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Abstract

For certain finite groups G of Bicklund transformations, we show that adynamics of G-
invariant configurations of n|G| Calogero—Painlevé particles is equivalent to a certain
n-particle Calogero—Painlevé system. We also show that the reduction of a dynamics
on G-invariant subset of n|G| x n|G| matrix Painlevé system is equivalent to a certain
n x n matrix Painlevé system. The groups G correspond to folding transformations of
Painlevé equations. The proofs are based on Hamiltonian reductions.
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1 Introduction

In the paper we construct a relation between matrix Painlevé equations of different
size and Calogero—Painlevé systems of different number of particles. Such relations
are in a correspondence with folding transformations in the Painlevé theory. We recall
these notions and illustrate our results by simple instructive examples.

Folding transformations  This notion was introduced in [13], but actual examples of
such transformations were known for many years. By definition, the folding transfor-
mation is an algebraic (of degree greater than 1) map between solutions of Painlevé
equations. Moreover, this map should go through a quotient of Okamoto-Sakai space
of initial conditions (see e.g. [8] for the review). Probably, the simplest example is the
folding transformation of Painlevé II to itself.

Example 1.1 The Painlevé II equation is a second-order differential equation with
parameter 0

d2q—23+t 16 (1.1)
a2~ T ‘

This equation is equivalent to a Hamiltonian system with Hamiltonian

Hir( 't)—12 ! 2+t2 0 (1.2)
Hpvq’ _2p 2 q 2 q .

This equation (system) has a natural symmetry » which transforms parameter 6 +— —6
and maps (p, g) — (—p, —q). Such symmetries are called Biacklund transformations.
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Hamiltonian reductions in matrix Painlevé systems Page3of51 47

For the special value of the parameter & = 0 the equation is preserved by r so one can
ask for an equation on functions invariant under this transformation. If we introduce
new invariant coordinates P, Q and new time s

2
-1/3P 3 2_ P S 1/3
0=-2 RE P=2/(61 _F>_§’ s = =213, (1.3)
q q
we get Painlevé II equation on Q with parameter 6 = —1/2
d’Q 1
— =20 - —. 1.4
T3 =207 +s0— > (1.4)

This is a transformation of degree 2 between the spaces of initial conditions.

Note that in this example we start from the Painlevé equation with the special value of
the parameter (namely & = 0) and come to the Painlevé equation with the special value
of the parameter (namely & = —1/2). But, it appears that we can come to the equation
with an arbitrary value of parameter if we start from Calogero—Painlevé system.

Calogero-Painlevé systems These systems can be viewed as a certain N-particle
generalization of the Painlevé equations. Let g1, . . ., gn be coordinates of these parti-
clesand py, ..., py be the corresponding momenta with the standard Poisson bracket
between them. The dynamics of a Calogero—Painlevé system is defined by the Hamil-
tonian of the form [12]

1 N N
Hee((pio ki =53 i+ VP@.n+ 3o VPangp). (15
i=1 i=1

1<i<j<N

Here V(1 (¢) is a Painlevé potential (i.e. for N = 1 we geta Hamiltonian of the Painlevé
equation) and V® (g1, g») is a Calogero-type interaction. Note that the Hamiltonian
(1.5) is symmetric under permutations. By definition the phase space of a Calogero—
Painlevé system is a quotient by the action of permutation group Sy.

Note that the Hamiltonian (1.5) is non-autonomous, since Painlevé potential v
depends on time 7. In the autonomous limit, in which ¢ is a coupling constant, the
Hamiltonian (1.5) belongs to Inozemtsev extension of Calogero integrable system [4,
51

Another important feature of Calogero—Painlevé systems is that they describe
isomonodromic deformations of certain natural 2N x 2N systems [2, 6, 12].

In the paper we construct a natural analog of the folding transformations for the
Calogero—Painlevé systems. Let us give an example of Calogero—Painlevé Il for N =
2.

Example 1.2 Hamiltonian (1.5) in this case has the form

2 2 2
1 1 t §
cpn({(pi. gi)}: 1) ;(2171 2\4 T 1 (@1 — q2)* (o
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47 Page4of 51 M. Bershtein et al.

This system has a symmetry rcp : {(p1, q1), (P2, q2)} = {(=p1, —q1), (—=p2, —q2)}
with @ +— —6. For 6 = 0 the subset of rcp—invariant points is defined by the equations

(recall that we take the quotient by permutation group S3)

q1+q2=0, p1+p2=0. (1.7)

It is easy to check that these equations are preserved by the dynamics.

For g = 0 Calogero—Painlevé system is equivalent to the system of two non-
interacting Painlevé particles g1, g» up to the permutation. Hence, by Example 1.1,
the dynamics on rcp-invariant subset is equivalent to the Painlevé II equation with
0 =—1/2.

For g # 0 let us take the following coordinates P, Q on rcp-invariant subset and
rescale the time

0=—2 132 _ % . P=213q -0 - S s=22 (1.8)
a1 2q; 2

Note that these formulas are g-deformed version of formulas (1.3). It is straightforward
to compute the dynamics in terms of py, g1

2

dq; dpi 3 8
— =PI, — =2 t -, 1.9
g P m QI+‘]1+4% (1.9)
and then get
d dpP
—Q=P, — =20%+s0—ig—1/2, (1.10)
ds ds
which is the Painlevé II equation with parameter 6 = —% —ig.

It appears that this example can be generalized to the Calogero—Painlevé system with
more than 2 particles. Namely, for 2n-particle Calogero—Painlevé II with 8 = 0 the
dynamics on (dense open subset of) rcp-invariant subset is equivalent to the dynamics
of n-particle Calogero Painlevé II system with 6 = —% — ig. Moreover, similar
statements hold for other folding transformations, see Theorem 4.1 and remarks after
it. This is one of the main results of the paper.

Remark 1.1 Part of our motivation comes from the papers by Rumanov [10, 11], where
certain solutions of N-particle Calogero—Painlevé II systems are related to a spectrum
of B-ensemble with 8 = 2N. It was also observed in [11] that this solution for N = 2
is described by the scalar Painlevé Il equation. It appears that this solution is invariant
with respect to rcp, hence this observation is a corollary of Example 1.2 above. It
would be interesting to study subsets corresponding to Rumanov’s solutions.
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Hamiltonian reductions in matrix Painlevé systems Page50f51 47

Matrix Painlevé systems Calogero—Painlevé systems can be obtained by a Hamil-
tonian reduction a la Kazhdan—Kostant—Sternberg [7] from matrix Painlevé systems
[2].! In the Calogero—Painlevé case we consider the Bicklund invariant subset of the
phase space. It appears that in the matrix case it is natural to consider a subset invariant
under the Bécklund transformation twisted with conjugation by a certain permutation
matrix. In the matrix case we also perform an additional reduction.

Example 1.3 The phase space of matrix Painlevé II consists of pairs of N x N matrices
P, g with symplectic form Tr(d p Adq). The Hamiltonian has the form [cf. Hamiltonian
in scalar case (1.2)]

1, 1/, 1\’
Hwpu(p,g;t) =Tr P =54 +§ —0q], (1.11)

where parameter 6 remains a scalar variable.

Asbefore we have Biacklund transformationr : (p, ¢) — (—p, —q) with6 > —6.
Let us take 2n x 2n matrix Painlevé II with & = 0 and consider the subset of the phase
space invariant under Adg, o r, where S» = (1,,xn, —1,x,). This invariant subset is
given by block matrices with n x n blocks

0 pn2 0 an
- g = _ 112
P (le 0 ) 1 <q21 0 > (1.12)

It is easy to see that the dynamics preserves this subset. It is given by

di2 =P12, G21 =P21, P12 = 2912021912 + 1912, P21 = 2421912021 + 1921.
(1.13)

One can check that my = pa1q12 — q21p12 is an integral of motion. Let us fix its value
as my = igl, «,. Then, taking n x n matrices (P, Q) and rescaling the time

0=-2"ppgy. P=2Vqna+0%+s/2,  s=-2"% (114

we obtain matrix Painlevé II with 6 = —ig — 1/2
d dpr
9 _p — =20%+s50—ig—1/2. (1.15)
ds ds

Note that the parameter value for the resulting matrix Painlevé system coincides with
one for the scalar Painlevé II obtained in Example 1.2 [cf. (1.15) with (1.10)].

Actually, the last step in the example is a Hamiltonian reduction with respect to the
conjugation by a certain GL,, C GL3,. In Theorem 3.1 we construct such Hamiltonian
reductions of matrix Painlevé systems, corresponding to all folding transformations

U In the paper we consider only matrix Painlevé systems that are Hamiltonian, there also exist other inter-
esting matrix Painlevé analogs, see e.g. [1].
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of the Painlevé equations. This is one of the main results of the paper. Moreover, our
proof of Theorem 4.1 mentioned above is based on Theorem 3.1.

Plan of the paper 1In Sect.2 we recall matrix Painlevé equations in their Hamiltonian
forms. We also lift all Backlund transformations known in scalar case to the matrix
case. This lift is not completely straightforward due to noncommutativity of variables,
see e.g. Tables 1 and 2 below.

In Sect.3 we construct block reductions for the matrix Painlevé systems. The con-
struction works for Bécklund transformations which preserve parameters of certain
Painlevé systems but act on p, ¢ nontrivially (similarly to the folding transformations).
Let w be such a transformation, d denotes order of w and w denotes w twisted by
adjoint action of a certain permutation matrix of order d. In Theorem 3.1 we consider
a subset in the phase space of nd x nd matrix Painlevé system that is invariant under
the action of w, and show that the dynamics on its Hamiltonian reduction is equiva-
lent to n x n matrix Painlevé system. The proof of this theorem is based on case by
case considerations, which occupy the bulk of Sect. 3. In Sect. 3.4 we prove a similar
statement for the non-cyclic subgroups.

In Sect. 4.1 we recall the definition of Calogero—Painlevé systems. In the follow-
ing Sect. 4.2 we prove Theorem 4.1. Roughly speaking, this theorem states that the
dynamics on w-invariant set of nd Calogero—Painlevé particles is equivalent to the
dynamics of n Calogero—Painlevé particles. As we mentioned above, the proof is
based on Theorem 3.1 and the construction of Calogero—Painlevé systems via the
Hamiltonian reduction of matrix Painlevé systems. In particular, we do not need a
case by case analysis here.

It appears that there are more relations between matrix Painlevé systems and
Calogero—Painlevé systems, similar to ones found in Theorems 3.1 and 4.1. We do
not intend to classify them and just give several examples in Sect.5. In particular, in
Sect.5.1 we study another block reductions of matrix Painlevé equations. In Sect. 5.2
we study w-invariant configurations of Calogero—Painlevé particles in which several
particles evolve by algebraic solutions of a Painlevé equation. Finally, in Sect. 5.3 we
discuss spin generalization of the Calogero—Painlevé systems.

2 Matrix Painlevé systems and their Backlund transformations

We follow [2] in conventions on matrix Painlevé systems.

2.1 Painlevéll

Scalar case  We will consider a parametrized family PII(0) of ordinary differential
equations

§=2q"+1q+0, Q.1

where by dot we denote %. These equations are Hamiltonian. Namely, one can take
C? with standard symplectic structure @ = dp A dg, then the Hamiltonian (1.2)
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1

2
H(p,q;t) = 11?2 -3 (qz + 5) —0q, (2.2)
2 2 2

leads to dynamics (2.1).

This family of ordinary differential equations has discrete symmetries, called Back-
lund transformations. For example, it is easy to see that if g () is a solution of PII(9),
then —¢g () is a solution of PII(—0).

Let us define Bécklund transformations in general case. Let D («) be a system of
ordinary differential equations with extended phase space M, which depends on the
set of parameters o € C.

Definition 2.1 A pair of maps (7, 7) : M x C¥ — M x C* is called Bicklund
transformation if 7 maps solutions of D (&) to solutions of D (77 («)).

Let us consider a hamiltonian dynamics of a system of ordinary differential equa-
tions D («) on a symplectic manifold (M, w) with a time-dependent Hamiltonian
Hy(x;1), (x,t) € M = M x C. The equations of motion can be identified with
the one dimensional distribution on TM defined as Ker (w — dH, A dr). Then the
sufficient condition for (77, 7) to be a Backlund transformation is

¥ (a) —dHz ) A dt) =ho(x; 1) (0w — dHy Adt), (2.3)

for a certain function A, (x; ¢). Note that it is important to consider extended phase
space since we work with non-autonomous systems and non-autonomous symmetries.
Below we follow [13] in the description of Biacklund transformations.

Matrix generalisation Hamiltonian system corresponding to PII(6) can be general-
ized to the matrix case. Let us consider a phase space Maty (C) x Maty (C) with
coordinates (p, g) and symplectic structure w = Tr (dp A dg). Matrix PII(0) can be
defined by the Hamiltonian (1.11)

2 1 2
Hopog:t)=Tr (2= — 2 (2 + L) —oq (2.4)
9 9 9 2 2 2 . .

Note that the parameter 6 remains scalar. In all cases below we will consider matrix
Painlevé equations with scalar parameters only. Hamiltonian (2.4) leads to equations
of motion

Gg=p, P=2¢+1q+6. 2.5)

In case N = 1 this system is equivalent to the ordinary differential equation PII(6).
Now we generalize formulas for the Bicklund transformations of scalar PII(9) to
the matrix case. Here and below we will use notation C,, for the cyclic group of order n.

Proposition 2.1 Transformations in the table below are Biicklund transformations of

matrix PIL. These transformations generate group Co x W (Ai”).
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47 Page8of 51 M. Bershtein et al.

Table 1 Bicklund

t
transformations for matrix 4 P
Pl(«o, 1) -1 1 41 2 -2
51 qg+aif p—a (qf +f q)falf t
r —q -p !
P r--- ~
ap OF 0 o]

Let us explain the notation. Here f = p + g% + %, a; =60+ %, ayg=1—0ay.
Parameters o and o are called root variables. Action of s; on them is given by
si(ay) = —ay, s1(ag) = ag + 1. The action of r on root variables is indicated on
the diagram.

For any Painlevé equation group of Bécklund transformations is isomorphic to an
extended affine Weyl group. Thus it is convenient to encode generators and relations of
these groups through diagrams. Solid lines and nodes define an affine Dynkin diagram.
On the i-th node we write the corresponding root variable «;. These root variables
parametrize the family of equations. By s; we denote the reflection corresponding to
i’th simple root. A solid line between i’th and j’th nodes corresponds to the relation
sisjs; = sjs;s;. Absence of a solid line between i’th and j’th nodes corresponds to
the relation s;5; = s;s;. The action of reflections on the root variables is given by

si(aj) = aj — ajjo;, (2.6)

where {a;;} is the Cartan matrix corresponding to a given Dynkin diagram. Then
we extend Coxeter group by a finite group, acting by automorphisms of the diagram.
Dashed arrows show action of automorphisms on parameters and define adjoint action
on {s;}

if g(@;) = o, then gsigf1 =sj. 2.7

The generators coming from the automorphisms of diagrams will be very important
in Sect. 3.

Proof of proposition 2.1 Let us check that transformations from Table 1 are symmetries
of matrix PII(«g, o) using (2.3).

For transformation r it is easy to see that it maps Hamiltonian with parameter 0
to the Hamiltonian with parameter —6. Also it preserves @ and ¢. Thus r satisfies
equation (2.3) with hg(x; 1) = 1.

For transformation s; let us consider matrix coordinates ( f, ¢). Then

w=Tr(df Andg) + %dTr (g) Adt, (2.8)
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1, , 1
He(f,q;t)=Tr<§f —f(q +§)—9q). (2.9)

So we have
1
w—dHg Adt =Tr(df Adg) —dHy, Adt, whereo; =6+ 3 (2.10)
It is easy to see that 51 acts as f — f, ] — —a1. Hence we get

s;*(Tr(dedq))=Tr(ded(q+a1f*‘)) —Trdf Adg),

1 2
St (Hooy) = Tr <§f2 —f ((q +arfT) + %) +ar (g +a1f—1)>
= Hotp
sT@) =1t 2.11)

Then we have
s{(Tr(df Adg) —dH_g, Adt) =Tr(df Adg) — dHy, Adt. (2.12)

Hence s; is a symmetry of the matrix PH(—9 + % 0+ %)
Now it remains to check group relations between generators. In the case considered
we have to check that 51, r are involutions, which can be done by a straightforward

computation. The group obtained is not smaller than C, x W (AE])) since the action
on parameters is the same as in the case of scalar PH(—G + % 6+ %) and action on

parameters determines an element of C; x W (Ail)) uniquely. O

2.2 Painlevé Vi

The definition, Hamiltonian and Bédcklund transformations of scalar PVI(6) can be
found in [13]. Let us start from the definition of the matrix PVI. Here and below
to define a matrix Painlevé equation we will consider a symplectic structure w =
Tr (dp A dg) on the space of pairs of matrices Mat,, (C) x Mat, (C) > (p, ¢). Then
the dynamics can be defined by the Hamiltonian, which for matrix PVI is given by

t(t —DH(p,q;t) = Tr(pg(g — D)p(g — 1)
— (aa(qg — (g — 1) +a3q(q — 1)
+ (2o — Dg(g — D)p + az(a1 + a2)(g — 1)).
(2.13)

Proposition 2.2 Transformations in the table below are Biicklund transformations of
the matrix PV1L. These transformations generate group Sy x W <D£1)).
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47 Page 10 of 51 M. Bershtein et al.

Table 2 Bicklund transformations for matrix PVI(«q, 1, ap, @3, a4)

q p t
0 q p—aolqg—n7"
s1 q P
5 g+axp! p t
3 q p—azig—D7!
54 q p—auqg!
034 l—gq - 1—t
o4 tlpalg=14=Lp.ql — P dlg(pg + ap)r~ P4l 11
003 P-al =1 gy —Ip.al tlp-al(¢pyr—Lp-al 1
7 g~ —t7Yq(pg + @) .
™ tg—1(g—1)~"! — =171 (g1 (plg—1)+a2)

Automorphisms Aut (Dil)) = S4 are generated by permutations 034, 014, 003. In

general this group changes the time variable ¢, the time preserving subgroup is C%,
generated by w1 = 014003, T2 = (034003014)2. This is just a group of automorphisms
of the affine Weyl group.

Proof of Proposition 2.2 can be done by a tedious but straightforward calculation,
similar to the above PII case.

Note that s1, s» and o’s generate the rest of the transformations. Therefore it is
sufficient to check the Bécklund symmetry condition only for them. The following
remarks simplify the proofs.

Remark 2.1 Let m, m) be monomials in p, ¢ with coefficient 1 such that
deg,(my) = deg,(mz),  deg,(m1) = deg, (m2). (2.14)
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Hamiltonian reductions in matrix Painlevé systems Page 11 of 51 47

If degp(ml) + degq(ml) < 3, then
Tr (my) = Tr (my) . (2.15)

If degp (my) + degq (m1) = 4, then the same is true except for the case degp (my) =
degq (my1) = 2. In this case either Tr (m) = Tr (p2q2) or Tr (m1) = Tr (pgpq).

Remark 2.2 Let H| and H> be two Hamiltonians suchthat Hy — H>» = f(¢) (Tr (pgpq)
—Tr (pzqz)). Then

Tr(dp Adg) — dHy Adt = Tr (dp A dG) — dHy A dt, (2.16)

where
= S[qu]ps—[ILQ]’ g = S[P#]qs—[l”tﬂ’ s = exp (f f(t)dt> ) (2.17)

In other words, the dynamics generated by Hj can be mapped to the dynamics gener-
ated by H» by the certain non-autonomous change of variables.

One can see with the help of Remark 2.1 that for transformations sg, s» form @ —
dH A dt changes in the same way as in the commutative case.

There is an additional conjugation in 014, 093 which disappears in the commutative
case. Let us explain its appearance. Consider 63 defined by the formula

003 : q — 671, p>tp, t> 1L (2.18)

In commutative case (3 is a Biacklund transformation. In the matrix case almost all
terms in the Hamiltonian transform in the same way as in the commutative case. The
only difference appears in the transformation of the first term in the Hamiltonian

1
503 (df Ad (t(t —yTr(patg = Dplg - t))))

1
=thd<t(t_ 1)Tr(pq(q —1)plg — 1))>. (2.19)

Hence we have

5’6’3 (a) — dHsp500) A dt)

=0 —dHy Adr —d (Tf W«q—r)p(?;l_) - (q—l)p(q—t)))) o
=w-—d (Ha — ;Tr (pqpq — p2q2)> Adt. (2.20)
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47 Page 12 of 51 M. Bershtein et al.

We see that 63 fails to satisfy Eq. (2.3). But it follows from Remark 2.2 that for o3
we have

65 (@ — dHypye) A d1) = @ — dHy A dt. (2.21)

Transformations 014, 034 can be treated similarly.
To finish the proof it remains to check group relations encoded in Table 2. It can
be done directly.

2.3 Answers for the other Painlevé equations
In this part we present groups of Bicklund transformations which generalize the Béck-

lund groups of the scalar Painlevé equations for the matrix case. Namely, for each
equation we list the following data:

1. A Hamiltonian which defines the equation.

2. A table and a diagram which encode action of Backlund transformations of the
equation.

3. Answer for the Béacklund group.

Note that all transformations we list are symplectic. Also, they do preserve [p, g].

Painlevé V  The system is defined by Hamiltonian

tH(p,q;t) =Tr(p(p +1q(g — 1) — (@1 + a3) pqg + a1p + aztq) . (2.22)

Table 3 Bicklund

transformations for matrix 4 P !
PV(@o. a1, 02, 03) 50 q+ag(p+07! p t
5] q p—oig! t
5 q+ap! p !
53 q p—a3g—D7" t
—t71p tg—1) t

1—¢g —-p—t —t
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Hamiltonian reductions in matrix Painlevé systems Page 130of 51 47

These transformations generate group (C> X Cy4) X W(Agl)).
Painlevé I11(D{")
The system is defined by Hamiltonian

tH(p,q;t) =Tr (10292 —@* = (1 +BDg—1)p— ouq) : (2.23)

Table 4 Biicklund transformations for matrix PIIT (Dél))(ozo, o1, Bo, B1)

q p t
s q+ap! P t
Ton —q 1= p+(@—Bg ' —1q72 t
s} g+pi(p—17! P t
L tq~! —t71q (pg +ay) 1
o —q 1—-p —t
P ST~ S~
oy OF Q @1
I/ \\
o o
Bo Os =0 f1
el -
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47 Page 14 of 51 M. Bershtein et al.

2
These transformations generate group (C> X (Cp x C2)) X W (Agl) ) .

Painlevé ITI(DY")
The system is defined by Hamiltonian

tH(p,q; 1) = Tr(pgpq +a1pq +1p +q) . (2.24)
Table 5 Bicklund p
transfo(rln)lations for matrix a P
PIH(D7 ) (g, 1) 50 g p— Oloq_l + tq_2 —t
I tp -t~ g —t
PR o -~ ~ o
o 0= =0 o
These transformations generate group Co X W(Agl)).
Painlevé IT1(D{")
The system is defined by Hamiltonian
tH(p,q;1) =Tr (pqpq+pq —q—tq_l). (2.25)
This transformation generates group C».
Table 6 Bicklund p
transfo(r{l)lations for matrix a P
PII(Dg ) . ! g (pq + 3) ,
Painlevé IV The system is defined by Hamiltonian
H(p.q:t) =Tr((p —q —20)pq — 201 p — 2a2q) . (2.26)
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Table 7 Bicklund transformations for matrix PIV (g, @1, a2)

q p t
50 q+2a0(p—q—20)7" p+200(p—q—2071 t
51 q p—2a1q”! t
5 q+2ayp~! p t
b4 —p —-p+q+2t t
o] —ip —igq it

These transformations generate group (Cs X C3) X W(Agl)). Structure of the
semidirect product in C4 X C3 is defined by the relations

T =e, 014 =e, olnal_l =n 1 2.27)
Remark 2.3 There is central subgroup {012, e} C C4 x C3 which acts trivially on the
parameters. Quotient C4 x C3/ {0’12, e} is isomorphic to the group of automorphisms of
the diagram. This is only the case when the finite group we extend affine Weyl group

by is not isomorphic to the group of automorphisms of the diagram.

Painlevél The system is defined by Hamiltonian

2 3
p q Iq
Hp,g;t) =Tr| — — — — — ). 2.28
(p.gq:1) ( ) 4> (2.28)
Table 8 Bicklund p
transformations for matrix PT 7 P
T @5q w5 p wt

Here w5 is a fifth root of unity: w55 = 1, w5 # 1. This transformation generates
group Cs.
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3 Block reduction of Matrix Painlevé systems
3.1 General construction

In this section we provide a construction which connects two matrix Painlevé systems
of different sizes. In this construction input is a matrix Painlevé system and a Bicklund
transformation w of this system. Output is the matrix Painlevé system which we call
the image. We specify input and output in the Table 9 below. Let us denote the extended
phase space by M = Maty (C) x Maty (C) x C x C* = {(p, q.t,«)}, where k is
the number of parameters of the equation. For the phase space we will use notations
M, = Maty (C) x Maty (C) x C={(p,q,1)}, My, =Maty (C) x Maty (C) =
{(p, 9)}. By d we denote the order of the Bécklund transformation w.

Remark 3.1 Transformations from Table 9 are specified by following conditions

e There exists & € CK such that M, is invariant under the action of w.
e w acts on M, ; nontrivially.

Note that all of these transformations come from automorphisms of the corresponding
Dynkin diagrams and preserve the time. They are known to be related to folding
transformations and are classified in [13].

For each case from Table 9 we consider a matrix Painlevé of size nd x nd. There is
the adjoint action of GL,4 (C) on My, namely S : (p,q) — (SpS_l, SqS_l).

Consider a twisted Bécklund transformation w = Adg, o w, where Sy =
. 27i 2r(d=1) . _ .
diag (lnxn, ed 1.xn,...,e d lnx,,). Transformation w is an order d symmetry

of the equation. Then for M¥ = {x € M|w(x) = x} standard arguments imply

° Mgf , 1s a symplectic submanifold of M, ;.
° Mo’f) is preserved by the dynamics of the equation.

Lemma 3.1 Let w be a transformation from Table 9. Let o € C* be preserved by w.
Let M be the extended phase space of the corresponding matrix nd x nd Painlevé

Table 9 Input and output

NO Equation Image w d q P Section
1 PII PII r 2 g —p 32.1
2 pm(Dy’)  Pm(DY’) moxr’ 2 g 1—p—1q72 322
3 PV Pm(DY) 2 2 1-g —t—p 323
4 PIV PIV 3 —p —pHqg+2 324
5 PV PV 4 —t~1p tg—1) 325
6 pmi(py")  pPm(dY’) = 2 g —t~1g <pq + %) 33.1
7 pm(Dy’) PV 7 2 g7l —t7lg(pg+ay) 332
8 PVI PVI 7 2 tg~! —t7 g (pg + @) 333
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system and H be the corresponding Hamiltonian. Then restriction of the dynamics,
generated by H to M} is Hamiltonian.

Let us denote the corresponding Hamiltonian by H. Note that adjoint action of
GL,,4 (C) restricted to GLZ (C) = {diag (h1, ha, ..., hg)|h; € GL, (C)} do com-
mute with w. Thus this action preserves M. Consider a Hamiltonian reduction on
MY by a subgroup GL¢~! (C) = {diag (1, ha, ..., hg) | h; € GL, (C)} C GLZ (C)
with the moment map value fixed as g = (ig21,xn, - - -,1841nxn). Let us denote the
reduced space by M, := Mg’ / /gGLff_l (©).

Theorem 3.1 Under the conditions from Lemma 3.1 the dynamics on the manifold My
corresponding to H is equivalent to the dynamics of a matrix n x n Painlevé system
written as Image in Table 9.

Proof of Theorem 3.1 and Lemma 3.1 is given below case by case. We perform the
following steps for all cases.

Step 1. Solve fixed-point equations and obtain Darboux coordinates on M".

Step 2. Compute the action of GLﬁ (C) on M™ and the moment map of this action
in these coordinates.

Step 3. Obtain Darboux coordinates on My, ;.

Step 4. Calculate the Hamiltonian for the dynamics on M, and find coordinates on
M, in which the Hamiltonian is a Painlevé’s standard one.

Step 1, Step 2, Step 3 can be performed simultaneously for cases 1, 2, 3 and for cases
6,7, 8 in Table 9. We call cases 1 — 5 linear, since for them to obtain a parametrization
of M™ one has to solve only linear equations. Remaining cases 6, 7, 8 are called
non-linear.

Remark 3.2 We use the following notation.

e Standard small letters (for example, (p, ¢)) to denote canonical coordinates on
My ;. _

e Gothic letters (for example, (p, q)) to denote coordinates on M&‘{ PR

e Standard capital letters (for example, (P, Q)) to denote canonical coordinates on
Mg ;-

3.2 Linear cases
Step 1. Equations that determine the symplectic submanifold Mo’j_j , forcases 1,2,3

$248,' =& —q. SpSy' =—p+n) —1g7% 3.1

Here ¢, & € C, n € C[t] are specified for each case. For all cases which we consider
¢& = 0 and for them we get

q= (%lnxn q12 )
q21 %lnxn ’
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_ %I”X" - f%qilquzl P12 (3.2)
P = LIOF TS Sl Pt o) I '
P21 5 dnxn — 15415 Uy

Hence we get a symplectic submanifold of dimension 4n? with symplectic form
Tr(dpi2 A dg21) + Tr(dpa; A dqi2).

Recall that H is the Hamiltonian which defines a matrix Painlevé dynamics on M,,.
Then the equations of motion can be identified with the one dimensional distribution
on M,, namely

Ker (w — dH A dt). (3.3)

Let us denote the embedding of the set of w—invariant points by ¢ : M, gf — M, . Since
*(w) = Tr(dp12 A dqo1) + Tr(dpa; A dqp2) and the dynamics on Mg’ is defined as
Ker (¢* (w — dH A dt)) it follows that the dynamics on Mg’ is also Hamiltonian and
defined by Hamiltonian * (H) and (p12, P21, 921, q12) are Darboux coordinates on
MYy

Step 2. The remaining gauge freedom consists of block diagonal matrices & =
diag(hy, hy), hi, hy € GL,(C) and the moment map is also block diagonal

mp 0 P12921 — q12p21 0
5 = = = . 3.4
pal=m ( 0 m2> ( 0 p21g12 — q211012> S

Remark 3.3 Block structure of [p, g] appears not accidentally. Consider (p,q) €
My, with w = Ads, o w. As we mentioned above [p, ¢] is preserved by Bécklund
transformation w. Then we have

w*(lp. gD = [p. g1 = w*((p. 4D,
which implies
Adg, ([p. gD = [p.q1 = [S2.[p.q11 = 0.

From the last equation it follows that [p, ¢] is block diagonal.

Step 3. Let us perform Hamiltonian reduction with respect to GL, (C) =
{diag(1,,xn, h2)|h2 € GL, (C)}. We fix the moment map value as m, = p21qi2 —
g21p12 = ig21, x,- Hence we get po; = (qzlplg—f—igg)ql_zl. The functions P = plqu_zl
and Q = (12021 are invariant under the action of diag (1, /#,) and thus define functions
on M. Moreover (15 Q) are Darboux coordinates on My ;.

3.2.1 Plito Pl

Steps 1, 2, 3. We consider matrix 2n x 2n PIIl with ¢ = % Inthiscase & =0, n() =
0, ¢=0.
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Step 4. Substituting Darboux coordinates 15, Q into the Hamiltonian of matrix PII we
get

. Lo (o 1\? - o\ ni?
H(P,O: 1) =Tr PQP+1g2P—<Q+7) :—Tr(Q(Q—P +z)—1g2P)——.

2 4
(3.5)
After the change of coordinates
= I - 5 35 = 3
Q=———P, P=720, s=-21, (3.6)
V2
we obtain a system with matrix Darboux coordinates (15, Q) and Hamiltonian
NV | o o
H(P,Q;s)=Tr (EP(P —20% —s) - (—igz)Q> . (3.7)
Then after the last change of coordinates
o <5 Ky o
P=P—Q—§, 0=0 (3.8)
we obtain a system with matrix Darboux coordinates (P, Q) and Hamiltonian
e, 0o = (L -1+ 5 - (Hin-1) 0 (39)
1) =Tr| — — = =) — | —ig2 — = , .
i 2 2 2 8273

which is the Hamiltonian of matrix n x n PII(l +ig2, —igz).
3.2.2 PI(D{") to PIII(D.")

Steps 1,2, 3. We consider matrix 27 x 2n PIII(Dél)) withag = ) = 3, fo = p1 = .
Inthiscase wehave £ =0, n(t) =1, ¢ =1.

Step 4. Substituting Darboux coordinates f’, Q into the Hamiltonian of matrix
PII(DY") we get

()]

(H(P, 0in) = Tr (P20 + POPO+201 +ig)P
After the change of variables

o : -~ -~ -~ 2
p — 417,01 (15 4 (‘82> Ql) P01 o2 Lipaigrar T
9 4 b 167
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3.11)

we obtain a system with matrix Darboux coordinates (P, Q) and Hamiltonian
SH(P, Q:5) =Tr (POQPQ+PQ - 0 —s07"), (3.12)
which is the Hamiltonian of matrix n x n PIII (Dél)).

3.2.3 PVtoPlll(D")

Steps 1, 2, 3. We consider matrix 2n x 2n PV withag = ap = € + %, o] = o3 = —€.
Inthiscase £ =1, n(t) = —t, ¢ =0.

Step 4. Substituting Darboux coordinates P, Q into the Hamiltonian of matrix PV we
get

70

. 2"'
(H(P, §; 1) =Tr (ﬁzgz + 7080 -T2 4 e 1 2ign B0 - 25 4 ﬂ) .

2
(3.13)

After the change of variables

l _15.015,15.01 2
Q:——t el ptt §=—— (314)

P = 4;71P.015,P.01 , ’
¢ 4 16

we obtain a system with matrix Darboux coordinates (P, Q) and Hamiltonian

SH(P, Qi) =Tr (P20% = (0% + Qe +ig2) 0 — )P +i820) (3.15)
which is the Hamiltonian of matrix n x n PII(DY") (1 + ig2, —iga, 1 + 2¢, —2¢).
3.2.4 PIVtoPIV
Step 1. This is case 4 in Table 9. We consider matrix 3n x 3n PIV with ¢g = o] =

_ 1
o) = 3- )
Equations that determine symplectic submanifold M, are

S3¢S7' = —p, S3pS;' =—p+q+2t (3.16)
Then
—%lnxn q12 q13 %lnxn —w2qn  —was i
q= q21 *%lnxn q23 sy P=| —wq] %lnxn 7w2q23 , w=e3.
a31 932 —Z 1 ol o Zloa
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(3.17)

So we get a symplectic manifold of dimension 612, with symplectic form +/3i Tr(dg2A
dg21 + dqzi A dqi3 + da23 A dg3p).

Similarly to cases above it follows that the restriction of the dynamics defined by
Hamiltonian H on MY is Hamiltonian and defined by restriction of H on M.
Step 2. The remaining gauge freedom consists of block diagonal matrices & =
diag(hy, hy, h3), hi, hy, h3z € GL, (C) and moment map is also block diagonal

m; O 0
[p, 61] = 0 mj 0
0 0 m3
q12021 — 913931 0 0
= 3i 0 923932 — 921912 0 . (3.18)
0 0 q31913 — 932923

Step 3. Now we can perform Hamiltonian reduction with respect to GL, (©)? =
{diag (1,,x,, h2, h3) |h2, h3 € GL, (C)}. We fix the moment map value as my =
igo2lyxn, m3 =ig3lyxa.

The functions P = (o — w‘l)q12q23q1_31 and Q = q13q2_31q21 are invariant under
the action of GL% (©), so they define functions on the manifold M. Moreover these
functions are Darboux coordinates on M, ;.

Step 4. Substitution P, Q into the Hamiltonian gives

H(P,Q;1)=Tr (ﬁQ(ﬁ +/31(Q +21)) +i(g2 + g3) P — ﬁgzé) . (3.19)
Then after the change of coordinates

P=-P, Q=«Q, s=«t, wherex’=—+/3i, (3.20)

x| -

we get
H(P,Q;s)=Tr (PO(P — Q —2s5) + (ig2 +1ig3) P —ig20), (3.21)

which is the Hamiltonian of matrix n X n PIV(l + i‘%, —%, 1"%)

3.25 PVtoPV

Step 1. This is case 5 from Table 9. We consider matrix 4n x 4n PV with g = a1 =
=03 = le‘ )
Equations that determine the symplectic submanifold Mj, in case 5 are

S4qS; ! = —% SapS;l =1(q - 1). (3.22)
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The solution is

%lnxn q12 0 qi4
_ q21 %ln xn q23 0
q - 0 1 1 ’
q32 3 lnxn q34
q41 0 q43 1n><n
—%lnxn iICIIZ 0 —iq4
p=t —1921 _j.ln xn 10(23 . 0 ) (3.23)
0 —ig32  —5laxn ig34
iq41 0 —ig43 —%lnxn

So we get symplectic manifold of dimension 812, with symplectic form

. 1 1 1 1
20Tr (42 a12) A 47 a21) + d(r2az) A d(r 2 a0)

1 1 1 1
+d(239) A d(7043) + AT a4) A D2 q1)) (3.24)

Similarly to cases 1-3 it follows that the restriction of the dynamics defined by the
Hamiltonian H on M is Hamiltonian and defined by restriction of H on M.

Step 2. The remaining gauge freedom consists of block diagonal matrices & =
diag(hy, hy, h3, hg), hy, ha, h3, hs € GL,(C) and moment map is also block diago-
nal

mi 0 0 0
0 mpy O 0
[P, q] = 0 0 ms 0
0 0 0 my
q12921—9q14941 0 0 0
— 2ir 0 q23932— 021912 0 0
0 0 934943 — 032023 0
0 0 0 q41914—0q43934

(3.25)

Step 3. Now we can perform reduction with respect to GLfl © =
diag (1, xn, h2, h3, ha), ho, h3, hy € GL,(C)). We fix the moment map value as
my = ig21nxn, m3 = 1g31xn, m4 = 1g41n><n

The functions P = 21tq12q321q34q41 and Q = q14q34 quql2 are invariant under the
action of GL3 (C©), so define functions on the manifold M, . Moreover these functions
are Darboux coordinates on My ;.

Step 4. Substituting P, Q into the Hamiltonian we get
tH(P, 0;0) =Tr (PO~ 1)*P0
+ (—Gga + igs + 2ig) 0% + (2ir + 2iga + igs + 3iga) O
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(g2 +ig0)) P + iga(ig2 +igs +ig0)0) (3.26)

Then after the change of coordinates

P=—=(0-DP-igs)(0-1, 0=000-D7", s=-2ir,327)
we get the Hamiltonian

sH(P, Q;5) =Tr (P(P+s)0(Q — 1) — (g4 —ig3) PO + (ig2 +1ig4) P —igas Q) ,
(3.28)

which is the Hamiltonian of matrix n X n PV(] +ig3,ig2 + g4, —iga, —igo — ig3).

3.3 Non-linear cases

Step 1. Equations that determine symplectic submanifold ng , for cases 6-8 are

_q(pg +v)

526152_l =1q7", 521752_1 = ;

(3.29)

On the open dense subset where the lower left n x n block of ¢ is invertible the solution
is given by

g = (Elll @ - t)5l11> b= (1311 - ((ﬁ%l — iy P21 + [P il +v 5[2_11>
d21 9219119y, P21 (2181185,  P2185, 1+ G21P11d5,
(3.30)

So, P11, G11, P21, G21 are local coordinates on Mgf[. By ¢ denote the embedding Mo'j_’ —
M,.
We can obtain restriction of the canonical 1-form © on My, namely

¢ (©) = Tr (p11dann + pradass — pardy dr) (3:31)
where Darboux coordinates on ng , are

(P11, 911, P12, 21) = (2(1311+5111512_11521),ﬁ11,

o1~ o~ e e e~ o~ VN o]
2(fqzllpzl—P11q11—CI11q211p21C|11—§) 211,6121).
(3.32)

Recall that H is the Hamiltonian which defines a matrix Painlevé dynamics on My,.
Then the equations of motion can be identified with the one dimensional distribu-
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tion on My, namely Ker (w — dH A dr). It follows that the dynamics on MY is also
Hamiltonian and defined by the Hamiltonian ¢* (H) + Tr <p21 o )

Even though (p11, 911, P12, 921) are Darboux coordinates on M, w
convenient for us to use (P11, q11, P12, G21)

a.r» it will be more
Step 2. As in the linear cases we have the action of block diagonal matrices

h——dmg(hhhz>:({@,L{ﬁq})k»<u”auh;1}{hﬁw-'*}) (3.33)

The moment map corresponding to this action is block diagonal, namely [p, q]
diag(m1, my), where

my = =2((d], — Dd>'P21 + dupir) —
o e o\ ae (3.34)
my = 2( tho1 + Q2111911 + G21911d,, szn) dy; +v
Step 3. Let us perform Hamiltonian reduction with respect to GL,, (C)
n

n = {diag(lnxn,
hy)|hy € GL, (C)}. Then, fixing my = ig21,,x, and resolving it with respect to pi
on the open dense subset where ;] is invertible, we get

JUE R . —
P11 =14y, p2lq1]1 - q11q211P21 + E(lgz - v)ﬁm1 (3.35)

We can take the following coordinates on the reduction

0 =dn. P=2d'piy. (3.36)
Then we have a section from M, to the intersection M¥ N {mo = iga1,,x,} Which
maps

(3.37)
Step 4. Hamiltonian on the reduction is

s* (H +Tr (ﬁﬂa;l‘)) — 5% (H) +Tr <%) .

(3.38)
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3.3.1 PI(D") to PII(D")

Steps 1, 2, 3. We consider matrix 2n X 2n PIII(D;U). In this case v = %
Step 4. Here we start from coordinates
R 2—1 Q =2Vt |P+|i _! 0! s = 163/1
2 \/; [} 82 2 E] El
(3.39)
in which we get Hamiltonian
sH(P, 0;9)=Tr (POPO — (0% —2ig20 —5) P ~i20).
(3.40)
Then after change of variables
p =P OIpg—IP.0l o — ([P.015~[P.0] (3.41)
we get
sH(P, 0;s) = Tr (P20% = (0> —2ig20 —s) P —i820) .
(3.42)

which is the Hamiltonian of matrix n x n PIII(Dél)) (l —igo,igy, 1 —igy, igz).

33.2 PI(D{") to PV

Steps 1, 2, 3. We consider matrix 2n X 2n PIII(Dél)) with g = B1 = %, o) =€.In
this case v = €.
Step 4. Here we start from coordinates

ﬁ:zﬁ(ﬁ+(ig2—e)Q*‘), Q:-(g+1), s = —8v7, (3.43)

we get a system with Hamiltonian

sH(P, O:s) = Tr (13(13+s)Q(Q—1) + (1—-2ig2) PO

2iga—1\ « y b 071
+< lg; >P+(e—1g2)sQ—[P’Q] ) (3.44)

4
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After change of coordinates

p =5 2P OIpIP01 g — —3IP.01(5¢IP.01 (3.45)
we get
sH(P, Q;5) =Tr (P(P +5)0(0 — 1) + (=2ig2) PO +ig2 P + (€ —ig2)s Q) ,
(3.46)

which is the Hamiltonian of matrix n x n PV(l —igy —€,1g2, € —igo, igz).

3.3.3 PVito PVI

Steps 1, 2, 3. We consider matrix 2n x 2n PVI with g = a3 = €g, @] = a4 = €.
In this case v = ap = 1_ €y — €]1.
Step 4. We start from coordinates

y - 1\ = .1
P=2¢?(P+(eo+e]+igz—5> Q‘l), 0=3
11 1
s=§+z<«/?+$), (3.47)
in which we get Hamiltonian
sGs—D)H(P, 05 8) = Tr(ﬁé@ —DP(Q —s)

+ (i8200-1)(0—5) +i820(0—s) + 2= O(0-1)) P
2 —_ “ v
+ ((eo gy + l) - e%> o Ys6=b 5 Q]2> . (3.48)

2 2

After the last substitution
P = e—Zarccosh(ﬁ)[i’,Q]I‘ieZa.rccosh(ﬁ)[ls,Q]
0= e—Zarccosh(ﬁ)[fv’,Q] QeZarccosh(ﬁ)[fv’,Q]’ (3.49)

we get

s(s = DH(P, Q:5) = Tr<PQ(Q —DP(Q —s) + (ig20Q — D(Q — 5)

1 2
+ig20(0 — ) + Qo — DQQ — 1) P + ((60 g+ 5) - e%) Q> :
(3.50)

which is the Hamiltonian of matrix n x n PVI(Zeo, 2€1, % —1igr — €y — €1,182, igz).
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3.4 Special C; x C; cases

Let G be a group consisting of Biacklund transformations which preserve a certain
matrix Painlevé system and act trivially on the time variable. For the scalar Painlevé
I-VI it was shown in [13] that such group G consists of transformations coming from
automorphisms of diagram (up to overall conjugation of G). This is indeed true also
for the described above Bicklund transformation groups of matrix Painlevé equations.
From the description of transformations corresponding to automorphisms in Sect. 2 it
follows that possible G’s are either cyclic, or isomorphic to Cy x C».

Twisting generators by GL, |G| (C) action we get the group of symmetries G, and

the submanifold MaG which is preserved by the dynamics. Condition of G-invariance
in case of cyclic G simplifies to invariance under the action of generator w. These
cases are described by Theorem 3.1.

There are only two cases of non-cyclic G. For them there is a construction of the
reduction similar to one described by Theorem 3.1. The input and output are given in
Table 10.

Let us use notation w,,w_ for generators of G. We take twists S; =
diag (Lpsens Lnscns —lnxns —luxn)s S— = diag (Aysns —lnxns Luxns —lnxn). Then
twisted generators are w; = Adg, o w;.

3.4.1 P(D{") to PII(D")

Step 1. Consider matrix 4n x 4n PIII(Dél)) with parameters o1 = 1 = % In this
case we take wy =’ and w_ =7 o',

Since MS = My" N Mg~ let us start from Mg " Manifold My " is defined by
equations (3.29) with v = % So we have the solution on the dense open subset

dii g2 * % P P2 x %
do1 G2 k% % P2 P ok %

. L Cop=|P ® 351

1 q31 g3 * % P 1331 )332 * 0k ( )
q41 E|42 * Xk P41 Pap * %

Here E|,-j, ]3,-]- are n x n blocks and *’s are defined in terms of E|,-j and ﬁij by (3.30).
Note that for this case in equations (3.30) blocks have size 2n x 2n.

Table 10 Input and output for C; x C; cases

No  Equation Image Generators ¢ )4 Section
1 pu(dY) Pm(DY) mox —q 1—p—tq72 34.1
’ -1 -1 1
T 1q -1 g (pq + 7)
2 PVI PVI m tqg~! — 7 lg(pg+ ) 342
) t(q _ 1)(q _ l)—] G—=)(p(g—t)+ay)

t(1—1)
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The Darboux coordinates on My " P+ are given by (3.32). Note that one half of these

them, defined by rather comphcated formulas following from (3.32).
Now let us impose invariance under w_ to obtain M, G as the submanifold of My b

g=-5q¢5" p=S5 (—p r1- tq*z) syt (3.52)
These equations are solved by

11 = G22 = G31 = da2 = 0,
412421 by = Gaidi2 o 43221 o da1gry (3-53)

1-— , P31 = , P4 =
t P t P t

pi=1-

So matrix coordinates OnM ', are (412, 21, 632, 441, P12, P21, P32, P41).

From the consideration above it follows that Darboux coordinates on MO(Gt are

di2, 421, q3g, da1 angi conjugated to them which are restrictions of ones conjugated to
them on M;f Tto Mg ;- For example, to obtain matrix coordinate conjugated to g2 one
should take upper right n x n block of p1; from formula (3.32) and then restrict it to
(3.53). Darboux coordinates on M Gt are

(P21, 412, P12, 421, P23, 432, P14, Ga1)
= (2(1321 + G218y, Pa1), 12, 212 + 1285, P32). G2t
1
(f%z P32—P21012—d210,; P41€|12——) C|32 GEPR

2 (fﬁzﬁlﬁm —p12621—d12d5, P32CI21——> Ay, da1). (3.54)

Step 2. We have the action of block diagonal matrices on Mg which maps

h = diag (h1, ha, h3, ha) = ({85}, {pij}) — ({hiqijh;l}» {hiﬁijh;l})~ (3.55)

Moment map of this action is defined by blocks of block diagonal matrix [p, ¢q]

mi = 2(td3 Par — G12Pa1 — G128218;, Par) —

Es
1. . oo o_1e 1
my = 2(ICI321P32 —q21P12 — q21q12q321p32) 3
. Cov . e e el e el 1
m3 = 2(—1P3 + Gxp21d12 + G328218,, Pa1d12)d3, + 5
. . v . e e erde e u_ 1
mg = 2(—tp41 + qa1p12G21 + CI41C|12C132113320121)C|411 + 7 (3.56)
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Step 3. Let us perform Hamiltonian reduction with respect to GL,31 (C) = {diag(1,xn»
ha, h3, hg)lha, h3, hy € GL, (C)}). We fix the moment map value as m, =
ig2lyxn, m3 =1ig31uxn, m4 =igalyxy.

Darboux coordinates on the reduction are (P, Q)= (2(6[2_]1;321 + 6[2111341), E|12ﬁ21> )

Step 4. As in the non-linear cases restriction on the set of points invariant

under 7’ shifts the Hamiltonian by Tr (ﬁ215|2_11), which is in our case equal to

Tr (fa326|3_21 + ;3416@1). Then it remains to restrict the Hamiltonian obtained to the

set of points invariant under 7 o 7’ and satisfying the moment map conditions and
substitute the section from the reduction. Then we get

tH(I;, Q; t)
—Tr (132@2 - (132 + (igs + 2igs +igr — P — 4) 0 + (igs + ig3>i>) . (3.57)

Then after change of variables

- 1~ t
Q=-—tP, P:;Q, s:—Z, (3.58)
we get
sH(P, Q;s)
=Tr (P20? — (0% — (ig2 +igs) + (ig3 +igs) © —s) P — (ig2 +i83) ©)
(3.59)

which is the Hamiltonian of matrix n x n PIII(Dél))(l —igy +1ig3,1g2 +ig3, 1 —
ig3 —ig4,ig3 +ig4).

3.4.2 PVitoPVI

Step 1. Consider matrix 4n x 4n PVI with parameters «g = o] = o3 = a4 = €. In
this case we take w4 = 71 and w_ = 5.

Let us obtain My *. This manifold is defined by equations (3.29) with v = ;. So
we have the solution on the dense open subset

dii g2 * % P P2 x %
do1 G k% Pa Pm x %

_ [ @ L op= | P B 3.60

1 q31 g3 * % p 1331 1332 * ok ( )
E|4l cv|42 * Xk P41 Pap *  k

Here §;;, pij are n x n blocks and #’s are defined in terms of §;; and p;; by (3.30).
Note that for this case in equations (3.30) blocks p; 7> 9ij have size 2n x 2n.
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Let us obtain Mf = M,;,D+ N Mg” C Mg’*. Then on Mgf_j+ we have to solve

S ((q —(plg — 1) +a2)) S5 .
(3.61)

g—t=1tt-DSq-07"'S;, p= -1

On the open dense subset, where 21, 431, §41 are invertible, these equations can be
solved by

12 = (@ — D@0 — Dayy's G2 = G2dnidy,
32 = @310 — Dy da2 = da @ — Dy
Pii=9pn=0, P31 =—ds1(dy P21 + dy; Pa1),
P =— ((Eln — i3 P32 + (@1 — t)ﬁ;ffm).

(3.62)

. . G TV Vv
So matrix coordinates on M, are qi1, 921, 931, 941, P21, P41, P32, P42. Let us denote

embedding by ¢ : Mg — M,. Note that on Mf blocks of g depend only on
d11, 921, 31, G41, 7, hence

*O = Tr (Pr1ddiy + pi2ddar + P13dds; + Piaddsr) — Fdr, (3.63)

for certain i1, P12, P13, P14, F. One can calculate all of them, but we will use only
P11, F, given by

~

Bii = =2 (v Bt + ¢ = Diy'Bar) (3.64)

Tr ((1 — 1)y, P21 + (¢ — Dy, Par + g, Pactiz + 83, Pr2diar + az) :
(3.65)

1
r—1
Step 2. We have a Hamiltonian action of GLZ (C) on M‘f p

h = diag(hy, ha, h3, ha) = ({8}, {pij}) — ({hiEIijh;l}, {hiﬁi./h;l})- (3.66)
The moment map of this action is given by blocks of block diagonal matrix [p, q]

mi = 2t(§11 — Dy par + 2t — Ddnidy, par — oo,

my = 21818y, Paz — 282185, P32 — 2,

m3 = 2p3daidy, — 2831y, P21 + gy Pan) (@11 — Dy, + a2,
my = 2pa1(f11 — D + 2Pardnidy, + oo

(3.67)

Step 3. Let us perform Hamiltonian reduction with respect to GL,3Z © =
{diag(1,xn, h2, h3, ha)|ha, h3, hy € GL, (C)}. We fix the moment map value as
my =igolyxn, m3 =ig3lyxn, M4 =igal,xn.
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Darboux coordinates on the reduction are
(P, 0) = (prr. i) = (-2 (13 b2 + ¢ = Diz'par) dn).  (368)

Step 4. From (3.63) it follows that the dynamics on Maé is given by the Hamiltonian
t*(H) + F. The Hamiltonian on the reduction in the coordinates

P:%, 0=0¢-1D0+1, s=—d!) (3.69)
is given by
st = DH(P, 035) =Tr (PO - )P — 1)
— (Gigs +igs = DO — 1) + (ig2 +ig) 00 — )+
+(ig> +igs) (0 — (0 - ) P
+‘1—‘ (1—2igr—2igz—2iga—ae) (1—2igr—2ig3—2igs + 4¢) Q) . (3.70)
After change of coordinates
p = s [P.01 pglP.01 0= s*[f’,Q]Qs[f’,QV], (3.71)
we get

s = DH(P, 0:5) =Tr(PO(Q ~ DP(Q —5)
— (lig3 +igs = DO(Q = 1)+ (ig2 +ig) Q(Q — ) +
+ (g2 +ig3)(Q = D(Q = 5) P

1
+4 (1-2ig2~2ig3~2iga—de) (1-2iga~2ig3—2iga + 4e) Q), (3.72)

which is the Hamiltonian of matrix n X n PVI(ig3+ig4, 4e,
3 (1= 4e — 2(iga+igs +iga)) . iga+iga, ig2+ig3).

4 Application to Calogero-Painlevé systems

4.1 From Matrix Painlevé to Calogero-Painlevé

Every matrix N x N Painlevé system defined above corresponds to a Calogero—
Painlevé system. We briefly recall its construction following [2].

Consider phase space of matrix Painlevé system, which is My, = {(p,q) €
Mat?vx ~ (©)}. There is an action of GLy (C) by overall conjugation of p and g.
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This action is Hamiltonian and the moment map equals ux(p, g) = [p, ¢g]. Let us
define phase space of the corresponding Calogero—Painlevé system as a Hamiltonian
reduction

Mas = Ma.i//oy ,GLN (). 4.1

Here Oy, is a coadjoint orbit Oy , = {igdyxny — & @ N)|§ € Matyy; (C),n €
Mat;xn (C),né = N}, g € C.

Let H be the Hamiltonian of matrix N x N Painlevé system. The Hamiltonian
H is invariant with respect to the action of GLy (C), thus H defines a Hamiltonian
dynamics on M, which is called dynamics of the corresponding Calogero—Painlevé
system.

The open dense subset of My ; can be described as the phase space of system
of particles considered up to permutations. This space is T* ((CN \diags) /S N), its
points are sets {(p;j, q;)}j=1,.,n Where g;’s are distinct. Let us consider a map ¢y :
T* ((CN\diags) /Sn) = Ma,

ig ig
Pt =g q1—qN
ig ig . ig
n-a P2 o—a ' 2=4N
Appahmnon > || 0 e -
¢v i {pj,gp)tj=1,..N : T :
. ig
i:g ig gN—-1—94N
m IN—GN—1 PN
q O ... ... O
0 ¢ O :
0 .. e ) 4.2)
: . N ()
0 ... ... 0 gn
1

Note that Im(¢y) C /L;,l ({ig (leN -y ® vjv)}), where vy = | :
1
Let us denote by [(p, ¢)] the orbit of (p, ¢) with respect to the action of GLy (C).
Consider a map

oy T* ((CN\diags> /SN> — Mg
{(pj>q)}j=1,..n = [En{(pj, q;)D].

(4.3)

The map EN is injective and the image of EN consists of classes [(p, g)] sugh that
q is diagonalisable with different eigenvalues. Let us use the notations Im({y) =
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reg reg
Ma,t ’ ot t —

={(p,q) € Mat vy © :[(p,g)] e Mreg} We have the inverse map

LM Oy (On,g) > T ((CV\diags) /Sy )
(p.q) = {(pj.gp}j=1,..N-

“4.4)

Here g;’s are eigenvalues of ¢ and p; is the j-th element on the diagonal of p in a
basis where ¢ = diag (q1, ..., gn)-

Bicklund transformations of matrix Painlevé systems obtained in Sect. 2 are ratio-
nal in p,q,t and thus do commute with the action of GLy (C). Also, Backlund
transformations preserve [ p, g]. Thus we have

Proposition 4.1 Bdcklund transformation of a matrix Painlevé system defines Bdick-
lund transformation for the corresponding Calogero—Painlevé system.

Indeed, let w be a Bécklund transformation of a matrix Painlevé system. Then the
corresponding transformation of the Calogero—Painlevé system can be written as 7y o
woly = w. As aresult, we have a homomorphism from the described above Backlund
transformation groups of matrix Painlevé equations to Bicklund transformations of
the corresponding Calogero—Painlevé systems.

Remark 4.1 One can lift the condition of w-invariance of [(p, ¢)] to the level of matrix
representatives (p, ¢), namely

[(p, ) € MIY"N & n((p, @) = mvow((p, q)) < 35 € GLy (C) : w((p, 9))
= (SpS~!, 8¢5 1. 4.5)

Let us illustrate constructions above by an example (in addition to Example 1.2)

Example 4.1 To obtain the Calogero—Painlevé IH(D(I)) Hamiltonian one should

restrict the corresponding matrix Painlevé III(Dé )) Hamiltonian (2.23) to the image
of the map (4.2). In this way we obtain

tHy({(pi, gi)}; 1) —Z(p, q; + (=g} + (@ + BO)gi + D) pi — @1q;)
i=1

2., 2
g Y quz (4.6)
1<) T<N (gi —q;)

Note that this Hamiltonian is not of the physical form (1.5), to obtain such form,
one should make logarithmic change of variables

_ rar+pi
Pi = piqi 2 + 24 + ) ,

t
t=logt, q;=logg;+ = 4.7)

27
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which gives

N
1 1
Hppys = Z (pl2 — ¢t sinh? q; + et? <<ﬂ1+§> coshq; — <a1+§> sinh q,->>

i=1

g2

+ S E—
. 9—q;
1<j<i<n 2sinh® (T’)

(4.8)

So this is a system of trigonometric Calogero type, in difference with rational
Calogero—Painlevé II (1.6). However, Hamiltonian (4.6) is more convenient for us
than (4.8) because it is given in terms of rational functions.

4.2 Reduction at Calogero—Painlevé level

Let G be a group of symmetries of a certain matrix Painlevé system and let G be
the group of corresponding symmetries of the Calogero—Painlevé system. Then MS is
preserved by the Calogero—Painlevé dynamics. We aim to study the dynamics on this
subset.

Consider a certain matrix n|G| x n|G| Painlevé system with the finite group G of
its symmetries from Table 9 or from Table 10.

Theorem 4.1 Let G = Cy or G = Cy x Cy. Then there is an open subset U C (Mffg)G
such that

e The dynamics on U is equivalent to the dynamics of the n—particle Calogero—
Fainlevé system. The type of this Calogero—Painlevé system is given at Image
column in Tables 9 and 10. The coupling constant of this system is |G|g.

o U is open and dense on the connected component of the largest dimension in

(Mis®)°.

G . . .
In general (Mffg) is not connected. We will see in the proof that the component of

. o G. .
the largest dimension in (M ®)" is unique.

Proof In the proof we combine two different Hamiltonian reductions. First, recall that
above we defined reduction (4.1), with the corresponding moment map uy : My ® —
gly (C) and the projection 7y : uy' (On.¢) N Myt — Mys5. Second, in the setting
of Theorem 3.1 we have the corresponding moment map m : M& — (g, ((C))‘Gl*1
and the projection pr : m~! (g) — M. Recall that m is given just by the diagonal
n x n blocks of [p, g] from the second to the last one.

The main idea of the proof is to construct a map ¢ such that diagram on Fig. 1 is
commutative.

Let us consider the cases G = C3 only (for the cases G = C, x C» the proof is sim-
ilar). Group G = (> is generated by the transformation w. Let w be the corresponding

transformation of the Calogero—Painlevé system.
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TG|n

R o
ME S 161 (Ofing) N (Ma*)” Nm~! (g) ————— U C (Mi®)©

.|

Moc D) /J“'r:l (On,|G|g) Mﬁ

Tn

©

Fig. 1 Description of the map ¢

Step 1. Using explicit formulas for w we see that w has special form.

w:{(pj,g)}j=1,..20 = {(aw(gj, D pj + bw(qj, 1), cw(qj, 1))} j=1,..20. (4.9)

Here a,, by, ¢\ are certain rational functions. Invariance condition then can be written
as follows.

do € Son taw(qi, pi +bw(qi, 1) = psiy,  cw(qis 1) = Goi)- (4.10)

The permutation o is unique since g;’s are pairwise distinct.
Only conjugacy class of o is well-defined since coordinates ((p1, q1), (P2, g2), - - - »
(p2n, q2n)) are defined up to permutation. Hence for any point x € (Mffg)w we have

a conjugacy class which we denote by [0y ]. In notation U] = {x € (Mffg)w [[ox] =
[o1}, we get (Ma®)" = Lo Ujo.

Step 2. Let us express o as the product of independent cycles. Recall that w is an
involution, thus, taking square of w, we get g,2(;) = gi, hence o2 =1d. Then o is the
product of independent transpositions. We denote the cyclic type of o by [2K12#~2].
Let us compute dim (U[zk 12n—2k]). It is easy to see that each cycle in o imply system
of equations (4.10) and systems for different cycles are independent.

Leto (i) =i, then
aw(qi, )pi +bw(qi, t) = pi, cw(qi,t) = q;. 4.11)

Hence (p; (), g; (¢)) is an algebraic solution of the corresponding Painlevé equation.
If we have cycle (/1, [3) in o, then we get

aW(qll9t)pll +bW(qllat) = plza CW(qllat) quzv (4123)
aw(qlz, t)plz + bw(%, t) 4 CW(qlzv t) = (1, (412b)

Note that since w is an involution (4.12b) follows from (4.12a). Thus the cycle (/1, /2)
implies two independent equations.
As the result we get (for fixed ¢)
dim (Uppk j2n-24) ) = 4n — (2k 4 2(2n — 2k)) = 2k. (4.13)

So U; := Upny,; has the maximal dimension equal to 2.
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Step 3a. Map 72, should be surjective for the existence of ¢. In other words we have
to check ¥x € U : 3, ({x}) N (M) Nmy ' (igluxn) # @.

For o € Sy, let us denote by S, the matrix corresponding to o. Then for x € Uy
consider (p, q) = &on(x) € nz_nl ({x}). Then we have

(Se S, 1, SedSy ) = w(p. ). (4.14)

Since x € Upry we get 3A € GL,, (C) AS, Al = S,. Recall that S, =
diag (1,,xn, —1,x,) Was defined in Sect. 3.1. Then we get

(S2ApA7 S $AGA7 S = w(ApATL, AgATY). (4.15)

Therefore 3(p, §) = (ApA~', AGA™) e w3 (xh N M2,

From Remark 3.3 it follows that [p, 4] is block diagonal. Let us use the notation
[P, q] = diag(m;, my).

Since (p,§) € 1y, (O g) We get either my = iglyxn or my = iglyxn. In
the second case let us take (p,q) = (p,q) € mz_1 (igl;x,). In the first case we
0 ln Xn

_ 1n><n 0
preserves ,uz_nl (02,,’ g) N (M&eg)w. In both cases we get

take (p,q) = (RﬁR_l, R@R‘l), where R = ( ) is a matrix, which

(P, @) € w3, () N (MEE)” Amy " (iglusn) - (4.16)

Step 3b. Let (p, ¢) € 7, ({x}) N (M(fff)w Nmy ' (iglyxn). Then we have to check

that 7((p, ) € 11y (On,iG1g)- o
We introduced coordinates (P, Q) on My ; on Steps 3 in Sects. 3.2, 3.3 and 3.4.
For them we get

mi =[P, 0] = igluxn- (4.17)
For the final coordinates (P, Q) in each case one can check that
[P, Q1=1[P. QL (4.18)
Since [p, q] = diag(my, igl,x,) € /,Lz_nl (Ozn,g) we get
[P, O] —iglyxn = ig (Auxn —€E @), né =2n, (4.19)

which means (P, Q) € u, ! (On,2)-

Step 3c. Let us define ¢p(x) = 7, o pr ((p, g)). We have to check that the right side

reg

does not depend on the choice of (p, ¢) € 7, ({x}) N (Ma,t)u_) Nmy ! (igluxn)-
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Consider (p', ¢') € 73, ((x}) N (MEZ)” Am3 " (iglyxn), then
3B € GL, (C) : (p',q") = (BpB~!, BgB™). (4.20)
Acting on both sides by w we get
(r'.q") = (($2B5;Hp($2BS; ™' (5285, Hg($2BS;H™H, @421
which implies
[B~'$:BS; ", pl =[B7'$:BS; ', q1 = 0. (4.22)

Since (p, q) € u;n] (Ozn, g) N M;f‘;; we can consider these equalities in a gauge, where
q is diagonal and eigenvalues of ¢ are different. Then we get

B_lSzBS;1 = Aly, x2, for some A € C*. (4.23)

Rewriting this as B~!S;B = AS; and taking square of both sides we get A> = 1.
Then

) 4.24)
R - diag(by, br), X =—1.

_ {diag(bhbz), r=1,
Here b1, b, € GL, (C). Note that conjugation R does not preserve (i, 1 (On,2 g) N
my ! (igl,xn), while conjugation by diag(by, by) does. Then the only possible case is
A=1.
Conjugation by diag(1,x., b2) preserves pr by the definition. Conjugation by
diag(b1, by) descends to the overall conjugation of (P, Q) by b;. But this conjugation
preserves 1, by the definition. Hence 7, o pr((p, q¢)) = 7, o pr((p’, ¢")).

Step 4. One can inverse ¢ on M;Seg taking (p_l =my, o850, Heres : My, — Mgft
is a section for the reduction from Theorem 3.1 (for an example in non-linear cases
see (3.37)).

Step 5. It remains to check that ¢ maps the dynamics on U to the dynamics of the
n—particle Calogero—Painlevé system called by Image in Table 9.

Lety C U be an integral curve of 2n—particle Calogero—Painlevé system. Then for
(x0, t0) € ¥ let (Fo, o) € 115, (O2ng) N (M) Nm~! (g) be a lift of (xo, fo) i.e.
72, (X0) = xo.Letusdenote by I' the integral curve of the corresponding matrix 2n X 2n
Painlevé system through (%o, #o). Note that Mz_,,l (02,4) N (Mq reg) Nm~! (g) is locally
preserved by the dynamics of 2n x 2n matrix Painlevé system, so I" - ,u2n (02n g) N
(M5®)” Nm~! (g). Then I is a lift of y to u3, (O2ng) N (Ma®)” Nm~! (g). By
Theorem 3.1, pr maps I" to an integral curve of the n x n matrix Painlevé system,
called by Image in Table 9. Then, by the definition 7, maps pr(I") to an integral curve
of the corresponding n—particle Calogero—Painlevé system.

O
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Remark 4.2 In cases 4, 5 from Table 9 we have open subset

U = 71Gpn (MI_GIIH (OiGing) N (MEE)C Am! (g)) MY, (4.25)

For this subset one can also construct ¢ as in Theorem 4.1. Namely surjectivity of
7|6 follows from definition of U, while steps 36-5 of the proof can be performed
with the slight modification. Note that for cases 4, 5 Biacklund transformations are not
of the form (4.9), then steps 1, 2 of the proof have no sense. So for this U we do not
have the second statement of Theorem 4.1.

Example 4.2 Let us consider Calogero—Painlevé 111 (Dél)) and corresponding matrix

Painlevé III(Dél)). Hamiltonian (4.6) gives equations of motion

tq; =2£1,-2Pi —qi2+(a1 + B1)gi +t,

N
. qj(gi +q;)  (4.26)
thi = =2p7qi +2pidi — (@1 + BD)pi + 1 +2¢7 Y ﬁ
j=tizi N

Let us at first illustrate Theorem 4.1 for G generated by 7 o 7’ (case 2 from Table
9). We take N = 2n particles and consider open subset Upn C (M(rfg)w with w =
ayo(mor’)oly,choosingo = (1, n+1)...(n,2n). Thenag = a; = Bo = 1 = 1/2
and on Uppn we have

Gitn = —Gi» Pitn=1—pi—1/q’. (4.27)

Then equations of motion (4.26) reduce to equations on {(p;, gi)}i=1...n

) 2 a2 (g% + %)

. - B - - q t qiq9;\q q
1G; =247 pi +qis  thi = —257qi — bi + 5 — 237 165> Y —H——3-
qi j=1,j#i (ql _‘IJ)

(4.28)

Here for convenience we introduce p; = p; —1/2+t/ (2q[.2), such thatw*(p;) = —p;.
Now we find coordinates in which this dynamics has Calogero—Painlevé type. In other
words, we have to find map ¢ from Theorem 4.1 using the Hamiltonian reduction
on the matrix level (with g» = g). We take {(p;, gi)}i=1,..2n € Up2r], namely under
condition (4.27). Choosing the following matrix A from the proof of Theorem 4.1 we
have the following (p, q) € Mo'j_)

1 1 1
A= nxn nxn ) 4.29
ﬁ <_1nxn lnxn) ( )

Ada o &on({(pis gi)})

_<d@@‘ﬁ) pi2 (Lal) @)
N P21 diag(; — 3) ) " \~diagl@) 0 ’
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. g _ig 2igy
(P12)ii = —Pi + 5 P2Dii = —pi — 5—» i #j: (P1)ij = 55,
2q; 2gi q; — 4
2igq;
(P21)ij = 5. (4.30)
q; —4;

After the conjugation by matrix A the moment map condition becomes

t
1,xn — 2v,v), 0

[p,q]:ig( 0 )dueto Ava, = V/2(1,...1,0,...0).

1n><n
n n
4.31)
So, using coordinates (f’, Q) = (plqu_zl,qlngl) from Sect.3.2 we obtain on
pr (Ada o £, (Upan))
- 5 ig ) L 2ig ~ 5
Pii=pi/qi — 5. i #J: Pj=———>, Qij=4djq. (432)
2‘],’ q4; — 4q;

In coordinates (3.11) we obtain following coordinates {(P;, Q;)}i=1,.., and time s on
Ty O pr (AdA o §2n(U[2"]))

P =4pi/qi, Qi=q}/4, s=1*/16. (4.33)

Finally, one can check from (4.28) that these {(P;, Q;)}i=1,. satisfy Calogero—
Painlevé III(DS)) with coupling constant 2g

SQ:ZQ%PH-QL

ds

P P20 — Pl —s/O2 ) v Qi(Qi+0)

s = 2P0~ P+ 1-s/07 +38¢ > =0 (4.34)

j=1i#i

Example 4.3 Let us then illustrate Theorem 4.1 also for Calogero—Painlevé 111 (Dél))
system, but for G generated by 7’ (case 7 from Table 9). Note that this case is non-
linear in difference with the previous example. We take N = 2n particles and consider
Upr) C (Me®)" withw = 7y o7’ 0 {y. Then By = 1 = 1/2 and on Ujon) we have

t qi(pigi + a1)
di+n = —» Pi+n=—"" -

" ; (4.35)
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Then equations of motion (4.26) reduce to the equations on {(p;, ¢;)}i=1,..n, Namely

14 = 2q} pi — g} + (@1 +1/2)q; +1
) 1
tpi = —2P,~24i +2piqi — <0t1 + 5) pi + a1
(4.36)
-1 -1
tqi(q} +1) 2g X": 4 +a)) | 195 @i t14;)
(g} —1)° (qi —q;)° (qi —1q;")?

+2g°
J=Lj#i

We want to find ¢ from Theorem 4.1 using the Hamiltonian reduction at matrix level
(with g = g). We choose A as in the previous example, and take {(p;, ql-)},'_zlwzn €
Upon), namely under condition (4.35). Then we have following (p, g) € M}

o «  x\ 1 [ diag(gi +1/qi)  diag(—qi +1/q;)
Ada o o, ({(pis qi)}) = ((;"321 *> ) (diag(—qi +t/qi) diag(g; +t/qi) ) )

pi _ 4i(pigi+ o) | 18 4i+4;

(p21)ii = — > o 2t—gqiq;’
o g (4ig;tt | agita;

| i N ’ 4.37
i#£j (le)lj 2 <I(CIj — qi) I —qiqj ( )

where we calculate only necessary matrix block for the momentum. So, using formulas
from Sect. 3.3 we obtain following (P, Q) on pr (Ad4 o {2, (Uj2n1)) (only diagonal
elements of P are calculated)

~ e o~ 4 o] 2tig
Pii=(2tCI21 p21q11)ii:—_1 pi‘l’—_l C]i+ﬁ ,
qi—1q; qit+tq; q;—1t°q;

~ - 1 B
Qij = @)ij = E(Sij(Qi +1g7).
(4.38)

In coordinates (3.43) we obtain following coordinates {(P;, Q;)}i=1,., and time s on
Ty O pr (AdA o CZn(U[Z"]))

pigi +a1/2 dig (qi /vt + V/1/4i)

P, = )
Gi/NT=N1g (g T i)
L g WVt _
Qz—§+z<$+z>, s = =81, (4.39)
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Finally, these {(P;, Q;)}i=1...n satisfy Calogero-Painlevé V(1—a; —ig, ig, o1 —ig, ig)
with coupling constant 2g, which one can check from (4.36)

do; .
Sy = CPi+9)0i(Qi — D) +ig(1 —200),
dp; .
Sy = PP =200) +ig2Pi +5) — s (4.40)

" 2005 +202 - 0i - 30,
B D T TR

j=Lj#i

Example 4.4 Letus now consider Calogero—Painlevé II system, as in Example 1.2 from
Introduction, but with an arbitrary number of particles. Then, instead of Hamiltonian
(1.6), we have

N o/ 1 t\2
Hy({(pi.g)}it) =) (—p? - = (q,? + —) — (o1 — 1/2>q,~>

2 2 2
i=1
N g2
+ 0y ——. (4.41)
=l j<i (gi — QJ)

The corresponding equations of motion are

Gi=pi. pi=2q] +r1gi+ @ —1/2)+2¢% Y (4.42)

a3
=i (gi QJ)

Let us illustrate Theorem 4.1 for G generated by r (case 1 from Table 9). We take
N = 2n particles and consider Uppn) C (M,rfg)w withw = yoro¢y. Thenoy = 1/2
and on Uppn we have

Gi+n = —qi, Pi4n = —Di- (4.43)

Then equations of motion (4.42) reduce to equations on {(p;, gi)}i=1...n

2 n (g2 + 3¢

= =g s Y B
4‘],‘ =1, j£i (qi _q/')

We want to find ¢ from Theorem 4.1 using the Hamiltonian reduction at matrix level

(with g» = g). The calculations just resemble those from Example 4.2. As a result,

we have (4.32) for (I3 , Q) with p; instead of p;. Then, in coordinates (3.6) we obtain

momentum P in a diagonal form
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o _ ~ _ Di ig o ~
Qi =—2"183p =—27173 (q: - 2qz> . B =230, =2183g2 5=/
i

(4.45)

where Q,- and P; are diagonal elements of Q and P respectively. So the natural
projection 7y from pr(Ada o &2,(Uj2n))) gives us Calogero—Painlevé system in a
gauge, where Pis diagonal.

It follows from (4.44) that

5 S (P s S\ )y i+ P
Hn({<P,»,Qi>},z>=Z<2(Q,- +3) Pi+1gQi>(2g> ,-,-Z G

i=1

It is easy to see that this Hamiltonian can be obtained from the matrix Painlevé
Hamiltonian (2.9) in the gauge, where P (finloc.cit.)is diagonal. So we get Calogero—
Painlevé II(—ig — 1/2) with coupling constant 2g.

In order to obtain a transformation of Calogero—Painlevé system to the standard
gauge (as in r.h.s. of (4.2)), one should diagonalize matrix Q. This cannot give an
algebraic formula for the general size n.

Remark 4.3 Note that for N = 2 and g = 0 coordinate transformations from above
Examples 4.2, 4.3, 4.4 reproduce formulas [13, 5.10-5.12, 5.5-5.7, 9.5-9.7] for the
folding transformations of the corresponding Painlevé equations.

5 Further examples
5.1 Matrix reduction generalization

For the construction in Sect. 3 we choose for a certaln Backlund transformation the
additional twist Sy = diag (1,,x., € T lnxn, ...,e v lnx,,> At the Calogero level

this twist corresponds to permutation class [d"]. We also choose moment map value
g = (ig2luxn, - - ., 1841, xyn). It is natural to try to weaken such restrictions. Below
we present two examples for such generalizations.

Example 5.1 Let us consider 3n x 3n matrix Painlevé II. We take M ; with7 = Adgor,
where S = diag (1,xn, —12nx2x)- Recall thatr : (p,q) — (—p, —q) and 0 > —0,
so we set @ = 0.
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Step 1. The matrices (p, g) € Mg are given by

0 pi2 pi13 0 g2 93
p=1|pa1 0 O], g=|g1 O O (5.1
psr 0 0 @31 0 O

with a symplectic form Tr(dpi2 A dgz1) + Tr(dpa; A dgi2) + Tr(dpiz A dgz1) +
Tr(dps1 A dqi3).

Step 2. The remaining gauge freedom is diag(GL, (C)), GL,,(C)) and the moment
map is

_ (M1Dnxn 0
[p.4q] —( 0 (m2)2nx2n)

P12921+P13931—q12P21 —q13P31 0 0
0 P21912—q21P12  P21913—921P13
0 P31q12—4q31P12  P31913—q31P13
(5.2)

Step 3. We perform the Hamiltonian reduction with respect to GLy,(C) =
{diag(1,,xn, h2)|h2 € GLy, (C)}. We take the moment map value m, = diag (ig21,xn,
ig31,xn), where g» # g3. Note thatits stabilizeris GL% (C) = {diag(1;,xn, h2, h3)|h2,
h3 € GL,(C)}. On the reduction M, ; we can choose the following Darboux coordi-
nates

(P, Q) = (pr2ay5 » (I — g3/82)q12021). (5.3)

Step 4. After such Hamiltonian reduction we obtain n x n matrix system with Hamil-
tonian

H(P,Q:0)+31°/8 =Tr((ig2 —ig) P — 10 — Q> + POP). (54
Omitting 372/8 and making standard substitution
P=230, 0=2""3P+0Y~1/2, s=-2"%, (5.5)

we obtain the standard Hamiltonian of PII(—i(gy — g3) — 1/2).

The block sizes and the moment map value in above example, as well as in Sect. 3
are quite special. At least after the Hamiltonian reduction the phase space dimension
should correspond to a matrix system, namely it should be equal to a doubled square
of an integer. For the standard situation from Sect. 3 we have

2dn)* - 2dn®> = 2n* 4+ (d—Dn®> + d - Dn?, (5.6)
dimM,  dimMP,  dimMar gy Mad-1(©)  dimGLE~(©)
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where the last two terms correspond to the value of moment map and its stabilizer
correspondingly. For the situation from Example 5.1 an analogous calculation gives

23n)? - 8% = 2% + 4n* o+ m* . (5.7)
—— —— —— —— ——
dim My,  dimMP,  dimMg, dimMaty,(C)  dim GL2(C)

However, even if the dimension is not a doubled square of integer, sometimes we can
make a certain additional reduction to obtain a matrix Painlevé. We illustrate this by
the following example.

Example 5.2 Let us again consider a Hamiltonian reduction of Mé for 3n x 3n
matrix Painlevé II, but, in difference with Example 5.1, with respect to GL,(C) =
diag(hy, 12,x2n|h1 € GLL(C)). We take for the moment map (see (5.2)) the value

p12g21 + P13931 — q12p21 — q13P31 = ig1luxn, (5.8)

so after the reduction we obtain 6n2-dimensional system

23n)? > 8 = en? + n*r o+ n* . (5.9)
—— —— N—— N—— ——
dim My ; dim Mcffr dim M, dim Mat,, (C) dim GL,, (C)

On the reduction we introduce Darboux coordinates

(ﬁl 23 133)
01 02 03
_ <q211313 —pudi3 (P31 — G310, 20005 @1d12 — 3(P2195)7 + q21913931 05, + %)

q31q2’11 921913 —p21dy,
(5.10)

This matrix system has Hamiltonian
H((P;, 0i}; 1) +3t7/8
1 - ‘ - I R

=Tr (—P32 - Z(Q% — 1) —(ig+1/2)03 + P P, — 2Q2P2Q3) . (51
On coordinates (P3, 03) we have almost the matrix Painlevé II Hamiltonian. It
appears that we can perform two successive Hamiltonian reductions to obtain a matrix
system only on (P3, Q3). For the first one, with respect to translations of Q1, we fix
moment map value P; = 0. Then the Hamiltonian becomes invariant with respect
to (Pz, Qz) — (th th ", h € GL,(C). We fix the value of the correspondmg

moment map Pz Q2 to be a scalar matrix, namely Pg Q2 =01,x, = Q2 P»>. Then after
an additional coordinate and time rescaling

P=23p, 0=27130, s=-23%, (5.12)
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we see that Hamiltonian (5.11) becomes the standard Hamiltonian of matrix n x n
PII( —ig — § —20).

5.2 Adding algebraic solutions to Calogero—Painlevé systems

Let us consider a Calogero—Painlevé system together with order 2 Bicklund transfor-
mation w. Let us suppose that w leads to the permutations of cyclic type [2"1™],
in difference with Step 2 from the proof of Theorem 4.1. Then we obtain that
w((pi,qi)) = (pi,qi) for 2n < i < 2n + m, so the last m particles evolve as
certain algebraic functions. Below we give two examples for the dynamics on the
Calogero—Painlevé invariant subset involving such additional algebraic solutions.

Example 5.3 We modify Example 4.4 for Calogero—Painlevé II. The w-invariant alge-
braic solution is

w((pi, gi)) = (=pi, —qi) = (pi, qi)) = (pi,qi) = (0,0). (5.13)

We can add only one such particle, due to condition ¢; # ¢ fori # jon Mg %. Adding
such particle g2, +1 = pant+1 = 0, for the rest of the particles we have equations of
motion on (p;, qi), | <i <n

. . 9g> " qi(q} +3q9)
qi = pi, Pi=2‘1i3+t61i+4_3+482 Y s

. (5.14)
2 2
q; Pl PP - q7)?

which differ from (4.44) only in coefficient of term g;” 3 Thenitis easy to see that we
can modify Example 4.4 by hand. Namely, it is enough to modify Q; from (4.45) by
g — 38

o : 31
0; = —2-1/3 (% - %) . (5.15)
t i

Finally we obtain Calogero—Painlevé II(—3ig — 1/2) instead of (—ig — 1/2).

Example 5.4 We modify Example 4.3 for Calogero—Painlevé HI(Dél)). The w-
invariant algebraic solutions are

W((pi, 1) = (=t qi(piqi + 1), t/qi) = (pi, qi) = (pirqi) = (¢% ﬂ:«/?) .
(5.16)

We can add one of them or both to our system. So let us add to the Calogero—Painlevé
III(Dél)) from Example 4.3 n; = 0, 1 particles /7 and ny = 0, 1 particles (—+/7).
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Modifying momenta P; from (4.39) by an additional term as follows

iqi 2 4(1+2 i i t+Vt/qi +4 —
p, —g_Pi +ay/ v ( nin2)ig (qi /N1 + N1/qi + 4(ny nz))’ (5.17)

G/ a (4:/7 —/i/ai)

we obtain Calogero—Painlevé V(1 — a1 — (1 + 2n1ny)ig, (1 — 2(ny — ny) +
2niny)ig, a1 — (1 + 2nyny)ig, (1 — 2(ng — ny) + 2n1n2)ig).

Remark 5.1 It would be interesting to obtain such Calogero—Painlevé relations from
matrix Painlevé ones. Note that the permutation matrix for [2"1™] is conjugated to
S = diag(Lgnn)x m+n)> —luxn), cf. Section5.1.

5.3 Spin Calogero-Painlevé systems

One can consider a more general case of Calogero-type systems taking in (4.1) general
orbit O instead of Oy 4. Let us denote the corresponding reduction map by ¢ instead
of my.

The regular part of the phase space of a spin Calogero—Painlevé system can be
defined as

My = My 7//oGLy (C). (5.18)

It will be more convenient for us to use the identification (for the details see [9],
Theorem 3).

M™¢//6GLy (C) = (T* ((CN \diags) x 0/ /oGLY ((C)) /Sn.  (5.19)

Let us recall the construction of the reduction O/ /OGL{V (©) in the right hand side of
(5.19).

Let X e gly (C), then the fundamental vector field, corresponding to the coad-
joint action of X on O is vy (m) = —ad% (m). Then Kirillov—Kostant-Souriau form
can be written as wkks|m (Vx, vy) = (m, [X, Y]). Then we have t,, wkks|m(vy) =
— (ad} (m), X) = (dm(vy), X), which means that the coadjoint action on O is Hamil-
tonian with the moment map uggs : m +— m. Below we will identify points of
O C gly (C)* with matrices using Killing form.

Next, we restrict coadjoint action to the subgroup of diagonal matrices, so the
moment map becomes the projection, which maps (m;;); j=1,...~ = (m;i)i=1,...N-
Then the element ofO//oGLIIV (C)isamatrixm € Osuchthatm;; =0,i=1,...N,
considered up to the conjugations by diagonal matrices, namely (m;;); j=1,..N ™~
(a,-aj_lm,-j),-,jzl ,,,,, ~- We will denote this class by [m]. It will be useful to denote the
coadjoint orbit of m by O (m).

Points of T* ((CN\diags) are ordered sets of pairs ((p;, g;))j=1,...N, Where g;’s

are distinct. The action of Sy on (T* (CV\diags) x O//oGLY (C)) /Sy is defined as
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follows

o (((pj. g j=1...n+ [mD) > (Po(j)s 4o () j=1...N+ [SamS; '), (5.20)

where S, is the matrix corresponding to o € Sy. ~
Finally the identification 5.19 can be done as follows (cf. ¢y in Sect. 4.1)

r _miz _MiN
P a—qz q1—qn
mai ma3 ‘. naN
a—a P2 57 : 42—qn
[(((pj,q;))j=t1,..N, [mD] : my : ,
B0
N MN—1,N
m;\“ my 1\;71 GN—1—4N
L\ \gn—q1 qN —gN-1 PN
q1 0 cee e 0 7
0 ¢ O
0 e . (5.21)
: .. ., ., O
0 cee e 0 qN _

The dynamics of a spin Calogero—Painlevé system is defined as descent of the matrix
Painlevé dynamics with respect to the reduction (5.18). Let us consider an analogue
of Theorem 4.1 for the spin Calogero—Painlevé III (Dg)).

Example 5.5 The spin Calogero—Painlevé I11(D{") is defined by the Hamiltonian (cf.
(4.6)).

N
PHA((Pj2 4 j=1,...N- DL ) =Y (pFa? + (=g} + (1 + B)ai +Dpi — @14;)

i=1

p>

1<i<j<N

mijmji (g} + qu-)

5.22
(gi —qj)? (>-22)

We will consider a spin generalization of Example 4.2. So, we take N = 2n and
o =p1 =3
From the Diagram 1 it can be seen that the natural candidate for U from Theorem

4.1is 7o (0), where U = ((M;e,zg)mn, N uz_nl (0) Nm™! (igglnxn)) We want to

obtain coordinates on o (0 ) in which the dynamics corresponds to spin Calogero—

Painlevé III(Dél)) i.e. we want to find an analogue of the map ¢ from the Diagram

,,,,,

mo((p, q)), where (p, q) € U. We have that [p,q]l = diag(m1,ig21,x,). Let Abea
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matrix such that § := A~'gA = diag (¢1, ..., q2,). Then we get

548" = 4.
PR - (5.23)
$pS, =—p+1—tqg".
where $> = A71S,A, p = A~!pA. Then without loss of generality we get
Gi+n = —qi, 1<i<n. (5.24)

It can be seen that after additional multiplication of A by a certain diagonal matrix

0 I"X"). So, for diagonal

from the right (which preserves g) we get Sy = (1 0
nxn

entries of p from (5.23) we get

t
Pitn=1—pi — — where 1 <i <n. (5.25)
q

i

Now let us obtain conditions on spin variables m; ;. Note that since A"ISHA = Sz,
1 -1 o 0
-1 _ 1 nxn nxn 1
we have A™' = 7 (lnxn 1 ) (0 oq) , where a1, ap € GL, (C). Then
we get

1 1 :
o _ M sM —igol,«n
m = . :A 1 . A: 2. 2
[P, 4] [p.q] (%M—lgzlnxn v

) ,  (5.20)
where M = almlal_l—f—igzl,,xn.ThenwehaveM € O,whereO = O (m1)+igal,xn.
Note that M has zero diagonal entries and is defined up to conjugations by diagonal
matrices, which means that we have [M] € O//oGL,, (C).

Taking into account remaining symmetry corresponding to permutations of

(pi, gi)’s we get that mo (U) is parametrized by points [(((P;, Q;))i=1,..n, [M])] €
(6//OGL'{ (C) x T* (C”\diags)) /Sy, where

1, 4 1t _
Qi:Zqi’ Pl:a pl_§+ﬁ s lflfn (527)

14

We will explain meaning of formulas (5.27) below.

Step 2. Let us explain why [(((#;, Q;))i=1....n, [M])] are desired coordinates cor-
responding to the dynamics of spin Calogero—Painlevé III(D;I)). Following the
arguments similar to Step 5 from the proof of Theorem 4.1 we get that the coor-

dinates given by the map mg o pr match the dynamics of spin Calogero—Painlevé
m(Dy").

.....
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We have pr((p, g)) = (P, Q), where (P, Q) is given by (3.11). One can check
that the pair (P, Q) is conjugated to (f’, Q) = (2 (p12q1_21 + q2_111321> ) %Q12€I21>,
where p;;, q;;’s are given by (3.2) properly specialized for case 3.2.2.

To obtain 7o ((P, Q)) = 7o ((13, Q)) following the identification (5.19) one

should consider the pair (ﬁ, Q) in the basis, where Q = %qlzqzl is diagonal. Since
A7lgA = g itis easy to see that

a]qnoz;l = OlzC]z]Olfl = —diag (g1, ..., qn) -

This proves that the formula Q; = %qiz gives part of proper coordinates. As well it
implies that o) diagonalizes %qlzqzl, so momenta conjugated to Q;’s are diagonal

entries of Adg, (13) At first let us compute

_ 1 _ _ 1 )
pi=(A"pA); = —5 (05113120!2 ! + aopora; 1)._ + LY A 1<i<n.
123
Then we obtain

(Ades (). = (2 (erproe 'eary e + oo ' awzla ')
12

113

=2 (crpires +ompmer) = (gt 4 ) 62®)
qi i g 2 247

1

So, we have proved that the formula (5.27) gives part of coordinates corresponding
to the dynamics of spin Calogero—Painlevé 111 (Dél)). The rest of coordinates is given

by [Adg, ([}3, Q])]. By straightforward computation we obtain that [ﬁ, Q] =my +

ig21yxn, SO
Adg, ([13, Q]) — M. (5.29)

Additionally we can check that [((Pj, Q)) j=1,...n, [M]] are proper coordinates at

the level of dynamics. Since coordinates [M ] on JTO(U ) are tricky it is more convenient
to use the analogue of ¢! which is defined as follows

57" (0//06L} (©) x T* (C\diags) ) /S, — 7o (D) [(((Pf" Qf'))f:l-"""’}

(M)
(L2 4 e 2 /0 o V(G 4 201
~ [< %M %M _ig21n><n)])
%M_igZInxn %M
(5.30)
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One can check that this map is symplectic. Let us compute the Hamiltonian with respect

to variables [(((Pj, Q) j=1,...n, [M])]. Taking s = % as the new time variable we
get

n

SHUP}, Q)j=1.cns M1, 5) = Y (P20} + PiQi — Qs =50

i=1

20:0;
M;iM;;
-2 My Qi —0))?

1 ng?
—3 Z MijMji + —

I<i<j<n

I<i<j<n

(5.31)

~ 2
Note that on O, the term —3 D i<i<j<n MijMji + "5 is just a constant since
Zlfi< j<n MijMi is a Casimir function. So we get the system with the Hamilto-
nian

n

SHAP), Q) jm1 s ML 5) = Y (P2} + P1Qs — Qi =507

i=1

20i0;
> Miijim, (5.32)

1<i<j<n

which is the Hamiltonian of spin Calogero—Painlevé III(Dgl)).

Acknowledgements We are grateful to V. Adler, I. Sechin, V. Sokolov and V. Roubtsov for useful discus-
sions and paying attention to the literature. Large part of calculations related to Sects.2 and 3 is performed
with the help of the package for noncommutative computations [3]. Authors were partially supported by
the HSE University basic research program.

Funding Open access funding provided by Scuola Internazionale Superiore di Studi Avanzati - SISSA
within the CRUI-CARE Agreement.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adler, V.E., Sokolov, V.V.: Matrix Painlevé II equations. Teoret. Mat. Fiz. 207(2), 188-201 (2021).
arXiv:2012.05639

2. Bertola, M., Cafasso, M., Roubtsov, V.: Noncommutative Painlevé equations and systems of Calogero
type. Commun. Math. Phys. 363(2), 503-530 (2018). arXiv:1710.00736

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2012.05639
http://arxiv.org/abs/1710.00736

Hamiltonian reductions in matrix Painlevé systems Page510of51 47

10.

11.

12.

13.

. Helton, W.J., de Oliveira, M.C., Miller, B., Stankus, M.: NCAlgebra package. https://mathweb.ucsd.

edu/~ncalg/

. Inozemtsev, V.I., Meshcheryakov, D.V.: Extension of the class of integrable dynamical systems con-

nected with semisimple Lie algebras. Lett. Math. Phys. 9(1), 1318 (1985)

. Inozemtsev, V.I.: Lax representation with spectral parameter on a torus for integrable particle systems.

Lett. Math. Phys. 17(1), 11-17 (1989)

. Kawakami, H.: Matrix Painlevé systems. J. Math. Phys. 56(3), 033503-27 (2015)
. Kazhdan, D., Kostant, B., Sternberg, S.: Hamiltonian group actions and dynamical systems of Calogero

type. Commun. Pure Appl. Math. 31(4), 481-507 (1978)

. Kajiwara, K., Noumi, M., Yamada, Y.: Geometric aspects of Painlevé equations. J. Phys. A: Math.

Theor. 50(7), 073001 (2017). arXiv:1509.08186

. Reshetikhin, N.: Degenerate integrability of spin Calogero—Moser systems and the duality with the

spin Ruijsenaars systems. Lett. Math. Phys. 63, 03 (2002)

Rumanov, I.: Classical integrability for beta-ensembles and general Fokker—Planck equations. J. Math.
Phys. 56(1), 013508 (2015). arXiv:1306.2117

Rumanov, L.: Painlevé representation of Tracy—~Widomg distribution for g = 6. Commun. Math. Phys.
342(3), 843-868 (2016). arXiv:1408.3779

Takasaki, K.: Painlevé—Calogero correspondence revisited. J. Math. Phys. 42(3), 1443-1473 (2001).
arXiv:math/0004118

Tsuda, T., Okamoto, K., Sakai, H.: Folding transformations of the Painlevé equations. Math. Ann.
331(4), 713-738 (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


https://mathweb.ucsd.edu/~ncalg/
https://mathweb.ucsd.edu/~ncalg/
http://arxiv.org/abs/1509.08186
http://arxiv.org/abs/1306.2117
http://arxiv.org/abs/1408.3779
http://arxiv.org/abs/math/0004118

	Hamiltonian reductions in matrix Painlevé systems
	Abstract
	1 Introduction
	2 Matrix Painlevé systems and their Bäcklund transformations
	2.1 Painlevé II
	2.2 Painlevé VI
	2.3 Answers for the other Painlevé equations

	3 Block reduction of Matrix Painlevé systems
	3.1 General construction
	3.2 Linear cases
	3.2.1 PII to PII
	3.2.2 PIII(to.D6(1))to. to PIII(to.D8(1))to.
	3.2.3 PV to PIII(to.D6(1))to.
	3.2.4  PIV to PIV
	3.2.5  PV to PV

	3.3 Non-linear cases
	3.3.1  PIII(to.D8(1))to. to PIII(to.D6(1))to.
	3.3.2  PIII(to.D6(1))to. to PV
	3.3.3  PVI to PVI

	3.4 Special C2timesC2 cases
	3.4.1  PIII(to.D6(1))to. to PIII(to.D6(1))to.
	3.4.2  PVI to PVI


	4 Application to Calogero–Painlevé systems
	4.1 From Matrix Painlevé to Calogero–Painlevé
	4.2 Reduction at Calogero–Painlevé level

	5 Further examples
	5.1 Matrix reduction generalization
	5.2 Adding algebraic solutions to Calogero–Painlevé systems
	5.3 Spin Calogero–Painlevé systems

	Acknowledgements
	References




