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Abstract
When a quantum field theory in d-spacetime dimensions possesses a global (d −
1)-form symmetry, it can decompose into disjoint unions of other theories. This is
reflected in the physical quantities of the theory and can be used to study properties
of the constituent theories. In this note we highlight the equivalence between the
decomposition of orbifold σ -models and disconnected McKay quivers. Specifically,
we show in numerous examples that each component of a McKay quiver can be given
definitive geometric meaning through the decomposition formulae. In addition, we
give a purely group and representation theoretic derivation of the quivers for the cases
where the trivially acting part of the orbifold group is central. As expected, the resulting
quivers are compatible with the case of σ -models on ‘banded’ gerbes.
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1 Introduction

Decomposition is a phenomenon that occurs in quantum field theories (QFTs) when
sectors of the theory are separated by infinite energy barriers. In such systems, the
original theory is equivalent to a disjoint union of theories often called ‘universes’ [1–
8]. This striking property was first observed in the context of string compactification
on Calabi–Yau stacks1 and gerbes [1]. Since then, such behaviour has been observed
in many different contexts [12]:

• Two-dimensional gauge theories in which a subgroup of the gauge group acts
trivially decompose. For example a U(1) gauge theory with-non minimal charges
is equivalent to a sum of independent U(1) theories with minimal charges and
varying θ angle [1].

• A two-dimensional G-gauge theory with center-invariant matter is equivalent to a
union of G/Z(G) gauge theories with discrete theta angles [7].

• Four-dimensional Yang–Mills theory with a restriction to instantons of degree
divisible by k > 1 is equivalent to a disjoint union of k ordinary four-dimensional
Yang–Mills theories with different theta angles [13].

• In σ -models where the target space is an orbifold with a trivially acting subgroup.

In particular, decomposition occurs in any d dimensional theory which admits an
unbroken (d − 1)-form symmetry.

Evidence that physics does indeed obey these decompositions can be seen through
the physical quantities of the theories. For example, the torus partition function of 2d
theories can be recast as the sum of partition functions of other theories as predicted
by the decomposition formulae [1]. From this perspective, a possible decomposition
is signalled by the behaviour of the partition function and the fact that it can be
reorganised to correctly reproduce the partition functions of other theories. However,
it may be difficult to see this splitting initially. In this paper we will focus on orbifold
σ -models and show how the McKay quiver [14] of the orbifold group can be used as
a simple indicator for decomposition.

McKay quivers have long been used in physics [15–19] to understand string com-
pactifications through the McKay correspondence [20–22]. Despite this extensive
study, little progress has been made into understanding the properties of disconnected
McKay quivers fromboth a physical and algebraic point of view. Recently, a paper [23]

1 See [9–11] for early work on stacks in string theory.
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has shed some light onto the properties of disconnected McKay quivers and exhibited
that there exist examples of disconnected components which do not arise as regular
McKay quivers of finite groups. While these do not correspond to standard McKay
quivers, we will see that these components can be understood as projective quivers
[17–19] which arise in the study of orbifolds with discrete torsion [24–30]. In motivat-
ing this equivalence between QFT decomposition and McKay quiver decomposition,
we thereby claim that disconnected McKay quivers can be understood precisely by
the formulae of [1, 3], thus giving each component a definitive geometric meaning.

Physically, one can expect the decomposition of McKay quivers to correspond to
the decomposition of σ -models with N = 2 supersymmetry by remarking that the
boundary conditions of these theories describe supersymmetric cycles in the target
space geometry [31–34]. That is, they describe branes satisfying a BPS bound. In
particular, using the standard brane-sheaf dictionary [35, 36], one can identify this
with the derived (bounded) category of coherent sheaves Db(Coh(M)) of the target
orbifold M. The statement of decomposition is then equivalent to a statement about
coproduct decompositions of derived categories of coherent sheaves onquotient stacks.
Since McKay quivers are expected to capture the category of branes [16, 26, 37], one
expects that the McKay quiver reflects this decomposition appropriately.

In order to provide mathematical evidence for this equivalence, we will give a
description of the components of the disconnected quivers defined by central exten-
sions by using a purely group and representation theoretic argument.2 This generalises
the work of [17, 18], where Schur extensions were used to easily calculate projective
quivers to include more general central extensions. We will see that these quivers will
be inline with the description of ‘banded’ gerbes from [1].

The paper is organised as follows. Section2 will review some of the major results
of the decomposition of orbifold theories. The first part of Sect. 3 will serve as a brief
review of linear and projective McKay quivers and their properties. The remainder of
Sect. 3 explains the connection between group extensions and disconnected McKay
quivers. Finally, in Sect. 5 we give several examples of quiver decomposition which
showcase the equivalence of orbifold QFT decomposition and the decomposition of
McKay quivers.

2 Orbifold decomposition

2.1 The decomposition formulae

Our main theories of interest are two-dimensional nonlinear σ -models with target
space [X/G] for some manifold X and discrete group G ≤ Isom(X). We will denote
such a theory by QFT([X/G]). Implicit in this definition is the action of G which, in
principle, could have a trivially acting normal subgroup N � G. In this case, [X/G]
should not really be thought of as a standard orbifold but instead a generalisation called
a quotient stack [9]. Naïvely, one may think that this should be equivalent to working

2 We will see that the natural language for understanding these quivers is given by group extensions and
group cohomology. We recommend the following books for those unfamiliar with these topics [38–42].
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on an orbifold [X/(G/N )], but it turns out that physics detects the difference between
using an orbifold [X/(G/N )] and a stack [X/G].

Intrinsically, the difference is captured by the symmetries of the two theories. By
working on the quotient stack [X/G] it is explicit that there is a one-form symmetry
BZ(N ), while the effective orbifold theory lacks such a symmetry. The presence of
this one-form symmetry then signals that the theory can decompose into a theory on
multiple disjoint spaces. This decomposition is captured by the formulae of [1, 3].

Consider a theory QFT([X/G]) with a trivially acting normal subgroup N � G.
This gives a short exact sequence

1 → N → G → G/N → 1. (2.1)

Let N̂ denote the set of isomorphism classes of irreducible representations (irreps)
of N . Then there is a natural action of G/N on N̂ given by taking a lift l ∈ G of
k ∈ G/N and defining k ·ρ to be the representation g �→ ρ(lgl−1) where ρ ∈ N̂ . The
decomposition formula of [1] then states that

QFT([X/G]) = QFT

⎛
⎝ ⊔

ω̂

[
X × N̂

(G/N )

]

ω̂

⎞
⎠ , (2.2)

where ω̂ encodes the discrete torsion of each theory (described explicitly in [1]). This
simplifies tremendously if N is a central subgroup of G. In this case the stabilizers of
the action of G/N are isomorphic and we get

QFT([X/G]) = QFT

⎛
⎝ ⊔

ρ∈N̂

[
X

(G/N )

]

ω̂(ρ)

⎞
⎠ . (2.3)

Now the discrete torsion phase is determined as the image of the extension class
ω ∈ H2(G/N , N ) defined by the central extension in Eq. 2.1 under each ρ ∈ N̂ .

It is worth noting that this whole story can be generalised to the case where [X/G]
admits both a trivially acting subgroup and discrete torsion [3]. As such, these formulae
give a method of determining the disjoint orbifolds that occur whenever one works
with a quotient stack [X/G].

2.2 A classic example

Should decomposition occur then the physical quantities derived from the theory must
reflect the decomposition in question. In order to illustrate this, we recall a classic
example considered in [1, 2] to show how decomposition is reflected in the torus
partition function of the theory.

Consider the space [X/D4] where the Z2 center of D4 acts trivially. Following [1],
we denote the elements of D4 by

D4 = {1, z, a, b, az, bz, ab, ba} (2.4)
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where a2 = b4 = 1, b2 = z and ba = abz. In this presentation the center of D4 is
simply Z2 ∼= {1, z}. According to Eq. 2.3, this theory decomposes into two pieces:
one with discrete torsion and one without. Explicitly, we have

QFT([X/D4]) = QFT
([X/(Z2 × Z2)] � [X/(Z2 × Z2)]d.t.

)
, (2.5)

where [X/(Z2 × Z2)]d.t. denotes the Z2 × Z2 orbifold theory with discrete torsion.
To see this physically, we can compute the one-loop torus partition function of the
orbifold as

Z(D4) = 1

|D4|
∑

gh=hg

Zg,h . (2.6)

As the center acts trivially, this reduces to

Z(D4) = 1

2

⎛
⎝ ∑

g∈{1,a,b,ab}
Zg,1 +

∑
g∈{1,a}

Zg,a +
∑

g∈{1,b}
Zg,b +

∑
g∈{1,ab}

Zg,ab

⎞
⎠ .

(2.7)

Now we need to check if this one-loop partition function is the same as the sum
of the one-loop partition functions of the Z2 × Z2 orbifold theory with and without
discrete torsion. We present Z2 × Z2 as

Z2 × Z2 = 〈a, b : a2 = b2 = 1, bab = a〉. (2.8)

The possible discrete torsion of Z2 × Z2 is classified by H2(Z2 × Z2, C
×) = Z2. In

the sector with non-trivial discrete torsion, the torsional phases are given by [25]

ε(ambn, am
′
bn

′
) = (−1)mn′−nm′

. (2.9)

Turning on discrete torsion results in multiplying each contribution of the torus
partition function by the appropriate phase.

Firstwe calculate the one-looppartition functionwith nodiscrete torsion. Explicitly,
we have

Z(Z2 × Z2) = 1

|Z2 × Z2|
∑

g∈{1,a,b,ab}

(
Zg,1 + Zg,a + Zg,b + Zg,ab

)
. (2.10)

In the sector with discrete torsion, not all terms have positive coefficient. In particular,
we get

Z(Z2 × Z2)ε = 1

|Z2 × Z2|
∑

g,h∈Z2×Z2

ε(g, h)Zg,h = Pε − Nε, (2.11)
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where the positive contribution is given by

Pε = 1

4

⎛
⎝ ∑

g∈{1,a,b,ab}
Zg,1 +

∑
g∈{1,a}

Zg,a +
∑

g∈{1,b}
Zg,b +

∑
g∈{1,ab}

Zg,ab

⎞
⎠

(2.12)

and the negative contribution is

Nε = 1

4

⎛
⎝ ∑

g∈{b,ab}
Zg,a +

∑
g∈{a,ab}

Zg,b +
∑

g∈{a,b}
Zg,ab

⎞
⎠ . (2.13)

If we add the one-loop partition functions of the Z2 × Z2 orbifold with and without
discrete torsion, we recover the one-loop partition function of the D4 orbifold with
trivially acting center found in Eq. 2.7

Another method of probing decomposition besides the partition function analysis
is given by inspecting the cohomology of the theory. Consider [X/D4] with the same
trivially acting Z2 center. In particular we take X = T 6, which leads to the Hodge
diamond

2
0 0

0 54 0
2 54 54 2
0 54 0

0 0
2

At face value this appears to violate cluster decomposition due to the multiple dimen-
sion zero operators [1], but we can look at this from the perspective of the effective
orbifold group Z2 × Z2 instead. The Hodge diamonds for the Z2 × Z2 orbifold of
T 6 are given in [25]. Explicitly, the Hodge diamond for the orbifold theory with no
discrete torsion is given by

1
0 0

0 51 0
1 3 3 1
0 51 0
0 0

1

Similarly, the same calculation for the torsion sector gives
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1
0 0

0 3 0
1 51 51 1
0 3 0

0 0
1

This cohomological data gives information about themassless spectrum of the theories
and as such should respect any decomposition the theory respects. Indeed, adding the
two Z2 × Z2 Hodge diamonds together gives us precisely the Hodge diamond for the
D4 theory with a trivially acting center.

These simple examples provide compelling evidence that the physics of these the-
ories do indeed obey the decomposition outlined by Eq. 2.2. The remarkable fact that
the physics in some way knows about the trivially acting parts of the orbifold group
is captured mathematically by the difference between quotient stacks and effective
orbifolds. As remarked in [43], while the orbit spaces of [X/G] and [X/Geff ] are
identical, the structure of the two spaces is intrinsically different as the trivially acting
part of G will appear in any chart of [X/G] and not at all in [X/Geff ].

In this paper we will primarily focus on orbifolds ofC
2 andC

3 in the special case in
which the orbifold group is a finite subgroup of SU(2) and SU(3) respectively. These
are orbifolds of great interest in theoretical physics since they describe singular, non-
compact, Calabi–Yau manifolds. These orbifolds describe the world volume theory
of probe branes, which turn out to give superconformal field theories. This allows us
to compare many of the quiver diagrams we obtain in Sect. 4 with the preexisting
literature on orbifold compactification [15–18].

3 Ineffective orbifolds andMcKay quivers

Given that the decomposition formulae of [1, 3, 12] depend on representations of a
trivially acting subgroup, there is a natural question: do the McKay quivers of the
ineffective orbifold group detect the decomposition of the QFT? In the language of
representation theory, a trivially acting subgroup corresponds to choosing the action of
the orbifold group to be unfaithful onC

n . It is known that this causes the corresponding
McKay quiver to be disconnected [14, 23, 44], but we wish to be more explicit in the
description of the disconnected components.

Let us briefly review the basics of McKay quivers and their projective counterparts
before giving a more detailed description of the disconnected quiver components.

3.1 Linear McKay quivers

Given a representation of a finite group, the McKay quiver summarises the tensor
product decomposition of said representation when tensored against any irreducible
representation of the group. This leads to the following definition [14].
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Definition 3.1 Given a finite groupG with irreps {ρi }ni=1, theMcKay quiver relative to
a (possibly reducible) representationR is the quiver Q(G,R) with adjacency matrix
A = (ai j ) defined by

R ⊗ ρi =
n⊕
j=1

ai jρ j . (3.1)

Using the orthogonality of characters, we can invert Eq. 3.1 to obtain the following
expression for the adjacency matrix

ai j = 1

|G|
∑
g∈G

χR(g)χi (g)χ j (g), (3.2)

where χi (g) = Tr ρi (g).
Despite being constructed in a purely representation theoretic manner, McKay

quivers have a rich interpretation in terms of geometry and K-theory [20–22, 45].
The McKay correspondence, and its generalisations, tell us that the McKay quiver
of a group G encodes the geometry of an orbifold [X/G]. This information was
leveraged to understand the matter content of theories descending from string theory
compactified on [X/G] [15, 16, 26].More recently, for finite subgroups of SU(3), these
quivers have been interpreted as 5d BPS quivers for theories coming from M-theory
compactified on [C3/G] [37, 46].

To end this section, let us recall the following useful property of McKay quivers.
Given an irreducible representation of any dimension we can tensor multiply it with a
one-dimensional irrep to obtain another irrep of the same dimension. Since the irreps
ofG label the vertices of the quiver, we find that this generates an automorphism of the
quiver. This group, isomorphic to Gab = G/G(1) where G(1) = [G,G], is sometimes
called the quantum symmetry of the corresponding orbifold theory.

3.2 Projective McKay quivers

McKayquivers describe thematter content of orbifold theorieswith nodiscrete torsion.
However, discrete torsion can be incorporated by additionally looking at projective
representations of the orbifold group [19, 27].

A projective representation of a finite group G is a homomorphism P : G →
PGL(V ). Any such P must then satisfy

P(x)P(y) = α(x, y)P(xy), (3.3)

for some function α : G × G → C
×. Furthermore, associativity and P(1G) = 1V

constrain α to satisfy

α(x, y)α(xy, z) = α(x, yz)α(y, z), α(x, 1G) = 1 = α(1G , x). (3.4)
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These conditions simply state that α is a 2-cocycle. Multiplying any 2-cocycle by a
2-coboundary

(δβ)(x, y) = β(x)β(y)

β(xy)
, (3.5)

leads to equivalent projective representations. From this we see that the possible pro-
jective representations are classified by the Schur multiplier H2(G, C

×). We call a
projective representation labelled by a 2-cocycle α an α-representation.

Just as linear representations can be thought of as modules over the group algebra
CG, projective representations with 2-cocycle α can be thought of as modules over
the α-twisted group algebra C

αG. We describe C
αG by specifying a basis given by

{ex : x ∈ G} and supplementing it with the distributive product

ex · ey = α(x, y)exy . (3.6)

This was used in [19] in order to define a projective McKay quiver in terms of module
data and projective characters. In particular, let Pi be the simple C

αG modules corre-
sponding to irreducible α-representations. Then given a general C

αG-module P , we
can decompose it into

P =
⊕
i

Vi ⊗ Pi , (3.7)

where Vi are vector spaces. IfR is a linear representation and P an α-representation,
then it is clear that R ⊗ P is also an α-representation. Applying the above
decomposition to R ⊗ Pi then gives the analogue of Eq. 3.1

R ⊗ Pi =
⊕
j

Vi j ⊗ Pj . (3.8)

The corresponding quiver adjacency matrix is then ai j = dim Vi j . This quiver, which
we denote by Qα(G,R), then encodes the same information as a regular McKay
quiver but now with discrete torsion specified by α ∈ H2(G, C

×).
A disadvantage of this approach is that the values of α(x, y) are needed explicitly

in order to compute the quiver. It is therefore advantageous to lift the projective rep-
resentations to linear representations of another group, as in [17, 18]. Doing so, one
can then use regular character theory in order to compute torsion quivers.

3.3 Extensions and decompositions

Having covered both the torsional and non-torsional caseswe are now ready to describe
the decomposition ofMcKay quivers. To address the question ofwhen aMcKay quiver
is disconnected, we quote the following theorem (see [23] for a proof and discussion).

Theorem 3.1 The number of connected components of a McKay quiver relative to
ρ : G → GL(V ) is given by the number of G-conjugacy classes contained in ker ρ.

123
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From this we see that we obtain disconnected quivers precisely when the orbifold
action is unfaithful. Furthermore, [44] also gives us a description of the component
connected to the trivial representation. It is simply the McKay quiver of G/ ker ρ
relative to the quotient representation of the orbifold action. Describing the remaining
components is more subtle, but it is helpful to view the unfaithful representation ρ as
defining an extension of groups

1 → N
ι−→ G → F → 1, (3.9)

where N = ker ρ and F = G/N . These extensions can fall into three classes:

1. If we have that ι(N ) does not lie in the center of G, then we call the extension
non-central. In particular, this is the case whenever N is non-abelian.

2. If ι(N ) ≤ Z(G), then the extension is called central. Such extensions are classified
by H2(F, N ), so Eq. 3.9 yields a (possibly trivial) 2-cocycle of this group.

3. Finally, if ι(N ) ≤ Z(G) ∩ G(1), where G(1) = [G,G] is the derived subgroup of
G, then the extension is called a stem extension.

In the latter two cases we can describe the quiver decomposition rather explicitly.3

We recall that there is a set of maximal stem extension which correspond to taking
N to be the Schur multiplier H2(F, C

×) [39]. The resulting extension groups are
called Schur covering groups or representation groups for F . Schur covering groups
have the remarkable property that every projective representation of F lifts to a linear
representation of G [38]. Therefore, if G is a Schur cover of F , then the McKay
quiver relative to ρ is simply the collection of all torsional quivers of G/N with each
component corresponding to a different value of α ∈ H2(F, C

×). Indeed, this fact was
exploited in [17, 18] to generate quivers with discrete torsion easily without appealing
to projective characters and twisted group algebras. In this form we have that

Q(G, ρ) =
⊔

α∈H2(F,C×)

Qα(F, ρ̃), (3.10)

where ρ̃ denotes the quotient representation of ρ on F .
We can refine this further. Suppose that Eq. 3.9 is a stem extension but G is not a

Schur cover of F . Then it is known that this extension is the homomorphic image of
some Schur cover G∗ [39, 42]. This means that we have the commutative diagram

1 H2(F, C
×)

ι∗

j

G∗ ξ∗

k

F 1

1 A
ι

G
ξ

F 1

(3.11)

Since G is the homomorphic image of some Schur cover G∗ we note that, by Schur’s
lemma, the image of the irreducible representations of G∗ under k are either the trivial

3 The non-central extension case is much more involved from a group cohomology point of view. We hope
to return to this case in a future work.
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representation or the irreducible representations of G. By then lifting the quotient
representation of F toG∗, we see that theMcKay quiver relative to ρ is a full subquiver
of the McKay quiver relative to the lift on G∗. Furthermore, since A is the image of
H2(F, C

×) we expect that the McKay quiver relative to ρ will only contain lifts of
projective representations corresponding to a subgroup of H2(F, C

×) isomorphic to
A.4 An example of this will be shown in Sect. 4.3.

It turns out that the central, but not stem, extension case is largely determined by
the stem extension case. In order to motivate this, we define the notion of isoclinicism
of groups.

Definition 3.2 Two finite groups G1 and G2 are said to be isoclinic if there exist
isomorphisms η : G1/Z(G1) → G2/Z(G2) and ν : G(1)

1 → G(1)
2 commuting with

the commutator map.

Isoclinic groups, in a sense, encode similar representations. The linear representations
of such groups are lifts of projective representations of the inner automorphism group
Inn(G) ∼= G/Z(G) where each representation is lifted with an appropriate multiplic-
ity. Stated more concretely, let md

i denote the number of degree d representations of
Gi . If G1 and G2 are isoclinic, then [41]

md
1

md
2

= |G1|
|G2| , (3.12)

for any d ∈ N. In fact, all Schur covering groups of a given group are isoclinic [38].
Since isoclinic groups encode the same projective representations up tomultiplicity,

it should be clear that the quivers for isoclinic groups relative to lifts of the same linear
representation are related. For the case of Schur covers, it was remarked in [17] that
differing the Schur cover will lead to the same quiver. We also posit that the same
holds for isoclinic non-Schur covers of the same order and present a derivation of this
in Sect. 1.

The following theorem due to P. Hall (see [39] for a modern proof) allows us to use
isoclinicism to reduce the central extension case to a stem case.

Theorem 3.2 Let E be a central extension of G by A. Then E is isoclinic to a stem
extension F of G by some abelian group B.

Note that isoclinism requires that the orders of the derived subgroups of E and F
coincide. Using the identity

[
E

A
,
E

A

]
= A[E, E]

A
, (3.13)

we arrive at the condition

|B| = |A ∩ [G,G]|. (3.14)

4 Here we are noting that A ∼= H2(F, C
×)/ ker j by the first isomorphism theorem. Since both A and

H2(F, C
×) are finite abelian groups, there exists a subgroup of H2(F, C

×) isomorphic to A.
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Since the RHS divides |A|, we must have |B| divides |A| as well. As such, given a
central extension 1 → A → E → G → 1 isoclinic to a stem extension 1 → B →
F → G → 1, we must have that |F | divides |E |. Since k = |E |/|F | is an integer, we
have that E is of the same order as the isoclinic group F × Zk . The quiver for F × Zk

is easily derived and leads to the following proposition.

Proposition 3.1 Let E be a central extension of G isoclinic to a stem extension F of
G and R a faithful representation of G with lifts RE and RF . Writing |E |/|F | as
k ∈ Z, we have

Q(E,RE ) =
k⊔

i=1

Q(F,RF ). (3.15)

In other words, the quiver for the extension E is simply a number of copies of the
quiver for the stem extension F.

We end this section with a brief comparison with [1, 2, 12]. We have seen that
when Eq. 3.9 is a stem extension, the group N = ker ρ determines a subgroup of
H2(G/N , C

×) from which we obtain a subset of all torsional quivers. The central
extension case then follows bymoving to an isoclinic stem extension and appropriately
replicating the quiver. In each case we see that we only obtain a disjoint union of
orbifolds of the type [X/(G/N )] with discrete torsion, and multiplicity, determined
by a subgroup of H2(G/N , C

×). This is in agreement with the ‘banded’ examples of
[1].

Note on vertex labelling. In the quiver diagrams we present we have chosen to keep
the vertices unlabelled as opposed to furnishing them with the dimension of the corre-
sponding representation. In the central and stem extension case, all dimensions would
match what one would expect from the decomposition of QFTs. However, in the non-
central case there is necessarily a mismatch in the dimensions due to the action of Gab

on the quiver. In particular, the action of Gab causes any two components containing
one-dimensional representations to be equal [23]. Despite this, the overall shape of
the graph is in total agreement.

4 Examples

In this section we will give several examples which show howMcKay quivers capture
decomposition in several differing settings. All major group data for the groups we
cover is presented in “Appendix A”.

4.1 D4 revisited

Let’s start by analysing the example from Sect. 2.2 in our framework. We wish to
realise the central extension

1 → Z2 → D4 → Z2 × Z2 → 1, (4.1)
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by choosing a representation of D4 which trivialises exactly theZ2 center. This is easy
to see from the character table of D4:

C(1)
1 C(2)

2 C(2)
3 C(2)

4 C(1)
5

ρ1 1 1 1 1 1
ρ2 1 −1 −1 1 1
ρ3 1 −1 1 −1 1
ρ4 1 1 −1 −1 1
ρ5 2 0 0 0 −2

Here C ( j)
i denotes a conjugacy class of size j . The center corresponds exactly to

all the size one conjugacy classes, so we have that Z(D4) = C (1)
1 ∪ C (1)

5 . Recall that

a representation ρ trivialises a conjugacy class C ( j)
i if its character satisfies

χρ(g) = χρ(1G), (4.2)

for a representative g of C ( j)
i . This immediately tells us that ρ2 ⊕ ρ3 ⊕ ρ4 trivialises

exactly Z(D4), so we take this as the representation to compute the McKay quiver
relative to. The resulting quiver is shown in Fig. 1.

Comparing with [19], we recognise these as precisely the regular McKay quiver
for Z2 × Z2 and the only possible projective McKay quiver for Z2 × Z2. The fact
that we obtain all the torsional quivers arises from the fact that D4 is a Schur cover of
Z2 × Z2. Indeed, it is easy to see that H2(Z2 × Z2, C

×) = Z2 and that Eq. 4.1 is a
stem extension. We therefore see that this is consistent with the QFT decomposition

QFT([X/D4]) = QFT
([X/(Z2 × Z2)] � [X/(Z2 × Z2)]d.t.

)
. (4.3)

4.2 More involved examples

The classification of finite subgroups of SU(3) includes two infinite series�(3n2) and
�(6n2) [47, 48]. When n = 2 we have the following incidental isomorhpisms

�(3 · 22) ∼= Alt(4), �(6 · 22) ∼= Sym(4) (4.4)

Fig. 1 The McKay quiver for
D4 which trivialises the center.
On the left is the standard
McKay quiver for Z2 × Z2
while the quiver on the right is
the projective McKay quiver
corresponding to the non-trivial
element of
H2(Z2 × Z2, C

×) = Z2
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Since the Schur covering groups of these have been well studied [49], we shall use
both of these to generate examples of decomposition.

First of all, we note that the Schur multiplier of Alt(4) is simply Z2 and a Schur
covering group can be given by the stem extension

1 → Z2 → SL2(F3) → Alt(4) → 1. (4.5)

Interestingly, the Schur cover SL2(F3) is isomorphic to the binary tetrahedral group
T —meaning it can be found as a subgroup of SU(3). As such, by taking the orbifold
action to be the three-dimensional irreducible representation that trivialises the Z2
center, we get the decomposition

QFT([C3/T ]) = QFT([C3/Alt(4)] � [C3/Alt(4)]d.t.). (4.6)

We show the quiver for this decomposition in Fig. 2.
A similar computation can also be done for the case of Sym(4). However, instead

of simply repeating the above computation, we use this orbifold to explore a more
nuanced decomposition predicted by [3] which can be correctly reproduced in our
framework. Consider Sym(4) with a non-central trivially acting Z2 × Z2 subgroup.
Then decomposition predicts that

QFT([X/Sym(4)]d.t.) = QFT([X/Sym(3)]). (4.7)

To deal with an orbifold with both discrete torsion and a non-central non-trivially
acting subgroup, we need to take a two step approach.

Step 1. First we compute the quiver of [C3/Sym(4)] with respect to the action that
trivialises the Z2 × Z2 subgroup. This action corresponds to viewing Sym(4) as the
extension

1 → Z2 × Z2 → Sym(4) → Sym(3) → 1. (4.8)

Fig. 2 The unfaithful McKay quiver for the binary tetrahedral group. The component on the left realises
the standard McKay quiver for Alt(4), while the right-hand quiver gives the torsional quiver for Alt(4)
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The McKay quiver of this set up then gives rise to the two rightmost components in
Fig. 3 . This is itself an additional example of decomposition, but we postpone the
details until after the next step.

Step 2. Now to find the quiver of [C3/Sym(4)] with discrete torsion we take the lift
of the representation used above to a Schur cover. A possible Schur covering group is
given by the stem extension

1 → Z2 → GL2(F3) → Sym(4) → 1. (4.9)

The lift of the representation now has a kernel which spans three conjugacy classes
of GL2(F3), corresponding to the lift of the Z2 × Z2 subgroup of Sym(4). This gives
us the three component McKay quiver in Fig. 3. Since GL2(F3) is a Schur cover, this
corresponds to the decomposition

QFT([C3/GL2(F3)]) = QFT([C3/Sym(4)] � [C3/Sym(4)]d.t.), (4.10)

with a trivially acting Z2 × Z2 � Sym(4).
Therefore, the correct quiver for [C3/Sym(4)] with discrete torsion and a trivially

acting Z2 × Z2 is the quiver given by taking away the components that arise from
step 1 in Fig. 3. This leaves us with just the leftmost component. By inspecting the
character table of Sym(3) it is not hard to obtain such a quiver, thus confirming Eq. 4.7.
Furthermore, we can identify the rightmost component as a Z2 quiver, giving us the
additional decomposition

QFT([C3/Sym(4)]) = QFT([C3/Sym(3)] � [C3/Z2]), (4.11)

as predicted by Eq. 2.2.

Fig. 3 TheMcKay quiver for GL2(F3) that realises the lift of the representation that trivialises the Z2 ×Z2
subgroup of Sym(4)
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4.3 Stem but not Schur

Now consider the group�(108) = �(3 ·62). This group has a Z3 center whose action
we wish to trivialise on C

3. To do so, we choose one of the two three-dimensional
irreps that trivialise exactly the center. This leads to the extension

1 → Z3 → �(108) → Z3 × Alt(4) → 1. (4.12)

Furthermore, it is easy to see that this is a stem extension. The quiver we obtain is
given in Fig. 4. While this is a valid stem extension, �(108) is not a Schur cover of
Z3 × Alt(4). Indeed, we have that

H2(Z3, C
×) = 1, H2(Alt(4), C

×) = Z2, Alt(4)ab = Z3. (4.13)

Therefore, by theorem A.1, we have that

H2(Z3 × Alt(4), C
×) = Z2 × Z3 ∼= Z6. (4.14)

As such, we expect to only see a subset of possible torsional quivers arising from this.
To confirm that the additional components in Fig. 4 are indeed torsional variants of
the Z3 × Alt(4) quiver, we must look at the Schur extension

1 → Z6 → Q8 � He3 → Z3 × Alt(4) → 1, (4.15)

where Q8 ∼= Dic2 is the group of quaternions and He3 is the mod-3 Heisenberg group.
Indeed, lifting a faithful representation of Z3 ×Alt(4) to the covering group gives the
6 component quiver in Fig. 5, three components of which are exactly those in Fig. 4,
thus confirming that we are only seeing the Z3 ≤ H2(Z3 × Alt(4), C

×) subgroup of
the torsional quivers when considering �(108).

As an illustration of proposition 3.1, consider the central extension

1 → Z6 → Z2 × Z
2
3 · Alt(4) → Z3 × Alt(4) → 1, (4.16)

Fig. 4 The quiver for�(108) that trivialises the Z3 center. We recognise the McKay quiver for Z3 ×Alt(4)
together with two additional components. These can then be identified as torsional quivers for Z3 ×Alt(4)
by considering the Schur extension Eq. 4.13
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Fig. 5 The disconnected McKay quiver for Q8 � He3. As this is a Schur cover for Z3 × Alt(4) we obtain
all torsional quivers corresponding to discrete torsion labelled by α ∈ H2(Z3 × Alt(4), C

×)

whereZ
2
3 ·Alt(4) is the non-split extension of Alt(4) byZ

2
3 acting via Alt(4)/Z

2
2 = Z3.

This is a non-stem central extension isoclinic to �(108), signalling the corresponding
quiver should be exactly a double copy of the one in Fig. 4. Indeed, plotting the quiver
for Z2 × Z

2
3 · Alt(4) confirms this.

4.4 A Schur trivial example

So far we have seen examples where the effective orbifold group accommodates
enough discrete torsion so that the extension can see either all of the projective rep-
resentations or a subset them. It is natural to ask what happens if we take a central
extension of a group that cannot have any discrete torsion.

Consider the regular dihedral group of 10 elements D5. We first note that we have

H2(D5, C
×) = 1, H2(D5, Z2) = Z2. (4.17)

As such, we see that while the orbifold theory [X/D5] does not accommodate discrete
torsion, there are two equivalence classes of Z2 central extensions of it. In particular,
we have the two extensions

D10

1 Z2 D5 1

Dic5

(4.18)
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Fig. 6 The McKay quiver for Dic5 which trivialises a central Z2 subgroup. Here we take the representation
that lives in U(2) to illustrate that the decomposition is not unique to SU(n) representations

Note that D10 ∼= Z2 × D5, so this corresponds to the trivial central extension while
Dic5 provides a non-trivial extension. Since D5 has trivial Schur multiplier, the only
stem extension of it is the trivial extension by 1. Theorem 3.2 then implies that any
central extension of D5 is isoclinic to D5. As such, any central extension of D5 by an
abelian group A simply gives rise to |A| many copies of the D5 quiver. For the case
of D10 and Dic5, this is drawn in Fig. 6.

By using the above argument we can take any central extension of D5 by some
abelian group A and obtain a quiver which is just a number of copies of the D5
McKay quiver. This then provides many examples of isoclinic groups of the same
order giving the same quiver whenever H2(D5, A) is non-trivial.

5 Conclusion

In this paper we have motivated the equivalence of the decomposition of QFTs and
the decomposition of McKay quivers. In doing so, we derived formulae describing the
disconnected components of such quivers for central extensions using purely group and
representation theoretic means which agree with the decomposition of QFT formulae
of [1, 12].

Indeed, we showed that orbifolds with a trivially acting central subgroup produce
a McKay quiver capturing the decomposition features of the theory. Moreover, in the
particular case of central and stem extensions, the McKay quiver components are sim-
ply a subset of the quivers for the same orbifold with and without discrete torsion.
Furthermore, we have seen that McKay quivers relative to lifts of linear represen-
tations are sensitive only to the isoclinism class of the central extension, a feature
described in Sect. 3.3. Finally, these properties provide a method to study the effects
of decomposition when a non-central subgroup of the orbifold group acts trivially,
both for linear and projective representations as shown in Sect. 4.2.
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There are several possible further directions of this work:

1. The formulae we derived are only valid for central extensions. The non-central
extension case is much more complicated and, as seen in the Sym(4) example, can
result in decompositions into orbifolds with non-isomorphic orbifold groups. It is
natural to ask if our analysis can be extended to these cases to obtain a formula
similar to Eq. 2.2 to describe the general case. Non-central, and hence non-abelian,
extensions are no longer classified by H2(G, A) only, so a more sophisticated
analysis is require in this case.

2. McKay quivers have been widely used to study theories arising from compact-
ification of M-theory or string theory on an orbifold. While our analysis has
applied to two-dimensional σ -models, it would be interesting to understand the
decomposition of these quivers from the point of view of these compactifications.

3. In a similar vein, in the context of geometric engineering McKay quivers provide
a tool to study the BPS states of certain 4d N = 2 SQFT through interpreting
them as BPS quivers [37, 46]. It therefore encodes properties of fractional branes,
which in the context of algebraic geometry are described as coherent sheaves on
a certain variety. It would be interesting to explore the link between geometry and
decomposition in this context and use it to explore the properties of the related
field theory.

4. As seen in [5, 6, 50–52], decomposition can be used to understand the properties
of the disjoint theories. Since the McKay quiver is sensitive to the decomposition,
it is possible that the quivers are also sensitive to other information from which
we can deduce information about the individual theories. Understanding which
properties the quiver is sensitive to could provide new algebraic techniques for
understanding the associated QFTs.

5. From a holography point of view, the quiver represents the theory living on probe
D-branes at the tip of a Calabi–Yau singularity. Theories with and without discrete
torsion were already studied in [26, 27], but theories displaying decomposition are
still to be explored. It would be interesting to understand if the decomposition can
be captured by the gravitational dual of theories living on D-branes and if there
are physical observables that relates the different universes.
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A Some group and character theory

A.1 Group cohomology and computation

In this appendixwe recount the basics of group cohomology and gather some theorems
used for computations in this paper. Most statements, with proofs, can be found in the
classic text [38].5

Let G be a finite group, A an abelian group and f : Gn → A. We can define a set
of differentials on such functions as

(δn+1 f )(g1, . . . , gn+1) = f (g2, . . . , gn+1)(
n∏

i=1

f (g1, . . . , gi−1, gi gi+1, . . . , gn+1)
(−1)i

)
f (g1, . . . , gn)

(−1)n+1

(A.1)

where we are writing the product structure on A multiplicatively. It is tedious, but
easy, to see that (δn+1 ◦ δn) f = 1A for any f and thus defines a chain complex

C0(G, A)
δ1−→ C1(G, A)

δ2−→ C2(G, A)
δ3−→ C3(G, A)

δ4−→ · · · (A.2)

where Cn(G, A) denotes the set of functions f : Gn → A. We define the nth-
cohomology group to be

Hn(G, A) = ker δn+1/im δn . (A.3)

Furthermore, the elements of ker δn+1 are called n-cocycles and the elements of im δn
are called n-coboundaries.

The description of H1(G, A) is particularly simple. It is clear that im δ1 is trivial,
while δ2 f = 1A imposes

f (x) f (xy)−1 f (y) = 1A. (A.4)

In other words, ker δ2 ∼= Hom(G, A) which we identify with H1(G, A). If A = C
×

then this is simply the abelianization of G.

5 In this paper we are only interested in the case where the coefficient module is an abelian group. We refer
the reader interested in the more general situation to [40].
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Table 1 Here we list the groups
together with the Schur cover
that we used within the paper

G H2(G, C
×) G∗ GAP ID

D5 1 D5 [10,1]

Dic5 1 Dic5 [20,1]

Z2 × Z2 Z2 D4 [8,3]

Alt(4) Z2 SL2(F3) ∼= T [24,3]

D10 Z2 Z5 � D4 [40,8]

Sym(4) Z2 GL2(F3) [48,29]

Z3 × Alt(4) Z6 Q8 � He3 [216,42]

The final column gives the GAP ID of G∗, so the interested reader
can access them via the SmallGroups library

In this paper we are primarily interested in the second cohomology group which
is central to the theory of group extensions. In simple cases, the above definition is
enough to determineH2(G, A). Formore intricate groups, however, we can use several
theorems to simplify calculations tremendously. We list some theorems which were
particularly useful for our purposes.

Theorem A.1 Let G1 and G2 be arbitrary groups and A an abelian group. Then

H2(G1 × G2, A) ∼= H2(G1, A) × H2(G2, A) × Hom(G1 ⊗ G2, A), (A.5)

where G1 ⊗ G2 is the group Gab
1 ⊗Z Gab

2 .

Theorem A.2 Let Z be a central subgroup of a finite group G. Then we have

H2(G, C
×) = H2(G/Z , C

×)/(Z ∩ G(1)), (A.6)

where G(1) = [G,G] is the derived subgroup of G.

Theorem A.3 Let G be a finite group and H2(G, Z) be its second homology group
with coefficients in Z. There exists an isomorphism

H2(G, C
×) ∼= H2(G, Z). (A.7)

Note. We can typically compute H2(G, Z) in Sage or GAP.
These theorems together with Sage and GAP are sufficient to find the second

cohomology groups presented in Table 1which are used throughout the paper.

A.2 Proof of isoclinism invariance of McKay quivers

Proposition A.1 Let G1 and G2 be two isoclinic central extensions of some group F
by A1 and A2 respectively. Further assume that G1 and G2 have the same order. Then

Q(G1,R1) = Q(G2,R2), (A.8)

where R1 and R2 are lifts of a linear representation R : F → GL(V ).
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Proof Let P be a linear irreducible representation of G. By restriction to the central
subgroup A, we have a one-dimensional representation of A determined by

P(a) = λP (a)1GL(V ), (A.9)

for a ∈ A. If we specify a section μ : F → G, then we can define a projective
representation P ′ of F with the property P ′(g) = P(μ( f )) for f ∈ F . We call P the
lift of P ′. The cocycle α ∈ H2(F, A) can be determined from the function � defined
through [49]

μ(x) · μ(y) = �(x, y)μ(xy). (A.10)

Concretely, we have α(x, y) = λP ′(�(x, y)). In particular, any two irreps of G
with the same center representation give projective representations with the same
cocycle. Given two isoclinic extensions G1 ∼ G2 of F , it is known that a projective
representation of F lifts to G1 if and only if it lifts to G2. In particular, if both groups
of the same order, then the irreps of G1 and G2 are in one-to-one correspondence and
are given by lifts of projective representations of G1/Z(G1) ∼= G2/Z(G2) [41].

The adjacency matrix for theMcKay quiver ofG relative to a linear liftRG is given
by

Mi j = 1

|G|
∑
g∈G

χRG (g)χi (g)χ j (g). (A.11)

We can partition G into A-cosets and rewrite the sum as

Mi j = 1

|G|
∑

�∈μ(F)

∑
a∈A

χRG (�a)χi (�a)χ j (�a). (A.12)

As mentioned above, since A is central, we must have that P ′(a) is a scalar matrix
and we can rewrite the characters as

Mi j =
(

1

|A|
∑
a∈A

λi (a)λ j (a)

)⎛
⎝ |A|

|G|
∑

�∈μ(F)

χRG (�)χi (�)χ j (�)

⎞
⎠ . (A.13)

The first term simply enforces the orthogonality of characters. As such, this is only
non-zero when λi and λ j are equivalent representations and therefore determine the
same 2-cocycle. Note that we can regard each character in the second term as the
projective characters of the respective projective representations of F , as in [53].
Furthermore, since RG is the lift of a linear representation, we have that RG ⊗ V
is the lift of an α-representation for any α-representation V . By semi-simplicity, we
can then write RG ⊗ V as a direct sum of irreducible representations with the same
center representation. Comparing with Section 4 of [53], we can use the orthogonality
relations in corollary 4.2 to confirm that the resultingmatrixMi j is indeed independent
of the section μ.
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Finally, as the irreps of isoclinic groups are lift of the projectives of G1/Z(G1) ∼=
G2/Z(G2), we have that the matrix Mi j is the same up to relabelling of indices of the
representations. ��

Note that Eq. A.13 also reproduces the result that the component connected to the
trivial representation is simply the quiver for F relative to R. It also shows that two
vertices can be connected by an edge if and only if their center representations are
equivalent.

A.3 Characters and normal subgroups

One of the benefits of the method advocated in this paper is that very little information
about the explicit representations is needed. In fact, most of the pertinent information is
encoded in the character table of these groups, which can be readily calculated through
a modern computational algebra system such as Sage or GAP. We will briefly review
how to obtain such information given the character table of a finite group.

Given a representationρ : G → GL(V ) it is obvious that ker ρ is a normal subgroup
of G. This kernel can be described as

ker ρ = {g ∈ G : χρ(g) = χρ(1G)}. (A.14)

Since characters are class functions, this guarantees that only full conjugacy classes
are included in the kernel, as expected. It is also clear from this description that
intersections of kernels corresponds to the addition of characters. That is, we have

ker ρ1 ∩ ker ρ2 = {g ∈ G : χρ1⊕ρ2(g) = χρ1⊕ρ2(1G)}. (A.15)

It is known that all normal subgroups of G can be obtained by taking the intersections
of kernels of irreducible representations [54].

Aswe know all normal subgroups can be found from the character table, it is natural
to ask if how can one find the center and derived subgroup of G easily from the table
alone. For the latter we have the simple expression

G(1) =
⋂

dim ρ=1

ker ρ. (A.16)

In other words, G(1) can be found by taking the intersection of the kernels of one-
dimensional representations. Finding the center is a bit more subtle. To do so, we
define the sets

ζ(ρ) = {g ∈ G : |χρ(g)| = χρ(1G)} = {g ∈ G : ρ(g) ∈ C
×1GL(V )}. (A.17)

The center of G is then given as

Z(G) =
⋂
ρ

ζ(ρ), (A.18)

123



63 Page 24 of 26 S. Meynet, R. Moscrop

where the intersection is over irreps of G. In particular, a one-dimensional represen-
tation has ζ(ρ) = G so it suffices to look at representations of degree 2 and higher
only.

To illustrate the above statements consider the group Dic3, the character table of
which is given by:

C(1)
1 C(1)

2 C(2)
3 C(2)

4 C(3)
5 C(3)

6

ρ1 1 1 1 1 1 1
ρ2 1 −1 1 −1 i −i
ρ3 1 1 1 1 −1 −1
ρ4 1 −1 1 −1 −i i
ρ5 2 2 −1 −1 0 0
ρ6 2 −2 −1 1 0 0

A simple example of a normal subgroup is N1 = C (1)
1 ∪C (2)

3 . This is a non-central
subgroup of order three which is exactly trivialised under ρ2. Instead looking at the
intersection of the kernels of ρ1 through ρ4 we get that the derived subgroup Dic

(1)
3 is

also given by N1. Finally, the center of Dic3 is obtained by looking at ζ(ρ5) and ζ(ρ6)

from which we get that Z(Dic3) = C (1)
1 ∪ C (1)

2
∼= Z2, in agreement with the fact that

central elements belong to their own conjugacy class.
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