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Abstract
We show that, for a class of planar determinantal point processes (DPP)X , the growth
of the entanglement entropy S(X (�)) of X on a compact region � ⊂ R

2d , is related
to the variance V (X (�)) as follows:

V (X (�)) � S (X (�)) � V (X (�)) .

Therefore, such DPPs satisfy an area law S
(Xg(�)

)
� |∂�|, where ∂� is the bound-

ary of � if they are of Class I hyperuniformity (V (X (�)) � |∂�|), while the area
law is violated if they are of Class II hyperuniformity (as L → ∞, V (X (L�)) ∼
C�Ld−1 log L). As a result, the entanglement entropy of Weyl–Heisenberg ensem-
bles (a family of DPPs containing the Ginibre ensemble and Ginibre-type ensembles
in higher Landau levels), satisfies an area law, as a consequence of its hyperuniformity.

Keywords Determinantal point processes · Entanglement entropy ·
Weyl–Heisenberg ensembles · Hyperuniformity

Mathematics Subject Classification 82D03 · 58J50 · 42

1 Introduction

If one considers a partition of a many-particle state in two subregions, the entangle-
ment entropy measures the degree of entanglement between the two regions, which is
given by the von Neumann entropy of the reduced state in one of the regions. Entan-
glement entropy is nowadays a widely studied quantity in many-particle interacting
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systems [7, 10–12, 16, 22]. In this note we interpret the definition of entanglement
entropy for fermionic states given in [7, Proposition 7.2], in terms of planar determi-
nantal point process (DPP) in R

2d . This allows to define the entanglement entropy
S(X (�)) of a DPPX in a compact subregion� ⊂ R

2d , as S(X (�)) = trace( f (T�)),
where f (x) = −x ln x − (1 − x) ln(1 − x) and T� is a Toeplitz operator defined
with the correlation kernel of the DPP, with symbol the indicator function of � (see
Sect. 2). Motivated by this definition, we will show that, for a class of planar DPPs
for which trace

(
T p

� (1 − T�)p
)
is bounded for 0 < p < 1, which include the Ginibre

ensemble and its higher Landau level versions [25], the following relations between
the entanglement entropy S(X (�)) and the variance V (X (�)) hold:

V (X (�)) � S (X (�)) � V (X (�)) . (1.1)

The entanglement entropy is said to satisfy an area law if S (X (�)) � |∂�|, where
|∂�| is the measure of the perimeter of � or, asymptotically, for a dilated region R�,
if V (X (�)) ∼ Rd−1 as R → ∞. Our results imply an area law S (X (�)) � |∂�|
when X is the infinite Ginibre ensemble with kernel given as

K0(z, w) = e− π
2 (|z|2+|w|2)eπ zw

and when X is one of the Ginibre-type ensembles [25], defined with the reproducing
kernel of the n eigenspace of the Landau operator Lz := −∂z∂z + π z∂z ,

Kn(z, w) = e− π
2 (|z|2+|w|2)Ln(π |z − w|2)eπ zw.

Ourmain resultwill be stated forTheWeyl–Heisenberg ensembleXg onR2d introduced
in[3] and studied further in [5, 21], a family of DPPs depending on a window function
g ∈ L2(Rd), with correlation kernel

Kg(z, w) = Kg((x, ξ), (x ′, ξ ′)) =
∫

Rd
e2π i(ξ

′−ξ)t g(t − x ′)g(t − x)dt .

When g is a Gaussian, Kg(z, w) becomes a weighted version of K0(z, w) and when g
is a Hermite function, it becomes a weighted version of Kn(z, w). More details about
these specializations will be given in section 3.

A DPP X is said to be hyperuniform of Class I [27],[26, (97) and Table 1], if
V (X (�)) � |∂�| or, asymptotically, for a dilated region R�, if V (X (�)) ∼ Rd−1

as R → ∞. As a result of (1.1), area laws for the DPPs considered in this paper will
follow as a consequence of their Class I hyperuniformity of rate 1. Hyperuniform states
of matter are correlated systems characterized by the suppression of density fluctua-
tions at large scales [3, 14, 15, 26–28]. While the relation (1.1) suggests what seems
to be a hitherto unnoticed relation between the concepts of entanglement entropy and
of hyperuniformity, similarities between the entanglement entropy and variance fluc-
tuations have been empirically observed in several contexts [11], suggesting that both
concepts may be used to quantify the level of supression of fluctuations at large scales
typical of a number of physical and mathematical systems known as hyperuniform
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[26, (97) and Table 1]. The inequality (1.1) is a first step towards a mathematical proof
of this hypothesis.

The presentation of this note is organized as follows. The next section contains
the concepts of entanglement entropy and number variance for DPPs and proves the
inequality (1.1) under the assumptions on trace

(
T p

� (1 − T�)p
)
. The third section

introduces some notions about the Weyl–Heisenberg ensemble, and (1.1) is assured
to hold for this case, thanks to the bounds of trace

(
T p

� (1 − T�)p
)
, recently obtained

by Marceca and Romero [23]. We then state and prove the bound S
(Xg(�)

)
� |∂�|

on the entanglement entropy of Weyl–Heisenberg ensembles. A lower bound |∂�| �
S

(Xg(�)
)
is also observed to hold under some extra assumptions, and the important

examples of Ginibre and of Shirai’s Ginibre-type ensembles on higher Landau levels
[25] are used to illustrate the scope of the result onWeyl–Heisenberg ensembles. In the
last section, bounds on the entropy using the construction of finite Weyl–Heisenberg
ensembles [5] are obtained.

2 Entanglement entropy and variance of DPPs

We refer to [20, 21] for precise definitions and background on DPPs. A locally inte-
grable kernel K (z, w) defines the correlation kernel of a determinantal point process
(DPP) distributing X (�) points in � ⊂ R

2d , whose k-point intensities are given by
ρk(z1, ..., zk) = det

(
K (zi , z j )

)
1≤i, j≤k . The 1-point intensity of X is then given by

ρ1(z) = K (z, z), allowing to compute the expected number of points that fall in � as

E [X (�)]=
∫

�

K (z, z)dz,

while the number variance in � is given as (see [13, pg.40] for a detailed proof):

V (X (�))=E

[
X (�)2

]
−E

[Xg(�)
]2 =

∫

�

K (z, z) dz−
∫

�2
|K (z, w)|2 dzdw.

(2.1)

Consider a compact set � ⊂ R
2d . The entanglement entropy S(X (�)) measures

the degree of entanglement of the DPP X reduced to the region �. A DPP satisfies an
area law if the leading term of the entanglement entropy grows at most proportionally
with the measure of the boundary of the partition defining the reduced state [7, 10].
In R

2d = � ∪ �c this corresponds to a growth of the order of the perimeter |δ�|.
The set � ⊆ R

2d is said to have finite perimeter if its characteristic function 1� is of
bounded variation (the concept of ‘area law’ for the entanglement entropy would be,
with this terminology, more precisely named as ‘perimeter law’, but we keep up with
the traditional terminology). In this case, its perimeter is |∂�| := Var(1�).

Our analysis is based on associating to the kernel ofX , K (z, w) (a locally integrable
reproducing kernel of a Hilbert space H ⊂ L2

(
R
2d

)
), the following operator:

123
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(T� f )(z) =
∫

�

f (w)K (z, w)dw,

where dw stands for Lebesgue measure, mapping f to a smooth function in L2
(
R
2d

)

with most of its energy concentrated in the region �. Since � ⊂ R
2d is compact and

K (z, w) locally integrable, T� is a compact positive (self-adjoint) operator of trace
class, and one can invoke the spectral theorem to assure that T� is diagonalized by
an orthonormal set of eigenfunctions {e�

n (z) : n ≥ 1} with corresponding eigenvalues
{λ�

n : n ≥ 1} ordered non-increasingly. The operator is positive and bounded by 1
(see [2, Lemma 2.1] for details in the Weyl–Heisenberg case).

For the definition of entanglement entropy of a DPP on a region � we will use the
result in Proposition 7.2 of [7].

Definition 2.1 The entanglement entropy S(X (�)) of the DPP X on a compact set
� ⊂ R

2d is defined in terms of T� as

S(X (�)) = trace( f (T�)),

where

f (x) = −x ln x − (1 − x) ln(1 − x). (2.2)

The traces of T� and T 2
� are given by (K (z, z) = 1)

trace(T�) =
∫

�

K (z, z)dz = E [X (�)] = |�| =
∑

n≥1

λ�
n , (2.3)

trace(T 2
�) =

∫

�2
|K (z, w)|2 dzdw =

∑

n≥1

(λ�
n )2. (2.4)

and the number variance of X (�), according to (2.1), by

V (X (�)) = trace(T�) − trace(T 2
�) =

∑

n≥1

λ�
n −

∑

n≥1

(λ�
n )2. (2.5)

It has been drawn to the attention of the author byGröchenig [17] that, for x ∈ [0, 1],
the following inequality can be easily proved:

4x(x − 1) ≤ 1

log 2
f (x). (2.6)

where f (x) = −x ln x − (1 − x) ln(1 − x), so that V (X (�)) = trace
(
T� − T 2

�

) ≤
1

4 log 2 trace( f (T�)). This leads to a lower bound for the entanglement entropy

V (X (�)) � S (X (�)) . (2.7)
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Inequality (2.7) has been used before to show the violation of the area law by
fermionic process (see [16] and the references therein,where also upper inequalities for
the entropy in terms of the variance, with a log correction term, are obtained). For x ∈
[0, 1] one cannot expect a pointwise upper bound for f (x) = −x ln x−(1−x) ln(1−x)
as a constant times x(x − 1), due to the singularities of f (x). Nevertheless, under a
boundedness conditions on the so-called Schatten p-norms of T� − T 2

�, it is possible
to prove an upper bound by relating the trace of the functions of positive self-adjoint
operators bounded by 1.

Our main results will depend on the following inequality, conditioned to a bound
on the Schatten p-norms of T� − T 2

�.

Proposition 2.2 Let X be a DPP on R
2d such that the associated operator T� is

self-adjoint, positive, bounded by 1 and is of trace class satisfying, for 0 < p < 1,

trace
(
T p

� (1 − T�)p
) ≤ C, (2.8)

where C depends on � and p. Then the entanglement entropy and the variance of
X (�) satisfy

V (X (�)) � S (X (�)) � V (X (�)) . (2.9)

Proof Observe that f (x) = −x ln x − (1 − x) ln(1 − x) belongs to the class of
continuous function such that | f (t)| = O(t p) and | f (1 − t)| = O(t p) as t → 0 with
p > 0. Strongly inspired by the idea of [7, Theorem 6.2], we will prove that, for f in
this class, if � ⊂ R

2d is compact, then

trace( f (T�)) � V (X (�)) .

The proof will use that trace is a positive linear functional, in the sense that if f ≤ g
then trace ( f ) ≤ trace (g), and relate trace( f (T�)) to V (X (�)) using the identity
(2.5), first for polynomials vanishing at 0 and 1 and then for functions of the form
f (z) = g(x)h p(x) with h p(x) = x p(1 − x)p and g ∈ C([0, 1]) such that g(0) =
g(1) = 0, using polynomial approximation.

Step 1. In this step we prove that trace(Pn(T�)) � V (X (�)), where Pn is a
polynomial of degree n, such that P(0) = P(1) = 0. For k ≥ 1,

trace
(
T k

�

)
− trace

(
T k+1

�

)
= trace

(
T k−1

�

(
T� − T 2

�

))
.

Since T� − T 2
� is a non-negative defined operator, we can use the inequality

trace (AB) ≤ ‖A‖ trace(B), together with
∥∥∥T k−1

�

∥∥∥ ≤ 1, to obtain

trace
(
T k

�

)
− trace

(
T k+1

�

)
≤ trace

(
T� − T 2

�

)
= V (X (�)) .
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Since a general polynomial vanishing at 0 and 1 can be written as linear combinations
of xk − xk+1, we write

Pn(x) =
n∑

k=0

ak
(
xk − xk+1

)

and the above gives, by linearity,

trace (Pn(T�)) =
n∑

k=0

ak
(
trace

(
T k

�

)
− trace

(
T k+1

�

))
� V (X (�)) .

Step 2. We show that, for every p > 0, trace
(
h p (T�)

)
is bounded, where h p(x) =

x p(1 − x)p, 0 < x < 1. For p ≥ 1 and 0 < x < 1, we have x p(1 − x)p ≤ x(1 − x)
and

trace
(
h p (T�)

) = trace
(
T p

� (1 − T�)p
) ≤ trace

(
T� − T 2

�

)
= V (X (�)) .

For 0 < p < 1 and 0 < x < 1, it follows from the hypothesis (2.8) that trace
(
h p (T�)

)

is bounded by C > 0. We have thus

trace
(
h p (T�)

) ≤ C0,

where C0 = max{V (X (�)) ,C}.
Step 3. For the extension to continuous functions f such that | f (t)| = O(t p) and

| f (1 − t)| = O(t p) as t → 0 with p > 0, we use a polynomial approximation
argument as in [7, Theorem 6.2]. For a p > 0 one can write f as f (z) = g(x)h p(x)
with h p(x) = x p(1− x)p and g ∈ C([0, 1]) such that g(0) = g(1) = 0. Given ε > 0
we can invoke theWeierstrass approximation theorem to find a polynomial P(x) such
that P(0) = P(1) = 0 and |g − P| < ε. Thus, trace ( f (T�)) = trace

(
gh p (T�)

)

and the polynomial approximation of g by P allows one to write g ≤ P + ε and

trace ( f (T�)) =trace
(
gh p (T�)

)≤trace
(
Php (T�)

) +εtrace
(
h p (T�)

)
. (2.10)

Combining with Step 2, we arrive at

trace ( f (T�)) ≤ trace
(
Php (T�)

) + εC0. (2.11)

Since P(0) = P(1) = 0, there exists a polynomial P1(x) such that P(x) =
P1(x)h1(x), leading to P(x)h p(x) = P1(x)h p(x)h1(x). This allows to control
trace

(
Php (T�)

)
, by writing g(x) = P1(x)h p(x) and invoking Weierstrass approx-

imation of g(x) by another polynomial P2(x). For an ε1 > 0 we obtain, since
g ≤ P2 + ε1,
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trace
(
Php (T�)

) = trace (gh1 (T�)) ≤ trace (P2h1 (T�)) + ε1trace (h1 (T�)) .

(2.12)

By Step 1, since P2(x)h1(x) is a polynomial,

trace (P2h1 (T�)) � V (X (�)) .

Observing that

trace (h1 (T�)) = trace
(
T� − T 2

�

)
= V (X (�)) ,

then (2.12) leads to

trace
(
Php (T�)

)
� V (X (�)) + ε1V (X (�)) .

It follows from (2.11) that

trace ( f (T�)) � V (X (�)) + ε1V (X (�)) + εC0.

Since ε and ε1 are at our disposal, this implies trace ( f (T�)) � V (X (�)). 
�

3 Entanglement entropy of Weyl–Heisenberg ensembles

Themain result will be stated in terms ofWeyl–Heisenberg ensembles. This includes as
special cases the Ginibre ensemble and its higher Landau levels versions. To motivate
the choice of the correlation kernel, recall that for z = (x, ξ) ∈ R

2d , the short-time
Fourier transform of a function f with respect to a window function g ∈ L2(Rd) is
defined as [18]:

Vg f (x, ξ) =
∫

Rd
f (t)g(t − x)e−2π iξ t dt . (3.1)

For d = 1 and g(t) = h0(t) = 21/4e−π t2 , then, writing z = x + iξ , then
Vh0 f (x,−ξ) = e−iπxξ e− π

2 |z|2B f (z) where B f (z) is the Bargmann-Fock transform

B f (z) = 2
1
4

∫

R

f (t)e2π t z−π t2− π
2 z

2
dt ,

which maps L2(R) onto the Fock space of entire functions, whose reproducing kernel
is the kernel of the infinite Ginibre ensemble and which, as a ressult, can be seen as
a weighted version of Vh0

(
L2(R)

)
. For choices of g within the family of Hermite

functions hn(t), defined as in (3.5), one obtains a sequence of transforms defined by
Vhn f (x,−ξ) = e−iπxξ e− π

2 |z|2B(n)(z), and mapping L2(R) onto the eigenspaces of
the Landau levels operator, which are weighted versions of Vhn

(
L2(R)

)
[1, 3, 5].
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The Weyl–Heisenberg ensemble, introduced in[3] and studied further in [5, 21], is
the family of DPPsXg onR2d , with correlation kernel equal to the reproducing kernel
of VgL2(Rd):

Kg(z, w) = Kg((x, ξ), (x ′, ξ ′)) =
∫

Rd
e2π i(ξ

′−ξ)t g(t − x ′)g(t − x)dt , (3.2)

for some non-zero function g ∈ L2(Rd) with ‖g‖L2(Rd ) = 1 and (x, ξ), (x ′, ξ ′) ∈
R
2d . For g a Hermite function, Weyl–Heisenberg ensembles lead to the Ginibre

type ensembles for higher Landau levels [3, 25] (see the remark below) and to the
Heisenberg family of DPPs [24]. The complex Ginibre ensemble as the prototypical
Weyl–Heisenberg ensemble follows by setting d = 1 and choosing g in (3.2) to be
the Gaussian h0(t) = 21/4e−π t2 . The resulting kernel is

Kh0(z, w) = eiπ(x ′ξ ′−xξ)e− π
2 (|z|2+|w|2)eπ zw, z = x + iξ, w = x ′ + iξ ′.

Modulo a phase factor, this is the kernel of the infinite Ginibre ensemble K0(z, w) =
e− π

2 (|z|2+|w|2)eπ zw. Choosing hn(t) a Hermite function, a similar relation holds
between Khn (z, w) and Kn(z, w).

The area law is obtained for Berezin-Toeplitz operators on compact Kaehler man-
ifolds and for the Bargmann transform (including thus the first Landau level case of
the Ginibre DPP) in [7], but the relation with the variance is not made explicit. In [22],
a proportionality relation between the entanglement entropy and the number variance
has been obtained for the finite Ginibre ensemble (it is unclear at the moment if the
methods in this note can handle finite DPPs since, in such cases, the higher order traces
may be difficult to control). For a discussion of the relations between entanglement
entropy and variance fluctuations in a broad sense, see [11].

Theorem 3.1 Let� ⊂ R
2d compact.Let Kg(z, w) be the kernel of a Weyl–Heisenberg

ensemble Xg with g satisfying, for some s ≥ 1/2,

Cg =
[∫

R2d

∣∣Vgg(z)
∣∣ dz

]2 ∫

R2d
(1 + |z|)2s ∣∣Vgg(z)

∣∣2 dz < ∞. (3.3)

Then the entanglement entropy of the Weyl–Heisenberg ensemble on � satisfies the
area law

S
(Xg(�)

)
� |∂�| .

Proof We follow [23, (2.6)] and consider the Schatten quasinorm of the Hankel
operator such that H∗H = T� − T 2

�. Then

‖H‖ p̃
p̃ = trace

((
H∗H

) 1
2

) p̃

= trace
(
T p̃

� (1 − T�) p̃
) 1

2 = trace
(
h p̃/2 (T�)

)
,
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where h p(x) = x p(1 − x)p. Thus, the results for p̃ < 2 in Proposition 3.1 in [23],
assuming (3.3), assure, writing p = 1

2 p̃ that, for 0 < p < 1, trace
(
h p̃/2 (T�)

) =
trace

(
h p (T�)

) = trace
(
T p

� (1 − T�)p
)
is bounded by C |∂�| > 0. Thus, we can

apply Proposition 2.2 to yield

S
(Xg(�)

) = trace( f (T�)) � V
(Xg(�)

) = trace
(
T� − T 2

�

)
.

Let ϕ ∈ L1(Rd) with
∫

ϕ = 1. Then, for a set � of finite perimeter |∂�|, Lemma 3.2
in [2] gives

‖1� ∗ ϕ − 1�‖L1(R2d ) ≤ |∂�|
∫

R2d
|z| |ϕ(z)| dz.

Applying this inequality with ϕ(z) = ∣∣Vgg(z)
∣∣2 and observing that Kg(z, w) =

Vgg(z − w) leads to

trace
(
T� − T 2

�

)
=

∣∣∣∣

∫

�

∫

�

ϕ(z − w)dzdw −
∫

�

dz

∣∣∣∣

=
∣∣∣
∣

∫

�

(1� ∗ ϕ(w) − 1�) dw

∣∣∣
∣ ≤ ‖1� ∗ ϕ − 1�‖L1(R2d ) ≤ C |∂�| ,

where C = ∫
R2d |z| ∣∣Vgg(z)

∣∣2 dz. This last bound has been obtained in a different
form in [8]. The more direct proof presented is implicit in [2]. 
�

Example 3.2 The Landau operator acting on the Hilbert space L2
(
C, e− π

2 |z|2)
)
can

be defined as

Lz := −∂z∂z + π z∂z . (3.4)

The spectrum of Lz is given by σ(Lz) = {πn : n = 0, 1, 2, . . .}. The eigenspaces
have associated reproducing kernel [6]

Kn(z, w) = Ln(π |z − w|2)eπ zw,

where Ln is a Laguerre polynomial. Let the window g of the Weyl–Heisenberg kernel
be a Hermite function

hn(t) = 21/4√
n!

( −1

2
√

π

)n

eπ t2 dn

dtn

(
e−2π t2

)
, n ≥ 0. (3.5)

Then

Khn (z, w) = eiπ(x ′ξ ′−xξ)e− π
2 (|z|2+|w|2)Ln(π |z − w|2)eπ zw,

z = x + iξ, w = x ′ + iξ ′.

123
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Now, from Theorem 2.2, denoting by Xn the DPP associated to the nth Landau level,

S(Xn(�)) � |∂�| .

Moreover, from [25, Theorem 1.1] (see also [9, p. 3] for an alternative proof), one has
S(Xn(Dr )) ∼ Cnr as r → ∞. It follows that

S(Xn(Dr )) ∼ Cr ,

as r → ∞, for some constant C . This is an area law (in R
2) for the entanglement

entropy of integer quantum Hall states modelled by DPP on higher Landau levels (see
also the limit case β = 1 in Theorem 2.5 of [12]).

Remark 3.3 Now, putting together Proposition 4.2 and Lemma 4.3 of [8], and (2.7) we
realize, that, under certain conditions on g, we have |∂�| � V

(Xg(�)
)
. Thus, under

the conditions of Proposition 4.2 and Lemma 4.3 in [8], we have a double bound for
the growth of the entanglement entropy of the Weyl–Heisenberg ensemble on �:

|∂�| � S
(Xg(�)

)
� |∂�| .

The condition (2.8) has been verified in [7] under the assumption of Gaussian decay
of the kernel, and the analysis includes fermionic states on a Kähler manifold and
the infinite Ginibre ensemble. For the kernel corresponding to the Weyl–Heisenberg
ensemble, the first bounds were obtained in [8] and the moderate decay (3.3 ) required
considerable technical work [23].

Remark 3.4 For general d, class II hyperuniformity is characterized by the following
asymptotic growth of the variance on a compact region � ⊂ R

d dilated by L > 0

V (X (L�)) ∼ C�Ld−1 log L, L → ∞.

Thus, just using inequality (2.7), (which holdswithout assumptions on the kernel, since
it follows from an inequality valid pointwise), we conclude at once the following: for
a DPP X in the Class II hyperuniformity,

S (X (L�)) ≥ O(Ld−1 log L),

as L → ∞ leading to the violation of the area law, due to the log L correction. Thus,
every Class II hyperuniform DPP violates the area law.

4 Entanglement entropy and finiteWeyl–Heisenberg ensembles

A feature of the Weyl–Heisenberg ensemble is the possibility of constructing finite-
dimensional DPPs with first point intensity converging to the indicator domain of
a pre-defined compact region �. Details of such finite dimensional constructions are
given in [5], where it is shown, in theHermitewindow case, that the resulting processes
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are closely related to the finite polyanalytic Ginibre ensembles of [19]. We will now
sketch the construction of finite Weyl–Heisenberg ensembles. Since {e�

n (z) : n ≥ 1}
spans the space with reproducing kernel Kg(z, w), we have

Kg(z, w) =
∑

n≥1

e�
n (z)e�

n (w).

Now we define the finite Weyl–Heisenberg ensemble as follows (see the introduc-
tion of [5] for details).

Definition 4.1 Let N� = ��� be the smallest integer greater than or equal to |�|.
The finite Weyl–Heisenberg ensemble X N�

g is the determinantal point process (DPP)
associated with the truncated kernel

K N�
g (z, w) =

N�∑

n=1

e�
n (z)e�

n (w).

Example 4.2 Consider the Gaussian h0(t) = 21/4e−π t2 leading to the infinite Ginibre
ensemble kernel

Kh0(z, w) = eiπ(x ′ξ ′−xξ)e− π
2 (|z|2+|w|2)eπ zw. (4.1)

Denote by |DR | = πR2 the area of the disc. The eigenfunctions of

(TDR f )(z) =
∫

DR

f (w)Kh0(z, w)dw,

are e
NDR
n+1 (z) =

(
π j

j !
) 1

2
e−iπxξ e− π

2 |z|2 zn . The corresponding kernel of the finite Weyl–

Heisenberg ensemble on DR is then

K
NDR
h0

(z, w) = eiπ(x ′ξ ′−xξ)e− π
2 (|z|2+|w|2)

NDR−1∑

n=0

(π zw)n

n! , (4.2)

where NDR = ⌊
πR2

⌋
. This is, modulo a phase factor, the kernel of the finite Ginibre

ensemble, obtained by truncating the expansion of the exponential eπ zw.

We now provide a bound on S(Xg(�)) involving the number of points of X N�
g

that in average fall in � and which can be explicitly computed in terms of the first
eigenvalues of T�.

Theorem 4.3 Let � ⊂ R
2d compact and g satisfying (3.3). The entanglement entropy

of the Weyl–Heisenberg ensemble on � satisfies

S
(Xg(�)

)
� N� − E

(
X N�
g (�)

)
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or

S
(Xg(�)

)
� N�−

N�∑

n=1

λ�
n .

Proof The 1-point intensity of X N�
g is

ρ
N�

1 (z) = K N�
g (z, z) =

N�∑

n=1

∣∣e�
n (z)

∣∣2 .

Thus,

E

(
X N�
g (�)

)
=

∫

�

K N�
g (z, z)dz

=
N�∑

n=1

∫

�

∣∣e�
n (z)

∣∣2 dz =
N�∑

n=1

λ�
n (4.3)

and

V
(Xg(�)

) =
∑

n≥1

λ�
n −

∑

n≥1

(λ�
n )2 =

N�∑

n=1

λ�
n (1 − λ�

n ) +
∑

n>N�

λ�
n (1 − λ�

n )

≤
N�∑

n=1

(1 − λ�
n ) +

∑

n>N�

λ�
n

= N� −
N�∑

n=1

λ�
n + trace(T�) −

N�∑

n=1

λ�
n

≤ 2N� − 2E
(
X N�
g (�)

)
. (4.4)

The result follows from the upper bound S
(Xg(�)

)
� V

(Xg(�)
)
. 
�

We finally bound the entanglement entropy of the Weyl–Heisenberg ensemble on
� by the deviation of the 1-point intensity ρ

N�

1 (z) of the finite Weyl–Heisenberg

ensemble X N�
g from the flat density 1�.

Theorem 4.4 Let � ⊂ R
2d compact and g satisfying (3.3). The entanglement entropy

of the Weyl–Heisenberg ensemble on � satisfies

∫

R2d

∣∣∣ρN�

1 (z) − 1�(z)
∣∣∣ dz � S

(Xg(�)
)

�
∫

R2d

∣∣∣ρN�

1 (z) − 1�(z)
∣∣∣ dz.
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Proof We start with inequality (4.4) and then proceed as in the proof of Theorem 1.6
in [4]:

V (X (�)) ≤
N�∑

n=1

(1 − λ�
n ) +

∑

n>N�

λ�
n

=
∫

R2d−�

ρ
N�

1 (z) dz +
(
trace(T�) −

∫

�

ρ
N�

1 (z) dz

)

=
∫

R2d−�

∣
∣∣ρN�

1 (z) − 1�(z)
∣
∣∣ dz +

∫

�

∣
∣∣ρN�

1 (z) − 1�(z)
∣
∣∣ dz

=
∫

R2d

∣∣∣ρN�

1 (z) − 1�(z)
∣∣∣ dz.

The result follows from (2.9). The lower bound of the variance follows from a related
argument, which is contained in the Steps 2 and 3 of the proof of Theorem 1.5 in [4].
�

Remark 4.5 To obtain the previous theorem, we have proved that

∫

R2d

∣∣∣ρN�

1 (z) − 1�(z)
∣∣∣ dz � V (X (�)) �

∫

R2d

∣∣∣ρN�

1 (z) − 1�(z)
∣∣∣ dz.

This holds for a DPP with no restrictions (details can be provided for a general case,
but this would be out of scope of this note). Thus, all conditions for hyperuniformity
of DPPs can be written using, instead of the variance V (X (�)) of X , the L1 rate of

convergence of the associated finite DPP X N� ,
∫
R2d

∣∣
∣ρN�

1 (z) − 1�(z)
∣∣
∣ dz.
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