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Abstract
Let (X , rX ) and (Y , rY ) be finite nondegenerate involutive set-theoretic solutions of
the Yang–Baxter equation, and let AX = A(k, X , rX ) and AY = A(k,Y , rY ) be
their quadratic Yang–Baxter algebras over a field k. We find an explicit presentation
of the Segre product AX ◦ AY in terms of one-generators and quadratic relations.
We introduce analogues of Segre maps in the class of Yang–Baxter algebras and find
their images and their kernels. The results agree with their classical analogues in the
commutative case.
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1 Introduction

It was established in the last three decades that solutions of the linear braid or Yang–
Baxter equations (YBE)

r12r23r12 = r23r12r23

on a vector space of the form V⊗3 lead to remarkable algebraic structures. Here,
r : V ⊗ V −→ V ⊗ V , r12 = r ⊗ id, r23 = id ⊗ r is a notation and structures
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include coquasitriangular bialgebras A(r), their quantum group (Hopf algebra) quo-
tients, quantum planes and associated objects, at least in the case of specific standard
solutions, see [21, 30]. On the other hand, the variety of all solutions on vector spaces
of a given dimension has remained rather elusive in any degree of generality. It was
proposed by Drinfeld [4], to consider the same equations in the category of sets, and
in this setting, numerous results were found. It is clear that a set-theoretic solution
extends to a linear one, but more important than this is that set-theoretic solutions
lead to their own remarkable algebraic and combinatoric structures, only somewhat
analogous to quantum group constructions. In the present paper, we continue our sys-
tematic study of set-theoretic solutions of YBE and the associated quadratic algebras
that they generate.

The study of non-commutative algebras defined by quadratic relations as examples
of quantum non-commutative spaces has undoubtedly received considerable impe-
tus from the seminal work [5], where the authors considered general deformations
of quantum groups and spaces arising from an R-matrix, and from Manin’s program
for non-commutative geometry [23]. The quadratic algebras related to set-theoretic
solutions of the Yang–Baxter equation studied here are important for both noncom-
mutative algebra and non-commutative algebraic geometry, as they provide a rich
source of examples of interesting associative algebras and non-commutative spaces
some of which are Artin-Schelter regular algebras. Our work is motivated by the rel-
evance of those algebras for non-commutative geometry, especially in relation to the
theory of quantum groups, and inspired by the interpretation of morphisms between
non-commutative algebras as “maps between non-commutative spaces”. In [14] and
the present paper, we consider non-commutative analogues of the Veronese and Segre
embeddings, two fundamental maps that play pivotal roles not only in classical alge-
braic geometry but also in applications to other fields of mathematics.

In this paper “a solution of YBE,” or shortly, “a solution” means “a nondegenerate
involutive set-theoretic solution of YBE,” see Definition 2.5.

The Yang–Baxter algebras AX = A(k, X , r) related to solutions (X , r), of finite
order |X | = n will play a central role in the paper. It was proven in [17] that the
quadratic algebraAX of every finite solution (X , r) of YBE has remarkable algebraic,
homological and combinatorial properties. In general, the algebra AX is noncommu-
tative and in most cases it is not even a PBW algebra, but it preserves various good
properties of the commutative polynomial ring k[x1, . . . , xn]: AX has finite global
dimension and polynomial growth, it is Cohen-Macaulay, Koszul, and a Noetherian
domain.

It was shown through the years that there are close relations between various
combinatorial properties of the solution (X , r) and the properties of the correspond-
ing algebra AX , see [9, 10, 12, 13, 16, 29]. In the special case when (X , r) is a
finite nondegenerate involutive square-free quadratic set whose quadratic algebra
AX = A(k, X , r) has a k-basis of Poincaré–Birkhoff–Witt type, the conditions “A is
an Artin-Schelter regular algebra” and “(X , r) is a solution of YBE” are equivalent,
see details in Sect. 2. The study of Artin-Schelter regular algebras is a central problem
for noncommutative algebraic geometry.

A first stage of noncommutative geometry on AX = A(k, X , r) was proposed in
[16], Sect. 6, where the quantum spaces under investigation are Yang–Baxter algebras
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A(k, X , r) associated with multipermutation (square-free) solutions of level two. In
[2] a class of quadratic PBWalgebras called “noncommutative projective spaces”were
investigated and analogues of Veronese and Segre morphisms between noncommuta-
tive projective spaces were introduced and studied. It is natural to formulate similar
problems for the class of Yang–Baxter algebrasA = A(k, X , r) related to finite solu-
tions (X , r), but to find reasonable solutions of these problems is a nontrivial task.
In contrast with [2], where the “noncommutative projective spaces” under investiga-
tion have almost commutative quadratic relations which form Gröbner bases, and the
main results follow naturally from the theory of Noncommutative Gröbner bases, the
Yang–Baxter algebras A = A(k, X , r) have complicated quadratic relations, which
in most cases do not form Gröbner bases. These relations remain complicated even
whenA is a PBW algebra, so we need more sophisticated arguments and techniques,
see for example [14]. In the present paper, we consider the following problem.

Problem 1.1 Let (X , rX ) and (Y , rY ) be finite (not necessarily square-free) solutions
of YBE whose Yang–Baxter algebras are A = A(k, X , r) and B = A(k,Y , rY ),

respectively.

(1) Find a presentation of the Segre product A ◦ B in terms of one-generators and
linearly independent quadratic relations.

(2) Introduce analogues of Segre maps for the class of Yang–Baxter algebras of finite
solutions of YBE.

(3) Study separately Segre products and analogues of Segre maps in the special case
when (X , rX ) and (Y , rY ) are square-free solutions. (Note that only in this case
the algebras A and B are binomial skew polynomial rings).

The special attention to Problem 1.1 (3) is motivated by Remarks 2.13 and 2.14.
Our main results are Theorems 3.10, 4.5 and 5.1 which solve completely the prob-

lem.
The paper is organized as follows. In Sect. 2, we recall some basic definitions, we fix

the main settings and conventions we present useful facts about the Yang–Baxter alge-
brasAX = A(k, X , r), results adapted to our settings and needed for the proofs of the
main theorems. In Sect. 3, we study the Segre product A ◦ B of the Yang–Baxter alge-
bras A = A(k, X , r1) and B = A(k,Y , r2) of two finite solutions (X , r1) and (Y , r2),
respectively. We prove Theorem 3.10 which gives an explicit finite presentation of the
Segre product A ◦ B in terms of one-generators and linearly independent quadratic
relations. In Sect. 4, we introduce analogues of Segre morphisms sm,n for quantum
spaces A = A(k, X , r1) and B = A(k,Y , r2) related to finite solutions (X , r1) and
(Y , r2) of orders m and n, respectively. We involve an abstract solution (Z , rZ ) of
order mn which is isomorphic to the Cartesian product of solutions (X × Y , rX×Y )

and define the Segre map sm,n A(k, Z , rZ ) −→ A ⊗ B. Theorem 4.5 shows that the
image of the map sm,n is the Segre product A ◦ B and describes explicitly a minimal
set of generators for its kernel. Corollary 4.6 shows that the Segre product A ◦ B
is left and right Noetherian. The results agree with their classical analogues in the
commutative case, [18]. We end the section with open questions, see Questions 4.7.
In Sect. 5, we pay special attention to the subclass of Yang–Baxter algebras of finite
square-free solutions. It is known that all algebras in this subclass are binomial skew
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polynomial rings, see [29]. Theorem 5.1 shows that the Segre product A◦ B of the YB
algebras A = A(k, X , r1) and B = A(k,Y , r2) is a PBW algebra, whenever (X , r1)
and (Y , r2) are finite square-free solutions and provides an explicit standard finite
presentation of A ◦ B in terms of PBW generators and quadratic relations which form
a Gröbner basis. The theorem implies that analogues of Segre maps are well-defined
in the subclass of YB algebras of finite square-free solutions. In Sect. 6, we give an
example which illustrates our results.

2 Preliminaries

Let X be a non-empty set, and let k be a field. We denote by 〈X〉 the free monoid
generated by X , where the unit is the empty word denoted by 1, and by k〈X〉-the
unital free associative k-algebra generated by X . For a non-empty set F ⊆ k〈X〉, (F)

denotes the two sided ideal of k〈X〉 generated by F . When the set X is finite, with
|X | = n, and ordered, we write X = {x1, . . . , xn} and fix the degree-lexicographic
order< on 〈X〉, where x1 < · · · < xn . In what follows,N denotes the set of all positive
integers, and N0 is the set of all non-negative integers.

We shall consider associative graded k-algebras. Suppose A = ⊕
m∈N0

Am is a
graded k-algebra such that A0 = k, Ap Aq ⊆ Ap+q , p, q ∈ N0, and such that A is
finitely generated by elements of positive degree. Recall that its Hilbert function is
hA(m) = dim Am and itsHilbert series is the formal series HA(t) = ∑

m∈N0
hA(m)tm .

In particular, the algebra k[X ] = k[x1, . . . , xn] of commutative polynomials satisfies

hk[X ](d) =
(
n + d − 1

d

)

=
(
n + d − 1

n − 1

)

and Hk[X ] = 1

(1 − t)n
. (2.1)

We shall use the natural grading by length on the free associative algebra k〈X〉. For
m ≥ 1, Xm will denote the set of all words u = xi1 . . . xim of length m in 〈X〉. Then,

〈X〉 =
⊔

m∈N0

Xm, X0 = {1}, and Xk Xm ⊆ Xk+m,

so the free monoid 〈X〉 is naturally graded by length.
Similarly, the free associative algebra k〈X〉 is also graded by length:

k〈X〉 =
⊕

m∈N0

k〈X〉m, where k〈X〉m = kXm .

A polynomial f ∈ k〈X〉 is homogeneous of degree m if f ∈ kXm . We denote by

T = T (X) := {
xα1
1 . . . xαn

n ∈ 〈X〉 | αi ∈ N0, i ∈ {1, . . . , n}}

the set of ordered monomials (terms) in 〈X〉.
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2.1 Gröbner bases for ideals in the free associative algebra

We shall briefly remind some basics on noncommutative Gröbner bases which will be
used throughout the paper. In this subsection, X = {x1, . . . , xn}. Suppose f ∈ k〈X〉 is
a nonzero polynomial. Its leading monomial with respect to the degree-lexicographic
order < on 〈X〉 will be denoted by LM( f ). One has LM( f ) = u if f = cu +∑

1≤i≤m ciui , where c, ci ∈ k, c �= 0 and u > ui in 〈X〉, for every i ∈ {1, . . . ,m}.
Given a set F ⊆ k〈X〉 of non-commutative polynomials, LM(F) denotes the set

LM(F) = {LM( f ) | f ∈ F}.

Amonomial u ∈ 〈X〉 is normal modulo F if it does not contain any of the monomials
LM( f ), f ∈ F as a subword. The set of all normal monomials modulo F is denoted
by N (F).

Let I be a two sided graded ideal in k〈X〉 and let Im = I ∩ kXm . We shall assume
that I is generated by homogeneous polynomials of degree ≥ 2 and I = ⊕

m≥2 Im .
Then, the quotient algebra A = k〈X〉/I is finitely generated and inherits its grading
A = ⊕

m∈N0
Am from k〈X〉. We shall work with the so-called normal k-basis of A.

We say that a monomial u ∈ 〈X〉 is normal modulo I if it is normal modulo LM(I ).
We set

N (I ) := N (LM(I )).

In particular, the free monoid 〈X〉 splits as a disjoint union

〈X〉 = N (I )  LM(I ). (2.2)

The free associative algebra k〈X〉 splits as a direct sum of k-vector subspaces

k〈X〉 � SpankN (I ) ⊕ I ,

and there is an isomorphism of vector spaces A � SpankN (I ).
It follows that every f ∈ k〈X〉 can be written uniquely as f = f0 + h, where

f0 ∈ kN (I ) and h ∈ I . The element f0 is called the normal form of f (modulo I )
and denoted by Nor( f ). We define

N (I )m = {u ∈ N (I ) | u has length m}.

In particular, N (I )1 = X , and by definition N (I )0 = 1. Then, Am � SpankN (I )m
for every m ∈ N0.

A subset G ⊆ I of monic polynomials is a Gröbner basis of I (with respect to the
ordering < on 〈X〉) if
(1) G generates I as a two-sided ideal, and
(2) for every f ∈ I there exists g ∈ G such that LM(g) is a subword of LM( f ), that

is LM( f ) = aLM(g)b, for some a, b ∈ 〈X〉.
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A Gröbner basis G of I is reduced if (i) the set G \ { f } is not a Gröbner basis of I ,
whenever f ∈ G, and (ii) each f ∈ G is a linear combination of normal monomials
modulo G \ { f }.

It is well-known that every ideal I of k〈X〉 has a unique reduced Gröbner basis
G0 = G0(I ) with respect to <. However, G0 may be infinite. For more details, we
refer the reader to [20, 24, 25].

Bergman’s Diamond lemma [3, Theorem 1.2] implies the following.

Remark 2.1 Let G ⊂ k〈X〉 be a set of noncommutative polynomials. Let I = (G)

and let A = k〈X〉/I . Then, the following conditions are equivalent. (1) The set G is a
Gröbner basis of I . (2) Every element f ∈ k〈X〉 has a unique normal form, Nor( f ),
modulo G. (3) There is an equality N (G) = N (I ), so there is an isomorphism of
vector spaces

k〈X〉 � I ⊕ kN (G).

(4) The image of N (G) in A is a k-basis of A. In this case A can be identified with
the k-vector space kN (G), made a k-algebra by the multiplication a · b := Nor(ab).

In this paper, we focus on a class of quadratic finitely presented algebras A associ-
ated with finite set-theoretic solutions (X , r) of the Yang–Baxter equation. Following
Yuri Manin, [22], we call them Yang–Baxter algebras.

2.2 Quadratic algebras

A quadratic algebra is an associative graded algebra A = ⊕
i≥0 Ai over a ground field

k determined by a vector space of generators V = A1 and a subspace of homogeneous
quadratic relations R = R(A) ⊂ V ⊗ V . We assume that A is finitely generated, so
dim A1 < ∞. Thus, A = T (V )/(R) inherits its grading from the tensor algebra T (V ).

As usual, we take a combinatorial approach to study A. The properties of A will be
read off a finite presentation A = k〈X〉/(�), where by convention, X is a fixed finite
set of generators of degree 1, (X is a basis of A1), |X | = n, and (�) is the two-sided
ideal of relations, generated by a finite linearly independent set � of homogeneous
polynomials of degree two.

Definition 2.2 A quadratic algebra A is a Poincarè–Birkhoff–Witt type algebra or
shortly a PBW algebra if there exists an enumeration X = {x1, . . . , xn} of X , such
that the quadratic relations � form a (noncommutative) Gröbner basis with respect to
the degree-lexicographic ordering< on 〈X〉. In this case, the set of normal monomials
(mod �) forms a k-basis of A called a PBW basis and x1, . . . , xn (taken exactly with
this enumeration) are called PBW-generators of A.

The notion of a PBW algebra was introduced by Priddy, [27]. His PBW basis is a gen-
eralization of the classical Poincaré–Birkhoff–Witt basis for the universal enveloping
of a finite dimensional Lie algebra. PBW algebras form an important class of Koszul
algebras. The interested reader can find information on quadratic algebras and, in par-
ticular, on Koszul algebras and PBW algebras in [26]. A special class of PBW algebras
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important for this paper is the binomial skew polynomial rings, introduced and studied
first in [7, 8].

Definition 2.3 A binomial skew polynomial ring is a quadratic algebra A =
k〈x1, . . . , xn〉/(�0) with precisely

(n
2

)
defining relations

�0 = { f j i = x j xi − ci j xi ′x j ′ | 1 ≤ i < j ≤ n} such that (2.3)

(a) ci j ∈ k×; (b) For every pair i, j, 1 ≤ i < j ≤ n, the relation x j xi−ci j xi ′x j ′ ∈ �0,

satisfies j > i ′, i ′ < j ′; (c) Every ordered monomial xi x j ,with 1 ≤ i < j ≤ n occurs
(as a second term) in some relation in �0; (d) The set �0 is the reduced Gröbner basis
of the two-sided ideal (�0), with respect to the degree-lexicographic order< on 〈X〉, or
equivalently, (d′) The set of terms T = {

xα1
1 . . . xαn

n ∈ 〈X〉 | αi ∈ N0, i ∈ {0, . . . , n}}
projects to a k-basis of A.

The equivalence of (d) and (d′) follows from Remark 2.1.
Clearly, each binomial skew polynomial ring A is a PBW algebra with a set of PBW

generators x1, . . . , xn .Moreover, A defines via its relations a square-free solutionof the
Yang–Baxter equation, see [17]. Conversely, if (X , r) is a finite square-free solution,
then there exists an enumeration X = {x1, x2, . . . , xn} such that the Yang–Baxter
algebra A(k, X , r) is a binomial skew-polynomial ring, see [29].

Example 2.4 Let A = k〈x1, x2, x3, x4〉/(�0), where

�0 = {x4x2 − x1x3, x4x1 − x2x3, x3x2 − x1x4, x3x1
−x2x4, x4x3 − x3x4, x2x1 − x1x2}.

The algebra A is a binomial skew-polynomial ring. It is a PBW algebra with PBW
generators X = {x1, x2, x3, x4}. The relations of A define in a natural way a solution
of the Yang–Baxter equation.

2.3 Set-theoretic solutions of the Yang–Baxter equation and their Yang–Baxter
algebras

Definition 2.5 [9, 15] Let X be a nonempty set, and let r : X × X −→ X × X be a
bijective map. Then, the pair (X , r) is called a quadratic set. (This is a set-theoretic
analogue of “a quadratic algebra”).

The image of (x, y) under r is presented as

r(x, y) = (x y, x y).

This formula defines a “left action” L : X × X −→ X , and a “right action” R :
X × X −→ X , on X as: Lx (y) = x y, Ry(x) = x y , for all x, y ∈ X . (i) (X , r) is
non-degenerate, if the maps Lx and Rx are bijective for each x ∈ X . (ii) (X , r) is
involutive if r2 = idX×X . (iii) (X , r) is square-free if r(x, x) = (x, x) for all x ∈ X .

123



34 Page 8 of 34 T. Gateva-Ivanova

(iv) (X , r) is a set-theoretic solution of the Yang–Baxter equation (YBE) if the braid
relation

r12r23r12 = r23r12r23

holds in X×X×X ,where r12 = r×idX , and r23 = idX ×r . In this case, (X , r) is also
called a braided set. (v) A braided set (X , r) with r involutive is called a symmetric
set. (vi) A nondegenerate symmetric set will be called “a solution of YBE”, or shortly,
“a solution”.

Convention 2.6 In this paper, we shall always assume that (X , r) is nondegenerate.
“A solution of YBE”, or simply “a solution” means “a non-degenerate symmetric set”
(X , r), where X is a set of arbitrary cardinality.

As a notational tool, we shall often identify the sets X×m of ordered m-tuples,
m ≥ 2, and Xm, the set of all monomials of length m in the free monoid 〈X〉.
Sometimes for simplicity, we shall write r(xy) instead of r(x, y).

Definition 2.7 [9, 15] To each quadratic set (X , r) we associate canonically algebraic
objects generated by X and with quadratic relations � = �(r) naturally determined
as

xy = y′x ′ ∈ �(r) iff r(x, y) = (y′, x ′) and (x, y) �= (y′, x ′) hold in X × X .

The monoid associated with (X , r) is defined as S = S(X , r) = 〈X; �(r)〉. It has a
set of generators X and a set of defining relations �(r). For an arbitrary fixed field k,
the k-algebra associated with (X , r) is defined as

A = A(k, X , r) = k〈X〉/(�0),where �0 = {xy − y′x ′ | r(xy) = y′x ′

and r(xy) �= xy holds in X2}.

Clearly, A is a quadratic algebra generated by X and with defining relations �0 (or
equivalently,�(r) ), which is isomorphic to themonoid algebrakS(X , r).When (X , r)
is a solution of YBE, A is called an Yang–Baxter algebra, or shortly an YB algebra.

Suppose (X , r) is a finite quadratic set. Then, A = A(k, X , r) is a connected
graded k-algebra (naturally graded by length), A = ⊕

i≥0 Ai , where A0 = k, and
each graded component Ai is finite dimensional.

By [11, Proposition 2.3.] if (X , r) is a nondegenerate involutive quadratic set of
finite order |X | = n then the set �(r) consists of precisely

(n
2

)
quadratic relations. In

this case, the associated algebra A = A(k, X , r) satisfies

dimA2 =
(
n + 1

2

)

.

Definition-Notation 2.8 [13] Suppose (X , r) is an involutive quadratic set. Then,
the cyclic group 〈r〉 = {1, r} acts on the set X2 and splits it into disjoint r -orbits
{xy, r(xy)}, where xy ∈ X2. An r -orbit {xy, r(xy)} is non-trivial if xy �= r(xy). The
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element xy ∈ X2 is an r -fixed point if r(xy) = xy. The set of r -fixed points in X2

will be denoted by F(X , r):

F(X , r) = {xy ∈ X2 | r(xy) = xy}. (2.4)

The following useful corollary is a consequence from [13, Lemma 3.7].

Corollary 2.9 Let (X , r) be a nondegenerate symmetric set of finite order |X | = n,A =
A(k, X , r). (1) There are exactly n fixed pointsF = F(X , r) = {x1y1, . . . , xn yn} ⊂
X2, so |F(X , r)| = |X | = n. In the special case, when (X , r) is a square-free solution,
one has F(X , r) = �2 = {xx | x ∈ X}, the diagonal of X2. (2) The number of non-
trivial r-orbits is exactly

(n
2

)
. Each such an orbit has two distinct elements: xy and

r(xy), where xy, r(xy) ∈ X2. (3) The set X2 splits into
(n+1

2

)
r-orbits. For xy, zt ∈ X2

there is an equality xy = zt in A iff zt ∈ {xy, r(xy)}.
The following lemma is involved in our interpretation of [17, Theorem 1.3]) as

Facts 2.11 (1), which is used in our proofs.

Lemma 2.10 [14, Lemma 3.2] Every nondegenerate involutive quadratic set (X , r)
satisfy the following condition:

Given a, b ∈ X there exist unique c, d ∈ X such that r(ca) = db.
Furthermore, if a = b, then c = d.

(2.5)

The following facts are a compilation of results from [17] and are true for every
finite nondegenerate symmetric set (X , r).

Facts 2.11 Suppose (X , r) is a finite solution of YBE of order n, X = {x1, . . . , xn}.
Let S = S(X , r) be the associated monoid and let A = A(k, X , r) be the associated
Yang–Baxter algebra. Then, the following conditions hold.

(1) (A modified version of [17, Theorem 1.3])
S is a semigroup of I -type, that is there is a bijective map v : U �→ S, where U
is the free n-generated abelian monoid U = [u1, . . . , un] such that v(1) = 1, and
such that

{v(u1a), . . . , v(una)} = {x1v(a), . . . , xnv(a)}, for all a ∈ U .

(2) The Hilbert series of A is HA(t) = 1/(1 − t)n .
(3) [17, Theorem 1.4] (a) A has finite global dimension and polynomial growth; (b) A

is Koszul; (c) A is left and right Noetherian; (d) A satisfies the Auslander condition
and is Cohen-Macaulay.

(4) [17, Corollary 1.5] A is a domain, and in particular, the monoid S is cancellative.

For convenience of the reader, we shall make a brief observation. Note first that
the hypothesis of Facts 2.11 is satisfied by arbitrary finite solution (a nondegener-
ate symmetric set) (X , r) which is not necessarily square free, possibly the algebra
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A = A(k, X , r) is not a binomial skew polynomial ring, or equivalently, A is not a
PBW algebra.

Next observe that part (1) of Facts 2.11 is a modification of the original second part
of [17, Theorem 1.3] which states (in our terminology): “Suppose that (X , r) is a finite
symmetric set of order n satisfying the condition (2.5). Then, the monoid S(X , r) is
of I type.” However, under the hypothesis of Facts 2.11, Lemma 2.10 implies the
necessary condition (2.5).

The following corollary is straightforward from Facts 2.11 (1) and will be used
throughout the paper.

Corollary 2.12 In notation and conventions as above, let (X , r) be a finite solution of
YBE. Then for every integer d ≥ 1, there are equalities

dimAd =
(
n + d − 1

d

)

= |Nd |. (2.6)

The following remark observes the importance of finite square-free solutions and
their close relations to Artin-Schelter regularity. The results are extracted from [10,
12, 17] and [29].

Remark 2.13 Suppose (X , r) is a square-free nondegenerate and involutive quadratic
set of order n. LetA = A(k, X , r) be the associated quadratic algebra. The following
conditions are equivalent.

(1) A is an Artin-Schelter regular PBW algebra.
(2) (X , r) is a solution of YBE.
(3) There exists an enumeration X = {x1, x2, . . . , xn} such thatA is a binomial skew-

polynomial algebra.

The implication (1)�⇒ (3) follows from [12, Theorem 1.2]. (3) �⇒ (1) is proven
in [10, Theorem B] (see also [17]). (3) �⇒ (2) is proven in [17, Theorem 1.1]. The
implication (2) �⇒ (3) was conjectured by the author and proven by Rump, see [29,
Theorem 1].

Remark 2.14 Note that among all Yang–Baxter algebras of finite solutions studied
in this paper, the only PBW algebras A = A(K , X , r) are those corresponding to
square-free solutions. Indeed, our recent result [14, Theorem 3.8] shows that if (X , r)
is a finite solution of YBE such that its Yang–Baxter algebra A = A(K , X , r) is a
PBW algebra with a set of PBW generators X = {x1, x2, . . . , xn}, then (X , r) is a
square-free solution.

Convention 2.15 Let (X , r) be a finite solution of YBE of order n, and let A =
A(k, X , r) be the associated Yang–Baxter algebra. (a) If (X , r) is square-free we fix
an enumeration such that X = {x1, . . . , xn} is a set of PBW generators of A. In this
case, A is a binomial skew polynomial ring, see Definition 2.3. (b) If (X , r) is not
square-free, we fix an arbitrary enumeration X = {x1, . . . , xn} on X .

In each of the cases (a) and (b), we extend the fixed enumeration on X to the
degree-lexicographic ordering < on 〈X〉. By convention the Yang–Baxter algebra,
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A = AX = A(k, X , r) is presented as

A = A(k, X , r) = k〈X〉/(�) � k〈X; �(r)〉, where
� = �A = {xy − y′x ′ | xy > y′x ′, and r(xy) = y′x ′}. (2.7)

Consider the two-sided ideal I = (�) of k〈X〉, let G = G(I ) be the unique reduced
Gröbner basis of I with respect to <. Here, we do not need an explicit description
of the reduced Gröbner basis G of I , but we need some details. In the case (a), one
has G = �. It follows from Remark 2.14 that in the case (b), the set of relations
� is not a Gröbner basis of I , but � � G. Moreover, the shape of the relations
� and standard techniques from noncommutative Gröbner bases theory imply that
the Gröbner basis G is finite, or countably infinite, and consists of homogeneous
binomials f j = u j − v j , where LM( f j ) = u j > v j , and u j , v j ∈ Xm , for some
m ≥ 2. The set of all normal monomials modulo I is denoted byN . As we mentioned
above, N = N (I ) = N (G). An element f ∈ k〈X〉 is in normal form (modulo I ),
if f ∈ SpankN . The free monoid 〈X〉 splits as a disjoint union 〈X〉 = N  LM(I ).
The free associative algebra k〈X〉 splits as a direct sum of k-vector subspaces k〈X〉 �
SpankN ⊕ I , and there is an isomorphism of vector spaces A � SpankN . As usual,
we denote Nd = {u ∈ N | u has length d}. Then, Ad � SpankNd for every d ∈ N0.
One has dimAd = |Nd | = (n+d−1

d

)
, ∀d ≥ 0. Note that since the set of relations � is

a finite set of homogeneous polynomials, the elements of the reduced Gröbner basis
G = G(I ) of degree ≤ d can be found effectively, (using the standard strategy for
constructing a Gröbner basis), and therefore, the set of normal monomialsNd can be
found inductively for d = 1, 2, 3, . . .. It follows from Bergman’s Diamond lemma, [3,
Theorem 1.2], that if we consider the space kN endowed with multiplication defined
by

f · g := Nor( f g), for every f , g ∈ kN ,

then (kN , ·) has a well-defined structure of a graded algebra, and there is an isomor-
phism of graded algebras

A = A(k, X , r) ∼= (kN , ·), so A =
⊕

d∈N0

Ad ∼=
⊕

d∈N0

kNd .

By convention, we shall often identify the algebra A with (kN , ·).
In the case (a) when (X , r) is square-free, the set of normal monomials is exactly T

(the set of ordered terms in X ), soA is identified with (kT , ·) and S(X , r) is identified
with (T , ·).

3 Segre products of Yang–Baxter algebras

In this section, we investigate the Segre products of Yang–Baxter algebras. The main
result of the section is Theorem 3.10.
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3.1 Segre products of quadratic algebras

In [6], Fröberg andBackelinmade a systematic account onKoszul algebras and showed
that their properties are preserved under various constructions such as tensor products,
Segre products, and Veronese subalgebras. Our main reference on Segre products of
quadratic algebras and their properties is [26, Section 3.2]. An interested reader may
find results on Segre product of specific Artin-Schelter regular algebras in [32], and
on twisted Segre product of noetherian Koszul Artin-Schelter regular algebras in [19].

We first recall the notion of Segre product of graded algebras as follows [26, Ch 3
Sect 2, Def. 1].

Definition 3.1 Let

A = k ⊕ A1 ⊕ A2 ⊕ . . . and B = k ⊕ B1 ⊕ B2 ⊕ · · ·

be N0− graded algebras over a field k, where k = A0 = B0. The Segre product of A
and B is the N0-graded algebra

A ◦ B :=
⊕

i≥0

(A ◦ B)i with (A ◦ B)i = Ai ⊗k Bi .

The Segre product A ◦ B is a subalgebra of the tensor product algebra A⊗ B. Note
that the embedding is not a graded algebra morphism, as it doubles grading. If A and
B are locally finite then the Hilbert function of A ◦ B satisfies

hA◦B(t) = dim(A ◦ B)t = dim(At ⊗ Bt )

= dim(At ) · dim(Bt ) = hA(t) · hB(t), (3.1)

and for the Hilbert series, one has

HA(t) = �n≥0(dim An)t
n, HB(t) = �n≥0(dim Bn)t

n,

HA◦B(t) = �n≥0(dim An)(dim Bn)t
n .

The Segre product, A ◦ B, inherits various properties from the two algebras A and
B. In particular, if both algebras are one-generated, quadratic, and Koszul, it follows
from [26, Chap 3.2, Proposition 2.1] that the algebra A ◦ B is also one-generated,
quadratic, and Koszul.

The following remark gives more concrete information about the space of quadratic
relations of A ◦ B, see for example, [32].

Remark 3.2 [32] Suppose that A and B are quadratic algebras generated in degree one
by A1 and B1, respectively, written as:

A = T (A1)/(�A) with �A ⊂ A1 ⊗ A1,

B = T (B1)/(�B) with �B ⊂ B1 ⊗ B1,
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where T (−) is the tensor algebra and (�A), (�B) are the ideals of relations of A and
B.

Then, A ◦ B is also a quadratic algebra generated in degree one by A1 ⊗ B1 and
presented as

A ◦ B = T (A1 ⊗ B1)/(σ
23(�A ⊗ B1 ⊗ B1 + A1 ⊗ A1 ⊗ �B)), (3.2)

where

σ 23(a1 ⊗ a2 ⊗ b1 ⊗ b2) = a1 ⊗ b1 ⊗ a2 ⊗ b2.

As usual, we take a combinatorial approach to study quadratic algebras. The properties
of Awill be read off a presentation A = k〈X〉/(�A), where by convention X is a fixed
finite set of generators of degree one, |X | = n, and (�A) is the two-sided ideal of
relations, generated by a finite set �A of homogeneous polynomials of degree two.

3.2 Segre products of Yang–Baxter algebras, generators and relations

Suppose (X , r1) and (Y , r2) are finite solutions ofYBEof orders |X | = m and |Y | = n.

Let A = A(k, X , r1), and B = A(k,Y , r2) be the corresponding YB algebras. As
in Convention 2.15, we fix enumerations

X = {x1, . . . , xm}, Y = {y1, . . . , yn},

and consider the degree-lexicographic orders on the freemonoids 〈X〉, and 〈Y 〉 extend-
ing these enumerations. Then,

A = k〈X〉/(�1) where �1 is a set of
(m
2

)
binomial relations :

�1 = {x j xi − xi ′x j ′ | x j xi > xi ′x j ′ and r1(x j xi ) = xi ′x j ′ }. (3.3)

B = k〈Y 〉/(�2) where �2 is a set of
(n
2

)
binomial relations :

�2 = {yb ya − ya′ yb′ | yb ya > ya′ yb′ and r2(yb ya) = ya′ yb′ }. (3.4)

In general, (3.3) and (3.4) are not necessarily relations of binomial skew polynomial
algebras. One has

dim A2 =
(
m + 1

2

)

, dim B2 =
(
n + 1

2

)

, dim(A ◦ B)2 =
(
m + 1

2

)(
n + 1

2

)

.

(3.5)

Remark 3.3 Note that if (X , r) is a quadratic set, then r(xy) = xy iff x y = x and
x y = y, x, y ∈ X . Moreover, if the monoid S(X , r) is with cancellation, then r(xy) =
xy is equivalent to x y = x .

Let N (A) be the set of normal monomials modulo the ideal (�1) in k〈X〉 and let
N (B) be the set of normal monomials modulo the ideal (�2) in k〈Y 〉.
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Remark 3.4 (1) A monomial xy ∈ N (A)2, x, y ∈ X iff either (a) x y > x, in this case
f = x y.x y − xy ∈ �1, HM( f ) = x y.x y, or (b) r1(xy) = xy, which is equivalent
to x y = x , since the monoid S(X , r1) is cancellative, see Facts 2.11, (4).

(2) zt ∈ N (B)2, z, t ∈ Y , iff either (a) z t > z, in this case g = z t zt − zt ∈
�2, HM(g) = z t zt , or (b) r2(zt) = zt , which is equivalent to z t = z.
Thus,

N (A)2 = {xy ∈ X2 | x y ≥ x}, N (B)2 = {zt ∈ Y 2 | z t ≥ z}.

Definition 3.5 Let (X , rX ) and (Y , rY ) be disjoint braided sets (set-theoretic solutions
of YBE, we do not assume involutiveness, nor nondegeneracy). We define the Carte-
sian product of the braided sets (X , rX ) and (Y , rY ) as (X × Y , ρX×Y ), where the
map ρX×Y = ρ is defined as

ρ : (X × Y ) × (X × Y ) −→ (X × Y ) × (X × Y ), ρ = σ23 ◦ (rX × rY ) ◦ σ23,

where σ23 is the flip of the second and the third component.
In other words,

ρ((x j , yb), (xi , ya)) := ((x j xi ,
yb ya), (x

xi
j , yyab )), (3.6)

for all i, j ∈ {1, . . . ,m} and all a, b ∈ {1, . . . , n}. It is easy to see that the Cartesian
product (X × Y , ρ) is a braided set of order mn.

Remark 3.6 It is not difficult to prove that the Cartesian product of braided sets (X ×
Y , ρX×Y ) satisfies the following conditions.

(1) (X × Y , ρX×Y ) is nondegenerate iff (X , rX ) and (Y , rY ) are nondegenerate.
(2) (X × Y , ρX×Y ) is involutive iff (X , rX ) and (Y , rY ) are involutive.
(3) (X ×Y , ρX×Y ) is a solution of YBE iff (X , rX ) and (Y , rY ) are solutions of YBE.
(4) (X × Y , ρX×Y ) is a square-free solution iff (X , rX ) and (Y , rY ) are square-free

solutions.

To simplify notation when we work with elements of the Segre product A ◦ B, we
shall write “x ◦ y” instead of “x ⊗ y,” whenever x ∈ X , y ∈ Y , or “u ◦ v” instead of
“u ⊗ v”, whenever u ∈ Ad , v ∈ Bd , d ≥ 2.

Proposition-Notation 3.7 Let (X , r1) and (Y , r2) be solutions on the disjoint sets X =
{x1, . . . , xm}, and Y = {y1, . . . , yn}. Let A◦B be the Segre product of the YB algebras
A = A(k, X , r1) and B = A(k.Y , r2), and let

X ◦ Y = {xi ◦ ya | 1 ≤ i ≤ m, 1 ≤ a ≤ n}.

There is a natural structure of a solution (X ◦ Y , rX◦Y ) on the set X ◦ Y , where the
map rX◦Y is defined as

rX◦Y ((x j ◦ yb), (xi ◦ ya)) := (((x j xi ) ◦ (yb ya)), ((x j
xi ) ◦ (yyab ))), (3.7)
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for all 1 ≤ i, j ≤ m and all 1 ≤ a, b ≤ n. The solution (X ◦ Y , rX◦Y ) is isomorphic
to the Cartesian product of solutions (X × Y , ρX×Y ). In particular, the solution (X ◦
Y , rX◦Y ) has cardinality mn and

(mn
2

)
nontrivial rX◦Y -orbits.

Proof The set X ◦ Y consists of mn distinct elements and is a basis of (A ◦ B)1 =
A1 ⊗ B1. The map r : (X ◦ Y ) × (X ◦ Y ) −→ (X ◦ Y ) × (X ◦ Y ) defined via (3.7) is
a well-defined bijection. Consider the bijective map

F : X ◦ Y → X × Y , F(x ◦ y) = (x, y).

It follows from the definitions of the maps ρX×Y and rX◦Y that

(F × F) · rX◦Y = ρX×Y · (F × F).

Therefore, rX◦Y obeys the YBE, and (X ◦ Y , rX◦Y ) is a solution isomorphic to the
Cartesian product of solutions (X × Y , ρX×Y ). In particular, (X ◦ Y , rX◦Y ) is nonde-
generate and involutive. It is clear that |X ◦ Y | = mn and, by Corollary 2.9 (2), the
solution (X ◦ Y , rX◦Y ) has

(mn
2

)
nontrivial rX◦Y -orbits. �

We shall often identify the solutions (X ◦ Y , rX◦Y ) and (X × Y , ρX×Y ) and refer to
(X ◦ Y , rX◦Y ) as “the Cartesian product of the solutions (X , r1) and (Y , r2)”.

Proposition 3.8 Let (X , r1) and (Y , r2) be solutions on the disjoint sets X =
{x1, . . . , xm} and Y = {y1, . . . , yn}. In notation as above, let (X ◦ Y , r = rX◦Y )

be the Cartesian product of the solutions (X , r1) and (Y , r2). We order the set X ◦ Y
lexicographically X ◦Y = {x1 ◦ y1, . . . , x1 ◦ yn, . . . , xm ◦ yn}. The Yang–Baxter alge-
bra A = AX◦Y = A(k, X ◦Y , r) is generated by the set X ◦Y and has

(mn
2

)
quadratic

defining relations described in the two lists (3.8) and (3.9).

f j i,ba = (x j ◦ yb)(xi ◦ ya) − (x j xi ◦ yb ya)(x
xi
j ◦ yyab ), for all 1 ≤ i, j ≤ m

such that x j > x j xi , and all 1 ≤ a, b ≤ n. (3.8)

Every relation f ji,ba has a leading monomial LM( f j i,ba) = (x j ◦ yb)(xi ◦ ya).

fi j,ba = (xi ◦ yb)(x j ◦ ya) − (xi ◦ yb ya)(x j ◦ yyab ), for all 1 ≤ i, j ≤ m with

r1(xi x j ) = xi x j , and all 1 ≤ a, b ≤ n, such that yb > yb ya . (3.9)

Every relation fi j,ba has a leading monomial LM( fi j,ba) = (xi ◦ yb)(x j ◦ ya).
The solution (X ◦ Y , r) has exactly mn fixed points, namely:

F = {(xp ◦ ya)(xq ◦ yb) | r1(xpxq) = xpxq , p, q ∈ {1. . . . ,m},
and r2(ya yb) = ya yb, a, b ∈ {1, . . . , n}}.

In this case, xpxq ∈ N (A)2 and ya yb ∈ N (B)2.
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Proof The solution (X ◦ Y , r) is nondegenerate, it has order |X ◦ Y | = mn, and
therefore, by Corollary 2.9, the number of its fixed points ismn. It is clear that r((xp ◦
ya)(xq ◦yb)) = (xp◦ya)(xq ◦yb) if and only if r1(xpxq) = xpxq and r2(ya yb) = ya yb.
The defining relations of the Yang–Baxter algebra A correspond bijectively to the
nontrivial r -orbits, there are exactly

(mn
2

)
nontrivial r -orbits. Observe that there are

(m
2

)
n2 distinct relations given in (3.8), each of them corresponds to a pair (x j ◦ yb, xi ◦

ya), where x j xi > r1(x j xi ), and yb ya is an arbitrary word in Y 2. There are m
(n
2

)

distinct relations in (3.9), each of them is determined by a fixed point xi x j in X2 and
some nontrivial r2-orbit in Y 2. One has

(
m

2

)

n2 + m

(
n

2

)

=
(
mn

2

)

,

as desired. �

The next corollary is a straightforward consequence from [26, Chap 3, Proposition
2.1] and Facts 2.11 (3).

Corollary 3.9 Let (X , r1) and (Y , r2) be finite solutions and let A = A(k, X , r1) and
B = A(k,Y , r2) be their Yang–Baxter algebras. Then, the Segre product, A ◦ B is a
one-generated quadratic and Koszul algebra.

We shall see in the next section that the Segre product A ◦ B is also a left and a right
Noetherian algebra with polynomial growth, see Corollary 4.6.

Theorem 3.10 Let (X , r1) and (Y , r2) be finite solutions, where X = {x1 . . . , xm} and
Y = {y1 . . . , yn} are disjoint sets. Let A ◦ B be the Segre product of the YB algebras
A = A(k, X , r1) and B = A(k,Y , r2), and let (X ◦ Y , rX◦Y ) be the solution of YBE
from Proposition 3.7.

The algebra A ◦ B has a set of mn one-generators W = X ◦ Y ordered lexico-
graphically:

W = {w11 = x1 ◦ y1 < w12 = x1 ◦ y2 < · · · < w1n = x1 ◦ yn < w21 = x2 ◦ y1
< · · · < wmn = xm ◦ yn}, (3.10)

and a set of
(mn
2

) + (m
2

)(n
2

)
linearly independent quadratic relations �. The set of

relations � splits as a disjoint union � = �a ∪ �b, where the sets �a and �b are
described below.

(1) The set �a is a disjoint union �a = �a1 ∪ �a2 of two sets described as follows.

�a1 = { f j i,ba = (x j ◦ yb)(xi ◦ ya) − (xi ′ ◦ ya′)(x j ′ ◦ yb′), 1 ≤ i, j ≤ m,

1≤a, b≤n,wherer1(x j xi )= xi ′x j ′ , with j > i ′, andr2(yb ya)= ya′ yb′ }.
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Every relation f ji,ba has leading monomial LM( f j i,ba) = (x j ◦ yb)(xi ◦ ya). The
cardinality of �a1 is |�a1| = (m

2

)
n2.

�a2 = { fi j,ba = (xi ◦ yb)(x j ◦ ya) − (xi ◦ ya′)(x j ◦ yb′), 1 ≤ i, j ≤ m,

1≤a, b≤n,where xi x j = r1(xi x j ) is a fixed pointand r2(yb ya)= ya′ yb′ ,
withb>a′}.

Every relation fi j,ba has leading monomial LM( fi j,ba) = (xi ◦ yb)(x j ◦ ya). The
cardinality of �a2 is |�a2| = m

(n
2

)
.

(2) The set �b consists of
(m
2

)(n
2

)
relations given explicitly in (3.11)

�b = {gi j,ba = (xi ◦ yb)(x j ◦ ya) − (xi ◦ ya′)(x j ◦ yb′), 1 ≤ i, j ≤ m,

1 ≤ a, b ≤ n,where r1(xi x j ) > xi x j , r2(yb ya) = ya′ yb′
and b > a′.

(3.11)

Every relation gi j,ba has leading monomial LM(gi j,ba) = (xi ◦ yb)(x j ◦ ya).

Proof Note that the relations in �a are the same as the defining relations of the Yang–
Baxter algebra AX◦Y = A(k, X ◦ Y , rX◦Y ) from Proposition 3.8. There is an obvious
1-1 correspondence between the set of nontrivial rX◦Y - orbits in (X ◦Y )× (X ◦Y ) and
the set of relations�a . Being a nondegenerate symmetric set of ordermn, (X◦Y , rX◦Y )

has exactly
(mn
2

)
nontrivial rX◦Y -orbits, see Corollary 2.9, and therefore the cardinality

of �a must satisfy

|�a | =
(
mn

2

)

. (3.12)

It is clear that �a1 and �a2 are disjoint subsets of �a . To be sure that the sets �a1 and
�a2 exhaust �a , we count their cardinalities.

Each of the relations f j i,ba ∈ �a1 corresponds to a pair (x j ◦ yb, xi ◦ ya), where
x j xi > r1(x j xi ), and yb ya is an arbitrary word in Y 2. There are exactly

(m
2

)
n2 distinct

elements of this type.
Each of the relations fi j,ba ∈ �a2 is determined by a fixed point xi x j in X2 and

some nontrivial r2-orbit in Y 2, {yb ya, ya′ yb′ = r2(yb ya)} with b > a′. There arem
(n
2

)

distinct elements of this type. One has

|�a1| + |�a2| =
(
m

2

)

n2 + m

(
n

2

)

=
(
mn

2

)

= |�a |,

as desired.
We shall prove next that the sets �a and �b described above are contained in the

ideal of relations (�(A ◦ B)) of A ◦ B. Under the hypothesis of the theorem, we prove
the following lemma.

Lemma 3.11 (1) Suppose f = x j xi −xi ′x j ′ ∈ �1, with HM( f ) = x j xi . Let yb, ya ∈
Y , and let r2(yb ya) = ya′ yb′ (it is possible that yb ya is a fixed point, or yb ya <
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ya′ yb′ ). Then,

f ji,ba = (x j ◦ yb)(xi ◦ ya) − (xi ′ ◦ ya′)(x j ′ ◦ yb′) ∈ (�(A ◦ B)).

Moreover, the relation f ji,ba has leading monomial LM( f j i,ba) = (x j ◦ yb)(xi ◦
ya).

(2) Suppose r1(xi x j ) = xi x j (that is xi x j is a fixed point), for some 1 ≤ i, j ≤ m,
and let r2(yb ya) = y′

a y
′
b, with yb > ya′ , (so yb ya − y′

a y
′
b ∈ �2). Then,

fi j,ba = (xi ◦ yb)(x j ◦ ya) − (xi ◦ ya′)(x j ◦ yb′) ∈ (�(A ◦ B)),

and LM( fi j,ba) = (xi ◦ yb)(x j ◦ ya).
(3) If r1(xi x j ) > xi x j , and yb ya − ya′ yb′ ∈ �2, then

gi j,ba = (xi ◦ yb)(x j ◦ ya) − (xi ◦ ya′)(x j ◦ yb′) ∈ (�(A ◦ B)),

and LM(gi j,ba) = (xi ◦ yb)(x j ◦ ya).

Proof (1) By hypothesis x j xi − xi ′x j ′ ∈ �1 and yb ya − ya′ yb′ is in the ideal (�2).

Then, by Remark 3.2

ϕ = σ23((x j xi − xi ′x j ′) ◦ (yb ya))
= (x j ◦ yb)(xi ◦ ya) − (xi ′ ◦ yb)(x j ′ ◦ ya) ∈ (�(A ◦ B))

ψ = σ23((xi ′x j ′) ◦ (yb ya − ya′ yb′))
= (xi ′ ◦ yb)(x j ′ ◦ ya) − (xi ′ ◦ ya′)(x j ′ ◦ yb′) ∈ (�(A ◦ B)).

The elements ϕ and ψ are in the ideal of relations (�(A ◦ B)), so the sum ϕ + ψ is
also in (�(A ◦ B)). One has

ϕ + ψ = (x j ◦ yb)(xi ◦ ya) − (xi ′ ◦ ya′)(x j ′ ◦ yb′) = f j i,ba ∈ (�(A ◦ B)).

By definition, f = x j xi − xi ′x j ′ ∈ �1 iff r1(x j xi ) = xi ′x j ′ and x j xi > xi ′x j ′ . The
cancellation low implies that x j > xi ′ . Thus (xi ′ ◦ ya′)(x j ′ ◦ yb′) < (x j ◦ yb)(xi ◦ ya),
and LM( f j i,ba) = (x j ◦ yb)(xi ◦ ya).

(2) By hypothesis yb ya − ya′ yb′ ∈ �2, then by Remark 3.2 again,

fi j,ba = σ23((xi x j ) ◦ (yb ya − ya′ yb′))
= (xi ◦ yb)(x j ◦ ya) − (xi ◦ ya′)(x j ◦ yb′) ∈ (�(A ◦ B)).

It is clear that HM( fi j,ba) = (xi ◦ yb)(x j ◦ ya) which proves (2).
(3). Suppose yb ya − ya′ yb′ ∈ �2, and r1(xi x j ) > xi x j . Then, r1(xi x j ) = x j ′xi ′

and r1(x j ′xi ′) = xi x j for some 1 ≤ j ′, i ′ ≤ m, so x j ′xi ′ − xi x j ∈ �1. By Remark
3.2

ϕ1 = σ23(x j ′xi ′ − xi x j ) ◦ (yb ya))
= (x j ′ ◦ yb)(xi ′ ◦ ya) − (xi ◦ yb)(x j ◦ ya) ∈ (�(A ◦ B)).
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By part (1)

f j ′i ′,ba = (x j ′ ◦ yb)(xi ′ ◦ ya) − (xi ◦ ya′)(x j ◦ yb′) ∈ (�(A ◦ B)).

It follows that f j ′i ′,ba − ϕ1 ∈ (�(A ◦ B)). The explicit computation gives

f j ′i ′,ba − ϕ1 = (x j ′ ◦ yb)(xi ′ ◦ ya) − (xi ◦ ya′)(x j ◦ yb′)
−(x j ′ ◦ yb)(x′ ◦ ya) + (xi ◦ yb)(x j ◦ ya)

= (xi ◦ yb)(x j ◦ ya) − (xi ◦ ya′)(x j ◦ yb′) = gi j,ba .

We have shown that gi j,ba ∈ (�(A ◦ B)). It is clear that LM(gi j,ba) = (xi ◦ yb)
(x j ◦ ya). �

Note that the sets�a and�b consist of quadratic polynomials in the set X ◦Y of one-
generators of A ◦ B. It follows from Lemma 3.11 that every element of � = �a ∪ �b

is a relation of A ◦ B.
We have to show that the elements of � form a basis of the ideal of relations

(�(A ◦ B)) of A ◦ B. It will be convenient to use the description of �a and �b as sets
of quadratic polynomials in the variables W , see (3.10), so we simply replace xi ◦ ya
by wia in each of the relations in �.

Remark 3.12 Theorem 3.10 states that the Segre product A◦B has a finite presentation

A ◦ B � k〈w11, . . . , wmn〉/(�),

where� is a set of
(mn
2

)+ (m
2

)(n
2

)
quadratic polynomials in the free associative algebra

k〈w11, . . . , wmn〉. More precisely, � is a disjoint union � = �a ∪ �b of the sets �a

and �b described below.

(1) The set �a consists of
(mn
2

)
relations given explicitly in (3.13) and (3.14):

f j i,ba = w jbwia − wi ′a′w j ′b′, 1 ≤ i, j ≤ m, 1 ≤ a, b ≤ n,

where r1(x j xi ) = xi ′x j ′ , j > i ′ and r2(yb ya) = ya′ yb′ .
(3.13)

Every relation f j i,ba has leading monomial LM( f j i,ba) = w jbwia .

fi j,ba = wibw ja − wia′w jb′, 1 ≤ i, j ≤ m, 1 ≤ a, b ≤ n,

where r1(xi x j ) = xi x j , and r2(yb ya) = ya′ yb′ with b > a′. (3.14)

Every relation fi j,ba has leading monomial LM( fi j,ba) = wibw ja .
(2) The set �b consists of

(m
2

)(n
2

)
relations given explicitly in (3.15)

gi j,ba = wibw ja − wia′w jb′, 1 ≤ i, j ≤ m, 1 ≤ a, b ≤ n,

where r1(xi x j ) > xi x j , and r2(yb ya) = ya′ yb′ with b > a′. (3.15)

Every relation gi j,ba has leading monomial LM(gi j,ba) = wibw ja .
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Next, we count the relations in �b. The number of xi x j , 1 ≤ i, j ≤ m, such that
r1(xi x j ) > xi x j is exactly the number of nontrivial r1-orbits in X × X which is

(m
2

)
.

The number of pairs yb, ya with yb ya > r2(yb ya) equals the number of nontrivial r2
-orbits, which is

(n
2

)
, hence

|�b| =
(
m

2

)(
n

2

)

. (3.16)

The two sets�a and�b are disjoint. Indeed, the leadingmonomials of all elements in�
are pairwise distinct, and therefore the relations are pairwise distinct. So� = �a ∪�b

is a disjoint union of sets, and by (3.12) and (3.16), one has:

|�| = |�a | + |�b| =
(
mn

2

)

+
(
m

2

)(
n

2

)

. (3.17)

It remains to show that � is a linearly independent set.

Lemma 3.13 Under the hypothesis of Theorem 3.10, the set of polynomials� ⊂ k〈W 〉
is linearly independent.

Proof This proof is routine. Note that the set of all words in 〈W 〉 forms a basis of the
free associative algebra k〈W 〉 (considered as a vector space), in particular every finite
set of distinct words in 〈W 〉 is linearly independent. Consider the presentation of �
given in Remark 3.12. All words occurring in � are monomials of length 2 inW 2, but
some of them occur in more than one relation, e.g., the leading monomial wibw ja , of
gi jba occurs as a second monomial in some f given in (3.13). Indeed, there is unique
pair j1, i1 such that r1(x j1xi1) = xi x j , j1 > i . It is clear that r2(ya′ yb′) = yb ya (since
r2 is involutive). Then, by definition

f j1i1,a′b′ = (x j1 ◦ ya′)(xi1 ◦ yb′) − (xi ◦ yb)(x j ◦ ya) = w j1a′wi1b′ − wibw ja .

We shall prove the lemma in three steps.

(1) The set of polynomials �a ⊂ k〈w11, . . . , wmn〉 is linearly independent. We have
noticed that the polynomials in�a are in 1-to-1 correspondence with the nontrivial
rX◦Y -oprbits in (X ◦Y )×(X ◦Y ). The orbits are disjoint and therefore the relations
�a involve exactly m2n2 − mn distinct monomials in W 2. A linear relation

∑

f ∈�a

α f f = 0,where all α f ∈ k,

involves only pairwise distinct monomials in W 2 and therefore it must be trivial:
α f = 0, for all f ∈ �a . It follows that �a is linearly independent.

(2) The set �b ⊂ k〈W 〉 is linearly independent. Assume the contrary. Then, there
exists a nontrivial linear relation for the elements of �b :

∑

g∈�b

βgg = 0, with all βg ∈ k. (3.18)
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Let gi j,ba be the polynomial with βgi j,ba �= 0 whose leading monomial is the
highest among all leading monomials of polynomials g ∈ �b, with βg �= 0. So
we have

LM(gi j,ba) = wibw ja > LM(g), for all g ∈ �b, g �= gi j,ba with βg �= 0, .

(3.19)

We use (3.18) to find the following equality in k〈W 〉:

wibw ja = wia′w jb′ −
∑

g∈�b, LM(g)<wibw ja

(
βg

βgi j,ba

)

g.

It follows from (3.19) that the right-hand side of this equality is a linear combination
of monomials strictly smaller than wibw ja (in the lexicographic order on 〈W 〉 ),
which is impossible. Therefore, the set �b ⊂ k〈W 〉 is linearly independent.

(3) The set � ⊂ k〈W 〉 is linearly independent. Assume that the polynomials in �
satisfy a linear relation

∑

f ∈�a

α f f +
∑

g∈�b

βgg = 0, where all α f , βg ∈ k. (3.20)

Every f ∈ �a can be written f = u f − u′
f , where u f , u′

f ∈ W 2, u f > u′
f .

Similarly, every g ∈ �b is g = ug − u′
g , where ug, u

′
g ∈ W 2, ug > u′

g . This gives
the following equalities in the free associative algebra k〈W 〉:

S1 =
∑

f ∈�a

α f u f =
∑

f ∈�a

α f u
′
f −

∑

g∈�b

βgg = S2. (3.21)

The element S1 = ∑
f ∈�a

α f u f on the left-hand side of (3.21) is in the space
V1 = SpanB1, where B1 = LM(�a) = {u f | f ∈ �a} is linearly independent
since it consists of distinct monomials. The element S2 on the right-hand side of
the equality is in the space V2 = SpanB, where

B = {u′
f | f ∈ �a} ∪ {all monomials ug, u

′
g | g ∈ �b}.

Take a subset B2 ⊂ B which forms a basis of V2. Note that B1 ∩ B = ∅, hence
B1 ∩ B2 = ∅. Moreover each of the sets B1, and B2 consists of pairwise distinct
monomials in W 2 and it is easy to show that V1 ∩ V2 = {0}. Thus, the equality
S1 = S2 ∈ V1 ∩ V2 = {0} implies a linear relation

S1 =
∑

f ∈�a

α f u f = 0,

for the set B1 of leading monomials of �a . But B1 consists of pairwise distinct
monomials, and therefore it is linearly independent. It follows that all coefficients
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α f , f ∈ �a equal 0. This together with (3.20) implies the linear relation

∑

g∈�b

βgg = 0,

and since by (2), �b is linearly independent we get again βg = 0,∀ g ∈ �b. It
follows that the linear relation (3.20) must be trivial, and therefore � is a linearly
independent set of quadratic polynomials in k〈W 〉.

�
Weclaim that� is a set of defining relations for A◦B.We know that A◦B is a quadratic
algebra, that is, its ideal of relations is generated by homogeneous polynomials of
degree 2, see Corollary 3.9.

Consider the graded ideal J = (�) of k〈W 〉. To show that that J = (�(A ◦ B)), it
will be enowgh to verify that there is an isomorphism of vector spaces:

(�)2 ⊕ (A ◦ B)2 = (k〈W 〉)2,

or equivalently

dim Spank� + dimk(A ◦ B)2 = dimk(k〈W 〉)2. (3.22)

We have shown that� is linearly independent, so dim Spank� = |�| = (mn
2

)+(m
2

)(n
2

)
.

It follows from (3.1) that dimk(A◦B)2 = dimk A2 dimk B2 = (m+1
2

)(n+1
2

)
. Therefore,

dim Spank� + dimk(A ◦ B)2 =
(
mn

2

)

+
(
m

2

)(
n

2

)

+
(
m + 1

2

)(
n + 1

2

)

= m2n2 = dimk(k〈W 〉)2,

as desired. It follows that� is a set of defining relations for the Segre product A◦ B. �

4 Segremaps of Yang–Baxter algebras

In this section, we introduce and investigate non-commutative analogues of the Segre
maps in the class of Yang–Baxter algebras of finite solutions. Our main result is
Theorem 4.5. As a consequence, Corollary 4.6 shows that the Segre product A ◦ B of
two Yang–Baxter algebras A and B is always left and right Noetherian. The results
agree with their classical analogues in the commutative case, [18].

We keep the conventions and notation from the previous sections. As usual, (X , r1)
and (Y , r2) are disjoint solutions of YBE of finite orders m and n, respectively,
A = A(k, X , r1), and B = A(k,Y , r2) are the corresponding YB algebras. We
fix enumerations

X = {x1, . . . , xm}, Y = {y1, . . . , yn},
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as inConvention2.15 and consider the degree-lexicographic orders on the freemonoids
〈X〉, and 〈Y 〉 extending these enumerations. A ◦ B is the Segre product of A and B,
its set of one-generators is

W = X ◦ Y = {w11 = x1 ◦ y1 < w12 = x1 ◦ y2 < · · · < w1n = x1 ◦ yn
< w21 = x2 ◦ y1 < · · · < wmn = xm ◦ yn},

ordered lexicographically, and (X◦Y , rX◦Y ) is the solution isomorphic to theCartesian
product (X × Y , ρX×Y ), see Proposition-Notation 3.7.

Definition-Notation 4.1 Let Z = {z11, z12, . . . , zmn} be a set of order mn, disjoint
with X and Y . Define a map

r = rZ : Z × Z −→ Z × Z

induced canonically from the solution (X ◦ Y , rX◦Y ):

r(z jb, zia) = (zi ′a′, z j ′b′) iff rX◦Y (x j ◦ yb, xi ◦ ya) = (xi ′ ◦ ya′ , x j ′ ◦ yb′).

It is clear that (Z , rZ ) is a solution ofYBE isomorphic to (X◦Y , rX◦Y ) (and isomorphic
to the Cartesian product (X × Y , rX×Y )).

We consider the degree-lexicographic order on the free monoid 〈Z〉 induced by the
enumeration of Z

Z = {z11 < z12 < · · · < zmn}.

Remark 4.2 Let AZ = A(k, Z , rZ ) be the YB algebra of the solution (Z , rZ ). Then,
AZ = k〈Z〉/(�(AZ )), where the ideal of relations ofAZ is generated by the set�(AZ )

consisting of
(mn
2

)
quadratic binomial relations given explicitly in (4.1) and (4.2):

ϕ j i,ba = z jbzia − zi ′a′ z j ′b′ , 1 ≤ i, j ≤ m, 1 ≤ a, b ≤ n,

where rZ (z jbzia) = zi ′a′ z j ′b′ , and j > i ′, or equivalently, rZ (z jbzia) < z jbzia .

(4.1)

Every relation ϕ j i,ba has leading monomial LM(ϕ j i,ba) = z jbzia .

ϕi j,ba = zibz ja − zia′ z jb′, 1 ≤ i, j ≤ m, 1 ≤ a, b ≤ n,

where rZ (zibz ja) = zia′ z jb′ and b > a′. (4.2)

Every relation ϕi j,ba has leading monomial LM(ϕi j,ba) = zibz ja .
There is a bijective correspondence between the set of relations �(AZ ) and the set

of nontrivial rZ -orbits in Z × Z .

By definition A ◦ B is a subalgebra of A ⊗ B, so if f = g holds in A ◦ B, then it
holds in A ⊗ B.
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Lemma 4.3 In notation as above, let (X , r1) and (Y , r2) be solutions on the finite
disjoint sets X = {x1, . . . , xm}, and Y = {y1, . . . , yn}, and let A = A(k, X , r1), and
B = A(k,Y , r2) be the corresponding YB algebras. Let (Z , rZ ) be the solution of
order mn from Definition-Notation 4.1, and let AZ = A(k, Z , rZ ) be its YB algebra.
Then, the assignment

z11 �→ x1 ⊗ y1, z12 �→ x1 ⊗ y2, . . . , zmn �→ xm ⊗ yn

extents to an algebra homomorphism sm,n : AZ −→ A ⊗k B.

Proof Naturally, we set sm,n(zi1a1 . . . zi pap ) := (xi1 ◦ ya1) . . . (xi p ◦ yap ), for all words
zi1a1 . . . zi pap ∈ 〈Z〉 and then extend this map linearly. Note that for each polynomial
ϕ j i,ba ∈ �(AZ ) given in (4.1), one has

sn,d(ϕ j i,ba) = f j i,ba ∈ �a,

where the set�a is a part of the relations of the Segre product A◦ B, given in Theorem
3.10 (1).

We have shown that f j i,ba equals identically zero in A ◦ B = ⊕
i≥0 Ai ⊗k Bi ,

which is a subalgebra of A ⊗ B and therefore sn,d(ϕ j i,ba) = f j i,ba = 0 in A ⊗ B.
Similarly for each ϕi j,ba given in (4.2), one has

sn,d(ϕi j,ba) = fi j,ba ∈ �a,

thus sn,d(ϕi j,ba) = 0 holds in A ◦ B, and therefore sn,d(ϕi j,ba) = 0 in A ⊗ B.
We have shown that the map sm,n agrees with the relations of the algebra AZ . It

follows that the map sm,n : AZ −→ A ⊗k B is a well-defined homomorphism of
algebras. �
Definition 4.4 We call the map sm,n : AZ −→ A ⊗k B from Lemma 4.3 the (m, n)-
Segre map.

Theorem 4.5 In notation as above. Let (X , r1) and (Y , r2) be solutions on the finite
disjoint sets X = {x1, . . . , xm}, and Y = {y1, . . . , yn}, and let A and B be the
corresponding Yang–Baxter algebras. Let (Z , rZ ) be the solution on the set Z =
{z11, . . . , zmn} defined in Definition-Notation 4.1, and let AZ = A(k, Z , rZ ) be its
Yang–Baxter algebra. Let sm,n : AZ −→ A ⊗k B be the Segre map extending the
assignment

z11 �→ x1 ◦ y1, z12 �→ x1 ◦ y2, . . . , zmn �→ xm ◦ yn .

(1) The image of the Segre map sm,n is the Segre product A ◦ B. Moreover, sm,n :
AZ −→ A ◦ B is a homomorphism of graded algebras.

(2) The kernel K = ker(sm,n) of the Segre map is generated by the set �s of
(m
2

)(n
2

)

linearly independent quadratic binomials described below

�s = {γi j,ba = zibz ja − zia′ z jb′, 1 ≤ i, j ≤ m, 1 ≤ a, b ≤ n |
r1(xi x j ) > xi x j , and r2(yb ya) = ya′ yb′ with b > a′}. (4.3)
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Proof (1) By definition the YB algebra AZ is generated by the set Z , and therefore
the image sm,n(AZ ) of the Segre map is the subalgebra of A⊗ B generated by the set
sm,n(Z) = X ◦ Y = W where

W = X ◦ Y = {w11 = x1 ◦ y1 < w12 = x1 ◦ y2 < · · · < wmn = xm ◦ yn}.

But the set W = X ◦ Y generates exactly the algebra A ◦ B, see Theorem 3.10, and
therefore sm,n(AZ ) = A ◦ B.

(2) Observe that the elements of �s are considered both as elements of the free
associative algebra k〈Z〉 and in the Yang–Baxter algebra AZ .

(i) We shall prove first that �s consists of nonzero elements of AZ . Assume the
contrary: for some quadruple i j, ba, the element γi j,ba ∈ �s is zero in AZ . Then,
there is an equality of monomials of degree two in the graded component (AZ )2:

zibz ja = zia′ z jb′ .

By Corollary 2.9 (3), this is possible if and only if

zia′ z jb′ ∈ {zibz ja, rZ (zibz ja)}. (4.4)

It is clear, by the definition of Rs , that

zia′ z jb′ �= zibz ja as words in Z2.

Moreover, by the definition of the element γi j,ba , one has

xi x j < r1(xi x j ) = x j ′xi ′ , and r2(yb ya) = ya′ yb′ , b > a′.

But the algebra AZ is a domain (see Facts 2.11 (4)), so the inequality xi x j < x j ′xi ′
implies i < j ′. At the same time, by the definition of the map rZ , one has

rZ (zibz ja) = z j ′a′ zi ′b′ �= zia′ z jb′ (4.5)

thus (4.4) is impossible. It follows that zibz ja �= zia′ z jb′ as elements of AZ , and
therefore γi j,ba is a nonzero element of AZ , which contradicts our assumption.

(ii) Next, we prove that �s ⊂ K = ker(sm,n). Direct computation shows that

sm,n(γi j,ba) = sm,n(zibz ja − zia′ z jb′) = (xi ◦ yb)(x j ◦ ya) − (xi ◦ ya′)(x j ◦ yb′)

= gi j,ba ∈ �b,

where �b is the subset of relations of A ◦ B described in (3.11). Therefore,
sm,n(γi j,ba) = 0 in A ◦ B, for all elements of �s , and

�s ⊂ K = ker(sm,n).

(iii) We claim that �s is a minimal set of generators of the kernel K.
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Note first that there is an equality of orders.

|�s | = |�b| =
(
m

2

)(
n

2

)

. (4.6)

Indeed, it follows from the descriptions of �s and �b, that there is a bijective corre-
spondence between the two sets �s and �b.

Moreover, the set �s is linearly independent, since sm,n(�s) = �b, and �b is a
linearly independent set in A ⊗ B, by Lemma 3.13.

It is clear that the map sm,n agrees with the natural gradings by length of words
in AZ and the Segre product A ◦ B presented in terms of 1-generators and quadratic
relations in Remark 3.12. By the First Isomorphism Theorem

AZ/K � A ◦ B, and (AZ )2/K2 = (AZ/K)2 � (A ◦ B)2.

Hence,

dim(AZ )2 = dim(K2) + dim(A ◦ B)2, and dim(K2) = dim(AZ )2 − dim(A ◦ B)2.

(4.7)

But AZ is the Yang–Baxter algebra of the solution (Z , rZ ) of order mn, so Corollary
2.12 implies

dim(AZ )2 =
(
mn + 1

2

)

. (4.8)

It follows from (3.1) that

dim(A ◦ B)2 = dim A2 dim B2 =
(
m + 1

2

)(
n + 1

2

)

. (4.9)

The second equality in (4.7) together with (4.8) and (4.9) imply

dim(K)2 =
(
mn + 1

2

)

−
(
m + 1

2

)(
n + 1

2

)

=
(
m

2

)(
n

2

)

.

This together with (4.6) imply the desired equality

dim(K)2 = |�s |.

We have shown that �s is a linearly independent subset of K2, whose order equals the
dimension of K2 and therefore �s is a basis of the graded component K2 of the ideal
K. In particular, K2 = k�s . The ideal K is generated by homogeneous polynomials of
degree 2, hence

K = (K2) = (�s).
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It follows that �s is a minimal set of generators for the kernel K. �
Corollary 4.6 In notation and assumption as above. Let A = A(k, X , r1), and B =
A(k,Y , r2), be the Yang–Baxter algebras of the finite solutions (X , r1) and (Y , r2)
of order m and n, respectively. Then, the Segre product A ◦ B is a left and a right
Noetherian algebra. Moreover, A ◦ B has polynomial growth.

Proof It follows from Theorem 4.5 that A ◦ B = sm,n(AZ ), the image of the Segre
homomorphism sm,n : AZ −→ A ⊗k B, where AZ is the Yang–Baxter algebra of the
solution (Z , rZ ) of ordermn. By Facts 2.11 (3) (see also [17, Theorem4.5]) the algebra
AZ is left and right Noetherian and has polynomial growth of degree mn, therefore
its homomorphic image A ◦ B is left and right Noetherian and also has polynomial
growth of degree ≤ mn. �
We shall prove in the next section that in the special case, when A and B are binomial
skew polynomial rings the Segre product A ◦ B has infinite global dimension, see
Theorem 5.1 (4).

We end up the section with open questions, where we split the general case of
arbitrary solutions (X , r1) and (Y , r2), and the particular case of square-free solutions.

Question 4.7 (1) Let A = A(k, X , r1), and B = A(k,Y , r2), be the Yang–Baxter
algebras of the finite solutions (X , r1) and (Y , r2). Is it true that the Segre product
A ◦ B is a domain?

(2) Let A = A(k, X , r1), and B = A(k,Y , r2), be the Yang–Baxter algebras of the
finite square-free solutions (X , r1) and (Y , r2). Is it true that the Segre product
A ◦ B is a domain?

(3) Let A and B be binomial skew polynomial algebras. Is it true that the Segre product
A ◦ B is a domain?

Questions (2) and (3) are equivalent. Even in the general case we expect that due to
the good algebraic and combinatorial properties of A and B, and the specific relations
of A ◦ B the answer is affirmative. Moreover, in cases (2) and (3), the Segre product
A ◦ B is a PBW algebra whose quadratic relations are explicitly given. Observe that A
and B are Noetherian domains, and A ◦ B is a subalgebra of the tensor product A⊗ B.
However, it is shown in [28] that the tensor product D1⊗F D2 of two division algebras
over an algebraically closed field contained in their centers may not be a domain.

5 Segre products and Segremaps for the class of square-free
solutions

In this section (X , r1) and (Y , r2) are fixed disjoint square-free solutions of orders
|X | = m and |Y | = n. Let A = A(k, X , r1), and B = A(k,Y , r2) be the
corresponding YB algebras. We keep Convention 2.15 (a) and choose enumera-
tions X = {x1, . . . , xm}, and Y = {y1, . . . , yn}, such that A and B are binomial
skew-polynomial algebras with respect to these enumerations, see Definition 2.3. In
particular, A is a PBW algebra with PBW generators x1, . . . , xm and B is a PBW alge-
bra with PBW generators y1, . . . , yn . The following result collects various algebraic
properties of the Segre product A ◦ B.
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Theorem 5.1 Suppose (X , r1) and (Y , r2) are disjoint square-free solutions, where

X = {x1, . . . , xm}, and Y = {y1, . . . , yn}

are enumerated so that the Yang–Baxter algebras A = A(k, X , r1), and B =
A(k,Y , r2) are binomial skew polynomial rings with respect to these enumerations.

Then, the Segre product A ◦ B satisfies the following conditions.

(1) A ◦ B is a PBW algebra with a set of mn PBW generators

W = X ◦ Y = {w11 = x1 ◦ y1, w12 = x1 ◦ x2, . . . , w1n

= x1 ◦ yn, . . . , wmn = xm ◦ xn},

ordered lexicographically, and a standard finite presentation

A ◦ B � k〈w11, . . . , wmn〉/(�),

where the set of relations � is a Gröbner basis of the ideal I = (�) and consists
of

(mn
2

) + (m
2

)(n
2

)
square-free quadratic polynomials. The set � splits as a disjoint

union � = �a ∪ �b of the sets �a and �b described below.

(a) The set �a consists of
(mn
2

)
relations given explicitly in (5.1) and (5.2):

f ji,ba = w jbwia − wi ′a′w j ′b′, 1 ≤ i < j ≤ m, 1 ≤ a, b ≤ n, where
r1(x j xi ) = xi ′x j ′ , j > i ′ and r2(yb ya) = ya′ yb′ ;

w jb > wia, w jb > wi ′a′ , wi ′a′ < w j ′b′ .
(5.1)

Every relation f ji,ba has leading monomial LM( f j i,ba) = w jbwia .

fii,ba = wibwia − wia′wib′ , 1 ≤ i ≤ m, 1 ≤ a < b ≤ n, where
r2(yb ya) = ya′ yb′ with b > a′;

wib > wia, wib > wia′ , wia′ < wib′ .
(5.2)

Every relation fii,ba has leading monomial LM( fii,ba) = wibwia .
(b) The set �b consists of

(m
2

)(n
2

)
relations given explicitly in (5.3)

gi j,ba = wibw ja − wia′w jb′, 1 ≤ i < j ≤ m, 1 ≤ a < b ≤ n,

where r2(yb ya) = ya′ yb′ with b > a′. (5.3)

One has LM(gi j,ba) = wibw ja .

(2) A ◦ B is a Koszul algebra.
(3) A ◦ B is left and right Noetherian.
(4) The algebra A ◦ B has polynomial growth and infinite global dimension.

Proof (1). It follows from [26, Chap 4.4, Proposition 4.2] that the Segre product
A ◦ B is a PBW algebra with a set of PBW one-generators W = X ◦ Y , ordered
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lexicographically. The shape of the defining relations follows from our Theorem 3.10,
and from the relations of the binomial skew-polynomial rings A and B which encode
the properties of r1 and r2. To show that � is a Gröbner basis of the ideal I = (�) it
will be enough to check that

N (�)3 = N (I )3.

Recall that |N (I )3| = dim(A ◦ B)3 and by (3.1) one has

dim(A ◦ B)3 = dim A3 dim B3 =
(
m + 2

3

)(
n + 2

3

)

.

In general, N (I )3 ⊆ N (�)3, so we have to show that

|N (�)3| = |N (I )3| = dim(A ◦ B)3.

A monomial u ∈ 〈W 〉 of length 3 is normal modulo � iff it is normal modulo �,
where

� = {HM( f ) | f ∈ �},

or equivalently iff u is not divisible by any of the leading monomials LM( f ), f ∈ �.
Note that

wiaw jbwkc ∈ N (�)3 ⇐⇒ wiaw jb ∈ N (�)2 and w jbwkc ∈ N (�)2.

It follows from the shape of the leading monomials LM( f ), f ∈ �, that wiaw jb ∈
N (�)2 if and only if 1 ≤ i ≤ j ≤ m and 1 ≤ a ≤ b ≤ n. Therefore,

wiaw jbwkc ∈ N (�)3 ⇐⇒ 1 ≤ i ≤ j ≤ k ≤ m and 1 ≤ a ≤ b ≤ c ≤ n.

In other words,

N (�)3 = {wiaw jbwkc | 1 ≤ i ≤ j ≤ k ≤ m, 1 ≤ a ≤ b ≤ k ≤ m}.

This implies that |N (�)3| = (m+2
3

)(n+2
3

) = dim(A ◦ B)3, as desired. Therefore, the
set of defining relations � is a Gröbner basis.

(2). The Kosulity of A ◦ B follows from Corollary 3.9. Note that in this particular
case, Kosulity also follows from the fact that every PBW algebra is Koszul, see [27].

(3). Corollary 4.6 implies that A ◦ B is left and right Noetherian.
(4). By Corollary 4.6 again, A◦B has polynomial growth. It follows from our result

[12, Theorem 1.1] that if a graded PBW algebra has mn one-generators, polynomial
growth and finite global dimension, then the number of its defining relation must be(mn
2

)
. We have shown in part (1) that the algebra A ◦ B is a quadratic PBW algebra

with mn PBW generators, and
(mn
2

) + (m
2

)(n
2

)
defining relations, therefore A ◦ B has

infinite global dimension. �
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As we mentioned before, we do not know if A ◦ B is a domain even in the square-free
case, see Questions 4.7.

Let (X ◦Y , rX◦Y ) be the solution on the set X ◦Y , defined in Proposition-Notation
3.7. Then, (X ◦ Y , rX◦Y ) is a square-free solution.

Consider now the solution (Z , rZ ) on the set Z = {z11, z12, . . . , zmn} defined in
Definition-Notation 4.1. By construction (Z , rZ ) is isomorphic to the solution (X ◦
Y , rX◦Y ), and therefore it is a square-free solution of order mn.

Proposition 5.2 Let AZ = A(k, Z , rZ ) be the YB algebra of (Z , rZ ). Then AZ

is a binomial skew-polynomial ring with a standard finite presentation AZ =
k〈z11, z12, . . . , zmn〉/(�(AZ )), where the set of defining relations �(AZ ) consists of(mn
2

)
binomial relations given explicitly in (5.4) and (5.5).

ϕ j i,ba = z jbzia − zi ′a′ z j ′b′ , 1 ≤ i < j ≤ m, 1 ≤ a, b ≤ n, where
rZ (z jbzia) = zi ′a′ z j ′b′ , and z jb > zia, z jb > zi ′a′ , zi ′a′ < z j ′b′ .

(5.4)

Every relation ϕ j i,ba has leading monomial LM(ϕ j i,ba) = z jbzia .

ϕi i,ba = zibzia − zia′ zib′, 1 ≤ i ≤ m, 1 ≤ a < b ≤ n, where
rZ (zibzia) = zia′ zib′ and zib > zia, zib > zia′ , zia′ < zib′ .

(5.5)

Every relation ϕi j,ba has leading monomial LM(ϕi i,ba) = zibzia. Moreover, the set
�(AZ ) forms aGröbner basis of the ideal I = (�(AZ )) of the free associative algebra
k〈z11, z12, . . . , zmn〉 with respect to the degree-lexicographic order.
Proof The relations �(AZ ) described with details in (5.4) and (5.5) have the shape of
the typical relations of a binomial skew-polynomial ring, seeDefinition 2.3, conditions
(a), (b), (c). We have to show that the set �(AZ ) is a Gröbner basis of the ideal I with
respect to the degree-lexicographic order on 〈z11, z12, . . . , zmn〉. It follows from the
shape of relations that the set N (I ) of normal words modulo I is a subset of the set
of terms (ordered monomials) in the alphabet Z :

N (I ) ⊆ T (Z) = {zk1111 . . . zkmn
mn | kia ≥ 0, 1 ≤ i ≤ m, 1 ≤ a ≤ n}.

By Facts 2.11 the Yang–Baxter algebra AZ has Hilbert series HA(t) = 1
(1−t)mn which

implies that N (I ) = T (Z). In other words, T (Z) is the normal k-basis of AZ , so
condition (d′) in Definition 2.3 is satisfied, and therefore �(AZ ) is a Gröbner basis of
the ideal I . �

The following corollary shows that our (noncommutative) analogue of Segre mor-
phisms for Yang–Baxter algebras of finite solutions (the general case) can be defined
also for the subclass of Yang–Baxter algebras related to square-free solutions. This
is in contrast with our recent results [14, Corollary 6.5], which imply that the non-
commutative analogue of Veronese morphisms for the class of Yang–Baxter algebras
related to (arbitrary) finite solutions of YBE, introduced in [14] can not be restricted
to the subclass of YB algebras of square-free solutions.
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Corollary 5.3 In notation as above. Let (X , r1) and (Y , r2) be disjoint square-free
solutions of finite orders, m and n, respectively, let A, and B be the corresponding
YB algebras. Let (Z , rZ ) be the square-free solution on the set Z = {z11, . . . , zmn}
defined in Definition-Notation 4.1, and let A = A(k, Z , rZ ) be its YB algebra. Let
sm,n : A −→ A ⊗k B be the Segre map extending the assignment

z11 �→ x1 ◦ y1, z12 �→ x1 ◦ y2, . . . , zmn �→ xm ◦ yn .

(1) The image of the Segre map sm,n is the Segre product A ◦ B.
(2) The kernel K = ker(sm,n) of the Segre map is generated by the set �s of

(m
2

)(n
2

)

linearly independent quadratic binomials described below

�s = {γi j,ba = zibz ja − zia′ z jb′ | 1 ≤ i < j ≤ m, 1 ≤ a < b ≤ n
and r2(yb ya) = ya′ yb′ with b > a′, a′ < b′}.

(5.6)

6 An Example

We shall present an example which illustrates the results of the paper. We use the
notation of the previous sections.

Example 6.1 Let (X , r1) be the square-free solution on the set X = {x1, x2, x3}, where

r1 : x3x2 ↔ x1x3 x3x1 ↔ x2x3 x2x1 ↔ x1x2
xi xi ↔ xi xi 1 ≤ i ≤ 3.

and let (Y , r2) be the solution on Y = {y1, y2}, where

r2 : y2y2 ↔ y1y1 y1y2 ↔ y1y2 y2y1 ↔ y2y1.

Then,

A = A(k, X , r1) = k〈x1, x2, x3〉/(x3x2 − x1x3, x3x1 − x2x3, x2x1 − x1x2);
B = A(k,Y , r2) = k〈y1, y2〉/(y22 − y21 ).

The algebra A is a binomial skew-polynomial ring, its relation form a Gröbner basis of
the ideal they generate. In contrast with the relations of A, the relations of the algebra
B do not form a Gröbner basis of the ideal J = (y22 − y21 ). The reduced Gröbner basis
of the ideal J is the set G = {y22 − y21 , y2y1y1 − y1y1y2}, see more details in [14].

Let A ◦ B be the Segre product of A and B, and let (X ◦ Y , rX◦Y ) be the solution
from Proposition-Notation 3.7 isomorphic to the Cartesian product of solutions (X ×
Y , ρX×Y ). Then, A ◦ B is a quadratic algebra with a set of one-generators

W = {w11 = x1 ◦ y1, w12 = x1 ◦ y2, w21 = x2 ◦ y1, w22 = x2 ◦ y2,

w31 = x3 ◦ y1, w32 = x3 ◦ y2}
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and 18 defining quadratic relations. More precisely,

A ◦ B � k〈w11, w12, w21, w22, w31, w32〉/(�),

where � = �a ∪ �b is a disjoint union of quadratic relations �a and �b given below.

(1) The set �a with |�a | = 15 is a disjoint union �a = �a1 ∪ �a2, where

�a1 = { f32,22 = w32w22 − w11w31, f32,11 = w31w21 − w12w32,

f32,21 = w32w21 − w12w31, f32,12 = w31w22 − w11w32,

f31,22 = w32w12 − w21w31, f31,11 = w31w11 − w22w32,

f31,21 = w32w11 − w22w31, f31,12 = w31w12 − w21w32,

f21,22 = w22w12 − w11w21, f21,11 = w21w11 − w12w22,

f21,21 = w22w11 − w12w21, f21,12 = w21w12 − w11w22 }.

�a2 = { f33,22 = w32w32 − w31w31, f22,22 = w22w22 − w21w21,

f11,22 = w12w12 − w11w11 }.
In fact the relations�a are exactly the defining relations of theYB algebraAX◦Y =
A(k, X◦Y , rX◦Y ), there is a one-to one correspondence between the set of relations
�a and the set of nontrivial rX◦Y -orbits in (X ◦Y )×(X ◦Y ). Note that each relation
in �a2 involves squares of generators.

(2) The set �b consists of 3 quadratic relations given below

�b = {g23,22 = w22w32 − w21w31, g13,22 = w12w32 − w11w31,

g12,22 = w12w22 − w11w21}.

Let Z = {z11, z12, z21, z22, z31, z32}, and let (Z , rZ ) be the solution defined in
Definition-Notation 4.1. By construction, (Z , rZ ) is isomorphic to the solution
(X ◦ Y , rX◦Y ).

The Yang–Baxter algebra AZ = A(k, Z , rZ ) has a finite presentation

AZ = k〈z11, z12, z21, z22, z31, z32〉/(�(AZ )),

where the set �(AZ )) of 15 defining relations is:

�(AZ ) = { ϕ32,22 = z32z22 − z11z31, ϕ32,11 = z31z21 − z12z32,
ϕ32,21 = z32z21 − z12z31, ϕ32,12 = z31z22 − z11z32,
ϕ31,22 = z32z12 − z21z31, ϕ31,11 = z31z11 − z22z32,
ϕ31,21 = z32z11 − z22z31, ϕ31,12 = z31z12 − z21z32,
ϕ21,22 = z22z12 − z11z21, ϕ21,11 = z21z11 − z12z22,
ϕ21,21 = z22z11 − z12z21, ϕ21,12 = z21z12 − z11z22,
ϕ33,22 = z32z32 − z31z31, ϕ22,22 = z22z22 − z21z21,
ϕ11,22 = z12z12 − z11z11 }.

Clearly, (Z , rZ ) is not a square-free solution, and therefore, by [14, Theorem 3.8],
the defining relations �(AZ ) of AZ do not form a Gröbner basis. In particular, AZ
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is neither a binomial skew polynomial ring, nor a PBW algebra. The Segre map
s3,2 : AZ −→ A ⊗ B has image A ◦ B. The kernel ker(s3,2) is the ideal of AZ

generated by the following three polynomials

γ23,22 = z22z32 − z21z31, γ13,22 = z12z32 − z11z31, γ12,22 = z12z22 − z11z21.
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