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Abstract
We develop a representation theory approach to the study of generalized hypergeo-
metric functions of Gelfand, Kapranov and Zelevisnky (GKZ). We show that the GKZ
hypergeometric functions may be identified with matrix elements of non-reductive
Lie algebras LN of oscillator type. The Whittaker functions associated with princi-
pal series representations of gl�+1(R) being special cases of GKZ hypergeometric
functions thus admit along with a standard matrix element representations associated
with reductive Lie algebra gl�+1(R), another matrix element representation in terms
of L�(�+1).
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1 Introduction

One way of solving explicitly a quantum integrable system is to realize the system as
a quantum reduction in a larger quantum integrable system for which explicit solution
may be easily found. Choice of the larger system is obviously not unique and is a
matter of convenience. To practically implement this approach, one should represent
wave functions of quantum integrable system as particular matrix elements of suitable
Lie algebra representations allowing central characters. In this representation, the
reduction is realized via proper choice of the matrix element. Interesting examples
arise by considering reductions with respect to non-abelian Lie group symmetries.
Typical case (along with various kinds of the Calogero models [18]) is given by
families of quantum open Toda chains solved via special matrix elements of principle
series representations of non-abelian reductive Lie groups identified with Whittaker
functions [13, 14, 19] and [15, 16].

Recall that another more traditional approach to integration of quantum integrable
system employs large abelian Lie group of symmetries generated by mutually com-
muting integrable flows. The large abelian symmetry allows to find a proper set of
quantum canonical variables and to realize wave functions of the quantum integrable
systems as matrix elements of representations of the Heisenberg Lie algebras. How-
ever, this straightforward quantum generalization of the classical integration algorithm
encounters various difficulties. The main reason is that quite non-trivial realization of
the corresponding abelian symmetries does not allow to fix properly operator ordering
ambiguities in a simple and explicit way.

It is natural to try to combine these two complimentary approaches by considering
a larger explicitly integrable quantum theory completely defined in terms of its Lie
symmetry given by extensions of the Heisenberg Lie algebras. As it was demonstrated
in the previous short announcement [11], the theory of generalized hypergeometric
functions developed in [4, 5] supplies us with a large class of quantum integrable
systems which may be solved this way.

In this note, we show that general GKZ hypergeometric function may be identified
with a matrix element in an irreducible representation of a suitable multidimensional
oscillator Lie algebra. The explicit identification is most natural when is done in
terms of Gelfand–Graev hypergeometric functions (referred to as GG-functions). The
latter were introduced in [3] as a more symmetric formulation of the original GKZ
hypergeometric functions.

The class of integrable systems solved in terms of GKZ hypergeometric functions
includes open gl�+1-Toda chains so that the corresponding solutions given by gl�+1-
Whittaker functions allow integral representations via GKZ integrals (see [1]). The
matrix element representation of open gl�+1-Toda chain wave functions introduced
in this note should be contrasted with another one based on representation theory of
reductive Lie algebra gl�+1(R) [15, 16]. To stress the difference, we provide a detailed
description of both formulations in the case of Toda typemodels associated withmaxi-
mal and minimal parabolic subalgebras of gl�+1 [1, 10]. On a more fundamental level,
the relation between two matrix element formulations will be considered elsewhere.

Our interest in various realizations of theWhittaker functions stems for the fact that
the Whittaker functions play important role in the formulation of local Archimedean
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Langlands correspondence (see [6, 7, 9] and references therein). Thus, the identifica-
tion of the Whittaker functions with matrix elements of the non-reductive oscillator
Lie algebra possibly leads to interesting implications for Archimedean Langlands
correspondence related to various approaches based on abelianization/torification and
mirror symmetry. This theme will be discussed in future publications.

The plan of the paper is as follows. In Sect. 2, we provide basics of GKZ hyper-
geometric structure and associated hypergeometric functions. Following mostly [3],
we also define GG-system as a symmetric form of the GKZ hypergeometric struc-
ture. The corresponding GG-functions are the main objects of interest in the following
Sections. In Sect. 3, matrix element realization of the general GG hypergeometric
functions via representations theory of multidimensional oscillator algebras is pre-
sented. In Sect. 4, the set of defining equations for GG hypergeometric functions is
rederived using matrix element representation introduced in Sect. 3. Finally, in Sect. 5
the matrix element representation in terms of oscillator Lie algebra and reductive Lie
algebra gl�+1 for gl�+1-Whittaker functions associated with maximal and minimal
parabolic subalgebras is considered in detail.

2 The GKZ and GG hypergeometric structures

The GKZ hypergeometric functions are defined as solutions to system of differential
equations associated with the (A, c)-hypergeometric structures, first introduced and
studied in [2, 4, 5]. The GKZ hypergeometric structure is defined by the following
data. We choose an N -element subset

A = {ai : i ∈ I } ⊂ Z
m, I = {1, 2, . . . , N }, (2.1)

such that A generates Zm as abelian group. In addition, we fix a complex vector,

c = (c1, . . . , cm) ∈ C
m . (2.2)

The collection A defines the m × N -matrix of maximal possible rank:

A = ‖as
i ‖ ∈ Matm×N (Z), rank(A) = m (2.3)

where ai = (a1
i , · · · , am

i ) ∈ Z
m are elements of A.

Let L ⊂ A be the relations lattice of A:

L = {(l1, . . . , lN ) ∈ Z
N : l1a1 + · · · + lN aN = 0}. (2.4)

Choosing a basis {lα, α ∈ J } of the lattice L indexed by J = {1, . . . , N − m}:
L = span

{
lα = (lα1 , . . . , lαN ) : α ∈ J

}
, (2.5)

we consider the corresponding relation matrix

M = ‖lαi ‖ ∈ Mat(N−m)×N (Z), rank(M) = N − m. (2.6)
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The matrices A and M enjoy the orthogonality property

AM� = 0 ∈ Matm×(N−m)(Z), (2.7)

where� denotes the standardmatrix transposition. TheGKZ hypergeometric function
f (u) is a solution to the GKZ-system introduced below.

Definition 2.1 Given a subset A ⊂ Z
m from (2.1) and a vector c ∈ C

m from (2.2),
the GKZ-system of differential equations associated with the data (A, c) consists of
the following set of equations in variables u = (u1, · · · , uN ) ∈ (R+)N :

(1) For every l ∈ L, one has

∏

i∈I
li <0

(
− ∂

∂ui

)−li
f =

∏

i∈I
li >0

(
− ∂

∂ui

)li
f . (2.8)

(2) The differential equations enumerated by s ∈ {1, . . . , m}:

as
1u1

∂ f

∂u1
+ · · · + as

N uN
∂ f

∂uN
= cs f . (2.9)

Equation (2.9) may be easily integrated and thus allow a reduction in the solutions
to the system of Eqs. (2.8), (2.9) to functions in (N − m)-variables indexed by J =
{1, . . . , N − m}. However, the resulting equations on the function (N − m)-variables
have more complicated form.

Now we fix a special solution to the GKZ-system (2.8), (2.9).

Proposition 2.1 Given the GKZ data (A, c), the GKZ-system (2.8), (2.9) allows the
following solution:

fγ (u) =
∫

R
N+

N∏

i=1

dti
ti

tγi
i e−ui ti

∏

α∈J

δ

⎛

⎝
∏

j∈I

t
lαj
j − 1

⎞

⎠ , Re(γi ) > 0. (2.10)

Here {lα, α ∈ J } ⊂ L is a basis (2.5) and γ = (γ1, . . . , γN ) ∈ C
N is a vector

subjected to

cs +
∑

j∈I

as
jγ j = 0, s ∈ {1, . . . , m}. (2.11)

The function (2.10) is independent of the choice of the basis as well as of the choice
of γ ∈ C

N satisfying (2.11).

Proof Let γ = (γ1, . . . , γN ) ∈ C
N such that Re(γi ) > 0, i ∈ I . For every l ∈ L,

let us verify the first assertion by substituting (2.10) into (2.8) and (2.9). For the first
equation,
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∏

i∈I
li >0

(
− ∂

∂ui

)li

· fγ (u) −
∏

i∈I
li <0

(
− ∂

∂ui

)−li

· fγ (u)

=
∫

R
N+

N∏

i=1

dti
ti

tγi
i e−ui ti

(∏

i∈I
li >0

t li
i −

∏

i∈I
li <0

t−li
i

)∏

α∈J

δ

(∏

j∈I

t
lαj
j − 1

)
(2.12)

=
∫

R
N+

N∏

i=1

dti
ti

tγi
i e−ui ti

∏

i∈I
li <0

t−li
i

(∏

i∈I

t li
i − 1

)∏

α∈J

δ

(∏

j∈I

t
lαj
j − 1

)
= 0. (2.13)

The last equality follows since for l =∑α∈J nαlα ∈ L, we have

∏

i∈I

t li
i =

∏

i∈I

t

∑

α∈J
nαlαi

i =
∏

α∈J

(∏

i∈I

t
lαi
i

)nα

, (2.14)

which equals 1 by taking into account the delta-factors in the integrand of (2.10).

To prove the second equation, it is useful to change the integration variables ti →
u−1

i ti , so the integral (2.10) takes the form:

fγ (u) =
∏

i∈I

u−γi
i

∫

R
N+

N∏

i=1

dti
ti

tγi
i e−ti

∏

α∈J

δ

⎛

⎝
∏

j∈I

u
−lαj
j t

lαj
j − 1

⎞

⎠ . (2.15)

Then, Eq. (2.9) follows from the orthogonality relation (2.7) between A and M .
For the solution (2.10), independence of the choice of the basis {lα, α ∈ J } ⊂ L

can be verified as follows. Let {l̃α, α ∈ J } ⊂ L be another basis, and let ‖gα
β‖ ∈

GL N−m(Z) be the transition matrix between the two bases:

l̃α =
∑

β∈J

gα
β lβ, det ‖gα

β‖ ∈ Z
∗ = {±1}. (2.16)

By change of integration variables Ti = ln ti , i ∈ I , (2.10) takes the following form:

fγ (u) =
∫

RN

N∏

i=1

dTi eγi Ti − ui eTi
∏

α∈J

δ

⎛

⎝
∑

j∈I

lαj Tj

⎞

⎠ . (2.17)

For T = (T1, . . . , TN ) ∈ R
N , consider vector S ∈ R

N−m with the coordinates
Sα = ∑

j∈I
lαj Tj , and define

δ(S) =
∏

α∈J

δ(Sα) =
∏

α∈J

δ

⎛

⎝
∑

j∈I

lαj Tj

⎞

⎠ . (2.18)
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Then, applying standard rule for linear change of arguments in delta-functions

δ(gS) = 1

| det(g)| δ(S) = δ(S), det(g) ∈ Z
∗ = {±1}, (2.19)

which verifies the independence of the choice of the basis {lα} ⊂ L for (2.10).
Finally, for fγ (u), independence of the choice of solution γ = (γ1, . . . , γN ) ∈ C

N

to Eq. (2.11) may be checked as follows. Given a pair of solutions, γ and γ ′, they are
related by

γ j = γ ′
j +
∑

α∈J

lαj ξα, ξ = ‖ξα‖ ∈ C
N−m . (2.20)

Then, substituting this into the integral (2.10) results in fγ = fγ ′ by taking into
account the delta-factors in the integrand. 	

Example 2.1 Consider the two elementary examples of the GKZ-hypergeometric
functions associated with A, corresponding to the cases |I | = 1, |J | = 0 and
|I | = |J | = 1.

1. The GKZ-hypergeometric function corresponding to the GKZ data with N = m =
1 and J = ∅ according to Definition 2.1 is given by

fγ (u) =
∫

R+

dt

t
tγ e−ut = u−γ 	(γ ), Re(γ ) > 0, (2.21)

and satisfies the following equation (a special case of (2.9)):

u
∂

∂u
fγ (u) = −γ fγ (u). (2.22)

Note that Eq. (2.8) is absent in this case.
2. The GKZ-hypergeometric function associated with the data |I | = |J | = 1, m = 0

is given by the exponential function:

fγ (u) =
∫

R+

dt

t
tγ e−ut δ(t − 1) = e−u, (2.23)

and satisfies the following equation:

(
− ∂

∂u

)
fγ (u) = fγ (u), (2.24)

which is a special case of (2.8). Equation (2.9) is absent in this case.
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Definition 2.1 of the GKZ system has an obvious asymmetry that we would like
to get rid of. Namely, it is natural to consider a solution to (2.8),(2.9) as a function
both in u ∈ R

N+ and c ∈ C
m . Here the vector c plays the role of spectral variables.

The difference between number of u-variables and c-variables is taken into account
by additional symmetries generated by linear equations (2.9). Clearly u-variables
and c-variables are treated quite differently in Definition 2.1. On the other hand, the
explicit solution fγ (u) written down using spectral γ -variables of the same number
as u-variables. As a compensation, we gain an additional symmetry over spectral
parameters γ = (γ1, . . . , γN ) ∈ C

N reducing it effectively to the m parameters
{cs, 1 ≤ s ≤ m} via (2.20). All this suggests a completely symmetric definition of
the GKZ system of differential equations. Basic ingredients of this reformulation are
already appeared in [3], and thus, we will call this GG-hypergeometric structure.

Let the set A be the same as in the definition of GKZ-data (A, c), and let L be
the corresponding relation lattice (2.4). Let us introduce GG-hypergeometric system
associated with A. The GG-hypergeometric function 
γ (u) is a solution to the GG-
system.

Definition 2.2 The GG-system associated with A consists of the following set of
equations in variables u = (u1, . . . , uN ) ∈ R

N+ and γ = (γ1, . . . , γN ) ∈ C
N :

(1) For every l ∈ L, one has

∏

i∈I
li <0

(
− ∂

∂ui
+ γi

ui

)−li

 =

∏

i∈I
li >0

(
− ∂

∂ui
+ γi

ui

)li

. (2.25)

(2) For every l ∈ L, one has

∑

i∈I

li

(
∂

∂γi
− ln ui

)

 = 0, (2.26)

or, equivalently,

∏

i∈I

eθli ∂γi 
 =
∏

i∈I

uθli
i 
, ∀θ ∈ R. (2.27)

(3) The system of m differential equations for s ∈ {1, . . . , m}:
{

as
1u1

∂

∂u1
+ · · · + as

N uN
∂

∂uN

}

 = 0. (2.28)

(4) The system of m difference equations for s ∈ {1, . . . , m}:
{

as
1

(
e

∂
∂γ1 − γ1

)
+ . . . + as

N

(
e

∂
∂γN − γN

)}

 = 0. (2.29)
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Note that in comparison with Definition 2.1 we introduce additional dual difference
equations over the spectral variables γ ∈ C

N .
To contrast Definitions 2.1 and 2.2, it is useful to consider the two simple cases

continuing Example 2.1.

Example 2.2 1. The GG-hypergeometric function corresponding toAwith N = m =
1 and J = ∅ according to Definition 2.2 is given by the standard Gamma-function:


γ (u) =
∫

R+

dt

t
tγ e−t = 	(γ ), Re(γ ) > 0, (2.30)

satisfying the equations

∂

∂u

γ (u) = 0, (2.31)

and
(

e∂γ − γ
)


γ (u) = 0. (2.32)

Here (2.31) is an instance of (2.28); meanwhile, (2.32) is an instance of (2.29).
Note that Eqs. (2.25) and (2.26),(2.27) are absent in this case.

2. The GG-hypergeometric function associated withA such that |I | = |J | = 1, m =
0 is given by


γ (u) = uγ e−u, (2.33)

satisfying the differential equation:

{
u

∂

∂u
− γ

}

γ (u) = u 
γ (u), (2.34)

and the difference equation:

{
e∂γ − u

}

γ (u) = 0. (2.35)

Here (2.34) is an instance of (2.25); meanwhile, (2.35) is an instance of (2.27).
Equations (2.28), (2.29) are absent in this case.

A relation between the two formulations of the GKZ-hypergeometric structures is
manifested by the following.

Proposition 2.2 Given the GKZ-datum A, the GG-system (2.25)–(2.29) allows the
following solution:


γ (u) =
∫

R
N+

N∏

i=1

dti
ti

tγi
i e−ti

∏

α∈J

δ

⎛

⎝
∏

j∈I

u
−lαj
j t

lαj
j − 1

⎞

⎠ , Re(γi ) > 0, (2.36)
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where {lα, α ∈ J } ⊂ L is the basis (2.5). The solution (2.36) is independent of the
choice of basis {lα, α ∈ J } ⊂ L and may be identified with (2.10) via


γ (u) =
(
∏

i∈I

uγi
i

)

× fγ (u). (2.37)

Proof Let γ ∈ C
N be such that Re(γi ) > 0, i ∈ I . Similar to the proof of Proposition

2.1, one checks that (2.36) satisfies (2.25), (2.26) and (2.28) in straightforward way.
For the integral (2.36), independence of the basis choice follows from (2.37) and from
the independence for fγ (u) by Proposition 2.1.

One observes that Eqs. (2.25) and (2.28) are identified with (2.8) and (2.9) via
(2.37) and the following identity for every i ∈ I :

∏

j∈I

u
γ j
j

(
∂

∂ui

)n ∏

j∈I

u
−γ j
j =

(
∂

∂ui
− γi

ui

)n

, n ∈ Z≥0. (2.38)

To verify (2.29), consider the integrand of (2.36):

Fγ (t) =
∏

i∈I

tγi
i e−ti

∏

α∈J

δ

⎛

⎝
∏

j∈I

u
−lαj
j t

lαj
j − 1

⎞

⎠ . (2.39)

Then, its differential is given by

d Fγ (t) =
∑

i∈I

∂ Fγ (t)

∂ti
dti =

∑

i∈I

(
γi − ti

)
Fγ (t)

dti
ti

+
∑

i∈I

∑

α∈J

lαi
∏

j∈I

u
−lαj
j t

lαj
j δ′

⎛

⎝
∏

j∈I

u
−lαj
j t

lαj
j − 1

⎞

⎠
∏

β∈J
β �=α

δ

⎛

⎝
∏

j∈I

u
−lβj
j t

lβj
j − 1

⎞

⎠ dti
ti

.

(2.40)

Therefore, observing that

(
γi − ti

)
Fγ (t) =

(
γi − e∂γi

)
Fγ (t), (2.41)

by the orthogonality relation (2.7), one deduces the following, for 1 ≤ s ≤ k + 1:

∑

i∈I

as
i

(
γi − e∂γi

)

γ (u) =

∫

R
N+

N∏

j=1

dt j

t j

∑

i∈I

as
i

(
γi − ti

)
Fγ (t)

=
∑

i∈I

as
i

∫

R
N−1+

∏

j∈I
j �=i

dt j

t j

∫

R+

dti
∂ Fγ (t)

∂ti
= 0, (2.42)
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since Fγ (t)
∣∣ti =0 = Fγ (t)

∣∣
ti =+∞ = 0 for each i ∈ I . 	


As it is already mentioned in Introduction, the system of equations (2.25)–(2.29)
is naturally related to the GG-system introduced and studied in [3]. In particular, the
integral (2.36) can be identified with the GG-function as it is defined in [3]. Alter-
natively, in [3] the function (2.36) is described as a solution to (2.25), (2.26), (2.28),
and the additional set of first-order differential difference equations (2.43) from the
following proposition.

Proposition 2.3 The GG-function (2.36) satisfies the following system of GG-
equations:

{
−ui

∂

∂ui
+ γi

}
· 
γ (u) = e∂γi · 
γ (u), i ∈ I . (2.43)

Proof To verify the assertion, for every j ∈ I , we substitute (2.36) (after changing
ti → ui ti , i ∈ I ) into (2.43):

{
−u j

∂

∂u j
+ γ j

}

γ (u) =

∫

R
N+

N∏

i=1

dti
ti

∏

α∈J

δ

⎛

⎝
∏

j∈I

t
lαj
j − 1

⎞

⎠

×
{
−u j

∂

∂u j
+ γ j

} N∏

i=1

(ui ti )
γi e−ui ti

=
∫

R
N+

N∏

i=1

dti
ti

∏

α∈J

δ

⎛

⎝
∏

j∈I

t
lαj
j − 1

⎞

⎠ (u j t j )

N∏

i=1

(ui ti )
γi e−ui ti

= 
γ1,...,γ j +1,...,γN (u) = e∂γ j · 
γ (u). (2.44)

	


One might note that (2.43) and (2.28) entail the dual difference equations (2.29).

3 Matrix element representation

In this section, we provide a representation of the GG-hypergeometric functions (2.36)
as matrix elements in irreducible representation of a suitable class of non-reductive
Lie algebras. Namely, for I = {1, . . . , N }, let LN be the Lie algebra generated by
the central element C and by {Ei ,Fi ,Hi , i ∈ I } subjected to the following defining
relations:

[Ei ,F j ] = δi jC, [Hi , E j ] = −δi jE j , [Hi ,F j ] = δi jF j ,

[Ei , E j ] = [Fi ,F j ] = [Hi ,H j ] = 0, i, j ∈ I . (3.1)
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The subalgebra in LN generated by C and by {Ei , Fi , i ∈ I } is isomorphic to the
(2N+1)-dimensionalHeisenberg algebra.Thus, theLie algebraLN maybe considered
as multidimensional version of the standard oscillator Lie algebra.

For γ = (γ1, . . . , γN ) ∈ C
N such that Re(γi ) > 0, i ∈ I , let πγ be the LN -

representation in the Schwartz space Vγ of smooth functions in t = (t1, . . . , tN ) ∈
(R+)N decreasing rapidly with all its derivatives at infinity:

Vγ ={ f ∈ C∞(RN+) : lim
ti →∞

(
tn1
1 · · · tnN

N |∂m1
t1 · · · ∂m N

tN
f (t)|)=0, ∀ni , mi ∈Z≥0

}
. (3.2)

Namely, the representation (πγ ,Vγ ) is definedby the following actionof the generators
(3.1):

πγ (C)=1, πγ (Ei )=−∂ti , πγ (Fi )=−ti , πγ (Hi ) = γi + ti∂ti , i ∈ I . (3.3)

Let U(LN ) be the universal enveloping algebra of LN , then Vγ affords a structure of
U(LN )-module. Moreover, the action of generator Hi ∈ LN in Vγ integrates to the
action of the group (R+)N . It will be also important in the following that the gener-
ators Fi , i ∈ I are invertible in the representation Vγ ; therefore, (πγ ,Vγ ) extends
to representation of a larger algebra containing negative powers of Fi , i ∈ I . We fix
a dual module V∨

γ realized in the space of generalized functions on R
N+ and denote

the corresponding contragradient representation by π∨
γ . There is a non-degenerate

LN -invariant pairing 〈, 〉 : V∨
γ × Vγ → C,

〈φ, ϕ〉 =
∫

R
N+

∏

i∈I

dt φ(t) ϕ(t), ϕ ∈ Vγ , φ ∈ V∨
γ ,

〈π∨
γ (X) · φ, ϕ〉 = −〈φ, πγ (X) · ϕ〉, ∀X ∈ LN . (3.4)

Then, the LN -action in the dual module V∨
γ can be computed explicitly:

π∨
γ (C) = −1, π∨

γ (Ei ) = −∂ti , π∨
γ (Fi ) = ti ,

π∨
γ (Hi ) = 1 − γi + ti∂ti , i ∈ I . (3.5)

Given the GKZ-datum A, let us fix a basis {lα, α ∈ J } in the relation lattice L

(2.5). Let us introduce a vector φR ∈ Vγ and a covector φL ∈ V∨
γ defined by

πγ (Ei ) · φR = φR, i ∈ I , (3.6)

and

∏

i∈I
lαi <0

π∨
γ (Fi )

−lαi · φL =
∏

i∈I
lαi >0

π∨
γ (Fi )

lαi · φL , α ∈ {1, . . . , N − m},

N∑

i=1

as
i π∨

γ (Hi ) · φL = 0, s ∈ {1, . . . , m}. (3.7)
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Note that invertibility of the images of the generators Fi in the considered represen-
tation allows to rewrite equivalently the first line of (3.7) as follows:

∏

i∈I

π∨
γ (Fi )

lαi · φL = φL , α ∈ {1, . . . , N − m}. (3.8)

Furthermore, for an arbitrary l = ∑

α∈J
nαlα = (l1, · · · , lN ) ∈ L, the following holds:

∏

i∈I

π∨
γ (Fi )

li · φL =
∏

i∈I

∏

α∈J

π∨
γ (Fi )

nαlαi · φL

=
∏

α∈J

(
∏

i∈I

π∨
γ (Fi )

lαi

)nα

· φL = φL . (3.9)

Lemma 3.1 For φL ∈ Vγ defined in (3.6) and φR ∈ V∨
γ defined in (3.7), the following

explicit expressions hold:

φR(t) = e
−

N∑

i=1
ti
, φL(t) =

∏

i∈I

tγi −1
i

∏

α∈J

δ

⎛

⎝
∏

j∈I

t
lαj
j − 1

⎞

⎠ . (3.10)

Proof The solution to (3.6) is given by the first expression in (3.10). As for φL , the
first defining relation in (3.7) is a direct consequence of presence of the delta-factors
in expression for φL in (3.10). For the second relation, substituting π∨

γ (H j ) from (3.5)
into (3.10), for each s ∈ {1, . . . , m} implies

N∑

j=1

as
j 〈π∨

γ (H j ) · φL , ϕ〉

=
N∑

j=1

as
i

∫

R
N+

∏

i∈I

dti ϕ(t) (1 − γ j + t j∂t j )
∏

i∈I

tγi −1
i

∏

α∈J

δ

⎛

⎝
∏

j∈I

t
lαj
j − 1

⎞

⎠

=
∑

α∈J

N∑

j=1

as
j l

α
j

∫

R
N+

∏

i∈I

dti
ti

t
γi + lαi
i δ′

⎛

⎝
∏

j∈I

t
lαj
j − 1

⎞

⎠
∏

β �=α

δ

⎛

⎝
∏

j∈I

t
lβj
j − 1

⎞

⎠ ϕ(t),

(3.11)

which vanishes due to the orthogonality relation
∑N

i=1 as
i lαi = 0 in (2.7). 	


Let us note that the conditions (3.7) on the covectorφL may be linearized as follows.
Consider the subalgebra in LN generated by {Hi , Fi , i ∈ I }, subjected to

HiF j − F jHi = δi jF j , i, j ∈ I . (3.12)
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Then, it may be embedded into the appropriately completed Heisenberg algebra HN

generated by the Pi , Qi , i ∈ I subjected to

Pi Q j − Q j Pi = δi j , i, j ∈ I . (3.13)

Explicitly, we define the following embedding

Hi �−→ Pi , Fi �−→ eQi . (3.14)

Then, the defining relations (3.7) for covector φL are equivalent to the condition of
annihilation of φL by the following |I | = N operators:

As =
N∑

i=1

as
i Pi , s ∈ {1, . . . , m}; Bα =

N∑

i=1

lαi Qi , α ∈ J . (3.15)

These operators generate an N -dimensional commutative subalgebra in theHeisenberg
algebraHN and define a linear polarization that in general differs from the one defined
by maximal commutative subalgebra generated by Pi , i ∈ I .

Theorem 3.1 The integral solution (2.36) to the GG-system (2.25)–(2.29) allows the
following expression in terms of the matrix element in the U(LN )-representation
(πγ ,Vγ ) for γ = (γ1, . . . , γN ) ∈ C

N , Re(γi ) > 0:


γ (ey1 , . . . , eyN ) = 〈
φL , πγ

⎛

⎜
⎝e

N∑

j=1
y jH j

⎞

⎟
⎠φR

〉
, (3.16)

where φR and φL are defined in (3.6) and (3.7), respectively.

Proof Substituting (3.10) into the matrix element, we have


γ1,...,γN (ey1 , . . . , eyN ) = 〈
φL , πγ

⎛

⎜
⎝e

N∑

j=1
y jH j

⎞

⎟
⎠φR

〉

=
∫

(R+)N

N∏

i=1

dti
ti

φL(t) e

N∑

j=1
y j {γi +t j ∂t j }

φR(t)

=
∫

(R+)N

N∏

i=1

dti
ti

tγi
i eγi yi −ti eyi

∏

α∈J

δ

⎛

⎝
∏

j∈I

t
lαj
j − 1

⎞

⎠ ,

(3.17)

which coincides with (2.36) for ui = eyi via substitution ti �→ u−1
i ti , i ∈ I . 	
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4 Differential equations satisfied by the GKZ functions

In this section, we derive the defining Eqs. (2.25), (2.28) using matrix element repre-
sentation (3.16). The way to derive these equations is similar to the way how equations
on matrix elements arise from the action of Casimir elements. Note that the dual equa-
tions (2.26)–(2.27) and (2.29) include differentiation over spectral parameters and
arise in a different way by considering intertwining operators acting between different
representations of oscillator algebra LN .

Now for γ = (γ1, . . . , γN ) ∈ C
N , given the U(LN )-module (πγ , Vγ ) (3.3), let

Iγ ⊂ U(LN ) be the primitive annihilation ideal:

Iγ = {
X ∈ U(LN ) : πγ (X) = 0

}
. (4.1)

For every l = (l1, . . . , lN ) ∈ Z
N , introduce the following element in U(LN ):

C(l) =
∏

i∈I
li <0

F−li
i E−li

i

∏

i∈I
li >0

li −1∏

k=0

(Hi − γi − k) −
∏

i∈I
li >0

F li
i E li

i

∏

i∈I
li <0

|li |−1∏

k=0

(Hi − γi − k).

(4.2)

Lemma 4.1 For an arbitrary l ∈ Z
N , the element C(l) belongs to the ideal Iγ .

Proof Substitution of (3.3) into (2.2) reads

πγ

(C(l)
) =

∏

i∈I
li <0

t−li
i (∂ti )

−li
∏

i∈I
li >0

li −1∏

k=0

(ti∂ti − k)

−
∏

i∈I
li >0

t li
i (∂ti )

li
∏

i∈I
li <0

−li −1∏

k=0

(ti∂ti − k). (4.3)

Then, by the following identity

n−1∏

k=0

(t∂t − k) = tn(∂t )
n, ∀n > 0, (4.4)

each of the two terms in (4.3) equals
∏

i∈I (ti )
|li |(∂ti )

|li | and hence cancels each other.	

Now given the GKZ-datum A, let L be the corresponding relation lattice.

Proposition 4.1 For each l ∈ L, the fact that πγ (C(l)) = 0 entails the GG-equations
(2.25) satisfied by the matrix element (3.16):

⎧
⎪⎪⎨

⎪⎪⎩

∏

i∈I
li <0

(
− ∂

∂ui
+ γi

ui

)−li −
∏

i∈I
li >0

(
− ∂

∂ui
+ γi

ui

)li

⎫
⎪⎪⎬

⎪⎪⎭

γ (u) = 0. (4.5)
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Proof Using the invertibility of πγ (Fi ), i ∈ I in the U(LN )-representation (πγ ,Vγ ),
we introduce the elements C̃(l) ∈ U(LN ) defined by

πγ (C̃(l)) =
∏

i∈I
lαi <0

πγ (Fi )
lαi × πγ (C(l)), l ∈ L, (4.6)

also acting by zero in Vγ . Substituting the factors
∏n−1

k=0(Hi − γi − k) from (4.2) into
the matrix element (3.16) gives

〈
φL , πγ

( n−1∏

k=0

(Hi − γi − k) e
∑

j y jH j
)
φR
〉 =

n−1∏

k=0

(∂yi − γi − k)
γ (ey). (4.7)

Next,we insert the expression (4.6) into thematrix element (3.16) and take into account
the defining relations (3.6) and (3.7),(3.9) on the right and left vectors. Explicitly, for
ui = eyi , i ∈ I we deduce the following:
〈
φL , πγ

(
C̃(l) e

∑
j y jH j

)
φR
〉

=
∏

i∈I
li >0

li −1∏

k=0

(
ui

∂

∂ui
− γi − k

) 〈
φL , πγ

⎛

⎜⎜
⎝
∏

i∈I
li <0

E−li
i e

∑
j y jH j

⎞

⎟⎟
⎠φR

〉

−
∏

i∈I
li <0

−li −1∏

k=0

(
ui

∂

∂ui
− γi − k

) 〈
φL ,

∏

i∈I

πγ (Fi )
li πγ

⎛

⎜⎜
⎝
∏

i∈I
li >0

E li
i e

∑
j y jH j

⎞

⎟⎟
⎠φR

〉

(4.8)

=
∏

i∈I
li >0

li −1∏

k=0

(
ui

∂

∂ui
− γi − k

) ∏

i∈I
li <0

u−li
i

〈
φL , πγ

(
e
∑

j y jH j
)
φR
〉

−
∏

i∈I
li <0

−li −1∏

k=0

(
ui

∂

∂ui
− γi − k

)∏

i∈I
li >0

uli
i

〈
∏

i∈I

(−1)li π∨
γ (Fi )

li φL , πγ

(
e
∑

j y jH j
)
φR

〉

.

(4.9)

Then, applying the relations (3.9), this results in

〈
φL , πγ

(
C̃(l) e

∑
j y jH j

)
φR
〉 =

⎧
⎪⎪⎨

⎪⎪⎩

∏

i∈I
li >0

li −1∏

k=0

(
ui

∂

∂ui
− γi − k

) ∏

i∈I
li <0

u−li
i

−
∏

i∈I

(−1)li
∏

i∈I
li <0

−li −1∏

k=0

(
ui

∂

∂ui
− γi − k

) ∏

i∈I
li >0

uli
i

⎫
⎪⎪⎬

⎪⎪⎭

γ (u)
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=
∏

i∈I
li >0

(−1)li
∏

i∈I

u|li |
i

⎧
⎪⎪⎨

⎪⎪⎩

∏

i∈I
li >0

(−ui )
−li

li −1∏

k=0

(
ui

∂

∂ui
− γi − k

)

−
∏

i∈I
li <0

(−ui )
li

−li −1∏

k=0

(
ui

∂

∂ui
− γi − k

)

⎫
⎪⎪⎬

⎪⎪⎭

γ (u)

=
∏

i∈I
li >0

(−1)li
∏

i∈I

u|li |
i

⎧
⎪⎪⎨

⎪⎪⎩

∏

i∈I
li >0

(
− ∂

∂ui
+ γi

ui

)li −
∏

i∈I
li <0

(
− ∂

∂ui
+ γi

ui

)−li

⎫
⎪⎪⎬

⎪⎪⎭

γ (u).

(4.10)

where in the last line (4.4) is used. Thus, equating the above expression to zero and
dividing by the invertible function

∏
i∈I
li >0

(−1)li
∏

i∈I u|li |
i yields (4.5). 	


5 Whittaker functions via GKZ structures

Investigations of quantum cohomology of partial flag manifolds give rise to new
families of quantum integrable systems of Toda type. The corresponding wave func-
tions (generating functions) are given by generalized Whittaker functions associated
with choice of parabolic subalgebras p ⊂ gl�+1; for the motivated discussions of
these see [1, 12] and [8, 10, 17]. As in the original construction of the standard
Whittaker function (see [13, 14, 19] and [15, 16]), the generalized Whittaker func-
tions can be presumably realized as particular matrix elements of the principal series
U(gl�+1)-representations. One also expects that the generalized Whittaker functions
allow expressions in terms the appropriate GKZ hypergeometric functions. Below we
consider two special instances of the gl�+1-Whittaker functions associated with mini-
mal andmaximal parabolic subalgebras and provide their expressions in terms of GKZ
hypergeometric functions. Various parts of these results may be found in references
mentioned above and are included here for completeness.

Let us first fix the following notations for the general linear Lie algebra and its
subalgebras. Let V = C

�+1 be a C-vector space and let gl�+1 = gl(V ) be the endo-
morphism Lie algebra spanned by the standard generators Ei j , 1 ≤ i, j ≤ � + 1
subjected to the relations:

[Ei j , Ekl ] = δ jkEil − δilEk j . (5.1)

Parabolic subalgebra p in gl�+1 is defined as a subalgebra satisfying b− ⊆ p ⊂ gl�+1,
where b− ⊂ gl�+1 is the Borel subalgebra spanned by {Ei j , 1 ≤ j ≤ i ≤ � + 1}. Let
n+ ⊂ gl�+1 be the nilpotent subalgebra generated by {Ei j , 1 ≤ i < j ≤ � + 1}, so
that the following decomposition holds:
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gl�+1 = b− ⊕ n+ = n− ⊕ h ⊕ n+, (5.2)

where h ⊂ b is the Cartan subalgebra spanned by Enn, 1 ≤ n ≤ � + 1. Then, the
Borel subalgebra b− ⊂ gl�+1 is the minimal parabolic subalgebra. On the other hand,
the maximal parabolic subalgebra p1,�+1 ⊂ gl�+1 is generated by b− and

Ei, i+1, 1 ≤ i < �. (5.3)

5.1 Minimal parabolic gl�+1-Whittaker function

The standard notion of the gl�+1-Whittaker function defined for a reductive Lie algebra
gl�+1 is a special case a more general Whittaker function associated with a pair p ⊂
gl�+1, for a parabolic subalgebra p. Precisely, the standard Whittaker function thus
correspond to the case of minimal parabolic subalgebra (i.e., the Borel subalgebra
b− ⊂ gl�+1).

For λ = (λ1, . . . , λ�+1) ∈ C
�+1, let (ρλ, Wλ) be the principal series representation

of the universal enveloping algebra U(gl�+1). Namely, for a generic character χλ of
the Borel subgroup B− ⊂ GL�+1, Lie(B−) = b− and the modular character δB− , let

Wλ = IndGL�+1
B− (χλ⊗δ

−1/2
B− ) the induced representation.We consider the infinitesimal

form Ind
gl�+1
U(b−)

(χλ ⊗ δ
−1/2
B− ) of Wλ, and we choose the appropriately defined dual

U(gl�+1)-module (ρ∨
λ ,W∨

λ ). Given the triangular decomposition (5.2), define after
[15, 16] the pair of Whittaker vectors ψR ∈ Wλ and ψL ∈ W∨

λ to be the generic
characters of n−, n+:

ρ∨
λ (Ei+1, i )ψL = −ψL , ρλ(Ei, i+1)ψR = −ψR, 1 ≤ i ≤ �. (5.4)

We assume that the action of the subalgebra h ⊂ gl�+1 is integrated to the
action of the maximal torus in GL�+1(R). We also imply the existence of gl�+1-
invariant non-degenerate pairing 〈, 〉 between the submodules U(gl�+1)ψL ⊆ W∨

λ

and U(gl�+1)ψR ⊆ Wλ. Then, the gl�+1-Whittaker function is given by the following
matrix element:

�
gl�+1
λ1,...,λ�+1

(ex1 , . . . , ex�+1) = e

�+1∑

k=1
( �
2+1−k)xk

〈

ψL , ρλ

⎛

⎜
⎝e

�+1∑

j=1
x j E j j

⎞

⎟
⎠ψR

〉

. (5.5)

This matrix element may be expressed as the following �(� + 1)-fold integral [8] for
Re(λi ) > 0, 1 ≤ i ≤ � + 1:

�
gl�+1
λ1,...,λ�+1

(ex1 , . . . , ex�+1) = e
x�+1

�+1∑

i=1
λi
∫

R
2d+

∏

1≤i≤k≤�

dak,i

ak,i

dbk,i

bk,i
e−ak,i −bk,i
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×
∏

1≤i≤k≤�

(ak,i )
λk+1

�∏

k=1

(bk,k)

k∑

i=1
λi

×
�∏

i=1

δ
(

e−xi +xi+1a�,i b�,i − 1
) ∏

1≤i≤k<�

δ
(

ak,i bk,i a
−1
k+1, i+1b−1

k+1, i − 1
)
, (5.6)

where d = �(�+1)
2 . For λ1 = . . . = λ�+1 = 0, the integral (5.6) originally appeared in

[12]. The structure of the integrand in (5.6) might be elucidated by invoking the type
A� Gelfand–Zetlin graph:

x1

(�, 1)

a�,1

x2
b�,1

...
. . .

. . .

(1, 1)

a11

. . .
b11

(�, �)

a��

x�+1b��

(5.7)

Namely, we attach the integration variables ak,i , bk,i to the edges and add the argu-
ments xi , 1 ≤ i ≤ �+1 at the boundary vertexes of the graph. The delta-factors in the
integrand of (5.6) correspond to fixing products of variables ak,i and bk,i along various
paths on the diagram (5.7). Namely, we consider the � paths starting horizontally at
xi+1 then turning upwards to the adjacent vertex xi and the �(� − 1)/2 elementary
box-shaped paths.

On the other hand, the integral (5.6) can be identified with the GG-integral of the
form (2.36) associated with |I | = 2d = �(�+1) (corresponding to the arrows in (5.7))
and |J | = d = �(� + 1)/2 (corresponding to the vertices in (5.7)). Let us introduce
the integration variables ti ∈ R+, i ∈ I :

{
ti , 1 ≤ i ≤ �(� + 1)

} = {ak,i , bk,i : 1 ≤ i ≤ k ≤ �}, (5.8)

and the two sets of arguments:

{
yk,i , zk,i : 1 ≤ i ≤ k ≤ �

} ⊂ R
2d ,

{
γk,i , νk,i : 1 ≤ i ≤ k ≤ �

} ⊂ C
2d , Re(γk,i ) > 0, Re(νk,i ) > 0. (5.9)
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Consider the following integral of GG-type:



gl�+1
γ, ν (ey, ez) =

∫

R
2d+

∏

1≤k≤i≤�

dak,i

ak,i

dbk,i

bk,i
a

γk,i
k,i b

νk,i
k,i e− ak,i −bk,i

×
�∏

i=1

δ
(

e−y�,i −z�,i a�,i b�,i − 1
)

×
∏

1≤i≤k<�

δ
(

e−yk,i −zk,i +yk+1, i+1+zk+1, i ak,i bk,i a
−1
k+1, i+1b−1

k+1, i − 1
)
,

(5.10)

associated with the following GKZ-data. Introduce the standard orthonormal basis in
Z
2d :

{
εk,i , ε̃ k,i : 1 ≤ i ≤ k ≤ �

} ⊂ Z
2d . (5.11)

the relation lattice,

L = span{lk,i , 1 ≤ i ≤ k ≤ �} ⊆ Z
2d , (5.12)

is generated by

lk,i = εk,i + ε̃ k,i − εk+1, i+1 − ε̃ k+1, i ∈ L, (5.13)

where ε�+1, i+1 = ε̃ �+1, i = 0 is assumed. Let M ∈ Matd×2d be the relation matrix
with rows given by the generators lk,i , 1 ≤ i ≤ k ≤ �. The defining matrix, A ∈
Matd×2d(Z), should satisfy the orthogonality relation (2.7), AM� = 0 ∈ Matd×d(Z).
One might choose the rows of A to be the following:

αk,1 =
k∑

j=1

(εk, j − ε̃ k, j ), 1 ≤ k ≤ �,

αk,i =
i−1∑

j=1

εk− j, i− j +
k∑

j=i

(εk, j − ε̃ k, j ), 1 < i ≤ k ≤ �. (5.14)

Let us stress that GG-hypergeometric function (5.10) effectively depends only on the
d independent variables,

Ri (y, z) := y�,i + z�,i , 1 ≤ i ≤ �,

Bk,i (y, z) := yk,i + zk,i − yk+1, i+1 − zk+1, i , 1 ≤ i ≤ k < �, (5.15)

which is obvious from the integral representation (5.10). This may be attributed to the
set of linear Eq. (2.28) satisfied by the integral (5.10).
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Now let us introduce the following restriction of the GG-hypergeometric function
(5.10),

res

gl�+1
γ, ν (ex ) := 


gl�+1
γ, ν (ey, ez)

∣∣∣L, (5.16)

onto the �-dimensional linear subspace L ⊂ R
d with the coordinates xi − xi+1, 1 ≤

i ≤ �. Precisely, the subspace L is defined by the following constraints on the inde-
pendent coordinates (5.15) in Rd :

Ri (y, z) = xi − xi+1, 1 ≤ i ≤ �,

Bk,i (y, z) = 0, 1 ≤ i ≤ k < �. (5.17)

Lemma 5.1 For the following special values of spectral variables from (5.9),

γk,i (λ) = λk+1, 1 ≤ i ≤ k ≤ �; νk,k(λ) =
k∑

i=1

λi , 1 ≤ k ≤ �,

νk,i (λ) = 0, 1 ≤ i < k ≤ �, (5.18)

the restricted GG-hypergeometric function (5.16) is expressed through the gl�+1-
Whittaker function (5.6) as follows:

res

gl�+1
γ (λ), ν(λ)(e

x ) = e
−

�+1∑

i=1
λi x�+1

�
gl�+1
λ (ex ). (5.19)

Proof The identification directly follows by comparing explicit integral representa-
tions (5.6) and (5.10). 	


The difference in the exponential pre-factor may be taken into account by consid-
ering a slightly extended GKZ data and taking a limit of the resulting hypergeometric
function. Let us extend the sets I , J defined by the graph (5.7) by adding one ele-
ment to each J and I , and introduce the extended relation and defining matrices
M̂, Â ∈ Mat(d+1)×(2d+1)(Z):

Ĵ := J 
 {d + 1}, Î := I 
 {2d + 1}, d = �(� + 1)

2
,

M̂ :=
(

M 0

0 1

)
, Â :=

(
A 0

0 0

)
, ÂM̂� = 0 ∈ Mat(2d+1)×(2d+1)(Z), (5.20)

so that the extended relation lattice L̂ is spanned by its rows lk,i , (k, i) ∈ J and
ld+1 = (0, . . . , 0, 1). Then, the matrix element (3.16) associated with the GKZ data
(5.20) for γ∗ ∈ C, Re(γ∗) > 0 reads


̂γ,ν; γ∗(e
y, ez; ey∗) =

∫

R
2d+1+

dt2d+1

t2d+1
δ(e−y∗ t2d+1 − 1) tγ∗

2d+1 e−t2d+1

×
∏

1≤k≤i≤�

dak,i

ak,i

dbk,i

bk,i
a

γk,i
k,i b

νk,i
k,i e− ak,i eyk,i −bk,i e

zk,i
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×
�∏

i=1

δ
(

e−y�,i −z�,i a�,i b�,i − 1
)

×
∏

1≤i≤k<�

δ
(

e−yk,i −zk,i +yk+1, i+1+zk+1, i ak,i bk,i a
−1
k+1, i+1b−1

k+1, i − 1
)

= eγ∗ y∗ − ey∗ × 

gl�+1
γ, ν (ey, ez).

(5.21)

Therefore, the gl�+1-Whittaker function (5.6) can be obtained as the following limit
of the GG-hypergeometric function (5.21):

�
gl�+1
λ1,...,λ�+1

(ex ) = lim
ε→−∞

(
res
̂γ (λ),ν(λ); ε−1γ∗(e

x , eεy∗)
)∣∣∣ y∗=x�+1

γ∗=λ1+...+λ�+1

, (5.22)

where res
̂ is obtained by imposing the restrictions (5.17). Thus, gl�+1-Whittaker
function belongs to a partial compactification of the space of GG-hypergeometric
functions.

5.2 Maximal parabolic gl�+1-Whittaker function

Recall from [10] the definition of generalized Whittaker function associated with
maximal parabolic subalgebra p1,�+1 ⊂ gl�+1 (called the (1; �+1)-Whittaker function
in [10]). To the maximal parabolic subalgebra p(1,�+1), we associate the following
decomposition of gl�+1

gl�+1 = h(1; �+1) ⊕ n
(1; �+1)
− ⊕ n+, (5.23)

where n(1; �+1)
− ⊂ b− is the �(� + 1)/2-dimensional subalgebra generated by

E�+1, 1; Em+1, m, Em+1, m+1, 1 ≤ m < �. (5.24)

and h(1,�+1) is the (� + 1)-dimensional commutative subalgebra spanned by

h(1; �+1)
1 = E11, h(1; �+1)

2 = E22 + . . . + E�+1, �+1,

h(1; �+1)
m+1 = E�+1, m, 1 < m ≤ �. (5.25)

For λ = (λ1, . . . , λ�+1) ∈ C
�+1, let (ρλ, Wλ) be the principal series representation

ofU(gl�+1). Then, we choose the appropriately defined dual module (ρ∨
λ ,W∨

λ ). Given

the decomposition (5.23), we introduce the pair of vectors ψ
(1; �+1)
L ∈ W∨

λ and ψR ∈
Wλ to be the generic characters of the subalgebras n(1; �+1)

− and n+, where n(1; �+1)
− is

generated by (5.24) (see [10, 17]):

ρ∨
λ (E�+1, 1)ψ

(1; �+1)
L = −(−1)

�(�−1)
2 ψ

(1; �+1)
L ,
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ρ∨
λ (E21)ψ(1; �+1)

L = ρ∨
λ (Em+1, m)ψ

(1; �+1)
L = 0, 1 < m < �; (5.26)

and

ρλ(Ei, i+1)ψR = −ψR, 1 ≤ i ≤ �. (5.27)

We imply the existence of gl�+1-invariant non-degenerate pairing 〈, 〉 between the

submodules U(gl�+1)ψ
(1; �+1)
L ⊆ W∨

λ and U(gl�+1)ψR ⊆ Wλ. Then, the maximal
parabolic Whittaker function is defined by the following matrix element:

�
(1; �+1)
λ (ex1 , ex2 , . . . , ex�+1) = ex1−x�+1〈ψ(1; �+1)

L , ρλ

(
e
∑

j x j h(1; �+1)
j

)
ψR〉.

(5.28)

The expression (5.28) implies that the action of the part of subalgebra b− ⊂ gl�+1 may
be integrated to the action of the corresponding group. In the following, we consider
the restricted maximal parabolic Whittaker function [10, 17], for Re(λi ) > 0, 1 ≤
i ≤ � + 1 given by

�
(1; �+1)
λ (ex ) := �

(1; �+1)
λ (ex , 1 . . . , 1) = ex 〈ψ(1; �+1)

L , ρλ(e
x E11)ψR〉

= eλ�+1x
∫

R
�+

�∏

i=1

dti
ti

tλi −λ�+1
i e−ti e

−ex
�∏

i=1
t−1
i

=
∫

R
�+1+

�+1∏

i=1

dti
ti

tλi
i e−ti δ

(
e−x

�+1∏

i=1

ti − 1

)
. (5.29)

Therefore, we only shall assume that the action of the generator h(1; �+1)
1 = E11 ∈

h(1; �+1) integrates to the action of the corresponding one-parameter subgroup in
GL�+1(R).

To put the restricted maximal parabolic Whittaker function (5.29) into the
framework of GG-hyper- geometric functions, consider the following instance of
GKZ-system with |J | = 1, |I | = N = � + 1, m = � and the following matrices
A ∈ Mat�×(�+1)(Z) and M ∈ Mat1×(�+1)(Z)

M = (1 . . . 1), A =
⎛

⎜
⎝

1 −1 0 ... 0

0
. . .

. . .
. . .

...
...
. . .

. . .
. . . 0

0 ... 0 1 −1

⎞

⎟
⎠ ,

A� = (α1, . . . , α�), α j = ε j − ε j+1 ∈ Z
�+1, M A� = 0. (5.30)
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Here {ε j : j ∈ I } ⊂ Z
�+1 is the standard basis. Let L�+1 be the Lie algebra (3.1),

and for λ = (λ1, . . . , λ�+1) ∈ C
�+1, Re(λi ) > 0, let πλ be the U(L�+1)-module Vλ

(3.3) modeled on S(R�+1+ ). Vector φR ∈ Vλ and covector φL ∈ V∨
λ read from (3.10):

φR(t) =
∏

i∈I

e−ti , φL(t) = tλi −1
i δ

(∏

j∈I

t j − 1
)
. (5.31)

Then, the matrix element (3.16) in the L�+1-representation Vλ affords the following
integral representation:



(1; �+1)
λ1,...,λ�+1

(ey1 , . . . , ey�+1) = 〈
φL , πλ

(
e
∑

i yiHi

)
φR
〉

(5.32)

=
∫

R
�+1+

∏

i∈I

dti
ti

tλi
i eλi yi − ti eyi

δ

(∏

j∈I

t j − 1

)

=
∫

R
�+1+

∏

i∈I

dti
ti

tλi
i e− ti δ

(∏

j∈I

e−y j t j − 1

)
. (5.33)

Let us introduce variables ui := eyi , i ∈ I and write (5.32) as follows:



(1; �+1)
λ1,...,λ�+1

(u1, . . . , u�+1) =
∫

R
�+1+

∏

i∈I

dti
ti

tλi
i e− ti δ

(∏

j∈I

u−1
j t j − 1

)
. (5.34)

By the results of Sect. 2, (or via a simple direct computation), the GG-hypergeometric
function 


(1; �+1)
λ (u) satisfies the following instances of Eqs. (2.25)–(2.29):

∏

i∈I

(
− ∂

∂ui
+ λi

ui

)
· 


(1; �+1)
λ (u) = 


(1; �+1)
λ (u);

∏

i∈I

e∂λi · 

(1; �+1)
λ (u) =

∏

i∈I

ui 

(1; �+1)
λ (u);

(
ui

∂

∂ui
− u j

∂

∂u j

)
· 


(1; �+1)
λ (u) = 0, i �= j;

{
e∂λi − e∂λ j

}
· 


(1; �+1)
λ (u) = 0, i �= j, (5.35)

and the following instance of (2.43):

{
− ui

∂

∂ui
+ λi

}
· 


(1; �+1)
λ (u) = e∂λi · 


(1; �+1)
λ (u). (5.36)
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The first line of equations in (5.35) can be written in the following form:

{∏

i∈I

(
− ui

∂

∂ui
+ λi

)
−
∏

i∈I

ui

}
· 


(1; �+1)
λ (u) = 0, (5.37)

As a consequence of the third line of equations in (5.35), the function 

(1; �+1)
λ (u)

reduces to a function in one variable



(1; �+1)
λ1,...,λ�+1

(ey1 , . . . , ey�+1) = 
̃
(1; �+1)
λ1,...,λ�+1

(ex ), x = y1 + . . . + y�+1, (5.38)

satisfying the reduced form of (5.37):

{∏

i∈I

(
− ∂

∂x
+ λi

)
− ex

}
· 
̃

(1; �+1)
λ (ex ) = 0. (5.39)

Indeed, Eq. (5.37) is a simple consequence of the first line in (5.35). By the third
equation in (5.35), the function (5.33) depends on a single variable x = y1+. . .+y�+1:



(1; �+1)
λ1,...,λ�+1

(ey1 , . . . , ey�+1) =
∫

R
�+1+

∏

i∈I

dti
ti

tλi
i e− ti δ

(
e
−

�+1∑

j=1
y j ∏

j∈I

t j − 1

)
. (5.40)

Thus,wemay introduce the function 
̃λ1,...,λ�+1(e
x ), which by (5.38) has the following

integral representation:


̃
(1; �+1)
λ1,...,λ�+1

(ex ) :=
∫

R
�+1+

∏

i∈I

dti
ti

tλi
i e− ti δ

(
e−x

∏

j∈I

t j − 1
)
, (5.41)

and satisfies Eq. (5.39) by construction.
Finally, we may identify the maximal parabolic Whittaker function �

(1; �+1)
λ1,...,λ�+1

(ex )

defined by (5.29) with the reduced GG-hypergeometric function (5.38) as follows:

�
(1; �+1)
λ1,...,λ�+1

(ex ) = 
̃
(1; �+1)
λ1,...,λ�+1

(ex ). (5.42)
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