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Abstract
The partition function of four-dimensional Euclidean, non-supersymmetric SU(2)
Yang–Mills theory is calculated in the perturbative and weak coupling regime, i.e.,
in a small open ball about the flat connection and when the gauge coupling constant
acquires a small but finite value. The computation is based on various known inequali-
ties, valid only in four dimensions, providing two-sided estimates for the exponentiated
Yang–Mills action in terms of the L2-norm of the derivative of the gauge potential
only; these estimates then give rise to Gaußian-like infinite- dimensional formal inte-
grals involving the Laplacian and hence can be computed via zeta-function and heat
kernel techniques. It then turns out that these formal integrals give a sharp value for
the partition function in the aforementioned perturbative and weak coupling regime of
the theory. In the resulting expression for the partition function, the original classical
value of the coupling constant is shifted to a smaller one which can be interpreted as
themanifestation, in this approach, of a non-trivial β-function and asymptotic freedom
in pure non-Abelian gauge theories.

Keywords Non-supersymmetric Yang–Mills partition function · Zeta-function
regularization · Heat kernel · Asymptotic freedom

Mathematics Subject Classification Primary: 81T13; Secondary: 81Q30 · 57M50 ·
35K08

B Gábor Etesi
etesi@math.bme.hu

1 Department of Geometry, Institute of Mathematics, Budapest University of Technology and
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1 Introduction and summary

Computing the partition function is a central problem of Yang–Mills theory. For in
Feynman’s path integral quantization framework it is intrinsically equivalent with the
highly non-trivial task of taking summation over all vacuum Feynman graphs, the
computation of the partition function is the first and most difficult step toward the
construction of the underlying relativistic quantum field theory. In the exposition of
the problem mainly found in physicist’s textbooks (cf., e.g., [5, 11, 13, 27]), the dif-
ficulties are usually attributed to the presence of a huge (namely gauge) symmetry
of the theory alone; however, the troubles have certainly much deeper roots related,
e.g., with our problematic 18-19th century concept of the continuum [1, 28] and the
non-existence of a good measure theory in infinite dimensions [12], too. Neverthe-
less, because of its central importance, permanent efforts have been made to calculate
the partition function during the past decades. These are based upon taming the par-
tition function in order to increase its computational accessibility by using either
discretization, i.e., lattice methods (e.g., [2, 3]) or yet working with the continuum
but introducing additional structures. Very roughly speaking, these latter approaches
hit the field in three powerful waves: in the 1970-1980s various supersymmetric and
higher-dimensional extensions of pure Yang–Mills theory have been introduced mak-
ing it possible to calculate their corresponding partition functions via Atiyah–Bott-like
localization techniques, cf. [17] (especially [17, Chapter 10]). Then, topological twist-
ing, an additional modification, was introduced by Witten [29] which together with
many other ideas such as the Chern–Simons and conformal field theory correspon-
dence and various duality conjectures, etc. led in the 1990s to revolutionary discoveries
connecting quantum field theories and low-dimensional differential topology [20, 29,
30] thereby clearly demonstrating the indeed deep, not only physical but even math-
ematical, relevance of Yang–Mills partition functions. However, eventually together
with Nekrasov’s �-deformation approach [15] from the early 2000s, these supersym-
metric twisting and deformation techniques, as a price for computability, gradually
converted the Yang–Mills partition function, an originally certainly highly analytical
object, into a rather purely combinatorial structure, in this way at least in part having
covered or mixed the original physical content of Yang–Mills theory with auxiliary
mathematical structures.

In this paper, as a continuation of our earlier work on the Abelian case [8], we make
an attempt to return to the original setup and compute the partition function of the non-
supersymmetric, non-twisted, etc. but surely non-Abelian four-dimensional Euclidean
pure (i.e., without fermions and scalars) gauge theory. The sacrifice we make for not
using any supersymmetric, etc. support is that unfortunately we shall neglect all non-
perturbative (like instanton, etc.) effects which are, however, certainly key features
of non-Abelian gauge theories; that is we shall consider the perturbative regime only.
It is worth briefly mentioning here that part of our approach which in our opinion is
the most interesting (and well-known) because works only in four dimensions. The
curvature of a connection ∇ = d + A looks like F∇ = dA + A ∧ A, i.e., consists
of a derivative (dynamical) dA and a quadratic (interacting) term A ∧ A of the gauge
potential. In four dimensions, there is a delicate balance between these terms as a
consequence of the Sobolev embedding L2

1 ⊂ L4 which is on the borderline in four
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dimensions. Indeed, this embedding allows one to compare the L2-norm of the dA
and A ∧ A terms. Physically speaking, this means that precisely in four dimensions
the energy content in the Yang–Mills field strength is equally distributed between
its dynamical and interacting terms.1 From the mathematical aspect, the existence
of L2

1 ⊂ L4 allows one to estimate the L2-norm of the curvature of a connection
from both below and above by various, at most quartic, expressions involving the
L2-norm of the derivative part of the gauge potential alone. These estimates can be
re-written as Gaußian-like expressions for the Laplacian and hence can be formally
Feynman integrated using ζ -function and heat kernel techniques providing a two-
sided estimate for the partition function. After adjusting the physical and technical
parameters involved in this procedure, this “scissor” about the partition function closes
up giving rise to an expression for it.

For clarity, we emphasize that our forthcoming calculations and assertions are
supposed to be mathematically rigorous except precisely the mathematical definition
of Feynman integration itself (which of course is a crucial point); this latter thing
will be rather treated only formally throughout the text but in the standard way by
using ζ -function regularization. We also emphasize that what we are going to write
throughout the text as

Zε(R
4, τ )

and want to calculate is not an approximation of the full partition function Z(R4, τ )

of four-dimensional non-supersymmetric Yang–Mills theory (containing all instan-
ton and other non-perturbative contributions) but a contribution of the vicinity of the
vacuum, i.e., the complete perturbative regime in the weak coupling limit to the full
partition function.Of course, an important question iswhether or not Zε(R

4, τ ) already
gives rise to the leading contribution to Z(R4, τ ), i.e., whether or not by some (hidden)
localization mechanism already Z(R4, τ ) ≈ Zε(R

4, τ ). The answer for this question
is certainly negative because on the one hand localization phenomena are expected to
occur only in supersymmetrizedYang–Mills theories [17] (andwe are not dealingwith
them here) and on the other hand instantons with nonzero topological numbers surely
give further relevant contributions to the full partition function Z(R4, τ ) hopefully
rendering it a nice modular form in its (probably quantum corrected) τ ∈ C

+ variable
as indicated by various S-duality conjectures (far from being complete cf., e.g., [16,
21, 26, 31]). Nevertheless, Zε(R

4, τ ) already alone is expected to reveal something
from the quantum behavior of gauge theory.

After these careful circumscriptions, limitations and clarifications our main formal
result can be summarized as follows. For the very technical details, we refer to Sects. 3
and 1.

Theorem 1.1 Consider a non-supersymmetric pure SU(2) gauge theory with com-
plex coupling constant τ ∈ C

+ over the Euclidean 4-space (R4, η). Take a constant
0 < ε <

√
8π and consider those SU(2) connections ∇ which are close to the flat

1 One is tempted to say that although in dimensions different from four classical Yang–Mills theory can
be formulated, its underlying quantum theory will be governed by dA or A ∧ A alone; hence, it exhibits a
different, perhaps less complex, behavior.
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connection ∇0 in the sense that ‖F∇‖L2(R4) < ε. Let Zε(R
4, τ ) denote the corre-

sponding truncated partition function of the theory obtained by formally Feynman
integrating the exponentiated Yang–Mills action over gauge equivalence classes of
SU(2) connections close to the flat connection against a formal measure provided by
the round sphere (S4, gR) of radius R which is a one-point conformal compactifica-
tion of (R4, η) (hence this formal measure and thus Zε(R

4, τ ) itself may in principle
depend on R).

Provided the complex coupling constant τ ∈ C
+ has large enough imaginary part

(the weak coupling regime) and accordingly both the vicinity parameter ε is small
enough (the perturbative regime) and the compactification radius R is small enough
(a technical condition on the formal measure) then, using ζ -function regularization
and heat kernel techniques, the truncated partition function can be computed and

Zε(R
4, τ ) =

(
Imτ

2π2N 2

)− 11
20 2− 11

20√
π

cos
(
11π
40

)
	
(

9
40

)
e
3
2 ζ ′


1
(0)−3ζ ′


0
(0)

where N is a constant satisfying 1 � N <
√
2 and 	 is Euler’s Gamma function;

moreover, ζ
k are the ζ -functions of Laplacians acting on k-forms over (S4, gR).
The truncated partition function Zε(R

4, τ ) depends on R only through the formal

determinant term e
3
2 ζ ′


1
(0)−3ζ ′


0
(0). More precisely, provided the radii 0 < R1 < R2

are both small enough, hence the corresponding (S4, gRi ) are two allowed conformal
one-point compactifications of (R4, η); then,

Z1
ε (R

4, τ ) =
(
R1

R2

) 11
10

Z2
ε (R

4, τ )

demonstrating that the conformal invariance of classical gauge theory breaks down.

Remark 1. e
3
2 ζ ′


1
(0)−3ζ ′


0
(0) = 10.710... over the unit sphere and this expression of

the formal determinant can be further expanded in terms of the derivatives of the
standard Riemann and Hurwitz ζ -functions (cf., e.g., [7, 14, 18]); however, the
result is not promising hence omitted. One might hope to obtain nicer determinant
expressions by introducing Dirac fermions into the theory, too. Also cf. [4].

2. The particular numerical values of the determinant above, the exponent − 11
20 or

the coefficient N in Zε(R
4, τ ) bears no direct physical meaning for they depend

on the particular regularization scheme used to make sense of infinite-dimensional
integrals here. Concerning N it is essentially nothing else than a good choice for
a constant in Uhlenbeck’s gauge fixing theorem [25] (see Lemma 3.1) and the
only relevant point is that N <

√
2 must hold in order our method to work (see

Lemma 3.3). This is provided by the at least one universal property of N , namely
that whatever its value is, it is conformally invariant and surely 1 � N such that
N → 1 as ε → 0 (see Lemma 3.1).

3. Nevertheless, Theorem 1.1, when compared with the analogous Abelian result,
admits an interesting physical interpretation in the context of asymptotic freedom
which is a key property of non-Abelian gauge theories. The complex coupling
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constant is defined as τ := θ
2π + 4π

e2
√−1 where θ is the so-called θ -parameter and

e is the coupling constant of the gauge theory. It enters the theory at its classical
level, i.e., τ appears already in its defining action. However, it is well known
that in a non-supersymmetric four-dimensional gauge theory, meanwhile, θ is
unaffected, hence is a true quantum parameter, e is subject to quantum corrections,
i.e., the theory has a non-trivial β-function. Therefore, in our case it is intriguing to
physically interpret the appearance of the purely technical–mathematical constant
N in Theorem 1.1 as a quantum correction of the classical gauge coupling. That
is, by recalling from [8] the full partition function over (S4, gR) in the U(1) case:

Z(R4, τ ) =
(
Imτ

8π2

)− 11
60

e
1
2 ζ ′


1
(0)−ζ ′


0
(0)

we cannot resist the temptation to re-write the truncated SU(2) partition function
computed here as

Zε(R
4, τ ) =

(
Imτeff

8π2

)− 11
20 2− 11

20√
π

cos
(
11π
40

)
	
(

9
40

)
e
3
2 ζ ′


1
(0)−3ζ ′


0
(0)

,

i.e., absorb N into the classical τ in this way shifting it to τeff = θ
2π + 4π

e2eff

√−1

where eeff := N
2 e is considered as an effective, i.e., perturbatively quantum cor-

rected coupling constant (the inessential numerical term 2− 11
20√
π

cos
(
11π
40

)
	
(

9
40

) =
1.013... rather looks like a non-Abelian correction to the formal determinant).
However, the key property of N , i.e., that 1 � N <

√
2, makes sure that

eeff < e rendering the effective gauge coupling constant smaller than its classi-
cal value. This is qualitatively consistent with our picture on asymptotic freedom
in pure non-Abelian gauge theories, the net effect of a highly counter-intuitive
Yang–Mills-charge-anti-screening-mechanismgenerated by virtual charged gauge
bosons floating around the real ones. In addition, it is well known (cf., e.g., [11])
that the presence of a non-trivial β-function in Yang–Mills theory is in conjunc-
tion with the breakdown of its classical conformal symmetry at the quantum level
introduced by the formal integrationmeasure lacking conformal invariance; hence,
our physical interpretation of Theorem 1.1 is consistent from this angle as well.

4. We can also make a comment regarding S-duality [26]. In Theorem 1.1, it is
assumed that τ has large (but finite!) imaginary part, that is, the gauge coupling e
is small. This assumption is physically clear because in this weak coupling regime
the existence of convergent perturbation series is reasonable. The weak and the
strong coupling regimes of a gauge theory are related by S-duality transformations.
Supposing that τeff is already meaningful at the quantum level, more precisely
after taking into account at least small perturbative quantum corrections as in

Theorem 1.1, and recalling the identity Im
(
− 1

τeff

)
= 1

τeff τ eff
Imτeff , we recognize

that the truncated partition function is a modular formwith (holomorphic and anti-
holomorphic) weight ( 1120 ,

11
20 ); hence, Zε(R

4, τeff ) has a promising behavior under
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S-duality transformations [26]. Of course to say something more definitive on this
topic (for instance, what about the modular properties of the full partition function
with some meaningful τeff and how SU(2) is replaced with its Langlands dual
group SO(3), etc.), one would need to calculate the complete partition function
Z(R4, τeff) consisting of all instanton, etc. corrections; this is, however, far beyond
our technical skills at this stage of the art.

5. Finally, for future work we record here without proof that essentially by verbatim
repeating the calculations below the partition function can also be computed in
the vicinity of an (anti-)instanton ∇k with instanton number k ∈ Z as well. It
takes the shape e−√−1πkτ Zε,k(R

4, τ ) if k � 0 or similarly e
√−1πkτ Zε,k(R

4, τ ) if
k � 0 where Zε,k(R

4, τ ) is an expression analogous to Zε,0(R
4, τ ) := Zε(R

4, τ )

in Theorem 1.1 such that various ordinary Laplacians 
i = dd∗ + d∗d and
their corresponding functions ζ
i are to be replaced with the twisted ones

k

i := d∇kd∗
∇k + d∗

∇kd∇k and ζ
k
i
, respectively. However, even knowing these

further contributions from instanton vicinities we still cannot a priori conclude
that the full partition function would be a sum of these terms only.

The paper is organized as follows. In Sect. 2, we recall the calculation of the quadratic
Gaußian and certain quartic Gaußian integrals in finite dimensions. The computation
of these latter integrals is due to Svensson [22]. The resulting formulata allow formal
generalizations to infinite dimensions. Then, in Sect. 3 classical pure gauge theory
with θ -term is introduced in the standard way and its truncated partition function is
computed by evaluating these infinite-dimensional formal integrals using ζ -function
and heat kernel techniques. Finally, Sect.A is an Appendix and consists a well-known
no-go result from infinite-dimensional measure theory [9, 12]. This has been added to
gain a more comprehensive picture.

2 Some quadratic and quartic Gaußian integrals

In this preliminary section, we recall the computation of the well-known quadratic
Gaußian and a less-known quartic Gaußian integral in finite dimensions; these con-
siderations then allow us to formally generalize these integrals to infinite dimensions
which is the relevant case for quantum field theory.

The Gaußian integral. Let (Rm, η) be the m- dimensional Euclidean space and S :
R
m × R

m → R a positive definite symmetric bilinear form on it given by S(x, x) :=
η(x, Mx) where M : Rm → R

m is a positive symmetric matrix whose eigenvalues
therefore are real and satisfy 0 < λi < +∞ for all i = 1, . . . ,m. Using a linear
change of variables one can pass to a principal axis basis of S, i.e., in which it looks
like S(y, y) = λ1y21 +· · ·+λm y2m , and then, performing a further change of variables
ui := √

λi yi we find that

lim
ai→+∞

+ai∫
−ai

e−λi y2i dyi = lim
ai→+∞

1√
λi

+√
λi ai∫

−√
λi ai

e−u2i dui =
√

π√
λi

;
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hence, taking their product we come up with∫
Rm

e−S(x,x)dx =
m∏
i=1

√
π√
λi

= π
m
2√

det M

giving rise to the well-known result. This integral has a truncated version, too. Let
0 < δ < +∞ be a fixed number, and using an orthonormal frame {e1, . . . , em}
adapted to S let

Cm
δ :=

{
y ∈ R

m

∣∣∣∣∣ y =
m∑
i=1

yiei , Mei = λiei , − δ√
λi

< yi < + δ√
λi

}
(1)

denote the “principal axis hypercube” of S more precisely an open rectangular paral-
lelepiped whose edges are parallel with the principal axes labeled by the eigenvalues
λi of S and having sizes 2δ√

λi
, respectively. Then, introducing ai := δ√

λi
we can repeat

the previous calculation as follows:

+ai∫
−ai

e−λi y2i dyi = 1√
λi

+δ∫
−δ

e−u2i dui =
√
K (δ)√
λi

where K (δ), the square of the classical error function, is defined as

√
K (δ) :=

+δ∫
−δ

e−u2i dui = 2
+∞∑
j=0

(−1) j
δ2 j+1

j !(2 j + 1)
= 2

(
δ − δ3

3
+ δ5

10
− δ7

42
+ . . .

)
.

It is independent of S and is monotonically increasing in 0 � δ � +∞ such that
0 � K (δ) � π . Taking product again, we obtain an expression

∫
Cm

δ

e−S(x,x)dx =
m∏
i=1

√
K (δ)√
λi

= K (δ)
m
2√

det M
� π

m
2√

det M

for the integral over the principal axis hypercube, similar for the entire integral above.
A Gaußian-like integral. Now let us compute a more general integral following

Svensson [22]. Namely, picking two positive definite bilinear forms S1, S2, we are
interested in the quartic integral

∫
Rm

e−S1(x,x)2−S2(x,x)dx .

Consider γs := {u + √−1 s | u ∈ R} ⊂ C, i.e., a straight line in the complex plane
running parallel with the real axisR ⊂ C. Introducing t := γs(u), it is easy to see that
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∫
γs
e−( t2−√−1 S1(x,x)

)2
dt exists such that its value is equal to 2

√
π hence independent

of s ∈ R. Referring to [22], we adjust our integral by carefully inserting the Gaußian

integral 1 = 1
2
√

π

∫
γs
e−( t2−√−1 S1(x,x)

)2
dt as follows:

∫
Rm

e−S1(x,x)2−S2(x,x)dx =
∫
Rm

e−S1(x,x)2−S2(x,x)

⎛
⎝ 1

2
√

π

∫
γs

e−( t2−√−1 S1(x,x)
)2
dt

⎞
⎠ dx

= 1

2
√

π

∫
Rm

⎛
⎝ ∫

γs

e−S2(x,x)+
√−1 t S1(x,x)− t2

4 dt

⎞
⎠ dx .

If s � 0, then
∣∣∣∫

Rm e−S2(x,x)+
√−1 t S1(x,x)dx

∣∣∣ �
∫
Rm e−S2(x,x)−sS1(x,x)dx < +∞

for every fixed t ; hence, this integral exists. Moreover, since the corresponding matrix
M2−√−1 tM1 is symmetric therefore diagonalizable, we can proceed in the standard
way as above to get

∫
Rm

e−S2(x,x)+
√−1 t S1(x,x)dx = π

m
2
(
det(M2 − √−1 tM1)

)− 1
2

= (
√−1π)

m
2
(
det M1

)− 1
2
(
det(t1 + √−1M2M

−1
1 )
)− 1

2

= (
√−1π)

m
2
(
det M1

)− 1
2
(
(t − z1) . . . (t − zm)

)− 1
2

where z1, . . . , zm ∈ C are the (not necessarily different) eigenvalues of the matrix

−√−1M2M
−1
1 . Consequently, if

∫
γs
e− t2

4
(
(t − z1) . . . (t − zm)

)− 1
2 dt also exists and

is single valued, the two integrations are interchangeable via Fubini’s theorem and we
end up with

∫
Rm

e−S1(x,x)2−S2(x,x)dx = (
√−1π)

m
2

2
√

π
√
det M1

∫
γs

e− t2
4√

(t − z1) . . . (t − zm)
dt .

Therefore, our task is to arrange γs with s � 0 so that the corresponding complex
integral exists and is single valued. Certainly existence is achieved if γs ⊂ C does not
hit z1, . . . , zm (because any of them might be a multiple eigenvalue hence might give
a pole in the integrand). In order to make the integral single valued, we perform usual
branch cutting. Firstly, z1, . . . , zm are clearly branching points of the integral and if
m is even, then these are the only branching points; if m is odd, then beyond them the

infinitely remote point is also a branching point. Secondly, M
− 1

2
1 exists and is positive

symmetric; since the eigenvalues of M2M
−1
1 = (M2M

− 1
2

1 )M
− 1

2
1 and M

− 1
2

1 (M2M
− 1

2
1 )

coincide and the latter operator is positive symmetric, the eigenvalues of M2M
−1
1

continue to be positive real numbers. Thus, all the eigenvalues of −√−1M2M
−1
1 are
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in fact aligned along the negative imaginary axis according to their magnitude, i.e.,
we can suppose 0 > z1 � z2 � · · · � zm > −√−1 ∞. Let us therefore do branch
cutting in the standard way: cut upC along the at most

[m+1
2

]
segments of the negative

imaginary axis connecting z1 with z2 (if z1 
= z2), z3 with z4 (if z3 
= z4) and finally
zm−1 with zm (if zm−1 
= zm) whenever m is even; or z1 with z2 (if z1 
= z2), z3 with
z4 (if z3 
= z4) and finally zm with −√−1 ∞ whenever m is odd. Thus, the complex
integral will be single valued if γs ⊂ C avoids these cutting segments as well.2 Thus,

to summarize,
∫
γs
e− t2

4
(
(t − z1) . . . (t − zm)

)− 1
2 dt both exists and is single valued if

we take any γs(u) = u + √−1 s with s � 0.
Let us specialize from now on to the case S1 := c1S and S2 := c2S with c1, c2 > 0

real constants; this yields −√−1(c2M)(c1M)−1 = −√−1 c2
c1
1; hence, z1 = · · · =

zm = −√−1 c2
c1

/∈ R. Therefore, either there is no branch cutting if m is even or

there is a single branch cutting running from −√−1 c2
c1

to −√−1 ∞ if m is odd. We
eventually come up with

∫
Rm

e−c21S(x,x)2−c2S(x,x)dx = (
√−1π)

m
2

2
√

π
√
det(c1M)

∫
γs

(
t + √−1

c2
c1

)−m
2

e− t2
4 dt

together with the truncated integral

∫
Cm

δ

e−c21S(x,x)2−c2S(x,x)dx = (
√−1 K (δ))

m
2

2
√

π
√
det(c1M)

∫
γs

(
t + √−1

c2
c1

)−m
2

e− t2
4 dt

(2)

where γs(u) = u + √−1 s with any s � 0 is the contour as before. It is easy to see
that taking the limit c1 → 0 these integrals reduce to the corresponding (i.e., the full
or the truncated, respectively) Gaußian ones. However, we shall be more interested in
the limit c2 → 0 of the full (i.e., not-truncated) integral which readily looks like

∫
Rm

e−c21S(x,x)2dx = (
√−1π)

m
2

2
√

π
√
det(c1M)

∫
γs

t−
m
2 e− t2

4 dt (3)

where now we allow γs(u) = u + √−1 s with s > 0 only to avoid the pole at the
origin (if m > 1) as well as the single branch cutting along the whole non-positive
imaginary axis (if m is odd).

Having warmed up with these rigorous but only finite-dimensional results, let
us generalize them to infinite dimensions at least formally. Let (M, g) be a con-
nected, compact, oriented Riemannian 4-manifold without boundary and consider
the Laplacian 
k : C∞(M; ∧kM) → C∞(M; ∧kM), i.e., the second order linear,

2 Or equivalently we can lift any γs not hitting the eigenvalues over the corresponding at most
[m+1

2
]
-

genus Riemann surface regarded as a branching cover of the Riemann sphere and then define the already
single-valued integral there.
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symmetric, elliptic partial differential operator 
k = dd∗ + d∗d naturally act-
ing on the space of smooth k-forms. This space admits Hilbert space completions
like L2

s (M; ∧kM) for any s ∈ R, and one can demonstrate via elliptic regular-
ity that 
k extends to a densely defined, self-adjoint, unbounded linear operator

k : L2(M; ∧kM) → L2(M; ∧kM). By elliptic regularity, the kernel of this map
contains precisely the space H k(M) ⊂ C∞(M; ∧kM) ⊂ L2(M; ∧kM) of smooth
harmonic k-forms; by the Hodge decomposition theorem this kernel is isomorphic to
the de Rham cohomology group Hk(M) and hence is finite-dimensional, i.e., a closed
subspace. Therefore, c
k with c > 0 a real constant gives rise to a positive self-adjoint
operator on the orthogonal complement Hilbert space

H k(M)⊥ ⊂ L2(M; ∧kM) .

By the finite-dimensional analogue (3), it is therefore convenient to define a non-
truncated quartic integral involving the Laplacian as

∫

H k (M)⊥

e
−(a , c
ka)2

L2(M) Da := (
√−1π)

1
2 rk

′(c
k )

2
√

π
√
det′ (c
k)

∫
γs

t−
1
2 rk

′(c
k )e− t2
4 dt (4)

where the regularized rank rk′ and determinant det′ are yet to be defined somehow.
Likewise, let Cδ ⊂ L2(M; ∧kM) be the “principal axis hypercube” for 
k defined

as in the finite-dimensional case (1) more precisely as the corresponding finite linear
combinations of the eigen-forms of 
k . Note that by elliptic regularity these eigen-
forms belong to C∞(M; ∧kM) ⊂ L2(M; ∧kM), but in spite of the fact that they
span a dense subspace of L2(M; ∧kM) the subset Cδ is not open (unlike in finite
dimensions). This is because the eigenvalues of the Laplacian form an unbounded
sequence, i.e., λi → +∞; hence, the size of the edges of Cδ satisfies 2ai → 0 as
i → +∞. Keeping in mind this subtlety and taking into account (2), nevertheless we
put

∫

Cδ∩H k (M)⊥

e
−(a , c1
ka)2

L2(M)
−(a , c2
ka)L2(M) Da := (

√−1K (δ))
1
2 rk

′(c1
k )

2
√

π
√
det′(c1
k)

×

∫
γs

(
t + √−1

c2
c1
t

)− 1
2 rk

′(c1
k )

e− t2
4 dt . (5)

We will be also assuming that the following “monotonicity principles” hold true for
these infinite-dimensional formal integrals:

Monotonicity principles. If ∅ � A, B � L2(S4; ∧1 S4) are two “measurable”
subsets in the L2 Hilbert space of 1-forms over the 4-sphere satisfying A � B and
f : L2(S4; ∧1 S4) → R is a non-negative “integrable” function then
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0 �
∫
A

f (a)Da �
∫
B

f (a)Da � +∞ .

Moreover, if f , g : L2(S4; ∧1S4) → R are two “integrable” functions satisfying
0 � f � g, then

0 �
∫
A

f (a)Da �
∫
A

g(a)Da � +∞

is valid.

Remark 1. As we mentioned before, the “principal axis hypercube” Cδ ⊂ L2

(M; ∧kM) for the Laplacian is not open in infinite dimensions. If, nevertheless,
the formal integral (5) happens to attain a nonzero value, then this would imply
that infinite-dimensional integration over very small (i.e., which do not contain
any open ball) subsets might yield non-trivial results.

2. Themonotonicity properties of integration are straightforward infinite dimensions,
however, are not easily accessible in infinite dimensions. But more surprisingly,
it seems these properties even may not hold over any 4-manifold. For instance, as
discussed in Sect. 3, over the 4-sphere the regularized dimension of L2(S4; ∧1S4)
with respect to the Laplacian is positive (see Lemma 3.2); hence, the above mono-
tonicity properties are expected to hold true. However, over the flat 4-torus for
example, the regularized dimension of L2(T 4; ∧1T 4) with respect to the Lapla-
cian is negative; hence, one would expect that some sort of reversed form of the
above monotonicity might work in this case.
All of these oddities of integration in infinite dimensions likely are connected with
the conflict between σ -additivity and infinite dimensionality (cf. Appendix here).

3 The partition function about the vacuum

After these preliminaries, we are ready to calculate the partition function. Let us begin
with recalling and introducing 4- dimensional Euclidean non-supersymmetric SU(2)
gauge theory with θ term in the usual way.

Consider R4 with its standard Euclidean metric η. Let E ∼= R
4 ×C

2 be the unique
trivial complex rank-two SU(2) vector bundle over R4 and take a compatible (i.e.,
SU(2)-valued) connection ∇ on it. Denoting by ∧k

R
4 ⊗ su(2) the bundle of su(2)-

valued k-forms overR4, by the global triviality of E we can globally write∇ = d+ A
where the gauge potential A is a section of ∧1

R
4 ⊗ su(2) with the corresponding field

strength F∇ = dA + A ∧ A giving rise to a section of ∧2
R
4 ⊗ su(2). Moreover, let

e ∈ R and θ ∈ R denote the coupling constant and the θ -parameter of the theory,
respectively. The non-supersymmetric 4-dimensional Euclidean SU(2) gauge theory
is then defined by the action
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S(∇, e, θ) := − 1

2e2

∫

R4

tr(F∇ ∧ ∗F∇) +
√−1 θ

16π2

∫

R4

tr(F∇ ∧ F∇) .

The θ -term is a characteristic class; hence, its variation is identically zero; conse-
quently, the Euler–Lagrange equations (together with the Bianchi identity) of this
theory are nothing but the usual vacuum Yang–Mills equations

{
d∇F∇ = 0
d∗∇F∇ = 0 .

Introducing the complex coupling constant

τ := θ

2π
+ 4π

e2
√−1 (6)

taking its values on the upper complex half-plane C
+, and the positive definite L2

scalar product (�,�)L2(R4) := − ∫
R4 tr(� ∧ ∗�) on the space of su(2)-valued 2-

forms, with induced norm therefore satisfying ‖�‖L2(R4) � 0, the action above can
be re-written as

S(∇, τ ) = −
√−1π

2
τ

(
1

8π2 ‖F∇‖2L2(R4)
+ 1

8π2 (F∇ , ∗F∇)L2(R4)

)

+
√−1π

2
τ

(
1

8π2 ‖F∇‖2L2(R4)
− 1

8π2 (F∇ , ∗F∇)L2(R4)

)
(7)

since ∗2 = Id∧2R4 ; hence, the topological term takes the shape − ∫
R4 tr(F∇ ∧ F∇) =

(F∇ , ∗F∇)L2(R4) in this notation.
The orientation and the flat Euclidean metric η on R

4 are used to introduce vari-
ous Sobolev spaces. Let ∇0 denote the trivial flat connection on E , i.e., the unique
connection which satisfies F∇0 = 0. Then, define

A (∇0) := {∇ is an SU(2) connection on E | ∇ − ∇0 ∈ L2
1(R

4 ; ∧1
R
4 ⊗ su(2))}.

This is the L2
1 Sobolev space of SU(2) connections on E relative to ∇0. Notice that

this is a vector space (not an affine space) and in fact A (∇0) � ∇ �→ ∇ − ∇0 =:
a ∈ L2

1(R
4 ; ∧1

R
4 ⊗ su(2)) is a canonical isomorphism between A (∇0) and

L2
1(R

4 ; ∧1
R
4 ⊗ su(2)). Furthermore, writeSU (2) for the L2

2 completion of

{γ is an SU(2) gauge transformation on E | γ − IdE ∈ C∞
0 (R4;EndE),

γ ∈ C∞(R4;AutE) a.e.}

that is, the space of compactly supported smooth SU(2) gauge transformations. There-
fore, γ ∈ SU (2) means that ‖γ − IdE‖L2

2(R
4) < +∞. The space A (∇0) is acted

upon bySU (2) as∇ �→ γ −1∇γ in the usualway and the corresponding gauge equiv-
alence class of ∇ ∈ A (∇0) is denoted by [∇] and the orbit space A (∇0)/SU (2)
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of these equivalence classes with its quotient topology by B([∇0]) as usual. In the
non-Abelian case, B([∇0]) is not a linear space; however, at least locally it can be
modeled on various Banach spaces as we shall see shortly. Also note that ∇ ∈ A (∇0)

implies that if ∇ = ∇0 + a, then both the derivative term da and by the Sobolev mul-
tiplication theorem L2

1 × L2
1 → L2 the interacting term a ∧ a belong to L2; therefore,

F∇ ∈ L2(R4 ; ∧2
R
4 ⊗ su(2)) for any ∇ ∈ [∇] ∈ B([∇0]).

Having now the classical non-supersymmetric Euclidean gauge theory at our dis-
posal, the partition function of the induced quantum theory is formally defined by the
integral

Z(R4, τ ) := 1

Vol (SU (2))

∫

∇∈A (∇0)

e−S(∇,τ )D∇

or formally equivalently

Z(R4, τ ) :=
∫

[∇]∈B([∇0])
e−S(∇,τ )D[∇]

where D∇ is the formal (probably never definable) measure on A (∇0) while D[∇]
is the induced formal measure (including the Faddeev–Popov determinant) on the
orbit space B([∇0]). The ideal goal would be to calculate this integral in its full
glory; however, it is an extraordinary difficult task because of the non-linearity of
B([∇0]). Therefore, we will evaluate it inBε([∇0]) only, i.e., we are interested in an
appropriately truncated Feynman integral

Zε(R
4, τ ) :=

∫

[∇]∈Bε([∇0])
e−S(∇,τ )D[∇]

whereBε([∇0]) is a small open subset about [∇0] defined by 0 � |S(∇, τ )| <
|τ |
8π ε2

possessing the crucial property that, unlike the wholeB([∇0]), it is well approximated
by (a quotient of) a small open ball in an appropriate Hilbert space.

Tomake this picturemore precise and in order to avoid several technical difficulties,
we make a technical interlude and extend the SU(2) Yang–Mills theory from (R4, η)

to its one-point conformal compactification (S4, gR) where gR denotes the standard
round metric on S4 = R

4 ∪{∞} such that it has radius 0 < R < +∞. From the phys-
ical viewpoint, this conformal compactification is justified at least classically by the
conformal invariance of classical gauge theory defined by (7) in four dimensions. From
the mathematical or technical viewpoint a further support is Uhlenbeck’s singularity
removal theorem [23] or rather its generalization [24, Corollary 2.2] asserting that if
∇ ∈ A (∇0) is any connection on R

4 (which by definition means that there exists an
L2
1 gauge relative to ∇0 implying ‖F∇‖L2(R4) < +∞ as we mentioned above) there

exists an L2
2 gauge transformation around the asymptotic region of R4 such that the

gauge transformed connection ∇′ extends over R4 ∪ {∞} = S4. Therefore, from now
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on, instead of (R4, η) we consider the classical Yang–Mills theory (7) over (S4, gR)

and treat R as a technical parameter of the original theory; correspondingly we are
interested in calculating the formal truncated Feynman integral Zε(R

4, τ ) by working
over (S4, gR). It is therefore understood that the action S, the Sobolev space A (∇0)

consisting of our connections ∇ and the various differential operators like d∗, 
k ,
etc. are defined over the round 4-sphere (S4, gR) from now on. Uhlenbeck’s gauge
fixing theorem [25] can be formulated as follows (cf. [6, Proposition 2.3.13]): There
exists a constant 0 < ε such that if a connection ∇ ∈ A (∇0) on the trivial bundle
E ∼= S4 ×C

2 satisfies ‖F∇‖L2(S4,gR) < ε; then, there exists an L2
2 gauge transforma-

tion γ and a constant 0 < N (R) < +∞ such that the gauge transformed connection
∇′ = γ −1∇γ with corresponding decomposition ∇′ = d + A′ satisfies the Coulomb
gauge condition together with an estimate

{
d∗A′ = 0
‖A′‖L2

1(S
4,gR) � N (R)‖F∇′‖L2(S4,gR)

(8)

implying ‖A′‖L2
1(S

4,gR) � N (R)ε in Coulomb gauge.
Now we are in a position to define the truncated partition function more care-

fully. Take a constant 0 < ε <
√
8π and consider those connections which satisfy

‖F∇‖L2(S4,gR) < ε. By conformal invariance of the norm, this is equivalent to con-
sider those connections over the original space which satisfy ‖F∇‖L2(R4) < ε. The
action takes a more clear shape in the compactified setting as follows. Regarding its
topological term 1

8π2

∫
S4 tr(F∇ ∧ F∇), we know that it is proportional to the second

Chern number of the extended SU(2) bundle over S4; hence, it assumes integer val-
ues only; however, by the Cauchy–Schwarz inequality 0 �

∣∣(F∇ , ∗F∇)L2(S4,gR)

∣∣ �
‖F∇‖2

L2(S4,gR)
< ε2 < 8π2 the θ -term simply vanishes over S4 in the small energy

regime. This also implies that the connections we are interested in are realized in the
extended gauge theory on the trivial bundle E ∼= S4 × C

2 alone and if ε is small
enough then Uhlenbeck’s gauge fixing theorem applies. Consequently, the action (7)
about ∇0 reduces to

S(∇, τ ) = S(∇0 + a, τ ) = Imτ

8π
‖F∇0+a‖2L2(S4,gR)

= Imτ

8π
‖da + a ∧ a‖2L2(S4,gR)

which also shows by conformal invariance of the action that [∇] ∈ Bε([∇0]). The key
technical observation now is [6, Proposition 4.2.9] saying that for a sufficiently small
ε there exists an η > 0 such thatBε([∇0]) is homeomorphic to (Bη(∇0)∩ker d∗)/G0
with Bη(∇0) ⊂ A (∇0) being a small open ball and G0 ∼= SU(2) the gauge isotropy
subgroup of the flat hence reducible connection ∇0. Hence, put

Aε,N (R)(∇0) :=
{
a ∈ L2

1(S
4; ∧1S4 ⊗ su(2))

∣∣∣ ‖a‖L2
1(S

4,gR) < min(η, N (R)ε)
}
(9)
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where ε, N (R) are the same constants over (S4, gR) as in (8). By the aid of the
homeomorphism

Bε([∇0]) ∼= Aε,N (R)(∇0) ∩ ker d∗

G0

we suppose that the “measure” D[∇] arises from a G0-invariant “measure” on
Aε,N (R)(∇0)∩kerd∗ what we denote DRa. The main advantage of this non-linear iso-
morphism is that it locally “straightens” the gauge orbits hence its effect is analogous
to passing from a general curved coordinate system to the standard Descartes one.
Consequently, the Faddeev–Popov determinant is locally transformed away, i.e., gives
only a constant multiplier (cf. Footnote 3). Moreover, the Gribov ambiguity problem
does not cause any headache here too; for this local quotient contains nearby gauge
orbits precisely once only. Our truncated Feynman integral awaiting for computation
is then defined more carefully as

Zε(R
4, τ ) :=

∫

Aε,N (R)(∇0)∩ker d∗

e
− Imτ

8π ‖da+a∧a‖2
L2(S4,gR )

DRa

Vol(G0)
(10)

having the following properties. In this formal integral, the integration domain
Aε,N (R)(∇0) ∩ ker d∗ is a small open ball of radius min(η, N (R)ε) in the (by the
compactness of S4) closed hence Hilbert subspace ker d∗ ⊂ L2

1(S
4; ∧1 S4 ⊗ su(2));

consequently, the size of this ball depends on the radius R through the Uhlenbeck
constant N (R) in (8). Moreover, in this formal integral the hypothetical integration
“measure” DRa may in principle depend on the radius R of S4 too. Consequently, in

spite of the conformal invariance of the integrand e
− Imτ

8π ‖da+a∧a‖2
L2(S4,gR ) , the formal

integral itself may fail to be conformally invariant (cf. Lemma 3.3). For notational
simplicity, we shall hide both the numerical factor 0 < 1

Vol(G0)
< +∞ and the R-

dependence and denote DRa
Vol(G0)

simply as Da from now on.
Let us work out a two-sided estimate for the action appearing in (10) but along a

perhaps resized integration domain as follows.

Lemma 3.1 For every fixed finite value 0 < Imτ < +∞ of the imaginary part of
complex coupling constant (6), there exists a sufficiently small but yet finite value of
the vicinity parameter ε such that (8) is applicable and there exist constants 0 <

N , c < +∞ where

N := lim
R→0

(
inf
{
N (R)

∣∣ ‖a‖L2
1(S

4,gR) � N (R)‖da + a ∧ a‖L2(S4,gR) ,

a ∈ Aε,N (R)(∇0) ∩ kerd∗})

such that for every a ∈ Aε,N (∇0) ∩ ker d∗ in the correspondingly resized ball a
two-sided estimate

2 Imτ

πN 4 ‖da‖4L2(S4) � ‖da + a ∧ a‖2L2(S4) � 2‖da‖2L2(S4) + 2c2‖da‖4L2(S4) (11)
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holds in Coulomb gauge.
Note that all norms in this inequality are conformally invariant. Accordingly, both

0 < N , c < +∞ are conformally invariant and 1 � N such that N → 1 as ε → 0.

Proof We begin with the estimate from below in (11) which, as often happens, is much
more difficult than obtaining an estimate from above.

Assume that ε is small enoughhence (8) is applicable; it readily follows thatworking
over the unit sphere (S4, g1) we have ‖a‖L2

1(S
4,g1)

= ‖a‖L2(S4,g1) + ‖da‖L2(S4,g1) �
N (1)‖da + a ∧ a‖L2(S4,g1). Observe that in this inequality both ‖da‖L2(S4,g1) and‖da + a ∧ a‖L2(S4,g1) are conformally invariant, thus we shall denote them, respec-
tively, as ‖da‖L2(S4) and ‖da + a ∧ a‖L2(S4) from now on, while ‖a‖L2(S4,g1) is not.
More precisely, if we pass to (S4, gR), then the latter norm scales as ‖a‖L2(S4,gR) =
R‖a‖L2(S4,g1). Consequently, defining N by taking the limit R → 0 as above we
obtain an inequality

‖da‖L2(S4) � N‖da + a ∧ a‖L2(S4) (12)

over the appropriately resized ballAε,N (∇0)∩ker d∗ having the following properties.
This N is optimal and universal in the sense that it is the smallest available constant
(at least in the Uhlenbeck setting) and hence satisfies N � N (R) for any Uhlenbeck
constant from (8) over (S4, gR); moreover, N is conformally invariant.

Taking Abelian 1-forms, i.e., a ∈ Aε,N (∇0) ∩ ker d∗ which satisfy a ∧ a = 0
a.e., then (12) shows that ‖da‖L2(S4) � N‖da‖L2(S4); moreover, knowing that by the
Coulomb gauge condition da = 0 if and only if a = 0 a.e. on the one hand 1 � N . In
the generic non-Abelian case, ‖a∧a‖L2(S4) is bounded by ‖a‖2

L4(S4)
; but ‖a‖L4(S4) �

c1‖a‖L2
1(S

4) by the Sobolev embedding L2
1 ⊂ L4 which is sharp in 4 dimensions;

moreover, elliptic regularity for d + d∗ gives ‖a‖L2
1(S

4) � c2‖(d + d∗)a‖L2(S4) +
c3‖a‖L2(S4) = c2‖da‖L2(S4) since d

∗a = 0 by the Coulomb gauge condition, and we
can put c3 = 0 because H1(S4) = 0; consequently, ker(d + d∗) = ker 
1 = {0}.
Combining these and introducing c := (c1c2)2 > 0, we get

‖da‖L2(S4) � ‖da + a ∧ a‖L2(S4) + ‖a ∧ a‖L2(S4) � ‖da + a ∧ a‖L2(S4)

+c‖da‖2L2(S4) . (13)

Regarding the constant c, note that it says ‖a‖L4(S4) � √
c ‖da‖L2(S4) and both

norms here are conformally invariant; hence, we can assume that c is conformally
invariant as well. Proceeding further, by the aid of (8) take any N (R) � 1 satisfying
‖da‖L2(S4) � ‖a‖L2

1(S
4,gR) � N (R)‖da + a ∧ a‖L2(S4) over (S4, gR). Adding the

two estimates for ‖da‖L2(S4) provided by (13) and this last inequality, we obtain
‖da‖L2(S4)(2 − c‖da‖L2(S4)) � (N (R) + 1)‖da + a ∧ a‖L2(S4). Moreover, we have
‖da‖L2(S4) < N (R)ε in (9) thus ‖da‖L2(S4) (2 − cN (R)ε) � (N (R) + 1)‖da + a ∧
a‖L2(S4). Provided ε is small enough compared with the initial value of N (R), more

precisely if ε < 2
cN (R)

, then we can replace N (R) with N (R)+1
2−cN (R)ε

and iterate this
process; the general theory of iteration guarantees that N (R) will converge to the
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lower fixed point N∗(R) = 1
2cε

(
1 − √

1 − 4cε
)
of this iteration. Since N from (12)

is the optimal constant, we have on the other hand N � N∗(R); consequently,

1 � N � N∗(R) = 1 + 1

4
cε + . . .

demonstrating that N → 1 as ε → 0. Assume that 0 < ε <
√

π
2 Imτ

, then

‖da‖L2(S4) < Nε < N
√

π
2 Imτ

within the ball Aε,N (∇0) ∩ ker d∗; consequently,
multiplying the inequality (12) by ‖da‖L2(S4) we get

‖da‖2L2(S4) � N‖da + a ∧ a‖L2(S4)‖da‖L2(S4) �
√

π

2 Imτ
N 2‖da + a ∧ a‖L2(S4);

hence, squaring it we come up with the estimate from below in (11).
The estimate from above is simpler. We start with ‖da + a ∧ a‖2

L2(S4)
�

2‖da‖2
L2(S4)

+ 2‖a ∧ a‖2
L2(S4)

and then repeat the steps toward (13) to end up with

‖da + a ∧ a‖2L2(S4) � 2‖da‖2L2(S4) + 2c2‖da‖4L2(S4)

where c is the conformally invariant constant used so far. Letting, for instance,

ε := 1

2
min

(√
8π , the original Uhlenbeck condition in (8.) ,

2

cN (R)
,

√
π

2 Imτ

)

and then putting together the last two estimates, we obtain the desired two-sided
inequality. ♦

Let us proceed further by multiplying each term in (11) with − Imτ
8π < 0 and then

exponentiating:

e
−
(

Imτ

2πN2

)2‖da‖4
L2(S4) � e

− Imτ
8π ‖da+a∧a‖2

L2(S4) � e
− Imτ

4π ‖da‖2
L2(S4)

− Imτ c2
4π ‖da‖4

L2(S4)

or equivalently, using d∗a = 0 again

e
−
(
a , Imτ

2πN2 
1a
)2
L2(S4) � e

− Imτ
8π ‖da+a∧a‖2

L2(S4)

� e
−
(
a ,

√
Imτ
4π c 
1a

)2
L2(S4)

−
(
a , Imτ

4π 
1a
)
L2(S4)

. (14)

Having obtained these rigorous estimates, consider the vicinity of the vacuum in
Coulomb gauge, i.e., the small ball about the flat connection Aε,N (∇0) ∩ ker d∗ as
in (9), however, such that N (R) in its radius has been replaced with the universal
N from (11). Take the Laplacian 
1 and the corresponding Cδ ⊂ L2

1(S
4; ∧1 S4)

introduced as its finite-dimensional analogue (1). If 0 < λmin < +∞ is the smallest
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eigenvalue of 
1, then picking any 0 < δ <
√

λmin min(η, Nε) we know by (9) that
Aε,N (∇0) ⊃ Cδ yielding two inclusions ker d∗ ⊃ Aε,N (∇0) ∩ ker d∗ ⊃ Cδ ∩ ker d∗
for these subsets in L2

1(S
4; ∧1S4). Now let us formally integrate the left term of (14)

over ker d∗, the middle term of (14) overAε,N (∇0)∩ker d∗, and finally, the right term
of (14) over Cδ ∩ ker d∗. Referring at this step to our Monotonicity principles, this
procedure obeys the ordering in (14); thus, formally

∫
ker d∗

e
−
(
a, Imτ

2πN2 
1a
)2
L2(S4)Da �

∫

Aε,N (∇0)∩ker d∗

e
− Imτ

8π ‖da+a∧a‖2
L2(S4)Da

�
∫

Cδ∩ker d∗
e
−
(
a,

√
Imτ
4π c 
1a

)2
L2(S4)

−
(
a, Imτ

4π 
1a
)
L2(S4)Da

continues to hold. The time has come to apply our formal integral expressions from
Sect. 2.

Definition 3.1 (cf. [8, Definition 3.1]) Taking into account that H1(S4) = {0} and
dimR su(2) = 3 substituting c := Imτ

2πN2 in (4), we define a non-truncated quartic
integral as

∫
ker d∗

e
−
(
a , Imτ

2πN2 
1a
)2
L2(S4) Da :=

⎛
⎜⎜⎝ (

√−1π)
1
2 rk

′
(

Imτ

2πN2 
1|ker d∗
)

√
det′

(
Imτ
2πN2 
1|ker d∗

)
⎞
⎟⎟⎠

3

×

1

2
√

π

∫
γs

t
− 3

2 rk
′
(

Imτ

2πN2 
1|ker d∗
)
e− t2

4 dt .

Likewise, substituting c2 := Imτ
4π and c1 :=

√
Imτ
4π c in (5) we define a truncated quartic

integral

∫
Cδ∩ker d∗

e
−
(
a ,

√
Imτ
4π c 
1a

)2
L2(S4)

−
(
a , Imτ

4π 
1a
)
L2(S4)Da :=

⎛
⎝ (

√−1K (δ))
1
2 rk

′
(
Imτ
4π 
1|ker d∗

)
√
det′

( Imτ
4π 
1|ker d∗

)
⎞
⎠

3

×

1

2
√

π

∫
γs

(
t + √−1 c

√
4π

Imτ

)− 3
2 rk

′
(
Imτ
4π 
1|ker d∗

)

e− t2
4 dt

where the common contour γs is to be specified such that to meet all demands from
avoiding possible poles and branch cuttings in both integrals.

A familiar way to make sense of rk′ and det′ in Definition 3.1, i.e., to regularize the
dimension and the functional determinant in infinite dimensions, is an application of
ζ -function regularization.
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Lemma 3.2 (cf. [8, Lemma 3.1]) Using ζ -function regularization to define rk′ and
det′ and then heat kernel techniques to calculate the zero values of various resulting
ζ -functions over (S4, gR), we obtain from its definition above that the non-truncated
quartic integral looks like

∫
ker d∗

e
−
(
a , Imτ

2πN2 
1a
)2
L2(S4) Da =

(
2
√−1 π2N 2

Imτ

) 11
20

e
3
2 ζ ′


1
(0)−3ζ ′


0
(0) ×

1

2
√

π

+∞∫
−∞

t−
11
20 e− t2

4 dt

over (S4, gR). Likewise,

∫
Cδ∩ker d∗

e
−
(
a ,

√
Imτ
4π c 
1a

)2
L2(S4)

−
(
a , Imτ

4π 
1a
)
L2(S4)Da

=
(
4
√−1πK (δ)

Imτ

) 11
20

e
3
2 ζ ′


1
(0)−3ζ ′


0
(0) ×

1

2
√

π

+∞∫
−∞

(
t + √−1 c

√
4π

Imτ

)− 11
20

e− t2
4 dt

is the shape of the truncated quartic integral over (S4, gR).
Taking into account that the exponent in the complex integrals satisfies −1 <

− 11
20 < 0, we know that there are no poles and there is a single branch cutting

connecting 0 with−√−1∞ along the non-positive imaginary axis in the first integral

while connecting −√−1 c
√

4π
Imτ

with −√−1∞ along the negative imaginary axis in
the second integral. Therefore, we can simply put γs := R in both integrals.

Remark Before embarking upon the proof, we note that the particular value −1 <

− 11
20 < 0 of the exponents in these integral expressions is not important because it is

just the consequence of one of the possible (namely ζ -function combined with heat
kernel) regularization procedures carried over one of the possible (namely (S4, gR),
i.e., the one-point conformal) compactifications of (R4, η). Only its sign, namely that
it is negative, bears relevance. Indeed, this exponent does not have to always assume
a negative value because of some a priori reason. For example, in the case of the
flat torus T 4 the corresponding exponent turns out to be 0 < 9

2 < 5 leading to a
completely different situation, e.g., the Monotonicity principles break down due to
the opposite scaling of the integrals. These oddities are related with lacking a good
measure in infinite dimensions, see Appendix.
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Proof Since the spectrum of the Laplacian over a compact Riemannian manifold
(M, g) is non-negative real and discrete, one sets

ζ
k (s) :=
∑

λ∈Spec 
k\{0}
λ−s, with s ∈ C and Re s > 0 sufficiently large

and observes that this function can be meromorphically continued over the whole
complex plane (cf., e.g., [19, Theorem 5.2]) having no pole at s = 0 ∈ C. A formal
calculation then convinces us that the regularized rank and the determinant of the

Laplacian should be rk′ 
k := ζ
k (0) and det′
k := e
−ζ ′


k
(0)

yielding rk′(c
k) =
ζ
k (0) and det′(c
k) = cζ
k (0)e

−ζ ′

k

(0)
.

Because of the Coulomb gauge condition, we have to calculate restrictions of these
ζ -functions over the round 4-sphere (S4, gR). Since H1(S4) = {0}, hence 
1 has
trivial kernel; the Hodge decomposition theorem says that L2(S4; ∧1S4) ∼= im d0 ⊕
im d∗

2. Moreover, im d0 ∩ ker d∗
1 = {0} and im d∗

2 � ker d∗
1; hence,

L2(S4; ∧1S4) ∼= im d0 ⊕ ker d∗
1 .

Applying this decomposition, we can write any element a ∈ L2(S4; ∧1 S4) uniquely
as a = d0 f +α with f ∈ L2

1(S
4; ∧0 S4) a function and α ∈ L2(S4; ∧1 S4) satisfying

d∗
1α = 0. A simple calculation ensures us that

(a , 
1a)L2(S4) = (d0 f + α , 
1(d0 f + α))L2(S4)

=
(
f , 
2

0 f
)
L2(S4)

+ (α , 
1α)L2(S4)

where 
2
0 is the square of the scalar Laplacian on (S4, gR). Taking into account

these decompositions, then we obtain that Spec
1 = Spec
2
0 � Spec
1|ker d∗

1
. This

decomposition together with the proof of [19, Theorem 5.2] ensures us that ζ
1 =
ζ
2

0
+ ζ
1|ker d∗

1
consequently ζ
1|ker d∗ = ζ
1 − ζ
2

0
. Moreover, ζ
2

0
(s) = ζ
0(2s);

hence, rk′(c
2
0) = ζ
0(0) and det′(c
2

0) = cζ
0 (0)e−2ζ ′

0

(0). Therefore, in the case
of the first integral of Definition 3.1 putting c := Imτ

2πN2 we find

⎧⎨
⎩
rk′
(

Imτ
2πN2 
1|ker d∗

)
= ζ
1(0) − ζ
0(0)

det′
(

Imτ
2πN2 
1|ker d∗

)
) =

(
Imτ
2πN2

)ζ
1 (0)−ζ
0 (0)
e−ζ ′


1
(0)+2ζ ′


0
(0)

.

We can easily calculate at least ζ
1(0) − ζ
0(0) explicitly applying standard heat
kernel techniques. Over a compact 4-manifold (M, g) without boundary, it is well
known [19, Theorem 5.2] that

ζ
k (0) = − dimR ker
k + 1

16π2

∫
M

tr(u4k)dVg
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where the sections u p
k ∈ C∞(M;End(∧kM)) with p = 0, 1, . . . appear [19, Chapter

3] in the coefficients of the short time asymptotic expansion of the heat kernel for the
k-Laplacian

∑
λ∈Spec
k\{0}

e−λt ∼ 1

(4π t)2

+∞∑
p=0

⎛
⎝ ∫

M

tr(u p
k )dVg

⎞
⎠ t

p
2 as t → 0 .

These functions are expressible with the curvature of (M, g) and one can demonstrate
[10, p. 340] that

⎧⎪⎪⎨
⎪⎪⎩
u40 = 1

360

(
2|Riem|2g − 2|Ric|2g + 5 Scal2

)

tr(u41) = 1
360

(
−22|Riem|2g + 172|Ric|2g − 40 Scal2

)

yielding together with dimR ker 
0 = 1 and dimR ker 
1 = 0 over (S4, gR) that

ζ
1(0) − ζ
0(0) = 1 − 1

π2

∫

S4

(
1

120
|Riem|2g − 87

2880
|Ric|2g + 1

128
Scal2

)
dVR .

In addition, we recall over (S4, gR) the classical expressions

⎧⎪⎪⎨
⎪⎪⎩

|Riem|2gR = 2|Ric|2gR − 1
3 Scal2

|Ric|2gR = 1
4Scal

2

Scal = 12
R2

and plug them into the integral and also perform
∫
S4 dVR = 8π2

3 R4. We come up with

3

2

(
ζ
1(0) − ζ
0(0)

) = 3

2

(
1 − 1

π2

(
1

120

(
1

2
− 1

3

)

− 87

2880
· 1
4

+ 1

128

)
144

R4 · 8π
2

3
R4
)

= 11

20

and find in particular that 3
2

(
ζ
1(0) − ζ
0(0)

)
is independent of R offering a sort of

justification for using the conformal compactification (S4, gR) in place of the original
space (R4, η). Inserting all of these formulata into the right hand side of the first
integral of Definition 3.1, we obtain the first expression of the lemma.3 Repeating the
same with the truncated quartic integral, the corresponding result also follows.

3 The Faddeev–Popov determinant is therefore formally equal to e
3ζ ′


0
(0)

and hence is indeed constant in
this picture.
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The only remaining thing is to specify the common contour in the two complex
integrals. Since−1 < − 11

20 < 0, there are no poles; however, branch cuttings required
in these complex integrals as described; hence, for simplicity γs can be taken to be the
real line everywhere. ♦

By Lemma 3.2 and (10), we eventually arrive at the two-sided estimate

(
2
√−1π2N2

Imτ

) 11
20
e
3
2 ζ ′


1
(0)−3ζ ′


0
(0) 1

2
√

π

+∞∫
−∞

t− 11
20 e− t2

4 dt

� Zε(R
4, τ ) �

(
4
√−1 πK (δ)

Imτ

) 11
20
e
3
2 ζ ′


1
(0)−3ζ ′


0
(0) 1

2
√

π

+∞∫
−∞

(
t + √−1c

√
4π
Imτ

)− 11
20

e− t2
4 dt .

(15)

Lemma 3.3 There exist constants 0 < t0, δ0, R∞ < +∞ with the following property.
For any choice of the complex coupling constant (6) satisfying t0 < Imτ (with induced
vicinity parameter 0 < ε < +∞ as in Lemma 3.1 such that (15) holds), the left- and
right-hand sides of (15) get equal with some δ0 < δ(τ) and with every 0 < R � R(τ ),
where R(τ ) < R∞. This yields that

Zε(R
4, τ ) =

(
Imτ

2π2N 2

)− 11
20 2− 11

20√
π

cos
(
11π
40

)
	
(

9
40

)
e
3
2 ζ ′


1
(0)−3ζ ′


0
(0)

where 	 is Euler’s Gamma function.
Moreover, the partition function Zε(R

4, τ ) as calculated here depends on R, the
radius of the conformal compactification (S4, gR) of the original Euclidean space

(R4, η), only through its determinant term e
3
2 ζ ′


1
(0)−3ζ ′


0
(0). More precisely, if for a

given τ ∈ C
+ two permitted conformal one-point compactifications (S4, gRi ) are

taken, i.e., 0 < R1 < R2 � R(τ ) < R∞, then the corresponding partition functions

are related by Z1
ε (R

4, τ ) =
(
R1
R2

) 11
10

Z2
ε (R

4, τ ).

Proof It is clear that the scissor (15) around the partition function closes up if the
equation

(
πN 2

2K (δ)

) 11
20

=

+∞∫
−∞

(
t + √−1c

√
4π
Imτ

)− 11
20

e− t2
4 dt

+∞∫
−∞

t− 11
20 e− t2

4 dt

(16)

can be solved for some δ without breaking the inclusion Cδ ⊂ Aε,N (∇0) over some
(S4, gR). The right hand side of (16) monotonically grows from 0 to 1 as 0 � Imτ �
+∞. Likewise via 0 � K (δ) � π the left-hand side of (16) monotonically decays
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from +∞ to
( N2

2

) 11
20 as 0 � δ � +∞. Assume now that N <

√
2 hence

( N2

2

) 11
20 < 1.

These together imply that we can find a constant 0 < t0 < +∞ such that the right

hand side of (16), when evaluated at Imτ = t0, is equal to
( N2

2

) 11
20 . Likewise we

can find another constant 0 < δ0 < +∞ such that the left hand side of (16), when
evaluated at the constant δ0, is equal to 1. It then readily follows that for every τ ∈ C

+
satisfying t0 < Imτ there exists δ0 < δ(τ) such that (16) can be solved. Note that
as Imτ → +∞, then δ0 ← δ(τ ); however, as t0 ← Imτ , then δ(τ ) → +∞.
Proceeding further, by shrinking R, i.e., conformally rescaling (S4, gR)with a constant
if necessary, we can scale up λmin, the smallest eigenvalue of 
1, to be arbitrary large
without affecting the other conformally invariant parameters ε, N , c of the theory.
Thus, for any permitted choice of τ ∈ C

+ there exists a radius R(τ ) such that working
over any (S4, gR) obeying 0 < R � R(τ ) we can take δ(τ ) without breaking 0 <

δ(τ) <
√

λmin min(η, Nε), i.e., the inclusion Cδ(τ ) ⊂ Aε,N (∇0) which has been
used in (15). Again note that as Imτ → +∞ then R(τ ) → R∞ := sup

{
R | Cδ0 ⊂

Aε,N (∇0) is valid
}

< +∞, but as t0 ← Imτ , then 0 ← R(τ ). Summarizing, we
can consistently solve (16) whenever N <

√
2. However, this latter condition—which

is therefore the only but crucial condition4 for our whole method to work here—is
already satisfied for small ε’s because Lemma 3.1 makes sure that N → 1 as ε → 0.

Therefore, (15) in fact provides us with an equality

Zε(R
4, τ ) =

(
2
√−1π2N 2

Imτ

) 11
20

e
3
2 ζ ′


1
(0)−3ζ ′


0
(0) 1

2
√

π

+∞∫
−∞

t−
11
20 e− t2

4 dt

and our last task is to evaluate the complex integral here. We can do this by executing
a counterclockwise rotation of the negative part of the integration contour R ⊂ C

(together with the branch cutting along the negative imaginary axis) about the origin
toward its positive part; this shows that

√−1
11
20

+∞∫
−∞

t−
11
20 e− t2

4 dt = √−1
11
20
(
1 + (−1)−

11
20
) +∞∫

0

t−
11
20 e− t2

4 dt

with a real integral on the right. Firstly,
√−1

11
20
(
1 + ( 1

(
√−1)2

) 11
20
) = √−1

11
20 +

( 1√−1

) 11
20 = 2 cos

( 11π
40

)
. Secondly, the substitution u := t2

4 yields
∫ +∞
0 t− 11

20 e− t2
4 dt =

2− 11
20 	( 9

40 ) hence the result.
Concerning the role of the compactification radius, recall that 0 ← R(τ ) as

t0 ← Imτ ; consequently, there exists no overall finite choice for R which could
work for every permitted value of τ thus the R dependence of Zε(R

4, τ ), as has
been computed here, is unavoidable. Nevertheless, since N is conformally invariant,

4 Honestly speaking, we also assume the validity of the Monotonicity principles as formulated above.
However, the (in)validity of these assumptions is rather related with the more general problem of the
existence of a satisfactory measure theory in infinite dimensions, cf. Appendix.
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Zε(R
4, τ ) as it stands can depend on R only through the functional determinant. If

(S4, gRi ) are two conformal one-point compactifications of (R4, η), then obviously

gR1 =
(
R1
R2

)2
gR2 which can be regarded as a homothety applied on gR1 . Therefore, the

eigenvalues of
1 under this re-sizing simply change as λk �→
(
R2
R1

)2
λk , i.e., coincide

with that of the scaled Laplacian
(
R2
R1

)2

1; hence, ζ
1 �→ ζ( R2

R1

)2

1

. Consequently,

e
3
2 ζ ′


1
(0)−3ζ ′


0
(0) �→

(
R2
R1

)2(− 3
2

(
ζ
1 (0)−ζ
0 (0)

))
e
3
2 ζ ′


1
(0)−3ζ ′


0
(0), but we already know

that 3
2

(
ζ
1(0) − ζ
0(0)

) = 11
20 ; hence, the asserted scaling of Zε(R

4, τ ) follows. ♦

Proof of Theorem 1.1 Putting together the contents of Lemmata 3.1, 3.2, and 3.3, the
result follows. ♦
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Appendix A: There is no goodmeasure in infinite dimensions

For completeness, we recall the following simple but important general fact about
measures in infinite dimensions. Perhaps, this no-go result demonstrates in the sharpest
way the existence of a deep chasmbetween finite- and infinite-dimensional integration.
We also refer to the excellent survey book [12] to gain a broader picture.

Let (X , μ) be any measure space. As a very basic demand in measure theory the
measure μ is always assumed to be σ -additive, i.e., μ(�i Ai ) =∑i μ(Ai ) to hold for
all countable collection of pairwise disjoint measurable subsets A1, A2, . . . ⊂ X . If X
admits further structures, further natural assumptions can be imposed on a measure.
If X can be given the structure of a Banach space, for instance, then mimicking the
properties of the Lebesgue measure in finite dimensions, one can further demand
μ to be (i) positive, i.e., 0 � μ(U ) � +∞ for every open subset ∅ � U � X ;
(ii) locally finite, i.e., every point x ∈ X has an open neighborhood Nx � X such
that −∞ < μ(Nx ) < +∞; (iii) and finally translation invariant, that is, for every
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measurable subset ∅ � A � X and every vector x ∈ X , the translated set x + A is
measurable and μ(x + A) = μ(A) holds.

However, as it is well known, these natural demands conflict each other in infinite
dimensions:

Theorem 3.1 (cf., e.g., [9, Theorem 4, p. 359], or [12, Theorem 3.1.5]) Let (X , ‖ · ‖)
be an infinite-dimensional, separable Banach space. Then, the only locally finite and
translation invariant Borel measure μ on X is the trivial measure, with μ(A) = 0 for
every measurable subset A. Equivalently, every translation invariant measure that is
not identically zero assigns infinite measure to all open subsets of X.

Proof Take a locally finite, translation invariant measureμ on an infinite-dimensional,
separable Banach space (X , ‖ ·‖). Using local finiteness, suppose that, for some ε > 0,
the open ball Bε(0) ⊂ X of radius ε and centered at the origin has a finite μ-measure.
Since X is infinite-dimensional, there is a countable infinite sequence of pairwise
disjoint open balls B ε

4
(xi ) of radius for instance ε

4 and centers xi ∈ X , with all the
smaller balls B ε

4
(xi ) with i = 1, 2, . . . contained within the larger ball Bε(0). By

translation invariance, all of the smaller balls have the same measure; since by σ -
additivity, the absolute value of the sum of these measures is estimated from above
by μ(Bε(0)) < +∞ and hence is finite, the smaller balls must all have μ-measure
zero. Now, since X is separable, it can be covered by a countable collection of balls
of radius ε

4 ; since each such ball has μ-measure zero, by σ -additivity again so must
the whole space X . Therefore, μ is the trivial measure. ♦

This means that our ad hoc “measure” Da used for integration in a Hilbert space
throughout Sects. 3 and 1 lacks at least one of the standard properties listed above. We
already observed in the Remark after theMonotonicity principles that our hypothet-
ical Da assigns finite measure to certain subsets which do not contain open balls at all
(like the “principal axis hypercube” Cδ ∩ ker d∗ which is not open in infinite dimen-
sions). This oddity might be related with another one too, namely that it is locally
finite for certain open subsets ( like the ball Aε,N (∇0) ∩ ker d∗ or the full Hilbert
space ker d∗ itself).
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