the
autoparallel equation

∂Xi

∂t
+ Xs Xi

,s + Xk X j 
i
jk = 0. (11)

If we start with an initial vector field X0 on M and imagine that M is filled with
particles of dust each moving according to geodesic motion beginning with velocity
X0 at their starting point, then the velocity field at later proper time t will become Xt

obeying this equation. Our new result is the following.

Proposition 3.2 If time-dependent X obeys (11) as needed for geodesic flow, then

D |X |2
Dt

= 0,
D div∇X

Dt
= −Xs ;i X i ;s − Xk Xr Rkr ,

where Ri j is the Ricci tensor.

Proof For the first part, |X |2 is the length squared of X with respect to the metric.
Then, the convected derivative is

D |X |2
Dt

= Ẋ i X j gi j + Xi Ẋ j gi j + Xk(Xi X j gi j );k

= Ẋ i X j gi j + Xi Ẋ j gi j + Xk Xi ;k X j gi j + Xk Xi X j ;kgi j = 0,

where we have used gi j;k = 0. For the second part, the convected derivative is

D div∇X

Dt
= ∂ div∇X

∂t
+ Xk ∂ div∇X

∂xk

= Ẋ i
,i + Ẋ i
 j

j i + Xk Xi
,ik + Xk Xi

,k

j
j i + Xk Xi
 j

j i,k

and substituting from (11) gives

D div∇ X

Dt
= −Xs

,i X
i
,s − Xk

,i X
r 
i

rk − Xs Xi
,si − Xk Xr

,i 

i
rk − Xk Xr 
i

rk,i

−
(
Xs Xi

,s + Xk Xr 
i
rk

)

 j

j i + Xk Xi
,ik + Xk Xi

,k

j
j i + Xk Xi
 j

j i,k

= −Xs
,i X

i
,s − Xk

,i X
r 
i

rk − Xk Xr
,i 


i
rk

− Xk Xr
(

i

rk,i + 
i
rk


j
j i − 
 j

jr ,k

)
.
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Now, recall that the Ricci tensor is, in terms of Christoffel symbols,

Rσν = Rρ
σρν = 
ρ

νσ,ρ − 
ρ
ρσ,ν + 
ρ

ρλ

λ
νσ − 
ρ

νλ

λ
ρσ

and in terms of this, we have

D div∇X

Dt
= −Xs

,i X
i
,s − Xk

,i X
r 
i

rk − Xk Xr
,i 


i
rk − Xk Xr 
i

r j

j
ik

− Xk Xr Rkr

= −Xs ;i X i ;s − Xk Xr Rkr .

�	

Thus, the speed along the geodesic flow is constant as expected, while the convected
derivative (i.e. in the frame of the moving material) of the divergence is given by a
dynamic ‘kinetic’ part expressing the varying velocity field plus a geometric part
consisting of the Ricci curvature as a quadratic form evaluated on the velocity field.

3.2 Geodesic deviation and convective derivatives

The classical idea of geodesic deviation imagines a given geodesic displaced an
infinitesimal amount in the direction Z , so that instead of position P(t) we have
P(t) + h Z(t) for a small parameter h. Thus, along a particular geodesic we have the
velocity X = Ṗ and δX = Ż for the change in X with respect to the parameter h.
Then, the acceleration of Z along the geodesic is given by the curvature applied to Z
and X , i.e. the equation of geodesic deviation.

In our case, we do not consider a fixed geodesic but rather we have a time-dependent
geodesic velocity field X(t)which obeys the geodesic velocity equation Ẋ+∇X X = 0.
The above usual picture getsmodified,with the perturbation nowdetermined by a time-
dependent vector field Z(t) in a similar role. Note that the convective derivative of a
tensor is defined in the same manner as for a function, namely D

Dt := d
dt + ∇X .

Proposition 3.3 Let a time-dependent X(t) obey the geodesic velocity Eq. (11) and
if Z(t) is another time-dependent vector field, let δX := Ż + ∇X Z − ∇Z X. Then,
X + hδX continues to obey (11) to order O(h2) if and only if

D

Dt

DZi

Dt
= X pZ j Xk Ri

kpj .

We refer to this as the geodesic deviation equation for time-dependent vector fields.

Proof Note that [Z , X ] = ∇Z X−∇X Z is the Lie bracket of X and Z when∇ is torsion
free, as in the case of a Levi-Civita connection. Then, the variation of the geodesic
velocity equation, i.e. requiring Ẋ + h ˙δX + ∇X+hδX (X + hδX) = 0 and dropping
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h2, gives

0 = Z̈ + ∇Ẋ Z + ∇X Ż − ∇Z Ẋ − ∇Ż X + ∇(Ż+∇X Z−∇Z X)X + ∇X (Ż + ∇X Z − ∇Z X)

= Z̈ + ∇Ẋ Z + 2∇X Ż + ∇Z∇X X + ∇(∇X Z−∇Z X)X + ∇X (∇X Z − ∇Z X).

Hence, the convected acceleration of Z along X can be computed as

D

Dt

D

Dt
Z = D

Dt
(Ż + ∇X Z) = Z̈ + ∇Ẋ Z + 2∇X Ż + ∇X∇X Z

= ∇X∇Z X − ∇Z∇X X − ∇(∇X Z−∇Z X)X ,

where the transition to the second equality is exactly our above equation for Z̈ . We
then interpret the result using

([∇Y ,∇X ]Z)i = Y pX j Zk Ri
kpj + (∇[Y ,X ]Z)i .

�	
We include this result for completeness as equivalent to usual geodesic deviation but
using our new way of thinking classical geodesics. This also lays the groundwork for
the quantum version to be addressed elsewhere. In fact, there are significant complica-
tions from the divergence of X entering the quantum version of the geodesic velocity
equation.

4 Noncommutative states and divergence

This section contains newconstructions at the noncommutative level,whereweaddress
the reality or ∗-involution aspects of quantum geodesic evolution and use this to
develop aspects of the theory motivated by the preceding classical results about the
convective derivative of the divergence. The main results are a compatibility condition
for the state with respect to the quantum Riemannian geometry and a proposal for a
‘Ricci quadratic form’.

4.1 Thematching of geometric and state divergences

Here, we study the divergence of a left quantum vector field inX = AHom(�1, A).We
start with the divergence defined by an arbitrary left connection ∇̂ : X → �1 ⊗A X,
but in the next subsection we will fix this as the left version of ∇X used to define
quantum geodesics. We also consider divergence defined by a functional φ : A → C

and relate the two.

Definition 4.1 The divergencewith respect to a left connection ∇̂ is defined as div∇̂ :=
ev ◦ ∇̂ : X → A.

This is easily seen to obey div∇̂(a.X) = a.(div∇̂X) + X(da) for all a ∈ A, X ∈ X.
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Definition 4.2 We say that X ∈ X has divergence divφX ∈ A with respect to a linear
functional φ if

φ
(
a(divφX)

) + φ(X(da)) = 0

for all a ∈ A. We say that φ is nondegenerate if it has the property that φ(ac) = 0 for
all c ∈ A implies that a = 0.

It is easy to see that if φ is nondegenerate and divφX exists, it is unique. Next,
recall from Proposition 3.1 that classically, in the case of a Riemannian manifold, the
divergences defined by the Levi-Civita connection and the standard integral are the
same. We now give a sufficient condition to ensure this more generally.

Lemma 4.3 If we have a left connection ∇̂ on X such that div∇̂ obeys the equation in
Definition 4.2 on a collection of left generators of X, then we can set divφ = div∇̂ on
all of X.

Proof Suppose that divφ(X) exists for a given vector field X . For all c ∈ A, we have

φ((a.X)(dc)) = φ(X(dc.a)) = φ(X(d(ac))) − φ(X(cda))

= −φ
(
ca(divφX) + cX(da)

) = −φ
(
c(adivφX + X(da))

)

so divφ(a.X) also exists, namely divφ(a.X) := a divφX + X(da). The statement then
follows. �	

This can be stated in an alternative concise manner as the following.

Proposition 4.4 We can set divφ := div∇̂ on all of X if and only if φ ◦ div∇̂ = 0.

Proof For all a ∈ A and X ∈ X, we have

φ ◦ div∇̂(a.X) = φ(ev ◦ ∇̂(a.X)) = φ(X(da)) + φ(a div∇̂(X)),

so if this is always zero, then div∇̂(X) provides a valid divφ(X). �	

4.2 Twisted traces and ∗-involution on vector fields

For this subsection, we suppose that A is a ∗-algebra with ∗-calculus, and that φ :
A → C is hermitian (i.e. φ(a∗) = φ(a)∗). We can now define a real vector field, but
only relative to φ.

Definition 4.5 We define X ∈ X to be real with respect to φ if φ(X(ω∗)) = φ(X(ω)∗)
for all ω ∈ �1.

If X is real, then we have
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φ(X(da)) + φ
(
(divφX)∗a

) = φ(X(da∗∗)) + φ
(
(divφX)∗a

)

= φ(X(da∗)∗) + φ
(
(divφX)∗a

)

= φ(X(da∗))∗ + φ
(
(divφX)∗a

)

= −φ(a∗divφX)∗ + φ
(
(divφX)∗a

) = 0

for all a ∈ A. Note also that the reality condition is just the second part of (9), and in
this case we see that the first part of (9) can be satisfied by putting κt = 1

2divφ(Xt ).
To get further, we need to make an assumption on φ.

Definition 4.6 We say that φ is a twisted trace if there is an algebra automorphism ς

with φ(ab) = φ(ς(b)a).

It is easy to see that then φ ◦ ς = φ, and if φ is furthermore nondegenerate, then
ς−1(a) = ς(a∗)∗. In the following theorem, we have the assumption that divφ = div∇
on all of X, and we then just use div for both. We will only use the notation div in the
case when both divergences agree.

Theorem 4.7 Suppose that φ is a nondegenerate hermitian twisted trace with twisting
map ς , and that ς extends to a map ς : �1 → �1 by ς(a.db) = ς(a).dς(b). We also
assume that (∇̂, σ̂ ) is a left bimodule connection on X with divφ = div∇̂ on all of X
and given X ∈ X, we define X∗ ∈ X for ω ∈ �1 by

X∗(ω) = (
ev σ̂ (X ⊗ ω∗)

)∗
.

Then,

(1) (a X)∗ = X∗a∗ and (Xa)∗ = a∗ X∗,
(2) φ(X∗(ω∗)) = φ(X(ς(ω)))∗,
(3) div(X∗) = div(X)∗,
(4) X∗∗ = X,
(5) X ∈ X is real if and only if X∗ = ς ◦ X ◦ ς−1,
(6) div(ς ◦ X ◦ ς−1) = ς(div(X)),
(7) if X ∈ X is real then div(X)∗ = ς(div(X)).

Proof A brief check shows that X∗(a ω) = a X∗(ω) for all a ∈ A so X∗ ∈ X. Next

ev(ω ⊗(aX)∗) = (
ev σ̂ (aX ⊗ ω∗)

)∗ = (
ev σ̂ (X ⊗ ω∗)

)∗
a∗ = ev(ω ⊗ X∗a∗),

ev(ω ⊗(Xa)∗) = (
ev σ̂ (Xa ⊗ ω∗)

)∗ = (
ev σ̂ (X ⊗(ωa∗)∗)

)∗ = ev(ωa∗ ⊗ X∗)
= ev(ω ⊗ a∗ X∗),

which checks (1). For (2), we set ω = da.b and

φ
(
X∗((da.b)∗)

) = φ
(
X∗(b∗da∗)

) = φ
(
b∗X∗(da∗)

) = φ
(
b∗(ev σ̂ (X ⊗ da)

)∗)

= φ
(
ev σ̂ (X ⊗ da) b

)∗
.

123



73 Page 16 of 44 E. Beggs, S. Majid

By definition of a bimodule connection, we have

ev σ̂ (X ⊗ da) = div(X a) − div(X) a (12)

and using this

φ
(
ev σ̂ (X ⊗ da) b

)∗ = φ
(
ς(b) ev σ̂ (X ⊗ da)

)∗ = φ
(
ς(b) div(X a)

)∗ − φ
(
ς(b) div(X) a

)∗

= φ
(
ς(b) div(X a)

)∗ − φ
(
ς(ab) div(X)

)∗

= −φ
(
ev(dς(b)⊗ X a)

)∗ + φ
(
ev(dς(ab)⊗ X)

)∗

= φ
(
ev(ς(d(ab) − a db)⊗ X)

)∗ = φ
(
ev(ς(da.b)⊗ X)

)∗

as required. For part (3), using the fact that φ of a divergence is zero and Eq. (12),

φ
(
X∗(da)

) = φ
(
(ev σ̂ (X ⊗ da∗))∗

) = φ
(
div(X a∗)

)∗ − φ
(
div(X) a∗)∗

= −φ
(
div(X) a∗)∗ = −φ

(
a div(X)∗

)
.

For part (4), we have, using part (3) and Eq. (12),

X∗∗(da∗) = (ev σ̂ (X∗ ⊗ da))∗ = (
div(X∗ a) − div(X∗) a

)∗

= div((a∗ X)∗)∗ − a∗ div(X∗)∗ = div(a∗ X) − a∗ div(X) = X(da∗)

and, as both X and X∗∗ are left module maps, this means that they agree on all of
�1. For part (5), first note for X ∈ X we also have ς ◦ X ◦ ς−1 ∈ X. Now, if
X∗ = ς ◦ X ◦ ς−1, we have

φ(X∗(ω∗)) = φ(ς ◦ X ◦ ς−1(ω∗)) = φ(X ◦ ς−1(ω∗))
= φ(X((ςω)∗))

and then part (2) shows that X is real. Now, we suppose that X is real, so for allω ∈ �1

and a ∈ A we have, using parts (2) and (4),

φ(a X(ω)) = φ(X(a ω)) = φ(X(ω∗a∗))∗ = φ((a∗X)(ω∗))∗ = φ((a∗X)∗(ςω))

= φ((X∗a)(ςω)) = φ(X∗(ςω)a)

= φ(ς(a) X∗(ςω)) = φ(a (ς−1 ◦ X∗)(ςω))

and then nondegeneracy of φ shows that X∗ = ς ◦ X ◦ ς−1. Now for part (6),

φ(ς ◦ X ◦ ς−1(da)) = φ(ς(X(dς−1a))) = φ(X(dς−1a)) = φ(ς−1(a) div(X))

= φ(a ς(div(X))).

Finally, part (7) is a combination of parts (3), (5) and (6). �	
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Definition 4.8 In the context of Theorem 4.7, we define φ rev : X⊗A �1 → C by

φ rev(X ⊗ ω) = φ ev(ςω ⊗ X).

Note that φ rev is well defined because

φ rev(Xa ⊗ ω) = φ
(
ev(ςω ⊗ X) a

) = φ
(
ς(a) ev(ςω ⊗ X)

) = φ
(
ev(ς(aω)⊗ X)

)

= φ rev(X ⊗ aω),

even though the hypothetical map rev : X⊗A �1 → A is not well defined. Also, we
have

φ rev(X ⊗ ω a) = φ ev(ς(ω a)⊗ X) = φ ev(ς(ω)⊗ ς(a)X) = φ rev(ς(a)X ⊗ ω).

Thus, φ rev : X⊗A �1 → C is actually defined on the twisted cyclic tensor product
(X⊗A �1)/ ∼ where X ⊗ ω a ∼ ς(a)X ⊗ ω.

Proposition 4.9 In the context of Theorem 4.7, for all X ∈ X and ω ∈ �1, we have

φ rev(X ⊗ ω) = φ ev(ςω ⊗ X) = φ ev σ̂ (X ⊗ ω), φ(X(ω)∗) = φ(X∗(ς(ω∗))).

Proof First note that φ ev σ̂ : X⊗A �1 → C is also well defined on the twisted cyclic
tensor product. It is then enough to show the equality above for ω = da with a ∈ A.
Then,

φ ev(ςda ⊗ X) = φ
(
ς(a)div(X)

) = φ
(
div(X)a

) = (
φ
(
a∗div(X)∗

))∗

= (
φ
(
a∗div(X∗)

))∗

= (
φ
(
ev(da∗ ⊗ X∗)

))∗ = φ ev σ̂ (X ⊗ da).

Next we have, using X∗∗ = X and the definition of X∗, that

φ(X(ω)∗) = φ(ev σ̂ (X∗ ⊗ ω∗))

and then the previous result gives the second part of the statement. �	
We will also need the following lemma.

Lemma 4.10 We assume the conditions to Theorem 4.7 and X is real as in Defini-
tion 4.5. Then,

(1) φ
(
X(id⊗ X)(η ⊗ λ)

)∗ = φ
(
X(id⊗ X)(λ∗ ⊗ η∗)

)
,

(2) φ
(
(div(X).X)(ω)

)∗ = φ
(
(X .div(X))(ω∗)

)
,

(3) φ
(
X(d X(ω))

) = −φ
(
(X .div(X))(ω)

)
for all ω, η, λ ∈ �1.
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Proof For (1), using the assumption that X is real, we have

φ
(
X(id⊗ X)(η ⊗ λ)

)∗ = φ
(
X(η X(λ))

)∗ = φ
(
X(X(λ)∗ η∗)

) = φ
(
X(λ)∗ X(η∗)

)

= φ
((
X(η∗)∗ X(λ)

)∗) = φ
(
X

(
X(η∗)∗ λ

)∗) = φ
(
X

(
λ∗ X(η∗)

))

= φ
(
X(id⊗ X)(λ∗ ⊗ η∗)

)
.

For (2), we use

φ
(
(div(X).X)(ω)

)∗ = φ
(
X(ω div(X))

)∗ = φ
(
X(div(X)∗ ω∗)

) = φ
(
div(X)∗ X(ω∗)

)

= φ
(
ς(div(X)) X(ω∗)

) = φ
(
X(ω∗) div(X)

) = φ
(
(X .div(X))(ω∗)

)
.

Finally, φ
(
X(d X(ω))

) = −φ
(
X(ω) div(X)

) = −φ
(
(X .div(X))(ω)

)
proves (3). �	

4.3 ∗-Preserving connections and compatibility with quantum geodesic flow

This subsection will justify the definition of the ∗-operation in Theorem 4.7 and the
assumptions leading up to it.

Corollary 4.11 If
∫ : A → C meets the conditions for φ in Theorem 4.7, and X ∈ X

is real with respect to
∫
, then both halves of the unitarity conditions (9) hold with

κ = div(X)/2.

Proof The first half of (9) follows from the definition of divergence and the following
equation

∫
div(X)∗a =

∫
ς(div(X))a =

∫
a div(X)

for all a ∈ A and X ∈ X, where we have used Theorem 4.7 part (7). The second half
of (9) is just the definition of X real. �	

Next, if we have a ∗-operation on an A-bimodule, then we have a natural ‘reality’
or ∗-preserving condition on any bimodule connection on it. We only need here the
case of linear connections where the bimodule is �1 or its dual X. In the former case,
the standard condition [2] can be written as

∇L(ω∗) = †∇ω, † := flip ◦ (∗ ⊗ ∗) (13)

where the left and right connections are related as in (3). In this context,σ is necessarily
invertible with σ † σ † = id. Similarly on other bimodules with ∗-structure, including
X. So far, ∇̂ is any left bimodule connection on X but henceforth we assume it is the
left version of the right connection ∇X,

∇̂ = σ−1
X ∇X, σ̂ = σ−1

X (14)

where ∇X is dual to a left connection ∇L , corresponding to ∇ on �1 as at the end
of Sect. 2.1. Now, we can check that Theorem 4.7 is fit for purpose in singling out a
suitable reality condition for geodesic vector fields.

123



Quantum geodesic flows and curvature Page 19 of 44 73

Corollary 4.12 Suppose the conditions of Theorem 4.7 with ∇̂ obtained from a ∗-
preserving bimodule connection∇ on�1 as in (14). If X(t) obeys the geodesic velocity
Eq. (7) and the initial vector field X(0) is real, then Ẋ is real if and only if, for all
ω ∈ �1 and all time t (we suppress the explicit t dependence of X for clarity),

∫
X(id⊗ X)(id − σ)∇L(ω) = 0.

Moreover, this is true if and only if

(id⊗ ev)(∇X ⊗ id + id⊗ ∇̂)(id − σXX
−1)(X ⊗ X) = 0, (15)

where σXX is defined by

ev(id⊗ ev⊗ id)(σL(ω ⊗ η)⊗ Y ⊗ Z) = ev(id⊗ ev⊗ id)(ω ⊗ η ⊗ σXX(Y ⊗ Z))

for all ω, η ∈ �1 and Y , Z ∈ X.

Proof From the geodesic velocity equation and then Lemma 4.10(3), if X(t) is real,
then we have at time t ,

∫
Ẋ(ω) =

∫
( 1
2

(
div(X) X − X div(X)

)
(ω) − X(d X(ω)) + X(id⊗ X)∇ω

)

=
∫

( 1
2

(
div(X) X + X div(X)

)
(ω) + X(id⊗ X)∇Lω

)
.

If we write ∇ω = η ⊗ λ, then Lemma 4.10(1) and (2) give

∫
Ẋ(ω)∗ =

∫
( 1
2

(
div(X) X + X div(X)

)
(ω∗) + X(id⊗ X)(λ∗ ⊗ η∗)

)

=
∫

( 1
2

(
div(X) X + X div(X)

)
(ω∗) + X(id⊗ X)σL(λ∗ ⊗ η∗)

)

−
∫

X(id⊗ X)(id − σ)σL(λ∗ ⊗ η∗)

=
∫

( 1
2

(
div(X) X + X div(X)

)
(ω∗) + X(id⊗ X)∇(ω∗)

)

−
∫

X(id⊗ X)(id − σ)∇(ω∗)

=
∫

Ẋ(ω∗) −
∫

X(id⊗ X)(id − σ)∇(ω∗)

with the last integral needing to vanish for reality. We then swapped ω ↔ ω∗ for
presentation of the result. Next, we set Y ⊗ Z = (id − σXX

−1)(X ⊗ X) and the
integral condition is equivalent to

∫
ev(id⊗ ev⊗ id)(∇L(ω)⊗ Y ⊗ Z) = 0
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for all ω ∈ �1. Now, apply this to aω for arbitrary a ∈ A to get

0 =
∫

a ev(id⊗ ev⊗ id)(∇L(ω)⊗ Y ⊗ Z) +
∫

ev(id⊗ ev⊗ id)(da ⊗ ω ⊗ Y ⊗ Z)

=
∫

a ev(id⊗ ev⊗ id)(∇L(ω)⊗ Y ⊗ Z) +
∫

ev(da ⊗ Y (ω)Z)

=
∫

a ev(id⊗ ev⊗ id)(∇L(ω)⊗ Y ⊗ Z) −
∫

a div(Y (ω)Z).

Bynondegeneracy,wededuce that div(Y (ω)Z)−ev(id⊗ ev⊗ id)(∇L(ω)⊗ Y ⊗ Z) =
0, or

0 = ev(d(Y (ω))⊗ Z) + Y (ω) div(Z) − ev(id⊗ ev⊗ id)(∇L(ω)⊗ Y ⊗ Z)

= ev
(
ω ⊗(id⊗ ev)(∇X ⊗ id + id⊗ ∇̂)(Y ⊗ Z)

)
,

where we have used the dual connection ∇X to ∇L . �	

Note that (15) is weaker than the original auxiliary braid condition σXX(X ⊗ X) =
X ⊗ X and provides a kind of improved auxiliary condition, as the previous one was
unnecessarily restrictive. Corollary 4.12 gives this as necessary and sufficient for
reality of the velocity field in the sense of Theorem 4.7 at all times. In practice, we can
assume that X , Ẋ are real in this sense and apply ∗ to both sides of the geodesic velocity
equations. Comparing with the original velocity equation then gives the improved
auxiliary condition as an additional restriction on the space of velocity fields, and we
then solve the two together. This method will give all real solutions of the velocity
equations. We are also free to further restrict our solutions by adopting a particular
ansatz, in which case we can solve assuming the ansatz but if the differential equation
on the ansatz is not consistent, then the time evolved solution will leave the region
where the ansatz is valid.

4.4 Quantum convected derivative of the divergence

We start with a quantum analogue of the rate of change of a function along a path
parameterised by time t , where the velocity of the path is given by the vector field X .

Definition 4.13 For a function a : R → A and a time-dependent left vector field X ,
we define

Da

Dt
= ∂a

∂t
+ 1

2 ev(da ⊗ X) + 1
2 ev σ̂ (X ⊗ da).

This is more symmetric than if we had applied X only on one side, but there is a
more concrete reason why we have to make this definition. Recall from Theorem 4.7
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part (7) that the divergence of a real vector field obeys the twisted reality condition
a∗ = ς(a).

Proposition 4.14 Let a be a time-dependent element of A obeying the twisted reality
condition a∗ = ς(a) and X a time-dependent real left vector field. If ev σ̂ (ς ◦ X ◦
ς−1 ⊗ ς ω) = ς ev(X ⊗ ω), then Da

Dt obeys the twisted reality condition.

Proof Using the definition of X∗ in Theorem 4.7, we get

ev(da ⊗ X)∗ = ς ev(X∗ ⊗ da∗) = ev σ̂ (ς ◦ X ◦ ς−1 ⊗ ς da) = ς ev σ̂ (X ⊗ da)

and

ev σ̂ (X ⊗ da)∗ = ev(da∗ ⊗ X∗) = ev(ς da ⊗ ς ◦ X ◦ ς−1) = ς ev(da ⊗ X)

as required. �	

Proposition 4.15 Let ∇̂ be obtained from a ∗-preserving bimodule connection ∇ on
�1 as in (14). If X is a time-dependent left vector field X obeying the geodesic velocity
equation, then

D divX

Dt
= ev(∇∇(ẽv)(∇XX)⊗ X)

− (ẽv⊗ ev)
(
(id⊗(id⊗ id − σ))(∇X ⊗ id + id⊗ ∇L)∇XX ⊗ X

)

− ẽv(id⊗ ev⊗ id)(∇XX ⊗ ∇XX).

Proof We set κ = 1
2div∇̂X in the main part of the geodesic velocity equation,

Ẋ = [κ, X ] − (id⊗ X)(∇XX), (16)

and calculating its divergence using div∇̂Y = evσ−1
X ∇XY gives

div∇̂ Ẋ = ev σ−1
X

(
σX(dκ ⊗ X) − X ⊗ dκ − ∇X((id⊗ X)∇XX)

)
. (17)

The convected derivative from Definition 4.13 gives

D div∇̂X

Dt
:= divẊ + ev(dκ ⊗ X) + ẽv(X ⊗ dκ)

= 2ev(dκ ⊗ X) − ev σ−1
X

(∇X((id⊗ X)∇XX)
)
,
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where we set ẽv = ev ◦ σ−1
X . Then,

∇X((id⊗ X)∇XX) = ∇X((id⊗ ev)(∇XX ⊗ X))

= (id⊗ id⊗ ev)(∇X ⊗ id⊗ id + id⊗ ∇L ⊗ id)(∇XX ⊗ X)

+ (id⊗ ev⊗ id)(∇XX ⊗ ∇XX)

2ev(dκ ⊗ X) = ev(∇∇(ẽv)(∇XX)⊗ X)

+ ev((ẽv⊗ id)(id⊗ σ)
(∇X ⊗ id + id⊗ ∇L)

(∇XX)⊗ X),

where

∇∇(ẽv) = d ẽv − (ẽv⊗ id)(id⊗ σ)
(∇X ⊗ id + id⊗ ∇L)

, (18)

giving the result. �	
The last term of this formula for the convective derivative of div(X) corresponds to

the ‘kinetic energy’ or trace of (∇XX)2 term in the classical formula Proposition 3.2.
We now give a noncommutative version of this for a vector field adapted to behave
well with respect to ∗.
Proposition 4.16 If ∇ is ∗-preserving and the conditions of Theorem 4.7 hold and
∇ ◦ ς = (ς ⊗ ς) ◦ ∇, then the ‘kinetic energy’ function

F(X) = 1

2

(
ẽv(id⊗ ev⊗ id)(∇XX ⊗ ∇XX) + ev(id⊗ ẽv⊗ id)(∇̂X ⊗ ∇̂X)

)

sends real vector fields to twisted hermitian elements of the algebra.

Proof We set∇XX = Yi ⊗ ξi for i = 1, 2 as two independent expressions for it. Now,

(
ẽv(id⊗ ev⊗ id)(∇XX ⊗ ∇XX)

)∗ = (
ẽv(Y1 ⊗ ev(ξ1 ⊗ Y2)ξ2)

)∗

= ev(ξ2
∗ ev(ξ1 ⊗ Y2)

∗ ⊗ Y1
∗)

= ev(id⊗ ẽv⊗ id)(ξ2
∗ ⊗ Y2

∗ ⊗ ξ1
∗ ⊗ Y1

∗)
= ev(id⊗ ẽv⊗ id)(∇̂X∗ ⊗ ∇̂X∗).

If X is real then the result follows from this, as ς ⊗ ς commutes with σ and
ev(ς ⊗ ς) = ς ev, and similarly for ẽv. �	

As a result, we can write

D divX

Dt
= −R(X) − F(X), (19)

where

R(X) = −ev(∇∇(ẽv)(∇XX)⊗ X)

+ (ẽv⊗ ev)
(
(id⊗(id⊗ id − σ))(∇X ⊗ id + id⊗ ∇L)∇XX ⊗ X

)

+ 1
2 ẽv(id⊗ ev⊗ id)(∇XX ⊗ ∇XX) − 1

2ev(id⊗ ẽv⊗ id)(∇̂X ⊗ ∇̂X)
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plays the role classically of the quadratic form Xk Xr Rkr on X featuring in Proposi-
tion 3.2 for the convective derivative of div(X). By construction, if Xt is initially real
and obeys the secondary condition in Corollary 4.12 to stay real as it evolves, then
R(X) will likewise be a twisted hermitian element of the algebra, because the other
parts of (19) are. We therefore propose it as a ‘quadratic form’ version of the Ricci
tensor derived from looking at geodesic velocity vector fields but applicable on any
X ∈ X.

Corollary 4.17 If Xt obeys the geodesic velocity equation, then

∫
(
R(X) + F(X) − div(X)2

) = 0.

Proof We use (19) in

∫
Ddiv(X)

Dt
=

∫
d div(X)

dt
+ X(d div(X) = d

dt

∫
div(X) − div(X)2 = −

∫
div(X)2.

�	

5 Quantum geodesics onM2(C)

We take M2(C) with its standard differential calculus � = M2(C)[s, t]/〈s2, t2〉,
where s and t are central and d f = (∂s f )s + (∂t f )t is given on f ∈ M2(C) by

∂s f = [E12, f ], ∂t f = [E21, f ].

The calculus is inner with θ = E12s + E21t , and d on higher forms is likewise given
by a graded commutator, in particular

ds = 2θs = 2E21st, dt = 2θ t = 2E12st .

There is a natural ∗ structure s∗ = −t , and we take lift i(st) = 1
2 (s ⊗ t + t ⊗ s).

Here, i((st)∗) = i(st) = i(st)† so commutes with ∗ rather than anticommuting as
required to ensure the usual reality properties of Ricci. Metrics are given by four
complex coefficients in the tensor product basis with condition for ‘reality’ g† = g of
the metric, see [2]. Here, we consider just the metric

g = s ⊗ s + t ⊗ t

as a sample in this moduli space. The QLCs for this are not unique but there is a natural
3-parameter moduli of inner connections defined solely by the generalised braiding
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as a bimodule map [2, p. 776]

σL =

⎛

⎜
⎜
⎜
⎝

1 − μ ρ −ρ −ν

ρ + μ(μ+ν−2)
ρ

−μ μ − 1 −ρ

ρ ν − 1 −ν −ρ − ν(μ+ν−2)
ρ

−μ ρ −ρ 1 − ν

⎞

⎟
⎟
⎟
⎠

; μ, ν, ρ ∈ C, (20)

where the conventions are such that the second row gives the coefficients of σL(s ⊗ t)
in basis order s ⊗ s, s ⊗ t , t ⊗ s, t ⊗ t . This corresponds to the left connection on �1

given by

∇Ls = −
s
bc b⊗ c = 2E21t ⊗ s +

(
μE12 − (ρ + (μ + ν − 2)

μ

ρ
)E21

)
s ⊗ s

+ (μE21 − ρE12)(s ⊗ t − t ⊗ s) + (νE12 + ρE21)t ⊗ t,

∇L t = −
t
bc b⊗ c = 2E12s ⊗ t + (μE21 − ρE12)s ⊗ s − (νE12 + ρE21)(s ⊗ t − t ⊗ s)

+
(
νE21 + (ρ + (μ + ν − 2)

ν

ρ
)E12

)
t ⊗ t

which defines the Christoffel symbols 
a
bc for a, b, c ∈ {s, t}. The connection is

∗-preserving which entails σ † σ = †, which is when ρ̄ = −ρ, ν = μ̄.
The dual right connection on X is then given by ∇X fe = 
a

be fa ⊗ b. For the
basis order s ⊗ fs , s ⊗ ft , t ⊗ fs , t ⊗ ft on �1 ⊗X and fs ⊗ s, fs ⊗ t , ft ⊗ s, ft ⊗ t
on X⊗ �1 and using the same conventions as (20), its braiding is therefore

σX =

⎛

⎜
⎜
⎜
⎝

1 − μ −ρ ρ −ν

ρ −ν ν − 1 −ρ − ν(μ+ν−2)
ρ

ρ + μ(μ+ν−2)
ρ

μ − 1 −μ −ρ

−μ −ρ ρ 1 − ν

⎞

⎟
⎟
⎟
⎠

; μ, ν, ρ ∈ C. (21)

Proposition 5.1 The geometric divergence for the above inner connections agrees
with the state divergence for a nondegenerate positive linear functional φ if and only
if μ = ν = 0 and φ = 1

2Tr. Then, div( fs X
s + ft X t ) = [E12, Xs] + [E21, Xt ] on a

vector field in X with components in a dual basis fs, ft . Moreover, f ∗
s = − ft .

Proof We first calculate ∇̂, the details of which are omitted. This then gives

div∇̂( fs) = E12(μ + ν) + E21(2 − μ − ν)
μ

ρ
,

div∇̂( ft ) = E21(μ + ν) − E12(2 − μ − ν)
ν

ρ
.

where fs, ft are the dual basis vector fields in X. For comparison, if we set φ(a) =
Tr(aN ) for N a trace 1 positive matrix which is invertible for φ to be nondegenerate,
then the state divergence is

divφ( fs) = E12 − NE12N
−1, divφ( ft ) = E21 − NE21N

−1 (22)
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and the only case where these coincide is N = 1
2 I2 andμ = ν = 0. Hence, we restrict

now to this one-parameter moduli space given by ρ where the geometric divergence
and theφ-divergence coincide, withφ = 1

2Tr. For the ∗-structure onX in Theorem4.7,
we proceed with μ = ν = 0 and using

σ̂ ( fs ⊗ s) = s ⊗ fs + ρ s ⊗ ft − ρ t ⊗ fs, σ̂ ( fs ⊗ t) = ρ s ⊗ fs − t ⊗ fs − ρ t ⊗ ft

we have

f ∗
s (s) = (evσ̂ ( fs ⊗(−t)))∗ = 0, f ∗

s (t) = (evσ̂ ( fs ⊗(−s)))∗ = −1

and similarly for ft . �	
In view of this lemma, we now take

∫ = 1
2Tr as our preferred state. Note that

there is also a significant 4-parameter moduli of QLCs with σ = −flip on the basis
elements and admitting a bimodule map α : �1 → �1 ⊗A �1 going beyond the inner
case [2, Exercise 8.3]. Our analysis above can be extended to this wider class as well
as repeated for other metrics.

5.1 Ricci quadratic form for general�

Proceeding with μ = ν = 0, we still have a 1-parameter moduli of QLCs,

∇Ls = 2E21t ⊗ s − ρE12(s ⊗ t − t ⊗ s) + ρE21(t ⊗ t − s ⊗ s),

∇L t = 2E12s ⊗ t − ρE21(s ⊗ t − t ⊗ s) + ρE12(t ⊗ t − s ⊗ s),

where ρ is an imaginary parameter. The curvature is

R∇L s = 2(E11 − E22)s ∧ t ⊗(ρt + s) + 2ρ2s ∧ t ⊗ s + 4E22s ∧ t ⊗ s

− 2(E11 − E22)s ∧ t ⊗ ρt

= 2(1 + ρ2)s ∧ t ⊗ s

R∇L t = 2(E11 − E22)s ∧ t ⊗(ρs − t) + 2ρ2s ∧ t ⊗ t + 4E11s ∧ t ⊗ t

− 2(E11 − E22)s ∧ t ⊗ ρs

= 2(1 + ρ2)s ∧ t ⊗ t

The usual Ricci tensor defined by the canonical lift i is [2, Eqn. (8.21)]

Ricci = (1 + ρ2)(s ⊗ t + t ⊗ s), (23)

which is still hermitian with the ∗-structures (even though i is not suitably antihermi-
tian), but not quantum symmetric. Here, ρ = ±ı gives a pair of natural flat QLCs on
M2(C). We aim to contrast this with what we get for the Ricci quadratic form.
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From the above, the dual right connection on vector fields now simplifies to

∇X fs = ρ E21 fs ⊗ s − (ρ E12 + 2 E21) fs ⊗ t + ρ E12 ft ⊗ s − ρ E21 ft ⊗ t,

∇X ft = ρ E12 fs ⊗ s − ρ E21 fs ⊗ t + (ρ E21 − 2 E12) ft ⊗ s − ρ E12 ft ⊗ t,

σX(s ⊗ fs) = fs ⊗ s + ρ( ft ⊗ s − fs ⊗ t), σX(s ⊗ ft ) = − ft ⊗ s + ρ( fs ⊗ t − ft ⊗ t),

σX(t ⊗ fs) = − fs ⊗ t + ρ( fs ⊗ s − ft ⊗ t), σX(t ⊗ ft ) = ft ⊗ t + ρ( ft ⊗ s − fs ⊗ t).

In what follows, we adopt an index notation with a = s, t and

DbX
a = ∂bX

a + 
a
bcX

c

so that ∇XX = fa ⊗ bDbXa if X = fs Xs + ft X t ∈ X, where we sum over repeated
indices.

Proposition 5.2 ∇∇(ẽv) = 0. Moreover, writing Yab = DbXa for brevity,

F(X) = YabYba + ρ (YtsYss + YssYts − Ytt Yst − YstYtt ) + ρ2 ((Yst + Yts)
2 − (Yss + Ytt )

2)

R(X) = −2(Xs Xt + Xt Xs) + 2ρ
(
(Xs)2 − (Xt )2 +

(
bsbt − csct −asct − csdt
asbt + bsdt bsbt − csct

) )

+ ρ2
( −b2s + b2t + c2s − c2t (as + ds)(bt + cs) − (at + dt )(bs + ct )

−(as + ds)(bs + ct ) + (at + dt )(bt + cs) −b2s + b2t + c2s − c2t

)

,

where

Xs =
(
as bs
cs ds

)

, Xt =
(
at bt
ct dt

)

.

Proof We first calculate, with ∇̂ = σ−1
X ∇X,

ẽv(id⊗ ev⊗ id)(∇XX ⊗ ∇XX) = YabYba

ev(id⊗ ẽv⊗ id)(∇̂X ⊗ ∇̂X) = YabYba + 2ρ (YtsYss + YssYts − YttYst − YstYtt )

+ 2ρ2 ((Yst + Yts)
2 − (Yss + Ytt )

2)

giving F(X) as stated. Next, we calculate

∇∇(ẽv) = d ẽv − (ẽv⊗ id)(id⊗ σ)
(∇X ⊗ id + id⊗ ∇L)

and as it is a right module map, we only need to evaluate it on fa ⊗ b for a, b ∈ {s, t}.
First d ẽv( fa ⊗ b) = 0 and then, summing over repeated indices

∇X fa ⊗ b + fa ⊗ ∇Lb = 
c
ea fc ⊗ e⊗ b − 
b

en fa ⊗ e⊗ n

Now using the formula for σL , for example,

(ẽv⊗ id)(id⊗ σ)
(∇X ⊗ id + id⊗ ∇L)

( fs ⊗ s) = ρ(
t
ss − 
s

st )s + ρ(
s
tt − 
t

ts)t
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and substituting for the Christoffel symbols and looking at the other cases give
∇∇(ẽv) = 0 as claimed. Next, we calculate

(ẽv⊗ id)(id⊗(id⊗ id − σ))(∇X ⊗ id + id⊗ ∇L)∇XX

in several parts. We start with

(ẽv⊗ id)
(∇X ⊗ id + id⊗ ∇L)

( fs ⊗ s) = −ρ E21s − ρ E12t,

(ẽv⊗ id)
(∇X ⊗ id + id⊗ ∇L)

( fs ⊗ t) = −ρ E12s + (2 E12 − ρ E21)t,

(ẽv⊗ id)
(∇X ⊗ id + id⊗ ∇L)

( ft ⊗ s) = (2 E21 + ρ E12)s + ρ E21t,

(ẽv⊗ id)
(∇X ⊗ id + id⊗ ∇L)

( ft ⊗ t) = ρ E21s + ρ E12t,

(ẽv⊗ id)(id⊗(id⊗ id − σ))(∇X ⊗ id + id⊗ ∇L)( fa ⊗ b Yab)

= (ẽv⊗ id)(id⊗(id⊗ id − σ))(∇X ⊗ id + id⊗ ∇L)( fa ⊗ b).Yab
+ (ẽv⊗ id)(id⊗(id⊗ id − σ))( fa ⊗ σL(b⊗ dYab))

= (ẽv⊗ id)(∇X ⊗ id + id⊗ ∇L)( fa ⊗ b).Yab
+ (ẽv⊗ id)(id⊗(σL − id⊗ id))( fa ⊗ b⊗ c).[Ec,Yab],

and evaluating this against X gives

= (ẽv⊗ ev)((∇X ⊗ id + id⊗ ∇L)( fa ⊗ b)⊗ fc).YabXc

+ (ẽv⊗ ev)(id⊗(σL − id⊗ id)⊗ id)( fa ⊗ b⊗ c⊗ fd).[Ec,Yab] Xd .

Now, R(X) consists of this plus −ρ (YtsYss + YssYts − YttYst − YstYtt ) − ρ2 ((Yst +
Yts)2−(Yss +Ytt )2) as already computed for F(X), giving R(X) as stated. Explicitly,

Yss = [E12, X
s] + ρ(E21X

s + E12X
t ), Yst = −{E21, X

s} − ρ(E12X
s + E21X

t ),

Ytt = [E21, X
t ] − ρ(E21X

s + E12X
t ), Yts = −{E12, X

t } − ρ(E12X
s + E21X

t ),

which one can further compute in terms of the entries of Xs, Xt . �	
If ρ = 0, then we see that R(X) agrees with contraction against the Ricci curvature

tensor (23), bearing in mind that the latter is −1/2 of the classically normalised one.
But for ρ 
= 0, we see that the two approaches are a little different in this example.

5.2 Quantum geodesic flow equations onM2(C)

As before, we write X = fs Xs + ft X t but with components now time dependent, and
we set

κ = 1

2
div(X) = 1

2

([E12, X
s] + [E21, X

t ])
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along with preferred state
∫ = 1

2Tr in view of Proposition 5.1. The reality condition
on vector fields from Theorem 4.7 comes down to

(Xs)∗ = −Xt

since ς = id, while the geodesic velocity equation is

Ẋ = 1

2

[
([E12, X

s ] + [E21, X
t ]), X] − (id⊗ X)∇X

= 1

2

[
([E12, X

s ] + [E21, X
t ]), X] − fs X(dXs) − ft X(dXt ) − (id⊗ X)((∇X fs)X

s)

− (id⊗ X)((∇X ft )X
t ).

We have

(id⊗ X)((∇X fs)X
s) + (id⊗ X)((∇X ft )X

t )

= f s
(
E21X

s Xsρ − (2E21 + ρE12)X
s Xt + E12X

t Xsρ − E21X
t Xtρ

)

+ f t
(
E12X

s Xsρ − E21X
s Xtρ − (2E12 − E21ρ)Xt Xs − E12X

t Xtρ
)

and thus

Ẋ s = 1

2

[
([E12, X

s] + [E21, X
t ]), Xs] − [E12, X

s]Xs − [E21, X
s]Xt (24)

− (
E21X

s Xsρ − (2E21 + ρE12)X
s Xt + E12X

t Xsρ − E21X
t Xtρ

)
,

Ẋ t = 1

2

[
([E12, X

s] + [E21, X
t ]), Xt ] − [E12, X

t ]Xs − [E21, X
t ]Xt

− (
E12X

s Xsρ − E21X
s Xtρ − (2E12 − E21ρ)Xt Xs − E12X

t Xtρ
)
. (25)

We first look at the content of the original auxiliary braid condition in [5] which is
sufficient but not necessary for real geodesic evolution.

Lemma 5.3 If X ∈ X is real, then σX,X(X ⊗ X) = X ⊗ X holds only if X = 0.

Proof Looking at the coefficients of σX,X(X ⊗ X) − X ⊗ X = 0, we get one entry
ρ(Xs Xt + Xt Xs) = 0, so if ρ 
= 0, then Xs Xt + Xt Xs = 0. There is another entry
−(Xs Xt +Xt Xs)+ρ(Xs Xs +Xt Xt ) = 0, so if ρ = 0 we still get Xs Xt +Xt Xs = 0.
In the case of real X , this means Xs∗Xs + Xs Xs∗ = 0 which requires Xs = Xt = 0.
�	

Thus, this condition is too strong. Instead, we proceed with X real but the minimal
‘improved auxiliary condition’ on it such that the flow remains real. This is obtained
by applying ∗ to the equation for Ẋ s and requiring to get the equation for Ẋ t , and
comes down to

{E12, {Xs, Xt } − ρ((Xs)2 − (Xt )2)} + ρ
([E21, [Xs, Xt ]]}) = 0 (26)
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on remembering that ρ is imaginary. If ρ = 0, then we need E12 to anticommute with
{Xs, Xs∗}, which is a positive operator and hence must be real and symmetric. One
can show that this requires {Xs, Xs∗} = 0, so we are back with the original auxiliary
braid condition case. Therefore, real solutions in the sense Xs∗ = −Xt at all times t
can exist only with ρ 
= 0.

After solving for X , we then solve the amplitude flow equation ∇Eψ = 0 for
ψ(t) ∈ M2(C), which amounts to

ψ̇ = −[E12, ψ]Xs − [E21, ψ]Xt − ψκ. (27)

5.3 Quantum geodesic flows for� = ı

The choice ρ = ı , although flat, seems to be a natural choice after we excluded
ρ = 0, and we solve this here. We first solve the improved auxiliary Eq. (26) with a
4-parameter solution

Xs =
(
e

π ı
4 (d − a) c + ıb
b + ıc e

π ı
4 (d + a)

)

; a, b, c, d ∈ R.

We now let these parameters vary in time and find that (24) is

ċ = 0, ḋ = 0, ȧ = 2bd, ḃ = −2ad,

which is simple harmonic motion. Hence, we have a 4-parameter geodesic velocity
field

Xs =
(
e

π ı
4 (δ − (α cos(2δt) + β sin(2δt)) γ + ı(β cos(2δt) − α sin(2δt))
(β cos(2δt) − α sin(2δt)) + ıγ e

π ı
4 (δ + (α cos(2δt) + β sin(2δt)))

)

,

Xt = −Xs∗

for initial values α, β, γ, δ of a, b, c, d, respectively.
Relative to this, we have to solve the amplitude flow equation (27) where

κ =
(

β cos(2δt) − α sin(2δt) e
π ı
4 (α cos(2δt) + β sin(2δt))

e− π ı
4 (α cos(2δt) + β sin(2δt)) −(β cos(2δt) − α sin(2δt))

)

.

A numerical solution for α = γ = δ = 1, β = 0 and ψ(0) = id of the identity
matrix is shown in Fig. 1. One can check to within numerical accuracy that the off-
diagonal entries of ψ vanish at t = nπ/4 for all odd n in the range and at these points
Im(ψ11) = Re(ψ22). Meanwhile, at t = nπ/2 for all n in range, one has ψ11 = ψ22,
ψ12 = (−1)nψ̄21 and ψ12 = rne(−1)n π ı

4 for real rn . We have marked t = π/4 and
t = π/2 as examples. Looking from a coarser perspective out to large t , we also see
that the diagonal entries of ψ precess in an approximate circle, while the off-diagonal
entries remain near to 0 and repeatedly return to it. This reflects the initial starting
point. One can further check that while the squared absolute values of the 4 entries of
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Fig. 1 Quantum geodesic on M2(C) with its flat connection ρ = ı and a geodesic vector field given by
α = γ = δ = 1, β = 0. We plot the matrix entries on the complex plane of the resulting amplitude
flow ψ(t) ∈ M2(C) with initial ψ(0) = id. The outer curves are the diagonal entries and the inner ones
off-diagonal

ψ clearly vary in time (as the square of the distance from the origin in the complex
plane), their sum remains constant at 2, in line with our probabilistic interpretation
with respect to

∫ = 1
2Tr.

6 Quantum geodesics on the fuzzy sphere

The fuzzy sphere or coadjoint quantisation as an orbit in su∗
2 is the algebra

[xi , x j ] = 2ıλpεi jk xk,
∑

i

x2i = 1 − λ2p,

where 0 ≤ λp < 1 is a real deformation parameter. We use the 3D calculus recently
introduced in [2, Example 1.46] with central basis si , i = 1, 2, 3 with

dxi = εi jk x j s
k .

The calculus is inner (in degree 1 only) with

θ = 1
2ıλp

xi s
i = 1

(2ıλp)2
xidxi = − 1

(2ıλp)2
(dxi )xi

so that the partial derivatives are the ‘orbital angular momentum’ derivations

∂i f = 1
2ıλp

[xi , f ], ∂i x j = εi jk xk, εi jk∂i∂ j = ∂k .

The natural exterior algebra is

si ∧ s j + s j ∧ si = 0, dsi = − 1
2εi jks

j ∧ sk
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but note that this is no longer inner in higher degree by θ . The ∗-structure is xi , si

self-adjoint and the canonical lift from 2-forms is i(si ∧ s j ) = 1
2 (s

i ⊗ s j − s j ⊗ si )
as classically.

A general quantum symmetric metric has the form g = gi j si ⊗ s j for gi j a positive
real symmetric matrix, and a left connection takes the form (dropping the 1

2 factor
compared to the definition of 
 in [13]),

∇Lsi = −
i
jks

j ⊗ sk

for some coefficients 
i
jk which we assume for simplicity to be constants (multiples

of the identity 1 ∈ A). We have a bimodule connection with σL just the flip on the
basis, and for the connection to be ∗-preserving, we then need 
i

jk to be real. We do
not limit ourselves to a QLC, but the latter was found in [13] to be unique among such
connections, namely

∇Lsi = −gil
(

εlkmgmj + Tr(g)

2
εl jk

)

s j ⊗ sk . (28)

The torsion for a general connection in our class is

T∇(si ) = −1

2
T i

jks
j ∧ sk; T i

jk = 
i
jk − 
i

k j − εi jk,

which can be shown to vanish for the QLC. The Riemann curvature for a general
connection has the form

R∇L (si ) = ρi
jkε jmns

m ∧ sn ⊗ sk, ρi
jk = 1

2 (

i
jk − ε jmn∂m
i

nk − ε jmn

i
ml


l
nk),

and the Ricci curvature the form

Rmn = ρi
jnε j im

= 1

2

(

i

jnεim j + ∂m
i
in − ∂i


i
mn + 
i

m j

j
in − 
i

i j

j
mn

)
, (29)

albeit in our constant case we do not need the derivative terms. Its value for the QLC
is computed in [13] which then gives the scalar curvature in this case as

S = 1
2 (Tr(g

2) − 1
2Tr(g)

2)/ det(g).

If we introduce the (central) basis fi for left vector fields which is dual to the si ,
then the right connection dual to the previous left connection is

∇X fk = 
i
jk fi ⊗ s j

with σX the flip among the fi and s j . This implies on a left vector field X = fk Xk ,

∇XX = 
i
jk fi ⊗ s j Xk + fi ⊗ ∂ j X

i s j = Dj X
i fi ⊗ s j ,
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where

Dj X
i = ∂ j X

i + 
i
jk X

k .

Wealso need a natural state, and here, we use
∫ : A → C defined by an expansion in

terms of noncommutative spherical harmonics [1] (as the SU2-invariant component).
This is known to be a trace and was used recently in the construction of the Dirac
operator on the fuzzy sphere [14].

Proposition 6.1 The geometric divergence and the
∫
-divergence agree on the fuzzy

sphere if 
i
i j = 0 for all j , which includes the case of the QLC. In this case,

div( fk Xk) = ∂k Xk and f ∗
k = fk .

Proof The inverse of σX is also the flip on the basis and gives the left connection ∇̂,
and hence, div∇̂( fk) = 
i

jkδi j = 
i
ik , which vanishes for the QLC read off from

(28). Then, div∇̂( fka) = div∇̂(a fk) = ev(da ⊗ fk) = ∂ka for any vector field fka.
Hence, from Proposition 4.4 for compatibility of the two types of divergence, we need

∫
∂ j a =

∫
[ 1
2ıλp

x j , a] = 0

for any a, which holds as
∫
is a trace. Since s j ∗ = s j , the ∗-operation in Theorem 4.7

is then as stated. �	
We proceed with connections where 
 obeys the condition in Proposition 6.1 so

that we can use Theorem 4.7.

Proposition 6.2 On X = fi X i for Xi ∈ Cλ[S2], the kinetic form and the quadratic
Ricci form are

F(X) = (Dj X
i )(Di X

j ), R(X) = −2(Ri j + εmni

m
nj )X

j Xi − T k
i j (Dk X

i )X j .

Proof Clearly, the two halves of F(X) are each half of

ẽv(id⊗ ev⊗ id)(∇XX ⊗ ∇XX) = (Dj X
i )(Dn X

m )ẽv(id⊗ ev⊗ id)( fi ⊗ s j ⊗ fm ⊗ sn)

= (Dj X
i )(Di X

j ),

ev(id⊗ ẽv⊗ id)(∇̂X ⊗ ∇̂X) = (Dj X
i )(Dn X

m)ev(id⊗ ẽv⊗ id)(s j ⊗ fi ⊗ sn ⊗ fm )

= (Dj X
i )(Di X

j ),

where ∇̂X = σ−1
X ∇XX = Dj Xi s j ⊗ fi as the si , f j are both central so we can pull

all coefficients to the left and σX is just the flip on the basis.
Being equal, these do not contribute to R(X). The first term of R(X) also vanishes

as

ev(∇∇(ẽv)(∇XX)⊗ X) = ev(∇∇(ẽv)( fi ⊗ s j )Dj X
i ⊗ fl)X

l = 0
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using that ∇∇(ẽv) : X⊗ �1 → �1 is a right module map and that, from (18),

∇∇(ẽv)( fi ⊗ s j ) = −(ẽv⊗ id)(id⊗ σ)(
m
ni fm ⊗ sn ⊗ s j − fi ⊗ 
 j

mns
m ⊗ sn)

= −(ẽv⊗ id)(
m
ni fm ⊗ s j ⊗ sn − fi ⊗ 
 j

mns
n ⊗ sm)

= −
 j
ni s

n + 
 j
mi s

m = 0.

It remains to calculate the middle term,

(ẽv⊗ ev)
(
(id⊗(id⊗ id − σ))(∇X ⊗ id + id⊗ ∇L )(Dj X

i fi ⊗ s j )⊗ fm Xm
)

= (Dk(Dl X)i − Dj X
i
 j

kl)(ẽv⊗ ev)
(
(id⊗(id⊗ id − σ))( fi ⊗ sk ⊗ sl)⊗ fm Xm

)

= (Dk(Dl X)i − Dj X
i
 j

kl)(ẽv⊗ ev)
(
fi ⊗(sk ⊗ sl − sl ⊗ sk) ⊗ fm

)
Xm

= (Dk(Dl X)i − Dj X
i
 j

kl)(δikδml − δilδmk)X
m

= ([Di , Dm]Xi − (Dj X
i )(T j

im + ε j im))Xm

=
(
[∂i , ∂m]Xi + (
i

i j

j
mk − 
i

m j

j
ik)X

k
)
Xm − (Dj X

i )(T j
im + ε j im)Xm

= 2εim j

i
jk X

k Xm − T j
im(Dj X

i )Xm +
(
−
i

jkεim j + 
 j
mk


i
i j − 
 j

ik

i
m j

)
Xk Xm

which we recognise as stated. In the first five lines, Dk acts like a covariant derivative
only on the upper Xi index, e.g. when applied to (Dl X)i . After that we expand out in
terms of 
 and use [∂i , ∂m] = εim j∂ j which we cancel with a part of Dj Xiε j im , to
obtain the final expression. �	

We see that the quadratic form point of view coming from quantum geodesic flows in
this example suggests a modified Ricci tensor

Rquad
i j := Ri j + εmni


m
nj

differing from the existing ‘lift and contract’ approach. Actually the effect of this
extra term is merely to reverse the sign of the first term in (29) for the corresponding
expression for Rquad .

Next, we study the geodesic velocity equations. Given the above, and Theorem 4.7,
we set

κ = 1
2 div∇̂(X) = 1

2 ∂k X
k, Xk∗ = Xk

for the divergence of a vector field X = fk Xk ∈ X and its reality property (since
ς = id). One can check that then (∂ j X i )∗ = ∂ j X i also. For the velocity field equation,
we first calculate

(id⊗ ev)(∇X ⊗ X) = 
i
jk fi X

k X j + fi (∂ j X
i )X j , [κ, X ] = 1

2 [∂ j X
j , Xi ] fi .
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Then, the geodesic velocity equations in the form in Eq. (7) become

Ẋ i = 1
2 [∂ j X

j , Xi ] − 
i
jk X

k X j − (∂ j X
i )X j . (30)

The auxiliary braid condition σXX(X ⊗ X) = X ⊗ X in [5] comes down to

[Xi , X j ] = 0, (31)

while the most general ‘improved auxiliary condition’ needed to maintain reality of
flow under the geodesic velocity equations is

∂ j [Xi , X j ] = (
i
jk − 
i

k j )X
j Xk = (T i

jk + εi jk)X
j Xk . (32)

This is obtained by applying ∗ to (30) and comparing. Remember that 
 is assumed
real and constant-valued (a multiple of the identity in the algebra) for a ∗-preserving
connection in our context. We therefore solve both the geodesic velocity equation and
(32). If we use the quantum Levi-Civita connection, then the torsion is zero.

After this, we have to solve for e ∈ A⊗C∞(R) with respect to a chosen geodesic
velocity field. Thus, we have to solve ė + X(de) + eκ = 0, which comes out as the
amplitude flow equation

ė = −Xi∂i e − e

2
∂i X

i . (33)

6.1 Quantum geodesic flowwith Xi(t) ∈ R1 i.e. constant on the fuzzy sphere

The geodesic velocity Eq. (30) for the QLC and for constant coefficients Xi (t) ∈ R1
becomes

Ẋ i = −
i
jk X

k X j = −gil gmjεlkm X
j Xk,

while both the auxiliary braid condition (31) and the improved one (32) hold auto-
matically. The latter says that we can consistently keep Xi real. In the diagonal case
g = diag(λ1, λ2, λ3), we have

Ẋ1 = μ1X
2X3, Ẋ2 = μ2X

1X3, Ẋ3 = μ3X
1X2;

μ1 = λ2 − λ3

λ1
, μ2 = λ3 − λ1

λ2
, μ3 = λ1 − λ2

λ3
,

where
∑

μi + μ1μ2μ3 = 0 and the μi depend on the λi up to an overall scale, i.e.
on (λi ) ∈ RP

2. The velocity equation has solutions in terms of Jacobi elliptic sn and
cn functions. For example, if μ1 < 0 < μ2, then

X1(t) = −c1
√−μ1sn (c2 t |μ) , X2(t) = c1

√
μ2cn (c2 t |μ) ,

X3(t) = c1

√
μ3

μ

√
1 − μ sn2 (c2 t |μ)
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Fig. 2 Quantum geodesic on the fuzzy sphere with metric g = diag(4, 3, 1). On the left is an example of a
time-dependent geodesic velocity field X = fi X

i (t) for this metric starting at �X(0) = (0, 1,
√
2). On the

right is the flow this generates for a function of the form e = ψ i (t)xi starting at �ψ(0) = (1, 0, 0)

are real solutions, where we assume that the ellipticity parameter

μ = −μ1μ2μ3
c21
c22

is nonzero (which is if and only if theλi are all distinct).Here, c1, c2 > 0 are parameters
and t is in a certain interval containing 0. Note that if we chose the μi , then the
corresponding metric up to an overall normalisation is

g = diag(1 + μ2, 1 − μ1, 1 + μ1μ2),

so this is positive only when μ1 < 1, μ2 > −1, μ1μ2 > −1. Figure2 gives an
example like this where μ1 = − 1

2 , μ2 = 1, so that μ3 = −1 and g = diag(4, 3, 1) is
the metric up to normalisation. We take c1 = c2 = 1, and we have μ = − 1

2 , so

X1 = − 1√
2
sn(t | − 1

2 ), x2 = cn(t | − 1
2 ), X3 =

√
2 + sn2(t | − 1

2 ),

which is real and valid for all t , being periodic with period approximately 5.66 and
initial value �X(0) = (0, 1,

√
2).

Next, we integrate (33) to find the amplitude flow for this X . We restrict attention
to e = ψ i xi ∈ su3 ⊗C∞(R) and then find that motion stays in this subspace of
the fuzzy sphere. Hence, we are effectively integrating a time-varying infinitesimal
rotation given by

ψ̇ i = εi jk X
jψk,

which is easily solved numerically as shown also in Fig. 2 starting with �ψ = (1, 0, 0).

Unitarity of the evolution means
∫
e∗e = ∫

ψ̄ iψ j xi x j = �̄ψ · �ψ(1 − λ2p) so that a

normalised �ψ stays normalised. Hence, motion here is necessarily on the unit sphere
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in field space. Clearly also, the curve crosses itself multiply, with the first two self-
crossings as shown. When we look out to large t , we see (viewed from the side) two
discs on the sphere where the curve does not enter. Other g, including with Lorentzian
signature, generate a broadly similar picture. In our picture, the restricted Hilbert
space is 3-dimensional and the vector |ψ〉 = �ψ in it evolves in time t according to
this quantum geodesic amplitude flow.

6.2 Quantum geodesic flows with the roundmetric andmore general Xi

At the other extreme, we take the ‘round metric’ gi j = δi j . Then,


i
jk = 1

2
εi jk, Rmn = − 1

4δmn, S = − 3
4

and our improved auxiliary Eq. (32) and the consequently equivalent form of (30) are

∂ j [Xi , X j ] = εi jk X
j Xk, Ẋ i = −1

2
{X j , ∂ j X

i }.

The simplest solution is again Xi ∈ R1 as before, but this time, as ∂ j X i = 0, we
have that the Xi are also constant in time. So the velocity field is any fixed �X ∈ R

3.
In this case, if we look for flows of the form e = ψ i xi as we did before, we need
�̇ψ = − �X × �ψ , which evolves over time to a rotation about an axis along �X . So the
geodesic flows are circles in the space of states of this form, around any fixed axis �X .

Looking for other real solutions in the full (nonreduced) fuzzy sphere is beyond
our scope here as it leaves the algebraic setting and would require a completion. For
example, if we try solutions of the constant plus linear form Xi = Xi j x j + f i1 with a
real matrix Xi j and a real vector f i , then the improved auxiliary condition becomes

(Tr(X)X − X2)i j = 1

2
εikl X

km Xlnεmnj , (34)

which has solutions for Xi j , the largest part of the moduli space being 5-dimensional.
For example, if X22 
= 0, then X12, X21, X23, X32 are free and

X =
⎛

⎜
⎝

X12X21

X22 X12 X12X23

X22

X21 X22 X23

X21X32

X22 X32 X23X32

X22

⎞

⎟
⎠ .

In fact both sides then vanish separately as well. However, the geodesic velocity
equation becomes

Ẋ i j x j + ḟ i1 = −1

2
X ja Xibε jbc{xa, xc} + Xik f lεkl j x j ,

which does not have generic solutions at the level of the algebra Cλ[S2].
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On the other hand, the quantum geometry also makes sense on the reduced fuzzy
sphere where λp = 1/n and we quotient by the kernel of the n-dimensional represen-
tation. For example, n = 2 reduces to the algebra of 2 × 2 matrices, but now with a
3D calculus not the one of Sect. 5. In this case, our algebra has the additional Pauli
matrix relations.

xi x j = 1

4
δi j + ı

2
εi jk xk .

Putting this in, the geodesic velocity equation becomes

Ẋ = X × �f , �̇f = 1

2
X · �κ; κk = 1

2
Xi jεi jk (35)

where × is the cross product of the 2nd index of X with the vector �f and · is the dot
product of the same with κ = ∂i X i/2 viewed as a vector in R3.

Next, given any X obeying (34)–(35), we write e = ψ i xi + φ
2 1 and solve the

amplitude flow equations for the vector plus scalar,

φ̇

2
+ ψ̇ i xi = −ψk

(
Xi j x j + f i

)
∂i xk − ψ jκ l x j xl − φ

2
κmxm

= −(Xi jψkεikl + ψ jκ l)x j xl − ψk f iεikmxm − φ

2
κmxm

= −(Xi jψkεikl + ψ jκ l)

(
1

4
δ jl + ı

2
ε jlm xm

)

− ψk f iεikmxm − φ

2
κmxm

= − ı

2
Xi jψk(δimδk j − δi j δkm)xm + κ · ψ

4
+ ı

2
(κ × ψ)mxm − ( f × ψ)mxm

− φ

2
κmxm

which gives us

�̇ψ = − ı

2
(X − Tr(X)) �ψ +

( ı

2
�κ − �f

)
× �ψ − φ

2
�κ, φ̇ = κ · ψ

2

with solution for the combined 4-vector

( �ψ(t)
φ(t)

)

= Pe−ı
∫ t
0 H(s)ds

( �ψ(0)
φ(0)

)

, H(t) = 1

2

(
X − Tr(X) − (�κ + 2ı �f )× −ı �κ

ı �κ 0

)

.

of the equation ı d
dt (

�ψ, φ) = H( �ψ, φ) for H as stated. The latter is generically time
dependent and P denotes a (time)-ordered exponential. Note that xi , 1

2 all have the
same norm with respect to the inner product defined by

∫
, being a certain multiple

of the matrix trace from the point of view of the reduced fuzzy sphere algebra A as a
matrix algebra.
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Fig. 3 Quantum geodesic on reduced 2×2 matrix fuzzy sphere with metric round metric g = diag(1, 1, 1)
and Xi = Xi j (t)x j + f i1 with �f = (0, 0, 1) and a random initial X(0). We show the amplitude flow for

e = ψ i (t)xi + φ(t)
2 1 starting at �ψ(0) = (1, 0, 0) and φ(0) = 0

For the above 5-parameter moduli of solutions of (34), one has

�κ = 1

2

(

X23 − X32,
X21X32 − X12X23

X22 , X12 − X21
)

, X · �κ = 0

so �f is a constant vector, and in that case the rows of X undergo a uniform rotation
about the �f axis. Then,

H = 1

2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

− (X22)2+X23X32

X22
X12+X21

2 + 2ı f 3 X12X23+X21X32

X22 − 2ı f 2 −ıκ1

X12+X21

2 − 2ı f 3 − X12X21+X23X32

X22
X23+X32

2 + 2ı f 1 −ıκ2

X12X23+X21X32

X22 + 2ı f 2 X23+X32

2 − 2ı f 1 − X12X21+(X22)2

X22 −ıκ3

ıκ1 ıκ2 ıκ3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

This is time dependent if �f 
= 0 (since then X is then time dependent) but a numerical
solution is shown in Fig. 3 taking, without loss of generality, �f along the z-axis. Each
row of the matrix X evolves as a circle about this axis, as shown for some random
initial values. For the amplitude flow, we take initial values �ψ(0) = (1, 0, 0) and φ(0)
and plot the real part of the former. The imaginary part is similar. One can also plot

φ(t) and check to within numerical accuracy that |φ|2 + �ψ · �ψ = 1, a constant of
motion.

7 Quantum geodesics on the q-sphere

The standard q-sphere is based on the q-Hopf fibration and hence a ∗-subalgebra of
Cq [SU2], which we write as generated by z, x with relations

zx = q2xz, z∗x = q−2xz∗, zz∗ = q4z∗z + q2(1 − q2)x, z∗z = x(1 − x)
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in the conventions of [2, Lemma 2.34]. Its 2D differential calculus is inherited from
the 3D calculus [26] on Cq [SU2] and can be given in terms of dz, dz∗, dx and a
relation between them. (Here, �1 is not free but a rank 2 projective module.) Its
holomorphic/antiholomorphic decomposition �1 = �0,1 ⊕ �1,0 (in fact a double
complex) was obtained in [19] as an application of the theory of quantum frame
bundles, see [2, Prop. 2.35] for details. The uniqueCq [SU2]-covariant quantummetric
and its Levi-Civita connection were also introduced in [19], and later revisited in the
modern bimodule QLC form [2, 4]. Explicitly,

g = qdz∗ ⊗ dz + q−1dz ⊗ dz∗ + q2(2)qdx ⊗ dx,

∇Ldz = −(2)q zg, ∇Ldz∗ = −(2)q z
∗g, ∇Ldx = −((2)q − q−1)g,

R∇L (∂ f ) = q4(2)qVol⊗ ∂ f , R∇L (∂̄ f ) = −(2)qVol⊗ ∂̄ f , Ricci = − (2)q
(2)q2

g

for a certain lift i(Vol) ∈ �1 ⊗A �1, see [2, Sect. 8.2.3]. We take the standard real
form for q real and x∗ = x .

In practice, however, it is much easier to work ‘upstairs’ within �1(Cq [SU2]). We
take the quantum group with its standard matrix of generators a, b, c, d and �1 free
with basis e±, e0 and relations

e± f = q | f | f e±, e0 f = q2| f | f e0,

where | f | is the grading defined by the number of a, c minus the number of b, d. We
used the conventions in [2, Example 2.32]. We let ∂±, ∂0 be the ‘partial derivatives’
with respect to the basis as defined by d f = ∂+ f e+ + ∂− f e− + ∂0 f e0. Here, e+∗ =
−q−1e−, e−∗ = −qe+ and e0∗ = −e0. On the q-sphere, we only need e± (not e0)
and we have to insert the elements D+ = a ⊗ d−q−1c⊗ b and D− = d ⊗ a−qb⊗ c
for formulae to then make sense in the tensor product. Thus, [2, Example 6.5],

g = −q2e+D−
1 D−

1
′ ⊗ D−

2
′D−

2 e
− − e−D+

1 D+
1

′ ⊗ D+
2

′D+
2 e

+

∇L(ω±e±) = (∂+ω±e+ + ∂−ω±e−)D±
1 D±

1
′ ⊗ D±

2
′D±

2 e
±,

where the prime denotes an independent copy and |ω±| = ∓2 so that ω±e± ∈ �1.
The dual basis to e±, e0 will be denoted f±, f0, and e±, f± provide dual bases for �1

on the q-sphere when suitably interpreted with the D±. The corresponding dual right
connection on the left vector fields X is

∇X( f±X±) = f±D±
1 D±

1
′ ⊗ D±

2
′D±

2 (∂+X±e+ + ∂−X±e−)

where |X±| = ±2 so that f±X± has degree zero, i.e. is a vector field on the q-sphere.
The q-commutation relations for the basis of vector fields are f±g = q−|g|g f±. Note
that the connection ∇X preserves the ∗-operation by default, since it vanishes on both
f± and f±∗.
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Weuse the natural integration
∫

f for f ∈ Cq [SU2], which is known to be a twisted
trace

∫
f g =

∫
ς(g) f , ς(aib j ckdl) = q2(l−i)aib j ckdl

and restricts to Cq [S2] as
∫

xn = 1

[n + 1]q2
,

∫
f g =

∫
ς(g) f , ς(x pznz∗m) = q2(n−m)x pznz∗m .

This was recently used in [7] for the Dirac operator on the q-sphere, and we use it
now as our preferred state.

Proposition 7.1 The geometric divergence and the
∫
-divergence on the q-sphere

agree, and if X = f±X± (summing over ±), then div(X) = q∓2∂±X±. The ∗ oper-
ation from Theorem 4.7 is f+∗ = −q−1 f− and f−∗ = −q f+. The geodesic velocity
equation for X = f±X± as a function of time is

Ẋ± + 1
2 [X±, div(X)] + ((∂+X±)X+ + (∂−X±)X−) = 0.

Proof To find the divergence, we need the corresponding left connection on X,

∇̂(v± f±) = (∂+v±e+ + ∂−v±e−)D∓
1 D∓

1
′ ⊗ D∓

2
′D∓

2 f±

and then for X = f±X± we get, summing over ±,

div∇̂(X) = ev∇̂( f±X±) = ev∇̂(q−|X±|X± f±) = ev∇̂(q∓2X± f±) = q∓2∂±X±

since the product of the Ds in the formula for ∇̂(v± f±) simply gives 1. To show that
div∇̂ = div∫ by Proposition 4.4, we need to check for all X ∈ X that

∫
div∇̂(X) = q∓2

∫
∂±X± = 0.

The latter holds. (One can even define the integral by this property.)
We also have, in the upstairs notation, omitting the Ds,

σX(da ⊗ f±) = q |a|∇X( f±a) = q |a| f± ⊗ da,

and by substituting the partial derivatives, we find σX(e±′ ⊗ f±) = q±′2 f± ⊗ e±′
.

(Here, ±′ and ± are independent signs.) Now,

ev(e±′ ⊗ f±∗) = evσX
−1( f± ⊗(e±′

)∗) = −q∓′1 evσX
−1( f± ⊗ e∓′

) = −q±′1 ev(e∓′ ⊗ f±)

giving the stated answer for f±∗.
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From Eq. (7), the geodesic velocity equation is

0 = Ẋ + 1
2 [X , div(X)] + (id⊗ X)∇X(X),

where

(id⊗ X)∇X( f±X±) = (id⊗ ev)
(
f±D±

1 D±
1

′ ⊗ D±
2

′D±
2 (∂+X±e+ + ∂−X±e−) ⊗ f±′ X±′)

= f±((∂+X±)X+ + (∂−X±)X−),

[X , div(X)] = f±X± div(X) − div(X) f±X± = f± [X±, div(X)]

as div(X) has degree 0. �	
The action of the twisting on the 1-forms is given by ς(e±) = q∓2 e± and thus on

their duals ς( f±) = ς ◦ f± ◦ ς−1 = q±2 f±. Then, summing over ±,

X∗ = X±∗ f±∗ = −q∓1X±∗ f∓ = −q∓3 f∓X±∗

and the condition for X to be real is that X∗ = ς(X), which is

−q∓3 f∓X±∗ = ς( f∓X∓) = q∓2 f∓ς(X∓)

so the reality condition on X is that

X±∗ = −q±1ς(X∓).

Proposition 7.2 On the q-sphere, the improved auxiliary condition for preservation
of reality of a geodesic velocity field X is

[X±, div(X)] + ((∂+X±)X+ + (∂−X±)X−) − (q2X−∂−X± + q−2X+∂+X±) = 0.

Proof We calculate for f ∈ A,

∂±(ς f ) = q∓2 ς(∂± f ) ∂±( f ∗) = −q∓1(∂∓ f )∗,

and using this, applying ∗ to the velocity equation in Proposition 7.1 gives

0 = (Ẋ±)∗ − 1
2 [(X±)∗, div(X)∗] + ((X+)∗(∂+X±)∗ + (X−)∗(∂−X±)∗)

= (Ẋ±)∗ − 1
2 [(X±)∗, div(X)∗] − (q−1(X+)∗∂−(X±∗) + q(X−)∗∂+(X±∗))

and assuming that X is real gives

0 = ς(Ẋ∓) − 1
2 [ς(X∓), div(X)∗] − (q−1(X+)∗∂−(ς(X∓)) + q(X−)∗∂+(ς(X∓)))

= ς(Ẋ∓) − 1
2 [ς(X∓), div(X)∗] − (q (X+)∗ς(∂−X∓) + q−1(X−)∗ς(∂+X∓))

= ς(Ẋ∓) − 1
2 [ς(X∓), ς div(X)] + (q2ς(X−)ς(∂−X∓) + q−2ς(X+)ς(∂+X∓)),

123



73 Page 42 of 44 E. Beggs, S. Majid

which can be rewritten as

0 = Ẋ± − 1
2 [X±, div(X)] + (q2X−∂−X± + q−2X+∂+X±).

Subtracting this from the original equation in Proposition 7.1 gives the result stated.
�	

After solving this and the velocity equations together to find suitable Xt , we then
have to solve for et ∈ Cq [S2] obeying the amplitude flow equation ∇Ee = 0, which
now appears as

ė + (∂±e)X±
t + 1

2 e div(X) = 0. (36)

This derives the various quantum geodesic equations on the q-sphere. Actual solu-
tions will be given elsewhere, possibly at lower deformation order after understanding
classical geodesic flows better in our formalism.

8 Concluding remarks

We have refined the formalism of quantum geodesics to include a prescription for
the all-important ∗ operation on vector fields, which was previously not canonical.
Provided the ‘measure’ or positive linear functional

∫
is a twisted trace (e.g. an actual

trace in the usual sense), we provided a canonical construction, making the application
of the formalism much more straightforward. We also saw that the original auxiliary
braid condition (8) was too strong, understood its role in preservation of the reality
of geodesic velocity field as it evolves and provided a general construction in Sect. 2
for the minimal such condition that does this. The possibility of an external driving
force bimodule map α or left quantum vector field Y arises naturally in this context as
something to be set to zero. Applications with these nonzero are a direction for further
work suggested here.

The formalism was then checked out in our three nontrivial examples, each with
its own section. The example of quantum geodesics on M2(C) with its 2-dimensional
calculus and metric g = s ⊗ s + t ⊗ t was given in detail only for a specific flat
QLC at ρ = ı . Other ρ here could equally well be looked at. Moreover, this is
just one metric on M2(C) and another with an equally rich known moduli space of
QLCs is g = s ⊗ t − t ⊗ s in [2, Example 8.21]. The fuzzy sphere case was also
found to work much as expected but geodesic flows in general were quickly found
to be nonpolynomial in the algebra generators, i.e. would need a functional analytic
treatment beyond our scope here (but hardly surprising). However, the theory reduces
to the finite-dimensional quotient fuzzy spheres and we solved for geodesics on the
lowest dimension nontrivial M2(C) fuzzy sphere (but with a different, 3-dimensional
calculus). Higher spin reductions and the full theory using C∗-algebras would be an
important, but not easy, topic for further work. We also did the work of setting up the
velocity equations, etc., for the standard Cq [S2], but we did not actually solve these
as even the classical case here needs to be much better understood. Here, working
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‘upstairs’ on Cq [SU2] in the q-Hopf fibration amounts to the velocity vector field
components X± being sections of the q-monopole bundle of charges ±2.

We also made and explored a new approach to the Ricci tensor now as a kind
of ‘quadratic form’ on vector fields. This is motivated by the convective derivative
of divX in the case where X is a geodesic velocity field, but the resulting R(X) is
defined for any left quantum vector field X ∈ Ahom(�1, A) and studied as such
in our examples. In both the matrix and fuzzy sphere cases, we saw some aspects
in line with our earlier ‘working definition’ for Ricci [2] but with additional terms,
see notably Proposition 6.2. This should be similarly explored on a larger variety of
curved quantum spacetimes, including the discrete n-gonZn with lengths on the edges
providing the known quantum Riemannian geometry here, or on noncommutative
black hole and FLRW cosmological models as in [1].

More widely, the theory of quantum geodesics should be developed to include
geodesic deviation. We have set this up in Sect. 3.2 at the classical level. In fact,
our approach provides a new way of thinking about geodesics even on a classical
manifold, which deserves to be developed much further as a new tool in ordinary GR.
It is also the case that, throughout the paper, we took B = C∞(R) for the geodesic
parameter space. The same formalism with B = C∞(N ) provides a theory of ‘totally
geodesic submanifolds’ of a classical or quantum space expressed in the algebra A.
This remains to be explored as does the construction of examples where B is some
other quantum geometry. As such, it need not even have a ‘manifold dimension’ or
could be finite (i.e. the algebra B could be finite-dimensional). We do not know if
such generalisations would be interesting but the point is that the abstract approach to
geodesics based on A-B-bimodule connections and ∇∇(σE ) is both powerful and little
explored even in classical geometry. These are some of many possible directions for
further work.

Funding No funds, grants or other support were received.

Data availability Data sharing is not applicable as no datasets were generated or analysed during the current
study.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of
this article.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


73 Page 44 of 44 E. Beggs, S. Majid

References

1. Argota-Quiroz, J., Majid, S.: Fuzzy and discrete black hole models. Class. Quantum Grav. 38(36),
145020 (2021)

2. Beggs E.J., Majid, S.: Quantum Riemannian geometry. In: Grundlehren der mathematischen Wis-
senschaften, vol. 355. Springer (2020)

3. Beggs, E.J.: Noncommutative geodesics and the KSGNS construction. J. Geom. Phys. 158, 103851
(2020)

4. Beggs, E.J., Majid, S.: *-compatible connections in noncommutative Riemannian geometry. J. Geom.
Phys. 61, 95–124 (2011)

5. Beggs, E.J., Majid, S.: Quantum geodesics in quantum mechanics. arXiv:1912.13376 [math-ph]
6. Beggs, E.J., Majid, S.: Gravity induced by quantum spacetime. Class. Quantum Grav. 31(39), 035020

(2014)
7. Beggs, E.J.,Majid, S.: Spectral triples frombimodule connections andChern connections. J.Noncomm.

Geom. 11, 669–701 (2017)
8. Connes, A.: Noncommutative Geometry. Academic Press Inc, San Diego (1994)
9. Connes,A., Marcolli, M.: Noncommutative geometry, quantum fields and motives. In: AMS Collo-

quium Publications, vol. 55. Hindustan Book Agency (2008)
10. Doplicher, S., Fredenhagen, K., Roberts, J.E.: The quantum structure of spacetime at the Planck scale

and quantum fields. Commun. Math. Phys. 172, 187–220 (1995)
11. Dubois-Violette, M., Michor, P.W.: Connections on central bimodules in noncommutative differential

geometry. J. Geom. Phys. 20, 218–232 (1996)
12. Hooft, G.T.: Quantization of point particles in 2+ 1 dimensional gravity and space–time discreteness.

Class. Quantum Grav. 13, 1023 (1996)
13. Lira-Torres, E., Majid, S.: Quantum gravity and Riemannian geometry on the fuzzy sphere. Lett. Math.

Phys. 111(29), 21 (2021)
14. Lira-Torres, E., Majid, S.: Geometric Dirac operator on the fuzzy sphere. Lett. Math. Phys. 112, 10

(2022)
15. Liu, C., Majid, S.: Quantum geodesics on quantum Minkowski spacetime. J. Phys. A 55(35), 424003

(2022)
16. Madore, J.: The fuzzy sphere. Class. Quantum Grav. 9, 69–88 (1992)
17. Majid, S.: Hopf algebras for physics at the Planck scale. Class. Quantum Grav. 5, 1587–1607 (1988)
18. Majid, S., Ruegg,H.: Bicrossproduct structure of the k-Poincare group and non-commutative geometry.

Phys. Lett. B 334, 348–354 (1994)
19. Majid, S.: Noncommutative Riemannian and spin geometry of the standard q-sphere. Commun. Math.

Phys. 256, 255–285 (2005)
20. Majid, S.: Quantum gravity on a square graph. Class. Quantum Grav. 36(23), 245009 (2019)
21. Mourad, J.: Linear connections in noncommutative geometry. Class. Quantum Grav. 12, 965–974

(1995)
22. Podleś, P.: Quantum spheres. Lett. Math. Phys. 14, 193–202 (1987)
23. Snyder, H.S.: Quantized space–time. Phys. Rev. 71, 38–41 (1947)
24. Stratonovich, R.L.: Sov. Phys. JETP 31, 1012 (1956)
25. Várilly, J., Gracia-Bondía, J.: The Moyal representation for spin. Ann. Phys. 190, 107–148 (1989)
26. Woronowicz, S.: Differential calculus on compact matrix pseudogroups (quantum groups). Commun.

Math. Phys. 122, 125–170 (1989)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1912.13376

	Quantum geodesic flows and curvature
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Quantum Levi-Civita connections
	2.2 A-B bimodule connections and geodesic bimodules
	2.3 Geodesic velocity field equations

	3 States and divergence of the velocity equation on a classical manifold
	3.1 Classical divergence, fluid dust and the Ricci tensor
	3.2 Geodesic deviation and convective derivatives

	4 Noncommutative states and divergence
	4.1 The matching of geometric and state divergences
	4.2 Twisted traces and *-involution on vector fields
	4.3 *-Preserving connections and compatibility with quantum geodesic flow
	4.4 Quantum convected derivative of the divergence

	5 Quantum geodesics on M2(mathbbC)
	5.1 Ricci quadratic form for general ρ
	5.2 Quantum geodesic flow equations on M2(mathbbC)
	5.3 Quantum geodesic flows for ρ=

	6 Quantum geodesics on the fuzzy sphere
	6.1 Quantum geodesic flow with Xi(t)inmathbbR1 i.e. constant on the fuzzy sphere
	6.2 Quantum geodesic flows with the round metric and more general Xi

	7 Quantum geodesics on the q-sphere
	8 Concluding remarks
	References




