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Abstract
Let V be a simple unitary vertex operator algebra and U be a (polynomially) energy-
bounded unitary subalgebra containing the conformal vector of V . We give two
sufficient conditions implying that V is energy-bounded. The first condition is that
U is a compact orbifold VG for some compact group G of unitary automorphisms of
V . The second condition is that V is exponentially energy-bounded and it is a finite
direct sum of simpleU -modules. As a consequence of the second condition, we prove
that if U is a regular energy-bounded unitary subalgebra of a simple unitary vertex
operator V , then V is energy-bounded. In particular, every simple unitary extension
(with the same conformal vector) of a simple unitary affine vertex operator algebra
associated with a semisimple Lie algebra is energy-bounded.

Keywords Conformal field theory · Unitary vertex operator algebra · Unitary
subalgebra

Mathematics Subject Classification 17B69 · 47N50 · 81T40 · 81T05

1 Introduction

Sincemore than fifty years, energy bounds play an important role in themathematics of
quantum field theory, see, e.g., [5, 20, 21, 25, 41]. Roughly speaking, a quantum field
theory is (polynomially) energy-bounded if the corresponding smeared field operators
can be bounded by some power of the Hamiltonian operator. The typical applications
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of energy bounds in this context are the self-adjointness of smeared field operators and
the connection between the Wightman and the Haag–Kastler approaches to quantum
field theory.

In more recent years, energy bounds appeared naturally in the study of chiral
(two-dimensional) conformal field theories (see, e.g., [6, 47, 49]) and in the repre-
sentation theory of the infinite-dimensional Lie groups describing the symmetries of
these theories (see, e.g., [7, 26, 27, 48]). In these cases the role of the Hamiltonian
operator is typically played by the conformal Hamiltonian L0. Applications of the
energy bounds for chiral conformal field theories include quantum energy inequal-
ities [22], uniqueness of conformal symmetry [16], construction of spectral triples
[10–12], approximation of conformal field theories [37, 51], modular flow, relative
entropy and quantum null energy conditions [32, 33, 39, 40], functional analytic prop-
erties of Segal’s conformal field theories [44, 45], and construction of conformal nets
on two-dimensional space-times [1, 34]. Moreover, the energy bonds are the starting
point to prove the more sophisticated local energy bounds [14, 17].

A systematic use of the energy bounds for unitary vertex operator algebras was
started in [13] in order to investigate their connections with conformal nets from a
general point of view. Subsequently, the study of the relations between vertex operator
algebras and conformal nets has been considerably developed in order to cover the
representation theory aspects, see, e.g., [18, 28–30, 44–46]. The energy bounds also
play an essential role for these representation theory aspects.

Although energy bounds for vertex operator algebras appear difficult to prove in
general,many important examples of unitary vertex operator algebras have been shown
to be energy-bounded.Among themwemention: unitaryVirasoro vertex operator alge-
bras, unitary affine vertex operator algebras, unitary lattice vertex operator algebras,
the moonshine vertex operator algebra, the even shorter moonshine vertex operator
algebras, and their unitary subalgebras including orbifolds and cosets [13, 29, 30].
It has been conjectured that every unitary simple vertex operator algebra is energy-
bounded [13, Conjecture 8.18] and this conjecture appears to be presently open. A
weak version of the energy bounds (the uniformly bounded-order property) has been
recently proved to hold for all unitary vertex operator algebras (andmany other unitary
vertex algebras) in [42]. Although the uniformly bounded-order property can be used
to replace the existence of energy bounds for various purposes, ordinary energy bounds
still appear to be important, if not essential, in various situations and it is presently not
clear how to derive the stronger version of the bounds from the weaker one.

The easiest examples of energy-bounded unitary vertex operator algebras, such as
the affine and Virasoro unitary vertex operator algebras, follow in a rather direct way
from the Lie algebra relations of the generating fields, cf. Sect. 3. Many other exam-
ples come by considering unitary subalgebras. What about vertex operator algebra
extensions such as simple current or exotic (cf. [24]) extensions? Some of them can be
can be shown to be energy-bounded by proving energy bounds for sufficiently many
intertwining operators of the smaller vertex operator algebra. This method has been
developed by Gui and used to prove, among other things, that the extensions of unitary
affine vertex operator algebras of ADE Lie type and the lattice vertex operator algebras
(viewed as extensions ofHeisenberg vertex operator algebras) are energy-bounded, see
[29, 30]. Unfortunately, the proof of the energy bounds for the intertwining operators
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can be in general very hard. For example, it is presently unknown if there are enough
intertwining operators satisfying energy bounds in order to prove that the extensions
of the affine vertex operator algebras are energy-bounded for all Lie types besides
ADE.

The main results of this paper are certain conditions implying that a simple uni-
tary vertex operator algebra V is energy-bounded if it contains a “sufficiently large”
energy-bounded unitary subalgebraU . For example, we prove that if a unitary compact
orbifold VG is energy-bounded, then V is energy-bounded (Theorem 4.1). Moreover,
we prove that if a regular unitary subalgebraU of V with the same conformal vector of
V is generated by vectors with conformal energy 1, Virasoro vectors andW3 vectors,
then V is energy-bounded (Theorem 4.7). This gives many new examples of energy-
bounded unitary vertex operator algebras. In particular, every simple vertex operator
algebra extension (with the same conformal vector) of a rational, simple unitary affine
vertex operator algebra of any Lie type is unitary and energy-bounded (Theorem 4.8).

2 Unitary vertex operator algebras

In this section, we briefly discuss some preliminaries about unitary vertex operator
algebras and their unitary subalgebras.Wemainly follow the terminology andnotations
in [13], see also [19]. For the general theory of vertex (operator) algebras needed in
this paper, we refer the reader to [23, 35, 38]. In this paper, every vertex operator
algebra and in fact every vector space will be over the field C of complex numbers.

Let now V be a vertex operator algebra. We denote by � and ν the vacuum vector
and the conformal vector of V , respectively. Moreover, we denote by 1V the identity
in End(V) (more generally, for any vector space X we denote by 1X the identity in
End(X) ). For every a ∈ V the vertex operator

Y (a, z) =
∑

n∈Z
a(n)z

−n−1 (1)

is a (quantum) field on V , i.e., a formal Laurent series with coefficients in End(V )

such that, for every b ∈ V , a(n)b = 0 eventually for n → +∞. Moreover, for every
a ∈ V we have a(n)� = 0 for all n ≥ 0 and a(−1)� = a.

The vertex operator Y (ν, z) corresponding to the conformal vector ν is called the
energy-momentum field of V and is often written as

Y (ν, z) =
∑

n∈Z
Lnz

−n−2 (2)

so that Ln = ν(n+1). The endomorphisms Ln , n ∈ Z, give a representation of the
Virasoro algebra on V with central charge c ∈ C (the central charge of V ), i.e.,

[Ln, Lm] = (n − m)Ln+m + c

12
(n3 − n)δn,−m1V (3)
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for all n,m ∈ Z. Moreover, [L−1, a(n)] = −na(n−1) for all a ∈ V and all n ∈ Z.
Equivalently,

[L−1,Y (a, z)] = d

dz
Y (a, z) (4)

for all a ∈ V .
The operator L0 is diagonalizable on V with integer eigenvalues. Accordingly, if

we set Vn := Ker(L0 − n1V ), n ∈ Z, we have

V =
⊕

n∈Z
Vn (5)

so that V has a natural Z-grading.
In various occasions we will make direct use of the Borcherds identity [4], i.e., the

equality

+∞∑

j=0

(
m

j

) (
a(n+ j)b

)
(m+k− j) c =

+∞∑

j=0

(−1) j
(
n

j

)
a(m+n− j)b(k+ j)c

−
+∞∑

j=0

(−1) j+n
(
n

j

)
b(n+k− j)a(m+ j)c, a, b, c ∈ V , m, n, k ∈ Z. (6)

This can be taken as one of the axioms of vertex operator algbras or as a consequence
of other axioms including, e.g., locality, see [35, Sect.4.8].

Another useful property of vertex operator algebras is skewsymmetry

a(n)b = −
+∞∑

j=0

(−1) j+n

j ! (L−1)
j b(n+ j)a (7)

for all a, b ∈ V and all n ∈ Z, see [35, Section 4.2].
The endomorphisms an ∈ End(V ), a ∈ V , n ∈ Z, are defined by

Y (zL0a, z) =
∑

n∈Z
anz

−n . (8)

If L0a = da (equivalently a ∈ Vd ), we say that V is homogeneous of conformal
dimension (or conformal weight) d. In this case we have an = a(n+d−1) and a(n) =
an+1−d for all n ∈ Z. In particular, a−d = a(−1) and consequently a = a−d�. The
Borcherds identity gives

[L0, an] = −nan (9)

[L−1, an] = (−n − d + 1)an−1 (10)

[L1, an] = −(n − d + 1)an+1 + (L1a)n+1 (11)
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for all homogeneous a ∈ Vd and all n ∈ Z.
An important consequence of Eq. (9) is that the action of the endomorphisms am

on V is well-behaved with respect to the Z-grading, namely

amVn ⊂ Vn−m (12)

for all a ∈ V and all m, n ∈ Z. In particular a−n� ∈ Vn for all n ∈ Z.
A homogeneous vector a ∈ V and the corresponding field Y (a, z) are called quasi-

primary if L1a = 0 and primary if Lna = 0 for every integer n > 0. Since Ln� =
ν(n+1)� = 0 for every integer n ≥ −1, the vacuum vector � is a primary vector in
V0. Moreover, it follows by the Virasoro algebra relations that the conformal vector ν

is a quasi-primary vector in V2.
We have the following commutation relations:

[Lm, an] = ((d − 1)m − n) am+n, (13)

for all primary (resp. quasi-primary) a ∈ Vd , for all n ∈ Z and all m ∈ Z (resp.
m ∈ {−1, 0, 1}), see, e.g., [35, Cor.4.10].

If a, b ∈ V and a is homogeneous of conformal dimension da , then it follows
directly from the Borcherds identity in Eq. (6) that

+∞∑

j=0

(
m

j

)
(an+ j b)m+k =

+∞∑

j=0

(−1) j
(
n + da − 1

j

)
am+n− j bk−n+ j

+
+∞∑

j=0

(−1) j+n+da

(
n + da − 1

j

)
bk− j+da−1am+ j+1−da , m, n, k ∈ Z.

(14)

By taking n = 1 − da , k = q + 1 − da and m = p + da − 1 in Eq. (14), we obtain
the Borcherds commutator formula

[ap, bq ] =
+∞∑

j=0

(
p + da − 1

j

)
(a j+1−da b)p+q , p, q ∈ Z. (15)

Moreover, by taking m = 0 in Eq. (14) we get

(anb)k =
+∞∑

j=0

(−1) j
(
n + da − 1

j

) (
an− j bk−n+ j + (−1)n+da bk− j+da−1a j+1−da

)
,

(16)

for all n, k ∈ Z.
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A homogeneous vector a ∈ V is called a Virasoro vector (with central charge
c̃ ∈ C) if

Y (a, z) =
∑

n∈Z
L̃nz

−n−2 (17)

and the endomorphisms L̃n , n ∈ Z, give a representation of the Virasoro algebra on
V with central charge c̃. Then a(n+1) = L̃n for all n ∈ Z so that a = L̃−2� ∈ V2 and
L̃n� = 0 for all n ≥ −1. The conformal vector is a quasi-primary Virasoro vector
and, if V1 = {0}, then every Virasoro vector is quasi-primary. However, a Virasoro
vector needs not to be in general quasi-primary. If a is a Virasoro vector, we say that
Y (a, z) is a Virasoro field.

Let X ⊂ V be a (vector) subspace. We say that X is a Z-graded subspace of V
if X = ⊕

n∈Z Xn , where Xn := X ∩ Vn , n ∈ Z. Equivalently, X is Z-graded if
L0X ⊂ X .

A vertex subalgebra of V is a subspace U ⊂ V such that � ∈ U and a(n)b ∈ U
for all a, b ∈ U and all n ∈ Z. A vertex subalgebra of V is always a vertex algebra
but in general not a vertex operator algebra. If U is a Z-graded subalgebra of V and
it has a structure of vertex operator algebra which is compatible with the Z-grading
inherited from V , then we say that V is a vertex operator algebra extension of U . If
ν ∈ U then U is a Z-graded subalgebra of V and it is also a vertex operator algebra.
In this case we say that V is a vertex operator algebra extension of U with the same
conformal vector.

Given a subsetF ⊂ V , we set UF to be the intersection of all vertex subalgebras
of V containing F . Then UF is the smallest vertex subalgebra of V containing F ,
and we call it the vertex subalgebra generated by F . If UF = V we say that V is
generated byF . If all vectors inF are homogeneous, then UF is a Z-graded vertex
subalgebra of V .

We now come to unitary vertex operator algebras, cf. [13, Chapter 5]. In order to
simplify the discussion, we will assume that V is of CFT type, i.e., that V0 = C� and
that Vn = {0} for n < 0. Actually, the second condition follows from the first, see [13,
Remark 4.5]. Note that by [13, Proposition 5.3] a unitary vertex operator algebra is of
CFT-type if and only if it is simple.

Let (·|·) : V × V → C be a scalar product on V (i.e., a positive definite Hermitian
form on V ). We say that (·|·) is normalized if (�|�) = 1. Moreover, we say that (·|·)
is invariant if there exists an anti-linear involution V � a 	→ a∗ ∈ V such that ν∗ = ν

and

(b|anc) = (a∗−nb|c) (18)

for all a, b, c ∈ V and all n ∈ Z. As a consequence, we also have that �∗ = �.
If V is equipped with an invariant and normalized scalar product (·|·), we say that

V is a unitary vertex operator algebra. If this is the case then, by [13, Theorem 5.16],
there exists a necessarily unique vertex operator algebra anti-linear automorphism
θ : V → V (the PCT-operator) such that
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a∗ := eL1(−1)L0θ(a) (19)

for all a ∈ V . It turns out that θ2 = 1V , cf. [13, Proposition 5.1]. If V is unitary,
then the representation of the Virasoro algebra associated with the conformal vector is
unitary, [13, 36]. In particular, the central charge c of V is a nonnegative real number.

The unitary structure is not necessarily unique but is unique up to unitary vertex
operator algebra automorphisms [13, Proposition 5.19]. More precisely, if {·|·} and
(·|·) are two normalized invariant scalar products on V , then there is a vertex operator
algebra automorphism g : V → V such that {·|·} = (g · |g ·). Conversely, if (·|·) is a
normalized invariant scalar product on V and g : V → V is a vertex operator algebra
automorphism, then (g · |g·) is a normalized invariant scalar product with anti-linear
involution given by a 	→ a∗g := g−1(ga)∗, a ∈ V and PCT-operator θg := g−1θg.

We now discuss unitary subalgebras, cf. [13, Section 5.4] and [9]. Let V be a simple
unitary vertex operator algebra. We say that a ∈ V is a Hermitian vector if a = a∗. If
a ∈ V is Hermitian, we also say that Y (a, z) is aHermitian field. If a is a quasi-primary
vector of conformal dimension d, then a∗ = (−1)dθa so that a is Hermitian if and
only if a = (−1)dθa. More generally, we say that a subset F ⊂ V is Hermitian if

F ∗ = {a ∈ V : a∗ ∈ F } ⊂ F

(equivalentlyF ∗ = F ).A unitary vertex subalgebra (or simply a unitary subalgebra)
U of V is a Hermitian Z-graded vertex subalgebra of V . By [13, Proposition 5.23] a
vertex subalgebra U ⊂ V is unitary if and only if L1U ⊂ U and θU ⊂ U . IfF ⊂ V
is a family of Hermitian quasi-primary vectors, thenUF is a unitary subalgebra of V .

If U ⊂ V is a unitary subalgebra, then the coset subalgebra

Uc := {b ∈ V : a ∈ U ⇒ [Y (b, z),Y (a, w)] = 0} (20)

is also a unitary subalgebra, see [13, Example 5.27]. Moreover, there exists a unique
Z-grading preserving vector space endomorphism eU : V → V such that e2U = eU ,
eUV = U and (eUb|a) = (b|eUa) for all a, b ∈ V (the orthogonal projection of V
onto U ). Then, by [13, Proposition 5.29], νU := eUν is a Hermitian quasi-primary
Virasoro vector in U with nonnegative central charge cU ≤ c. In particular, U is a
simple unitary vertex operator algebrawithZ-grading inherited from V andwe say that
V is a unitary vertex operator algebra extension of U . Moreover, ν = νU + νU

c
and,

if we set LU
n := νUn and LUc

n := νU
c

n , n ∈ Z, then L0, LU
0 and LUc

0 are simultaneously
diagonalizable in V with nonnegative eigenvalues, L0 = LU

0 +LUc

0 and c = cU +cUc .
It follows that (b|(LU

0 +1V )sb) ≤ (b|(L0 +1V )sb) for all b ∈ V and all real numbers
s ≥ 0. Furthermore, νU = ν if and only if c = cU . In this case, we say that V is a
unitary vertex operator algebra extension ofU with the same conformal vector, cf. [8,
31].

123



59 Page 8 of 24 S. Carpi, L. Tomassini

3 Energy bounds

In this section we discuss the notion of energy bounds for unitary vertex operator
algebras, cf. [13, Chapter 6].

Let V be a simple unitary vertex operator algebra. Then V is a normed space with
norm defined by ‖a‖ := √

(a|a). Let X ⊂ V be a subspace of V , let X be a normed
space and let R : X → X be a linear map. We define the extended real-valued norm
‖R‖ ∈ [0,+∞] of R by

‖R‖ := sup
{a∈X : ‖a‖≤1}

‖Ra‖. (21)

Clearly, ‖R‖ < +∞ whenever X is finite-dimensional. Note also that ‖Ra‖ ≤
‖R‖‖a‖ for all a ∈ V and that if X1, X2 are subspaces of V and R2 : X2 → X1 and
R1 : X1 → X then ‖R1R2‖ ≤ ‖R1‖‖R2‖.

There is a natural filtration on V given by the increasing sequence of subspaces
V≤n ⊂ V , n ∈ Z, defined by

V≤n =
⊕

k≤n

Vk . (22)

Then V≤n = {0} whenever n < 0 (because V is of CFT-type) and

V =
⋃

n∈Z
V≤n .

Moreover, amV≤n ⊂ V≤n−m for all a ∈ V and all m, n ∈ Z.
For R ∈ End(V ) and n ∈ Z, we set

‖R‖n := ‖R �V≤n ‖ (23)

so that ‖R‖n = 0 for n < 0, n 	→ ‖R‖n is an increasing sequence and

‖R‖ = lim
n→+∞ ‖R‖n = sup

n∈Z≥0

‖R‖n = sup
n∈Z

‖R‖n . (24)

If there is a R† ∈ End(V ) such that (a|Rb) = (R†a|b) for all a, b ∈ V , then we have
the inequality ‖R‖2n ≤ ‖R†R‖n for all n ∈ Z. Moreover, if for a given n ∈ Z it holds
R†RV≤n ⊂ V≤n , then we also have the C∗-identity ‖R‖2n = ‖R†R‖n . In particular,
since (am)† = a∗−m we have

‖a∗−mam‖n = ‖am‖2n (25)

for all a ∈ V and all m, n ∈ Z. As a consequence,

‖am‖n = ‖a∗−m‖n−m (26)
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for all a ∈ V and all m, n ∈ Z.

Definition 3.1 ([13, Chapter 6] and [30, Section 4.4]) Let V be a simple unitary vertex
operator algebra and let s be a nonnegative real number. We say that a vector a ∈ V
satisfies s-th-order (polynomial) energy bounds if there exist real numbers t ≥ 0,
and C ≥ 0 such that ‖am‖n ≤ C(1 + |m|)t (1 + |n|)s for all m, n ∈ Z (equivalently
‖am(L0 + 1V )−s‖ ≤ C(1 + |m|)t for all m ∈ Z). If a satisfies first-order energy
bounds, we also say that a satisfies linear energy bounds. We say that a ∈ V satisfies
energy bounds if it satisfies s-th-order energy bounds for some real number s ≥ 0.

Remark 3.2 Let HV be the Hilbert space completion of V and let a ∈ V satisfy s-
th-order energy bounds. For a smooth complex-valued function f ∈ C∞(S1) with
Fourier coefficients f̂n := 1

2π

∫ π

−π
f (eiϑ)e−inϑdϑ , the series

∑
n∈Z f̂nanb converges

in HV for all b ∈ V . Accordingly, one can define a linear map Y0(a, f ) : V → HV

(the smeared vertex operator). Moreover, given a real number s ≥ 0, then the real
numbers t ≥ 0, and C ≥ 0 are such that ‖am‖n ≤ C(1 + |m|)t (1 + |n|)s for all
a ∈ V and all m, n ∈ Z if and only if ‖Y0(a, f )(L0 + 1V )−s‖ ≤ C‖ f ‖t , where
‖ f ‖t = ∑

m∈Z(1+ |m|)t | f̂m |. The smeared vertex operators play a fundamental role
in the connection between unitary vertex operator algebras and conformal nets, see
[13].

Remark 3.3 Let V be a simple unitary vertex operator algebra. Then it follows from
[3, Theorem 1] that a ∈ V satisfies zeroth-order energy bounds if and only if a ∈ C�.

Well known examples of elements of V satisfying energy bounds are the Hermitian
quasi-primary Virasoro vectors and vectors in V1, c.f. [13, Proposition 6.3]. Here
we give some more details. Let us start with the Virasoro vectors. Let ν̃ ∈ V be a
quasi-primary Hermitian Virasoro vector. Moreover, let

Y (ν̃, z) =
∑

n∈Z
L̃nz

−n−2 (27)

be the corresponding Virasoro field with central charge c̃. Let U{ν̃} be the vertex
subalgebra generated by ν̃. It is a unitary subalgebra of V with U{ν̃} ∩ V2 = Cν̃. It
follows that ν̃ = νU , so that L̃0 is diagonalizable on V with nonnegative eigenvalues,
‖(L̃0 + 1V )b‖ ≤ ‖(L0 + 1V )b‖ for all b ∈ V and 0 ≤ c̃ ≤ c. Then by [16, Lemma
4.1] there is a positive real number r(c̃) ≥ 1, depending on the central charge c of V
only, such that

‖L̃mb‖ ≤ r(c̃)(1 + |m|) 3
2 ‖(L̃0 + 1V )b‖ ≤ r(c̃)(1 + |m|) 3

2 ‖(L0 + 1V )b‖ (28)

for all b ∈ V . Actually, it follows from [27, Equation 2.8] that one can take r(c̃) =
1 +

√
c̃
3 (note that the choice in [13, Proposition 3.2] is not correct although the

mistake has no consequences for the results in [13]). We record this in the following
proposition.
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Proposition 3.4 Let V be simple unitary vertex operator algebra with central charge
c and let a ∈ V be a quasi-primary Hermitian Virasoro vector with central charge c̃.
Then a satisfies linear energy bounds. More precisely

‖am‖n ≤ (1 + √
c̃/3)(1 + |m|) 3

2 (1 + |n|)

for all m, n ∈ Z.

Before discussing energy bounds for vectors in V1, we state and prove a lemma
which will play a central role in Sect. 4.

Lemma 3.5 Let V be a simple unitary vertex operator algebra. If a ∈ Vd then
‖amb‖2 ≤ (b|(a−da∗)0b) for all b ∈ V and all m ∈ Z≥0. Hence, ‖am‖2n ≤
‖(a−da∗)0‖n for all m ∈ Z≥0 and all n ∈ Z. In particular, ‖a0‖2n ≤ ‖(a−da∗)0‖n for
all n ∈ Z .

Proof By Eq. (16) we have

(a−da
∗)0 =

+∞∑

j=d

a− j a
∗
j +

+∞∑

j=1−d

a∗− j a j (29)

and hence

(b|(a−da
∗)0b) =

+∞∑

j=d

‖a∗
j b‖2 +

+∞∑

j=1−d

‖a jb‖2 (30)

for all b ∈ V . If d > 0 we find ‖amb‖2 ≤ (b|(a−da∗)0b) for all b ∈ V and all
m ∈ Z≥0 and thus ‖am‖2n ≤ ‖(a−da∗)0‖n for all m ∈ Z≥0 and all n ∈ Z. If d = 0
then a = (�|a)�, a∗ = (a|�)� and (a0a∗)0 = |(�|a)|21V and hence ‖am‖n = 0
for all m ∈ Z\{0} and all n ∈ Z. If n < 0 we have ‖a0‖n = 0 again. Finally, if n ≥ 0
then ‖a0‖2n = |(�|a)|2 = ‖(a0a∗)0‖n . ��

We now discuss energy bounds for vectors in V1. It is well known that V1 is a
Lie algebra with brackets [a, b] := a0b. This follows directly from skewsymmetry
(Eq. (7)) and the Borcherds commutator formula (Eq. (15)). Moreover, we have the
Kac-Moody algebra relations

[am, bn] = [a, b]m+n + m(a∗|b)δm,−n1V (31)

for all a, b ∈ V1 and all m, n ∈ Z. In particular, we have the Heisenberg algebra
relations

[am, an] = m(a∗|a)δm,−n1V (32)

for all a ∈ V1 and all m, n ∈ Z.
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Proposition 3.6 Let V be a simple unitary vertex operator algebra and let a ∈ V1.
Then a satisfies 1

2 -th-order energy bounds. More precisely

‖am‖n ≤ 2
3
2 ‖a‖(1 + |m|) 1

2 (1 + |n|) 1
2

for all m, n ∈ Z. As a consequence, a satisfies linear energy bounds.

Proof Let a ∈ V1. If a = 0 the claim is trivial. For a �= 0 we first assume that a is
Hermitian. Note that a0a = [a, a] = 0. It is well-known that

ν̃ = 1

2‖a‖2 a−1a

is a Virasoro vector with central charge 1, see [35, Section 5.7] and [36, Section 2.3].
Moreover, ν̃ is Hermitian because a is. Finally, since a must be primary, L1a−1a =
a0a = 0 so that ν̃ is a Hermitian quasi-primary Virasoro vector. By Lemma 3.5 we
see that

‖am‖2n ≤ 2‖a‖2‖L̃0‖n ≤ 2‖a‖2‖L0‖n ≤ 2‖a‖2|n|

for all m ∈ Z≥0 and all n ∈ Z. If −m ∈ Z≥0 then, by Eq. (26), and recalling that
a = a∗, we find

‖am‖2n = ‖a−m‖2n+|m| ≤ 2‖a‖2(|n| + |m|) ≤ 2‖a‖2(1 + |m|)(1 + |n|).

Accordingly, if a ∈ V1 is Hermitian, then

‖am‖n ≤ √
2‖a‖(1 + |m|) 1

2 (1 + |n|) 1
2

for all m, n ∈ Z. If a is not Hermitian, we can write

a = 1

2
(a + a∗) + i

1

2
(ia∗ − ia)

and thus

‖am‖n ≤ 1

2
‖(a + a∗)m‖n + 1

2
‖(ia∗ − ia)m‖n

≤ 2
3
2 ‖a‖(1 + |m|) 1

2 (1 + |n|) 1
2

for all m, n ∈ Z. ��
We now discuss some results on energy bounds for primary vectors with conformal

dimension d �= 1, cf. [14].
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Lemma 3.7 Let V be a simple unitary vertex operator algebra and let a ∈ V be a
primary vector with conformal dimension da �= 1. Then there is a real number A ≥ 0
such that

‖am‖n ≤ A
√
1 + |m|(1 + |n|)(‖a0‖n + ‖a0‖n−m)

for all m, n ∈ Z. Moreover, if ‖a0(L0+1V )−s‖ < +∞ for some s ≥ 0 then a satisfies
(s+1)-th-order energy bounds and ‖am(L0+1V )−s−1‖ ≤ 2A(1+|m|)s+ 1

2 ‖a0(L0+
1V )−s‖ for all m ∈ Z.

Proof If da = 0 then a = (�|a)�, so that am = δm,0(�|a)1V and the statement
trivially holds with A ≥ 1

2 . Let us now consider the case da > 1. We follow the
argument in the first part of the proof of [14, Proposition 3.1]. If m = 0 the inequality
is trivially satisfied for any A ≥ 1

2 . Let us now assume that m �= 0. Since a is primary
we have [Lm, a0] = (da − 1)mam and since da �= 1 we have

‖am‖n ≤ 1

|m|(da − 1)
(‖Lma0‖n + ‖a0Lm‖n)

for all m, n ∈ Z, m �= 0. By Proposition 3.4 we have

‖Lm‖n ≤ (1 + √
c/3)(1 + |m|) 3

2 (1 + |n|)

for all m, n ∈ Z. Hence,

‖am‖n ≤ 2(1 + √
c/3)

da − 1

√
1 + |m|(1 + |n|)(‖a0‖n + ‖a0‖n−m)

which proves the first claim by taking A = 2(1+√
c/3)

da−1 + 1
2 . Now, we have

‖a0‖n + ‖a0‖n−m ≤ ‖a0(L0 + 1V )−s‖ (
(1 + |n|)s + (1 + |n − m|)s)

≤ ‖a0(L0 + 1V )−s‖ (
(1 + |n|)s + (1 + |n| + |m|)s)

= ‖a0(L0 + 1V )−s‖(1 + |n|)s
(
1 +

(
1 + |n| + |m|

1 + |n|
)s)

≤ 2‖a0(L0 + 1V )−s‖(1 + |n|)s(1 + |m|)s

for all m ∈ Z and the second claim follows. ��
Although this will not be needed in the rest of the paper, we state and prove a more
sophisticated variant of Lemma 3.7 which is based on the functional analytic methods
developed in [14] and it is of independent interest.

Proposition 3.8 (cf. [14, Proposition 3.1]) Let V be a simple unitary vertex operator
algebra and let a ∈ V be a primary vector of conformal dimension d �= 1. Assume
that ‖a0(L0 + 1V )−s‖ < +∞ for some s > 0. Then there exist real numbers C ≥ 0
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and t ≥ 0 such that ‖am(L0+1V )−s‖ ≤ C(1+|m|)t for all m ∈ Z. Hence, a satisfies
s-th-order energy bounds.

Proof If d = 0 then am = 0 for all m �= 0 and the statement is trivial. Let us consider
the case d > 1. We will make use of the smeared vertex operators in Remark 3.2. First
note that ‖a∗

0(L0 + 1V )−s‖ = ‖a0(L0 + 1V )−s‖ < +∞. By [14, Proposition 3.1]
the operator Y0(a, f )(L0 + 1V )−s : V → HV extends to a continuous linear map
�a( f ) : HV → HV for all f ∈ C∞(S1). Let B(HV ) denote the Banach algebra of
continuous linear maps from HV into HV with the usual operator norm ‖ · ‖B(HV )

(in fact a C∗-algebra). It easy to see that the map �a : C∞(S1) → B(H)V defined
by C∞(S1) � f 	→ �a( f ) ∈ B(HV ) is linear. Moreover, by Lemma 3.7, there are
real numbers B ≥ 0 and q ≥ 0 such that ‖�a( f )(L0 + 1HV )−1‖B(HV ) ≤ B‖ f ‖q ,
where ‖ · ‖q is the norm on C∞(S1) defined in Remark 3.2. Now, C∞(S1) with the
usual topology of uniform convergence of functions and their derivatives is a Fréchet
space. In fact, its topology can be induced by the increasing sequence of norms ‖ · ‖k ,
k ∈ Z≥0. Let fn be a sequence of smooth function converging to f in C∞(S1) and
assume that �a( fn) converges to T ∈ B(HV ) in the norm topology of B(HV ). Then,
for any b, c ∈ V ,

|(b|T c) − (b|�a( f )c)| ≤ |(b|T c) − (b|�a( fn)c)| + |(b|�a( fn)c) − (b|�a( f )c)|
≤ ‖b‖‖c‖‖T − �a( fn)‖B(HV ) + B‖b‖‖(L0 + 1V )c)

‖ fn − f ‖q → 0 as n → +∞

so that T = �a( f ). Thus, �a is a closed linear map and by the closed graph theorem
(see, e.g., [43, Theorem 2.15]) �a is continuous. Hence, there exist a real number
C ≥ 0 and an integer t ≥ 0 such that ‖Y0(a, f )(L0 + 1V )−s‖ ≤ C‖ f ‖t for all
f ∈ C∞(S1) and the conclusion follows from Remark 3.2. ��
Remark 3.9 It is proved in [14] that if a primary vector a ∈ Vd with d > 1 satisfies
s-th-order energy bounds with s < d−1 then a = 0. Hence, a (d−1)-th-order energy
bound is optimal.

An interesting class of primary vectors with conformal dimension d > 1 and
satisfying energy bounds comes from the Zamolodchikov W3-algebra. Let V be a
simple unitary vertex operator algebra. We say that a Hermitian primary vector μ̃ ∈
V3 is a Hermitian W3 vector with central charge c̃ ≥ 0 if there is a quasi-primary
Hermitian Virasoro vector ν̃ such that the coefficients of the formal series

Y (μ̃, z) =
∑

n∈Z
W̃nz

−n−3, Y (ν̃, z) =
∑

n∈Z
L̃nz

−n−2 (33)

satisfy theW3 algebra commutation relation

[W̃m, W̃n] = c

3 · 5! (m
2 − 4)(m2 − 1)mδm+n,0
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+ b2(m − n)	̃m+n +
[
1

20
(m − n)(2m2 − mn + 2n2 − 8))

]
L̃m+n

for all m, n ∈ Z, where b2 = 16
22+5c and 	̃n := (ν̃−2ν̃ − 3

10 ν̃−1ν̃−1ν̃)n , n ∈ Z.
It is not hard to see that if μ̃ ∈ V is a Hermitian W3 vector and Uμ̃ is the unitary

subalgebra of V generated by μ̃, then ν̃ = νUμ̃ . In particular ν̃ is determined by μ̃. The
unitaryW3 vertex operator algebras studied in [15] give many examples of Hermitian
W3 vectors.

The following proposition follows from the results in [14, Section 4].

Proposition 3.10 Let V be a simple unitary vertex operator algebra and let a ∈ V3
be a Hermitian W3 vector with central charge c̃. Then a satisfies third-order energy
bounds. Moreover, if c̃ ≥ 1 then a satisfies the optimal second-order energy bounds.

Definition 3.11 Let V be a simple unitary vertex operator algebra. Then V is energy-
bounded if every a ∈ V satisfies energy bounds.

Definition 3.12 Let V be a simple unitary vertex operator algebra and letU ⊂ V be a
unitary subalgebra. ThenU is energy-bounded if every a ∈ U satisfies energy bounds.

Remark 3.13 A unitary subalgebra U of the simple unitary vertex operator algebra V
is energy-bounded if and only if V is an energy-bounded unitary U -module, cf. [18,
28] and Sect. 4 below. In particular, if U is an energy-bounded unitary subalgebra of
V then it is also an energy-bounded simple unitary vertex operator algebra.

The same proof of [13, Proposition 6.1] gives the following.

Proposition 3.14 Let V be a simple unitary vertex operator algebra and let U be a
unitary subalgebra of V . If U is generated by a family of homogeneous vectors satis-
fying energy bounds, then U is an energy-bounded unitary subalgebra. In particular,
if F ⊂ V is a family of Hermitian quasi-primary vectors satisfying energy bounds
then UF is an energy-bounded subalgebra of V .

Proposition 3.14 together with Propositions 3.4, 3.6 and Proposition 3.10 immedi-
ately gives the following theorem.

Theorem 3.15 Let V be a simple unitary vertex operator algebra and let U be a
unitary subalgebra of V . Assume that U is generated by U1, a family of Hermitian
quasi-primary Virasoro vector and a family of Hermitian W3 vectors. Then U is an
energy-bounded unitary subalgebra of V .

We end this section by introducing the notion of exponentially energy-bounded
unitary vertex operator algebra, which will be needed in Sect. 4.

Definition 3.16 Let V be a simple unitary vertex operator algebra. We say that V
is exponentially energy-bounded if, for every a ∈ V there is a q > 0 such that
‖a0qL0‖ < +∞.
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If a ∈ V satisfies energy bounds, then there are real numbers C ≥ 0, and s ≥ 0
such that ‖a0‖n ≤ C(1 + |n|)s for all n ∈ Z so that ‖a0qL0‖n ≤ C(1 + |n|)sq |n| for
all q > 0 and all n ∈ Z. Hence, if q ∈ (0, 1),

‖a0qL0‖ ≤ sup
n∈Z≥0

C(1 + n)sqn < +∞.

Asaconsequence, ifV is energy-bounded then it is also exponentially energy-bounded.
The following proposition will be important for our main results in Sect. 4.

Proposition 3.17 Let V be a simple unitary vertex operator algebra. If V is C2-cofinite
then ‖a0qL0‖ < +∞ for all a ∈ V and all q ∈ (0, 1). In particular V is exponentially
energy-bounded.

Proof Let q ∈ (0, 1). It is enough to prove that ‖a0qL0‖ < +∞ for all homogeneous
vectorsa ∈ V . Leta behomogeneouswith conformal dimensiond. SinceV is assumed
to beC2-cofinite we can use [50, Theorem 4.4.1] to conclude that Tr((a−da∗)0q2L0) <

+∞. Hence, by Lemma 3.5 we find

‖a0qL0‖2 = ‖(a0qL0)†(a0q
L0)‖

= ‖qL0a∗
0a0q

L0‖
≤ Tr qL0a∗

0a0q
L0

≤ Tr(qL0(a−da
∗)0qL0)

≤ Tr((a−da
∗)0q2L0)

< +∞. ��

4 Main results

In this sectionwe state and prove ourmain results on energy bounds for vertex operator
algebras extensions. A vertex operator algebra automorphism g of a simple unitary
vertex operator algebra V is said to be a unitary automorphism if (ga|gb) = (a|b)
for all a, b ∈ V . A vertex operator algebra automorphism is unitary if and only if it
commutes with the PCT operator θ , see [13, Remark 5.18]. Since the vertex operator
algebra automorphisms preserve the conformal vector ν, it follows that if g is unitary
then ga∗ = (ga)∗ for all a ∈ V . If G is a compact group of unitary automorphisms
of V , then the fixed point subalgebra VG := {a ∈ V : g ∈ G ⇒ ga = a} is a unitary
subalgebra of V , cf. [13, Example 2.25].

Theorem 4.1 LetG bea compact groupof unitary automorphismsof the simple unitary
vertex operator algebra V and let U := VG. Assume that U is an energy-bounded
unitary subalgebra of V . Then V is energy-bounded.

Proof Since V is generated by the conformal vector ν and by primary vectors (see,
e.g., [14, Remark 3.9]), then, by Lemma 3.7, it is enough to prove that for every
primary vector a ∈ V there is an s ≥ 0 such that ‖a0(L0 + 1V )−s‖ < +∞, cf. [14].

123



59 Page 16 of 24 S. Carpi, L. Tomassini

Now, if a ∈ Vd is primary, there is an orthonormal basis {a1, a2, . . . , akd } of Vd with
a = ‖a‖a1. Then, x := ∑kd

i=1 a
i
−da

i ∗ ∈ U because g �Vd is represented by a unitary
matrix in any orthonormal basis. SinceU is an energy-bounded unitary subalgebra of
V , then x satisfies energy bounds and hence there is a real number s ≥ 0 such that
‖x0(L0 + 1V )−2s‖ < +∞. By Lemma 3.5 and the fact that x0 commutes with L0 we
find

‖a0(L0 + 1V )−sb‖2 = ‖a‖2‖a10(L0 + 1V )−sb‖2

≤ ‖a‖2
kd∑

i=1

‖ai0(L0 + 1V )−sb‖2

≤ ‖a‖2
kd∑

i=1

((L0 + 1V )−sb|(ai−da
i ∗)0(L0 + 1V )−sb)

= ‖a‖2((L0 + 1V )−sb|x0(L0 + 1V )−sb)

= ‖a‖2(b|x0(L0 + 1V )−2sb)

≤ ‖a‖2‖x0(L0 + 1V )−2s‖‖b‖2,

for all b ∈ V . Hence, ‖a0(L0 + 1V )−s‖2 ≤ ‖a‖2‖x0(L0 + 1V )−2 s‖ < +∞ and the
conclusion follows. ��

As an immediate application, we give a new proof of energy-boundedness of lattice
models, see [30, Section 5.3].

Proposition 4.2 Let L be an even positive-definite lattice. Then the lattice vertex oper-
ator algebra VL is energy-bounded.

Proof If n is the rank of L then the rank n Heisenberg algebra is a unitary subal-
gebra of VL which is energy-bounded by Proposition 3.6. The automorphism group
of VL contains a compact subgroup G of unitary automorphisms isomorphic to the
n-dimensional torus Tn such that H = VG

L and the conclusion follows from Theo-
rem 4.1. ��

We now to discuss our second main result on energy bounds for vertex operator
algebras extensions. We start with two lemmas.

Lemma 4.3 Let V be a simple unitary vertex operator algebra. Let b ∈ V satisfy
energy bounds and let a ∈ V be a primary vector with conformal dimension da �= 1.
Then there are real numbers B ≥ 0 and t ≥ 0 such that

‖a−mbm‖n ≤ B(1 + |m|)t (1 + |n|)t (‖a0‖n−m + ‖a0‖n)

for all m, n ∈ Z.

Proof By assumption b satisfies energy bounds and thus there are real numbers K ≥ 0
and q ≥ 0 such that ‖bm‖n ≤ K (1+ |m|)q(1+ |n|)q for all m, n ∈ Z. It then follows
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from Lemma 3.7 that there is a real number A ≥ 0 such that

‖a−mbm‖n ≤ ‖a−m‖n−m‖bm‖n
≤ A

√
1 + |m|(1 + |n − m|)(‖a0‖n−m + ‖a0‖n)K (1 + |m|)q(1 + |n|)q

≤ AK (1 + |m|)q+ 3
2 (1 + |n|)q+1(‖a0‖n + ‖a0‖n−m)

for all m, n ∈ Z, and the conclusion follows. ��
Lemma 4.4 Let V be a simple unitary vertex operator algebra. Let b ∈ Vd satisfy
energy bounds, let p ∈ Z≥0 and let a ∈ V be a primary vector with conformal
dimension da �= 1. Then there are real numbers C ≥ 0 and r ≥ 0 such that

‖(b−pa)0‖n ≤ C(1 + |n|)r‖a0‖n+d

for all n ∈ Z.

Proof It follows from Equation (16)) that

(b−pa)0 =
+∞∑

j=0

(−1) j
(
d − p − 1

j

) (
b−p− j ap+ j + (−1)d−pad−1− j b j+1−d

)
.

(34)

By assumption b satisfies energy bounds and thus there are real numbers K ≥ 0
and q ≥ 0 such that ‖bm‖n ≤ K (1 + |m|)q(1 + |n|)q for all m, n ∈ Z.

If c ∈ V≤n then ap+ j c = 0 for j+ p > n, so that ‖b−p− j ap+ j‖n = 0 for j+ p > n.
Similarly, b j+1−dc = 0 for j + 1− d > n. It follows that ‖ad−1− j b j+1−d‖n = 0 for
j + 1 − d > n.
By Lemma 4.3 there exist positive real numbers B and t such that

‖ad−1− j b j+1−d‖n ≤ B(1 + | j + 1 − d|)t (1 + |n|)t (‖a0‖n+d−1− j + ‖a0‖n)
≤ 2B(1 + | j + 1 − d|)t (1 + |n|)t‖a0‖n+d

for all n ∈ Z and all j ∈ Z≥0. Recalling that ‖aid−1− j b j+1−d‖n = 0 for j+1−d > n,
we see that

‖ad−1− j b j+1−d‖n ≤ 2B(1 + |n|)2t‖a0‖n+d

for all n ∈ Z and all j ∈ Z≥0. On the other hand,

‖b−p− j ap+ j‖n ≤ K (|p + j | + 1)q(1 + |n − p − j |)q‖ap+ j‖n
for all p, j ∈ Z≥0 and all n ∈ Z. By Lemma 3.7 there exists a positive real number A
such that

‖ap+ j‖n ≤ 2A
√
1 + |p + j |(1 + |n|)‖a0‖n
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for all j ∈ Z≥0 and all n ∈ Z. Hence, recalling that ‖b−p− j ap+ j‖n = 0 for p+ j > n,
we find that

‖b−p− j ap+ j‖n ≤ 2K A(|n| + 1)2q+ 3
2 ‖a0‖n

for all j ∈ Z≥0 and all n ∈ Z. It follows that

‖(b−pa)0‖n ≤
(
2K A(|n| + 1)2q+ 3

2 ‖a0‖n + 2B(1 + |n|)2t‖a0‖n+d

) n+d∑

j=0

∣∣∣∣

(
d − p − 1

j

)∣∣∣∣

≤ (2K A + 2B)(|n| + 1)2q+2t+ 3
2 ‖a0‖n+d

n+d∑

j=0

(|d − p − 1| + j)|d−p−1|

≤ (2K A + 2B)(|n| + 1)2q+2t+ 3
2 (|n| + p + 2d + 1)d+p+2‖a0‖n+d

for all n ∈ Z and the conclusion follows. ��
Theorem 4.5 Let V be simple unitary exponentially energy-bounded vertex operator
algebra and let U ⊂ V be an energy-bounded unitary subalgebra of V such that V is
a finite direct sum of simple U-modules. Then V is energy-bounded.

Proof Let Ũ be the unitary subalgebra of V generated by U and V1. By Propo-
sition 3.6 every vector in V1 satisfies energy bounds and U is an energy-bounded
unitary subalgebra of V by assumption. Therefore, Proposition 3.14 implies that Ũ
is an energy-bounded unitary subalgebra too. Since U ⊂ Ũ then V is a finite direct
sum of irreducible Ũ -modules. Hence, we can assume that V1 ⊂ U by replacing if
necessary U with Ũ . We write V = ⊕N

k=1 M
k where the Mk , k = 1, . . . , N , are

pairwise orthogonal simple unitary U -modules and M1 = U . We denote by Mk
(0) the

top space of Mk , i.e., the lowest energy subspace of Mk and by dk the corresponding
lowest energy. Since we are assuming that V1 ⊂ U , we have that dk �= 1 for all
k ∈ {1, . . . , N }.

For each k = 1, . . . , N , pick a vector ak ∈ Mk
(0) with ‖ak‖ = 1. Accordingly,

each ak is primary of dimension dk and V is generated by U ∪ {a1, . . . , aN }. It
is thus enough to prove that for every ak there is a real number s > 0 such that
‖ak0(L0 + 1V )−s‖ < +∞. For every integer n ∈ Z≥0 we set

K (n) := sup
k

‖ak0‖n .

By [38, Prop. 4.5.6], for any k ∈ {1, . . . , N }, there are homogeneous vectors b(k,i,m) ∈
Ud(k,i,m), i = 1, . . . , N , m = 1, . . . ,m(i, k) such that

ak(−1)(a
k)∗ =

N∑

i=1

m(i,k)∑

m=1

b(k,i,m)
di−2dk

ai (35)
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so that

(
ak(−1)(a

k)∗
)

0
=

n∑

i=1

m(i,k)∑

m=1

(
b(k,i,m)
di−2dk

ai
)

0
. (36)

There is a finite number of vectors b(k,i,m) and these vectors are in U and hence
they are energy-bounded. Moreover, if di − 2dk > 0 then b(k,i,m)

di−2dk
ai = 0, because it

is a homogeneous vector in Mi with conformal energy less than di . Thus, it follows
from Lemma 4.4 that there is an integer d ≥ 0 and real numbers D > 0, s ≥ 0 such
that, for all k and all n ∈ Z≥0,

‖
(
ak(−1)(a

k)∗
)

0
‖n ≤ D(n + 1)s K (n + d).

Thus, it follows by Lemma 3.5 that

K (n)2 ≤ D(n + 1)s K (n + d)

for all n ∈ Z≥0. We now set

αn := K (n)

D(1 + d)s(1 + n)s

and we find α2
n ≤ αn+d . If αn > 1 for some n then αn+md ≥ (αn)

2m for all m ∈
Z≥0 and this is in contradiction with the assumption that V is exponentially energy-
bounded. Hence, αn ≤ 1 for all n and hence K (n) ≤ C(1 + r)q(1 + n)q so that
‖ak0(L0 + 1V )−q‖ < +∞ for all k and V is energy-bounded. ��
Theorem 4.6 Let V be a simple unitary vertex operator algebra and let U be an
energy-bounded unitary subalgebra of V with the same conformal vector. Assume
that U is also a regular vertex operator algebra. Then V is energy-bounded.

Proof Since U is regular and contains the conformal vector ν of V , then V is a finite
direct sum of simpleU -module.Moreover, V isC2-cofinite by [2, Proposition 5.2] and
hence it is exponentially energy-bounded by Proposition 3.17. Then the conclusion
follows from Theorem 4.5 ��
Thanks to Theorem 3.15 we get the following theorem.

Theorem 4.7 Let V be a simple unitary vertex operator algebra and let U be a unitary
subalgebra of V with the same conformal vector. Assume that U is a regular vertex
operator algebra and that U is generated by U1, a family of Hermitian quasi-primary
Virasoro vector and a family of Hermitian W3 vectors. Then V is energy-bounded.

As a representative application we have the following theorem.

Theorem 4.8 Let V be a simple unitary vertex operator algebra extension with the
same conformal vector of a unitary affine vertex operator algebra associated with a
semisimple Lie algebra g. Then V is unitary and energy-bounded.
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Proof The unitarity of V follows from [8, Corollary 4.11]. Now, let U ⊂ V be the
unitary affine subalgebra of V . Since the corresponding Lie algebra is semisimple,
then U is rational and C2-cofinite, see [50, Section 5], and hence it is regular by [2,
Theorem 4.5]. Moreover, U is generated by U1 and thus the conclusion follows from
Theorem 4.7. ��
Remark 4.9 If g is of ADE type, then Theorem 4.8 also follows from [29, Theorem
2.7.4].

Remark 4.10 The energy bounds for the vertex operator algebra extension of unitary
affine vertex operator algebras associated with semisimple Lie algebras play an impor-
tant role in the proof of strong locality for the holomorphic vertex operator algebras
with central charge c = 24 and nonzero weight-one subspace, see [8, Section 5].

Another rather straightforward consequence of Theorem 4.7 is the following.

Theorem 4.11 Let V be a simple unitary framed vertex operator algebra. Then V is
unitary and energy-bounded.

Proof As in the proof of Theorem 4.8 the conclusion follows from [8, Corollary 4.11],
[50, Section 5], [2, Theorem 4.5] and Theorem 4.7. ��

We conclude this paper by briefly discussing some further applications of The-
orem 4.5 which come from the notion of strongly energy-bounded unitary vertex
operator algebra together with recent results by Gui [29].

We first recall, for the convenience of the reader, some basic facts about unitary ver-
tex operator algebra modules which have been already partially used in the preceding
part of this paper.

Let V be a simple unitary vertex operator algebra with central charge c. A vertex
algebra module M for V (or simply a V -module) is a vector space together with a
map

a 	→ Y M (a, z) =
∑

n∈Z
aM(n)z

−n−1

from V into the family of fields on M such that Y M (�, z) = 1M and the following
Borcherds identity for modules holds

+∞∑

j=0

(
m

j

) (
a(n+ j)b

)M
(m+k− j) c =

+∞∑

j=0

(−1) j
(
n

j

)
aM(m+n− j)b

M
(k+ j)c

−
+∞∑

j=0

(−1) j+n
(
n

j

)
bM(n+k− j)a

M
(m+ j)c, a, b ∈ V , c ∈ M, m, n, k ∈ Z.

(37)

A V -submodule N of M is a subspace N of M such that aM(n)N ⊂ N for all
a ∈ V and all n ∈ Z. We say that a V -module M is irreducible or simple if its only
V -submodules are {0} and M .
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Similarly to the case of vertex operator algebras, we write

Y M (ν, z) =
∑

n∈Z
LM
n z−n−2 (38)

and it turns out that the endomorphisms LM
n , n ∈ Z, satisfy the Virasoro algebra

commutation relations on M with central charge c,
The endomorphisms aMn ∈ End(M), a ∈ V , n ∈ Z, are defined by

Y M (zL0a, z) =
∑

n∈Z
aMn z−n . (39)

We say that the V -module M is unitary if it is equipped with a scalar product (·|·)M
such that

(b|aMn c) = ((a∗)M−nb|c) (40)

for all a ∈ V , all b, c ∈ M and all n ∈ Z. In this case all eigenvalues of LM
0 must be

nonnegative real numbers.
Similarly to the case of unitary vertex operator algebras, we define the norm ‖ · ‖M

on M by ‖c‖M := √
(c|c)M , c ∈ M . If s ∈ Z≥0 and a ∈ V , we say that the field

Y M (a, z) satisfies s-th-order energy bounds if there exist real numbers C ≥ 0 and
t ≥ 0 such that

‖aMn c‖M ≤ C(1 + |n|)t‖(LM
0 + 1M )sc‖M (41)

for all c ∈ M and all n ∈ Z. We say that Y M (a, z) satisfies energy bounds if it satisfies
s-th-order energy bounds for some s ∈ Z≥0 and we say that M is an energy-bounded
module for V if Y M (a, z) satisfies energy bounds for all a ∈ V .

If U is a unitary subalgebra of a simple unitary vertex operator algebra V , then V
is in particular a unitaryU -module. Moreover,U is an energy-bounded subalgebra of
V if and only if V is an energy-bounded U -module, cf. Remark 3.13.

Definition 4.12 (c.f. [29, Section 2.1]) We say that a simple unitary vertex operator
algebra V is strongly energy-bounded if every irreducible unitary V -module is energy-
bounded.

Various interesting examples of strongly energy-bounded simple unitary vertex
operator algebras come from regular cosets of affine unitary vertex operator algebras,
see [29, Section 2.6]. These examples include the discrete seriesW-algebras of ADE
type [29, Section 2.7].

Proposition 4.13 Let V be a simple unitary vertex operator algebra and let U be a
unitary subalgebra of V . Assume that U is regular and strongly energy-bounded. Then
U is an energy-bounded subalgebra of V .
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Proof The simple unitary vertex operator algebra V is an orthogonal, possibly infinite,
direct sum of irreducibleU -submodules. On the other hand,U being regular, there are
only finitely many inequivalent irreducible submodules appearing in the direct sum.
It follows that for every a ∈ U there are real numbers s ≥ 0 and C > 0 such that

‖a0b‖ ≤ ‖(LU
0 + 1V )sb‖ ≤ ‖(L0 + 1V )sb‖

for all b ∈ V and the conclusion follows, e.g., from Lemma 3.5. ��
As a consequence, we have the following generalization of Theorem 4.7.

Theorem 4.14 Let V be a simple unitary vertex operator algebra and let U be a
unitary subalgebra of V with the same conformal vector which is also a regular vertex
operator algebra. Assume that U is generated by U1, a family of Hermitian quasi-
primary Virasoro vector a family of Hermitian W3 vectors and a family of strongly
energy-bounded regular unitary subalgebras. Then V is energy-bounded.
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