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Abstract
We prove regularity estimates in weighted Sobolev spaces for the L2-eigenfunctions
of Schrödinger-type operators whose potentials have inverse square singularities and
uniform radial limits at infinity. In particular, the usual N -body Hamiltonians with
Coulomb-type singular potentials are covered by our result: in that case, the weight is
δF (x):=min{d(x,

⋃F), 1}, where d(x,
⋃F) is the usual Euclidean distance to the

union
⋃F of the set of collision planesF . The proof is based on blow-ups ofmanifolds

with corners and Lie manifolds. More precisely, we start with the radial compactifi-
cation X of the underlying space X and we first blow up the spheres SY ⊂ SX at
infinity of the collision planes Y ∈ F to obtain the Georgescu–Vasy compactifica-
tion. Then, we blow up the collision planes F . We carefully investigate how the Lie
manifold structure and the associated data (metric, Sobolev spaces, differential oper-
ators) change with each blow-up. Our method applies also to higher-order differential
operators, to certain classes of pseudodifferential operators, and to matrices of scalar
operators.
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1 Introduction

We obtain regularity estimates for the eigenfunctions of a class of elliptic differen-
tial operators with singular coefficients. Our results cover Schrödinger-type operators
whose potentials have inverse square-type singularities and uniform radial limits at
infinity. Weaker singularities, such as Coulomb-type singularities, are included in our
results; in particular, the “usual” N -body Hamiltonians [7, 13, 15] are covered by
our results. Our results are obtained by combining and extending the results of our
previous papers [1] and [6], which will be two basic references in what follows.
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1.1 Basic notation and constructions

Here is first a minimum of notation needed to state our results for the case of Coulomb-
type singularities, Theorem 1.1. This notation was explained in more detail in [6]. Let
us fix from now on a finite-dimensional, Euclidean (real) vector space X . We shall let
SX denote its sphere at infinity (more precisely: we define SX as the set of rays in X
emanating form 0) and, then, we let X = X�SX , called the spherical compactification
of X , as described, for instance, in [6, Section 5.1] (see also [37, 38, 46, 47]). Note
that here � denotes disjoint union as sets, but X also carries a differential structure
that makes X diffeomorphic to a closed disk, see again [6, Section 5.1]. In particular,
we have a diffeomorphism

X�{0} � SX × (0,∞]. (1)

Moreover, the Euclidean metric on X defines a natural diffeomorphism from SX to
the unit sphere in X .

Let us assume throughout the paper that F is a finite, non-empty set of linear
subspaces of X . We need to define various distance functions in terms of F . First, by
dist(x, y) = disteucl(x, y), we shall denote the Euclidean distance on X and, for any
subset Z ⊂ X , we let

dZ (x) := dist(x, Z) := inf
z∈Z |x − z| (2)

denote the Euclidean distance from x to Z . Let then
⋃F :=⋃Y∈F Y denote the union

of the elements of F and

δF (x) := min
Y∈F

{dY (x), 1} = min{dist(x,⋃F), 1}. (3)

This function will be the weight used in the definition of the weighted Sobolev spaces
that appear (sometimes only implicitly) in the statements of our results.

We shall assume throughout the paper, as in, for instance, [9, 13], that F is stable
under intersections. More precisely, let 2A denote the set of all subsets of some set A.
We shall say that S ⊂ 2A is a semilattice.1 if A, B ∈ S implies A ∩ B ∈ S. Thus,
from now on, we shall assume that F is a finite semilattice of linear subspaces of X
such that X /∈ F but {0} ∈ F . (Mathematically the assumption that X /∈ F is not a
very important assumption, but it allows us to simplify the statement of Theorem 1.1,
for instance.)

If Y is a linear subspace of X , its closure Y in X coincides with the spherical
compactification of Y , so there is no danger of confusion. As in [6], to the semilattice
F we will associate the semilattices of spherical compactifications and, respectively,
spheres at infinity of subspaces in F :

F := { Y | Y ∈ F } and SF := {SY | Y ∈ F }. (4)

1 In the literature, what we call a semilattice is often called a meet-semilattice.
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Finally, we can now introduce the main spaces considered in our main results as
iterated blow-ups:

XGV := [X : SF ] and XF := [X : SF ∪ F]. (5)

The notions of blow-up and iterated blow-up will be recalled in Sect. 3. We will see in
Sect. 5.1.1 that XF � [XGV : F̂], where F̂ denotes the lift of F to XGV, see Sect. 5.1
for details.

1.2 Statement of themain result and comments

The following result for eigenfunctions is formulated, for simplicity, just for the usual
Coulomb-type singularities (see Theorems 6.1 and 6.6 for more general versions).
There is no loss of generality to assume X = R

n , andwe shall do that when convenient,
for instance, in the next theorem. Let ∂i := ∂

∂xi
and ∂α := ∂

α1
1 ∂

α2
2 . . . ∂

αn
n , as usual.

The Laplacian will always have the “analytic” sign convention, i.e., � =∑
i ∂

2
i .

Theorem 1.1 LetF 	 
 X beafinite semilattice of linear subspaces of X :=R
n, {0} ∈ F .

Let XF := [X : SF∪F] and let dY (x):= dist(x,Y ) and δF (x):=min{dist(x,⋃F), 1}
be the distance functions introduced in the previous subsection. For every Y ∈ F∪{X},
let aY ∈ C∞(XF ) and

V (x) :=
∑

Y∈F
aY (x)dY (x)−1 + aX (x). (6)

Let us assume that u ∈ L2(X) satisfies (� + V )u = λu in distribution sense on
X�

⋃F , for some λ ∈ C. Then, for all multi-indices α ∈ N
n, we have

δ
|α|
F ∂αu ∈ L2(X).

Define ρ(x):= distg(x,
⋃F), where g is a (true) metric on XGV (that is, a metric

on the compact manifold with corners XGV that is smooth up to the boundary). Then,
we can use ρ instead of δF , see “Appendix A.” That is, for u as in the theorem above
and for all multi-indices α ∈ N

n , we have

ρ|α|∂αu ∈ L2(X).

Theorem 1.1 is, as we have already mentioned, a particular case of Theorem 6.6
(which, in turn, follows from Theorem 6.1). In particular, that theorem covers also
the case of inverse square potentials, which have been studied recently in [14, 16,
19, 32, 33, 41] and in many other papers. We also consider higher-order uniformly
strongly elliptic operators. This result strengthens a similar regularity result in [1];
compared to this previous result we will obtain better decay rates at infinity. Our
results generalize immediately to systems. Regularity results for the eigenfunctions of
Schrödinger operators have been obtained in many papers. See, for instance, [1, 11,
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17, 18, 20–25, 28, 31, 34, 44, 45, 48, 49] and the references therein. Many methods in
this article may be generalized to nonlinear equations, e.g., to semi-linear equations
of the form

�u + V |u|su = λu

with V as in (6), λ ∈ C and 0 < s ≤ 2/(n − 2), see Remark 6.7 for details.

1.3 Contents of the paper

The paper is essentially self-contained and consists of two parts. The first part contains
mostly background material, but presented in a novel way. It consists of Sects. 2 and 3.
In Sect. 2, we review manifolds with corners, their submanifolds, clean intersections
of submanifolds, and some other basic concepts needed in the paper. We also recall
in this section some results from [6] and from some earlier papers, including [1, 37,
42]. In Sect. 3, we recall and study the blow-ups and their iteration with respect to
one or more suitable subsets. In particular, we extend the definition of an admissible
order to a k-tuple of closed subsets of M and explain that the iterated blow-up with
respect to a clean semilattice with an admissible order is defined and independent of
the chosen admissible order [1, 6]. We also explain that the action of a Lie group on
(M,S) extends to an action on the iterated blow-up [M : S]. The second part of the
paper begins with Sect. 4, where we study metric aspects of the iterated blow-ups. We
start by introducing the concept of a “smoothed distance function” to a p-submani-
fold P ⊂ M , which is a function that behaves like the distance to P close to P , but is
smooth outside P . We study then the smoothed distance function to a blow-up suitable
k-tuple, in general, and to a clean semilattice, in particular. Then, we recall how the
metrics, the Sobolev spaces, and the differential operators change if one conformally
changes themetric using a smoothed distance function.We apply these results to blow-
ups (including the iterated ones). We distinguish here the case of a blow-up along a
submanifold contained in the boundary and the case of a manifold not contained in
the boundary. The main technical result of this section is the behavior of the smoothed
distance functionswhen performing iterated blow-ups, Proposition 4.15.We also recall
here the regularity result for the natural elliptic operators on Lie manifolds [3], which
will then provide the regularity result of this paper. (The main work of this paper is
to position ourselves to be able to use the regularity theorem for Lie manifolds.) In
Sect. 5, we introduce the relevant semilattices and Lie manifolds needed to deal with
the N -body problem and we particularize the constructions and results of Sect. 4 to
this setting. Section6 explains how to obtain our regularity result, Theorem 1.1 and
some of its generalizations from the results of the other sections. Finally, the paper
contains three appendices. In “Appendix A,” we prove the equivalence of the functions
ρ and δF used in Theorem 1.1 and right after. (In fact, they are both equivalent to ρF ,
the smoothed distance function to F , which is the function that is actually used in the
proofs, but is more difficult to define.) Appendices B and C contain technical details
used in the article. The preprint version (arXiv 2012.13902) contains two additional
appendices.
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2 Preliminaries

We now recall a few concepts and results needed to understand the main results of this
paper. For the concepts and results not recalled here, we refer to [1] or [6], on which
this paper is heavily based.

2.1 A few basic notations and definitions

We need to complete the notation introduced in the Introduction as follows. We let

R
n
k := [0,∞)k × R

n−k and S
n−1
k := S

n−1 ∩ R
n
k , (7)

where S
n−1 is the unit sphere of R

n for the Euclidean norm. The space S
n−1
k will

be called a (generalized) orthant of the sphere, for instance, S
n−1
1 is a half-sphere.

It will be used in order to help us understand the smooth structure on the spherical
compactification X . More precisely, let us assume that X = R

n and let us consider
the bijective map �n : X → S

n
1

⎧
⎨

⎩

�n(x) := 1√
1+‖x‖2 (1, x) ∈ S

n
1 if x ∈ X ,

�n(R+v) := 1
‖v‖ (0, v) ∈ S

n
1 if R+v ∈ SX .

(8)

and its inverse �−1n : Sn
1 → X

�−1n (y0, y1, . . . , yn) �−→
{

1
y0

(y1, . . . , yn) ∈ R
n if y0 	= 0

R+(y1, . . . , yn) ∈ SX if y0 = 0
. (9)

We define the smooth structure on X by the requirement that the map �n be a
diffeormphism as in [37, 42, 46]. For general X , we define the smooth structure on X
using a linear isomorphism X � R

n , for suitable n.

Remark 2.1 Let us assume that Y = R
p ⊂ R

n = X . Then, we have the following
commutative diagram of smooth embeddings

Y ↪→ Y
�p−→ S

p
1↪→ ↪→ ↪→

X ↪→ X
�n−→ S

n
1

, (10)

which is a basic functoriality property of the spherical compactification. In particular,
this shows that the closure of Y in X can be identified as a differential manifold with
Y , the spherical compactification of Y , so there is no danger of confusion.

Let |A| denote the number of elements of a set A. We continue with several basic
definitions.
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Definition 2.2 Let I ⊂ {1, . . . , n} and

Ln
I ,k := { x = (x1, . . . , xn) ∈ R

n
k := [0,∞)k × R

n−k | xi = 0 if i ∈ I } . (11)

Then, bnI ,k :=|I ∩ {1, . . . , k}| will be called the boundary depth of Ln
I ,k in R

n
k and

bx :=|{i ∈ {1, . . . , k} | xi = 0}|will be called the boundary depth of x = (x1, . . . , xn)
in R

n
k . Clearly, c:=|I | is the codimension of L I in R

n
k and d:=n − c is its dimension.

Obviously bnI ,k :=min{bx | x ∈ Ln
I ,k}. The role of the sets Ln

I ,k is to serve as models
for p-submanifolds [42, Definition 1.7.4]. A p-submanifold is a suitable submanifold
of a manifold with corners, a concept recalled next. The letter “p” comes from the fact
that for such a p-submanifold and any of its points, a local chart can be found around
that point such that the submanifold is a factor of a product.

2.2 Manifolds with corners and their submanifolds

Let us now summarize a few basic definitions related to manifolds with corners [4,
35–38, 43]. Recall that a manifold with corners M of dimension n is a topological
space locally modeled on R

n
k :=[0,∞)k × R

n−k with smooth transition functions.
The spaces R

n
k and S

n
k introduced in (7) provide simple examples of manifolds with

corners. Given a point x in a manifold with corners M , the (boundary) depth of x in
M is defined locally using Definition 2.2. More precisely, the boundary depth of x
in M is the number of nonnegative coordinate functions vanishing at p in any local
coordinate chart at p. It is the least k such that, for all x ∈ M , there exists a chart
φ : U → R

n
k defined on an open neighborhood of x in M . For further reference, let

us formalize the following concept in a definition.

Definition 2.3 The boundary depth of P ⊂ M is the minimum over all boundary
depths of points x ∈ P .

Let (M)k be the set of points of M of boundary depth k. Its connected components
are called the open boundary faces of codimension (or boundary depth) k of M .
A boundary face of boundary depth k is the closure of an open boundary face of
boundary depth k. A boundary face H of codimension one of M will be called a
boundary hyperface of M . The union of the boundary hyperfaces H of M is denoted
∂M ; it is the boundary of M . It is the set of points of M of boundary depth ≥ 1. In
particular, a subset A ⊂ M has boundary depth 0 if, and only if, it is not contained in
∂M , the boundary of M .

The smooth functions on a manifold with corners M are defined as on their coun-
terparts without corners. This is conveniently done by embedding M into a smooth
manifold without corners M̃ , called an enlargement of M . This enlargement can also
be used to define the tangent spaces of M .

Definition 2.4 Let H be a hyperface of M or a union of hyperfaces of M . A boundary
defining function of H (in M) is a function 0 ≤ xH ∈ C∞(M) such that H = x−1H (0)
and dxH 	= 0 on H .
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26 Page 8 of 53 B. Ammann et al.

Fig. 1 A teardrop domain as a subset in R
2

Remark 2.5 The example of the teardrop domain, see Fig. 1, shows that not all hyper-
surfaces have a boundary defining function. However, each (connected) boundary face
F of codimension k can locally (i.e., , in a sufficiently small neighborhood U of any
given point x) be represented as

F ∩U = {x1 = x2 = . . . = xk = 0},

where x j are boundary defining functions in U of the hyperfaces of U containing
F ∩U . Then, k is the boundary depth of F .

In order to define the blow-up, we need the concept of an inward-pointing normal
bundle of a p-submanifold P of M . We first recall the concept of an inward-pointing
tangent space to a manifold with corners M , a concept used also in [3, 4].

Definition 2.6 Let M be a manifold with corners. We let the inward-pointing tangent
space T+x M to be defined as the set of derivatives

T+x M := {γ ′(0) | γ : [0, ε)→ M smooth, γ (0) = x}.

Its elements are called inward-pointing tangent vectors to TxM .

We stress that, according to this definition, a tangent vector to M that is tangent to
the boundary will automatically be an inward pointing tangent vector.

2.3 Submanifolds of manifolds with corners

The following concept introduced in [42] will play a crucial role in what follows.
(Recall that |A| denotes the number of elements of a set A.)

Definition 2.7 A subset P of a manifold with corners M is a p-submanifold if, for
every x ∈ P , there exists a chart φ : U → R

n
k , with U an open neighborhood of x in

M , and I ⊂ {1, 2, . . . , n} such that

φ(P ∩U ) = Ln
I ,k ∩ φ(U ),

with Ln
I ,k as defined in Eq. (11). The number n − |I | (respectively, |I |, respectively,

|I ∩ {1, . . . , k}|) will be called the dimension (respectively, the codimension of P
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at x , respectively, the boundary depth of P at x). We allow p-submanifolds Y of
non-constant dimension. We define dim(Y ) as the maximum of the dimensions of the
connected components of Y and dim(∅) = −∞.

In particular, Sn
k is a closed p-submanifold of Sn+n

′
k+k′ of codimension n′ and boundary

depth k′.

Definition 2.8 Let P ⊂ M be a p-submanifold of the manifold with corners M .

(i) The quotient bundle NM P:=T M |P/T P is called the normal bundle of P in M .
(ii) The image NM+ P of T+M |P in NM P is called the inward-pointing normal fiber

bundle of P in M . One can show that, in a neighborhood of x ∈ P , it is a fiber
bundle with fiber R

n′
k′ where n

′ is the codimension of P in M at x and where k′
is the boundary depth of P in M .

(iii) The set S(NM+ P) of rays (emanating from 0) in NM+ P is called the inward-
pointing spherical normal bundle of P in M . It is a fiber bundle with fibers
S
n′−1
k′ , where n′ and k′ are as above.

Remark 2.9 A (positive definite) scalar product on T M induces a scalar product on
NM P . The choice of a metric on M will thus define a natural diffeomorphism from
S(NM+ P) to the set of unit vectors in NM+ P .

Besides p-submanifolds,we shall also needweak submanifolds,which are really just
plain submanifolds (without any other qualification or condition). We now recall (and
slightly reformulate) the definition of a weak submanifold from [6]; the reformulation
provides a definition equivalent to [6, Definition 2.10], but avoids introducing the
concept of “submanifolds in Melrose’s sense,” [6, Definition B.1] and its simplified
version [6, Definition 2.9]

Definition 2.10 A subset S of a manifold with corners M is a weak submanifold of M
if, for every p ∈ S, there are

• natural numbers k = kp,m = mp ∈ {0, . . . , n} and  = p ∈ {0, . . . ,m},
• a chart φ = φp : U ∼−→ V ⊂ R

n
k on M with V open in R

n
k ,

• a diffeomorphism ψ = ψp : Ṽ ∼−→ W with Ṽ and W open in R
n

such that

(1) p ∈ U ,
(2) V = Ṽ ∩ R

n
k ,

(3) ψ
(
φ(S ∩U )

) = W ∩ R
m
 .

If S is a weak submanifold of a manifold with corners M , then {ψp ◦ φp | p ∈ S}
provides an atlas for amanifold with corners structure on S such that the inclusionmap
S ↪→ M is an injective immersion and a homeomorphism onto its image. In conclu-
sion, a weak submanifold of M is a manifold with corners on its own. Conversely, if S
is an abstract manifold with corners, together with an injective immersion ι : S → M
that defines a homeomorphism from S to ι(S), then [6, Proposition 2.13] states that S
is weak submanifold of M . Moreover, any p-submanifold of M is a weak submanifold
of M .
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The number mp is the dimension of S at p and thus locally constant. (Again we do
not require the function dim p(S) to be constant on S.) The number p is the (boundary)
depth of p in S, and might by smaller, larger or equal to kp, the boundary depth of p
in M .

Note that Definition 2.10 is weaker than the notion of a submanifold in Melrose’s
sense [6, Definition B.1], which explain the word “weak” in the above definition.

2.4 Clean intersections

In order to study the iterate the blow-up construction in the next section, we will need
clean intersections, which we recall next. For simplicity, we discuss only the case of
p-submanifolds.

Definition 2.11 Let P and Q be two p-submanifolds of a manifold with corners M
such that P ∩ Q is also a p-submanifold of M . We say that P and Q intersect cleanly
or that they have a clean intersection if, for every x ∈ P ∩ Q, we have Tx (P ∩ Q) =
Tx P ∩ Tx Q.

For example, if P is a p-submanifold of M and F is a boundary face of M , then
F and P have a clean intersection. This is not, however, the case, in general, if P
is just a weak submanifold of M . This explains, in particular, the need to consider
p-submanifolds. We next recall how to extend the definition of clean intersection to
semilattices of p-submanifolds.

Definition 2.12 Let S be a finite semilattice of p-submanifolds of M . We call S a
clean semilattice of p-submanifolds (of M) if any P, Q ∈ S intersect cleanly.

Remark 2.13 IfS is a clean semilattice of p-submanifolds then, for all P1, . . . , Pk ∈ S
and all x ∈⋂k

j=1 Pj , we obtain that

Tx

⎛

⎝
k⋂

j=1
Pj

⎞

⎠ =
k⋂

j=1
Tx Pj . (12)

In particular, our definition of clean semilattices coincides with Definition 2.7 in [1].
This property does not hold anymore, if S is not a semilattice, as seen in the next
example.

Example 2.14 Assume thatS is a set of p-submanifolds with k elements, such that each
pair {Pi , Pj } ⊂ S intersections cleanly, then we cannot conclude, in general, that we
have the property expressed in Eq. (12) for k ≥ 3. Indeed, let us consider the family
consisting of the following three surfaces P1, P2 and P3 in R

3 (i.e., two-dimensional
submanifolds of R

3):

P1 :=
{
(x, y, z)T ∈ R

3 | y = 0
}

, P2 :=
{
(x, y, z)T ∈ R

3 | z = 0
}

,

P3 :=
{
(x, y, z)T ∈ R

3 | y + z = x2
}

.
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Each pair intersects cleanly in a one-dimensional submanifold. However, P1∩ P2∩
P3 = {0}, but T0P1 ∩ T0P2 ∩ T0P3 = R(1, 0, 0)T . Thus, the triple (P1, P2, P3) does
not intersect cleanly.

The following Lemma will provide the needed examples of pairs of cleanly inter-
secting p-submanifolds.

Lemma 2.15 LetY , Z be two linear subspaces of X. Then, all subsets of {Y , Z , SY , SZ }
intersect cleanly.

The proof is a direct verification. We include it as an appendix in the arxiv version of
this article.

3 Blow-ups

In this section,we gather the needed results on blow-ups, following the approach of [6].
Most of the results in this section were discussed in a similar form in the literature, see
[1, 6, 28, 29, 37, 42] for more details. In particular, the basic construction of the blow-
up along a p-submanifold coincides with the one in these references. However, the
lifting (or pullback) of submanifolds differs in certain cases from the one used in, for
instance, [30, 37, 42]. As a consequence, our notion of iterated blow-up exhibits some
subtle differences to the iterated blow-up discussed in the aforementioned papers. Our
slightly different approach to the iterated blow-up has better locality and functorial
properties, in particular it is compatible with restriction to open subsets, and thus
avoids discussing additional special cases. However, our modified approach requires
additional attention when citing the existing literature: for example [30, Lemma 7.2
(b)] does not hold using our definitions. As a consequence, the current section will
be written in a self-contained way, both in order to provide reliable foundations and
for better readability. The subtle difference in the approaches, however, will finally
have no effect in our applications: in these applications, our iterated blow-up spaces
coincide with the iterated blow-up spaces in the work of Melrose and in the related
work cited above.

3.1 The blow-up along a closed p-submanifold

We now recall the definition of the blow-up [M : P] of a manifold with corners M
along a closed p-submanifold P of M . See [6, 37] for further details and references.
We begin by specifying the underlying set of the blow-up [M : P]. Its topology
and smooth structure will be defined shortly after that. If A and B are disjoint, we
sometimes denote A � B := A ∪ B their union.

Definition 3.1 (see [6, Definition 3.1]) Let M be a manifold with corners and P be
a closed p-submanifold of M . We let S(NM+ P) denote the inward pointing spherical
normal bundle of P in M (Definition 2.8). Then, as a set, the blow-up of M along P
is the disjoint union

[M : P] := (M � P) � S(NM+ P).
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The blow-down map β = βM,P : [M : P] → M is defined as the identity map on
M � P and as the fiber bundle projection S(NM+ P) → P on the complement.

If P ⊂ ∂M in the above definition, we shall say that [M : P] is a boundary blow-
up. If no component of P is contained in the boundary of M , then we shall say that
[M : P] is an interior blow-up. See [6, 37, 42], for instance, for the definition of the
topology and smooth structure on the blow-up [M : P]. Let us say, nevertheless, that
the smooth structure on [M : P] is defined using Euclidean model spaces and is such
that it induces the given smooth structures on M�P and on S(NM+ P). We also remark
that the topology on [M : P] is such that M has the quotient topology with respect to
βM,P . The following extreme cases of blow-ups deserve a special treatment.

Remark 3.2 If P is a union of connected components of M , then [M : P] = M�P .
In particular, we have [M : ∅] = M and [M : M] = ∅.

We shall need the following Proposition from [6]. In that proposition a lift denotes
a smooth map jβ that yields a commutative diagram

[Q : P ∩ Q] jβ

βQ,P∩Q

[M : P]
βM,P

Q
φ

M .

Proposition 3.3 [6, Proposition 3.14] Let P and Q be closed p-submanifolds of M
intersecting cleanly. Then, the inclusion j : Q → M lifts uniquely to a smooth map

(Q�(P ∩ Q)) � S(NQ
+ (P ∩ Q))

︸ ︷︷ ︸
[Q : P ∩ Q] :=

jβ−−−→ (M�P) � S(NM+ P)
︸ ︷︷ ︸

[M : P] :=
.

This map is an injective immersion, a homeomorphism onto its image, and the image
of jβ is a p-submanifold. Moreover

β−1M,P (Q�P) = jβ([Q : P ∩ Q]).

In view of the above proposition, we shall write [Q : P ∩ Q] ⊂ [M : P], by abuse
of notation.

We have the following useful factorization lemma due (essentially) to Kottke [37].
It deals with a particular, but important case of the iterated blow-up. We shall need to
recall the formulation of the first factorization Lemma from [6], i.e., [6, Lemma 4.7],
which deals with the setting Q ⊂ P ⊂ M (see also [1]).

Lemma 3.4 Let us assume that Q is a p-submanifold of P and that P is a p-sub-
manifold of M. Then, Q is a p-submanifold of M. Moreover, there exists a smooth,
canonical map

ζM,Q,P : [M : Q, P] := [[M : Q] : [P : Q]] → [M : P]
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that restricts to the identity on M�P.

3.2 Iterated blow-ups

In the applications of the blow-up, we typically have to blow up several subsets. This
subsection dealswith someof the intricacies of this procedure. The first thing to discuss
is the pullback of a subset in M to the blow-up [M : P] following [6, 37, 38].

Definition 3.5 Let P be a p-submanifold of M and Q be a closed subset of M . The
pullback or lifting β∗M,P (Q) of Q to [M : P] is defined by

β∗M,P (Q) := β−1(Q � P) (13)

In the case Q ⊂ P , our definition of β∗M,P (Q) is different from the one given by
Melrose in [42, Chapter 5, Section 7], see [6, Remark 3.16] for details.

The following factorization lemma is similar in spirit, only easier (see [1, 6, 37]).

Lemma 3.6 Let us assume that P and Q are closed, disjoint p-submanifolds of M. We
have β∗M,Q(P) = P and similarly for P and Q switched. With these identifications,

we then have
[[M : Q] : P] � [[M : P] : Q] canonically, and hence there exists a

smooth, canonical map

ζM,Q,P :
[[M : Q] : P] → [M : P]

that restricts to the identity on M � (P ∪ Q).

In order to introduce the iterated blow-up with respect to an ordered family (n-
tuple) of closed subsets, we first introduce the families with respect to which we can
define the blow-up. We found it convenient to allow repetitions in these families. The
following is Definition 3.8 in [6] and Definition 2.9 in [1], but see also [37] and [42].

Definition 3.7 Let M be a manifold with corners and let P:=(Pi )ki=1 be a k-tuple of
closed subsets of M , k ≥ 1. If P1 is a closed p-submanifold of M and k > 1, we define
the pullback of P to be the (k − 1)-tuple

P ′ := β∗M,P1(P � {P1}) :=
(
β∗M,P1(Pi )

)k
i=2.

Then, by induction on k, we say that P is blow-up-suitable (in M) if:

(i) P1 is a closed p-submanifold of M and
(ii) if k > 1, the pullback P ′ is blow-up-suitable in [M : P1].
Of course, k = |P|. If k = 0, that is, if P = ∅, then we also say that P is blow-up-
suitable in M .

In what follows, we will often use the pullback P ′ of various k-tuples P . We now
define the iterated blow-up with respect to blow-up-suitable families.
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Definition 3.8 We use the notation introduced in Definition 3.7, in particular, P:=
(Pi )ki=1 is a k-tuple of closed subsets ofM andP ′:=β∗M,P1

(P�{P1}):=
(
β∗M,P1

(Pi )
)k
i=2

(the pullback of P). If P is blow-up-suitable, then we define by induction the iterated
blow-up [M : P] by

[M : P] = [M : (Pi )ki=1] :=
{
[M : P1] if k = 1,
[[M : P1] : P ′

]
if k > 1.

The blow-down map βM,P : [M : P] → M is defined by induction on k as the
composition of the blow-down maps [M : P] := [[M : P1] : P ′] → [M : P1] → M .

It is not difficult to see, by induction, that Definition 3.8 makes sense. This is the
point of introducing Definition 3.7. We shall also use [M : P1, P2, . . . , Pk] as an
alternative notation for [M : P]. Let E := ∅, (which is regarded as a k-tuple with
k = 0) and define [M : E] = M and P ′ = E for if P has only one element. Then, the
relation [M : P] = [[M : P1] : P ′

]
remains true also for k = 1. This may be useful

for proofs by induction, for instance in the proof of Lemma 4.10.

Remark 3.9 Of course, a k-tuple P without repetitions is the same thing as a linearly
ordered set. We want the P in the definition of the iterated blow-up [M : P] to
be a k-tuple rather than a linearly ordered finite set of p-submanifolds. That is, we
want to allow repetitions in P . The reason for this choice is that, even if P does not
have repetitions, its pullback P ′:=(β∗(Pi )

)k
i=2 might have repetitions. An example is

provided byP = (A, B, A∪ B), where A and B are disjoint closed p-submanifolds of
M , in which caseP ′ = (B, B). We shall often consider semilattices with an additional
total order (other than the order given by inclusion).

In the next remark we will explain how to eliminate repetitions. For this purpose,
the following proposition is a useful technical result. Recall that

⋃P:=⋃P∈P P .

Proposition 3.10 We use the notations of Definition 3.8 and we assume that P is
blow-up-suitable (and hence that [M : P] is defined). Then,
(i) M �

⋃P ⊂ [M : P] and β = id on M �
⋃P and

(ii) M �
⋃P is open and dense in [M : P].

Proof The first part follows from the definitions of the blow-up and of the iterated
blow-up. To prove the second part, we proceed by induction on k, the number of
elements of P . The case k = 1 follows from the definition (and was discussed also in
[6]). For the induction step, we notice that

M �
⋃P = (M � P1) �

⋃P ′ ⊂ [M : P1]�⋃P ′

is dense in [M : P1] �
⋃P ′ by the case k = 1, since

⋃P ′ is closed. Since [M :
P1] �

⋃P ′ is dense in [M : P]:=[[M : P1] : P ′
]
by the case k − 1 (the induction

hypothesis), the result follows. ��
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Given two blow-ups of M , we shall say that they are canonically diffeomorphic if
there exists a diffeomorphism that is the identity outside the sets that are blown up.
In view of the above proposition, this entails a uniqueness property for the canonical
diffeomorphisms. We now explain how we can eliminate the repetitions in P .

Remark 3.11 We use the notation introduced in Definition 3.8 and the results of Propo-
sition 3.10. Let Pred be obtained from P by removing repetitions by keeping only the
first appearance of a p-submanifold. Thus, ifP = (∅, A, B, A), thenPred = (∅, A, B).
Then, [M : P] is defined if, and only if, [M : Pred] is defined. Moreover, these two
iterated blow-ups are canonically diffeomorphic (when defined), in the sense that:

(i) M �
⋃P = M �

⋃P red;
(ii) M �

⋃P is dense in [M : P] and M �
⋃P red is dense in [M : Pred], by

Proposition 3.10; and
(iii) the identity map M �

⋃P → M �
⋃P red extends to a diffeomorphism [M :

P] → [M : Pred], which is unique by the density properties of ii.

In addition to removing repetitions, we could as well remove entries Pj = ∅ from
P with the same effect. However, we found it convenient for exposition purposes to do
exactly the opposite, that is, to usually assume ∅ to be the first entry of P , especially
if P is a semilattice. We have the following properties.

Remark 3.12 We use the notation introduced in Definition 3.8. In what follows, the
pullback operation P �→ P ′ introduced in

(i) We have [M : P]:=[[M : P1],P ′] = [[M : P1] : P ′red], which may be useful if
one wants to deal only with reduced tuples (which is the same as linearly ordered
finite sets).

(ii) Let us introduce the iterated pullbacks of P by P(1):=P ′ and P(k+1):=(P(k))′.
Then,

[M : P] = [[M : P1, P2, . . . , Pk] : P(k+1)].

(iii) (P ′red)′red = P ′′red (where ′ always comes before red, meaning thatP ′red:=(P ′)red).
(iv) A special situation arises if P1, the first element ofP , is P1 = ∅, which is, in fact,

the norm when dealing with semilattices. Then, in our definition of the blow-up,
the first step, the blow-up with respect to P1 is trivial (it does not change our
sets, except that it removes P1 from the list). In particular, P = (∅,P ′). It is the
next blow-up that may be interesting. For us, it will then be useful to introduce
the following notation:

P̃ := (∅,P ′′) := (∅, β∗M :P2(P3), β∗M :P2(P4), . . . , β∗M :P2(Pk)).

(Note that β∗M :P2(P2) = ∅.) We then have the relation

[M : P] = [M : P ′] = [[M : P2] : P ′′] = [[M : P2] : P̃]
= [[M : P2] : P̃red].
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We also notice that, if Pred is a clean semilattice, then P̃red = (̃Pred)red is also a
clean semilattice; here the semilattice property is obvious and the cleanness was
proved in [1, Theorem 2.8]. (In this context we define again P̃red:=(P̃)red, that
is, the “tilde” comes before “reduced.”)

(v) To wrap up the list of needed properties, let us notice that

(∅,P)′ = P and [M : (∅,P)] = [M : P].

In particular, if we define P0 := P(0) := P , Pk+1 := P̃k and P(k+1) = (P(k))′,
then Pk = (∅,P(k+1)) for k ≥ 0. Hence, the iteration of the tilde operation can
be expressed in terms of the iteration with respect to the prime operation and the
addition of the empty set.

The following results generalize to the iterated blow-up [6, Lemma 3.9] on the
compatibility of the blow-up with products.

Proposition 3.13 Let M and M1 be twomanifolds with corners andP = (P1, P2, . . . ,
Pk) be a blow-up-suitable (in M) k-tuple of closed subsets of M. Then,P×M1:=(P1×
M1, P2 × M1, . . . , Pk × M1) is a blow-up-suitable (in M × M1) k-tuple of closed
subsets of M×M1 and there exists a canonical diffeomorphism [M×M1 : P×M1] �
[M : P] × M1 such that the following diagram commutes:

[M × M1 : P × M1] �−−−−→ [M : P] × M1

βM×M1,P×M1

⏐
⏐
�

⏐
⏐
�βM,P×id

M × M1
id−−−−→ M × M1.

(14)

Proof If k = 1 (that is, P consists of a single set), then the result was proved in [1]
(it can be found also in [6]). In general, it follows by induction, using again the result
from [1] (the case k = 1) and using also that β∗(P)× M1 = β∗(P × M1), where β

is an appropriate blow-down map. ��

3.3 Admissible orders

A natural question when we do iterated blow-ups of a manifold with corners M along
an ordered family P = (P0, P1, . . . , Pk), is to decide how the order of the blow-up
influences the final space [37]. In particular, a related question is whether the iterated
blow-up is defined for a given order. The aim of this subsection is to recall the results
of [1, 6, 37] that give a positive answer to these questions if “admissible orders” are
used. Before stating the main result from [6], we first introduce admissible orders and
graph blow-ups, which will be needed for the statement of the theorem.

If, in the definition of a blow-up-suitable k-tuple P , we further require P1 to be
minimal for inclusion, we obtain the notion of an “admissible” k-tuple. Let us state
this explicitly.
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Definition 3.14 Let M be a manifold with corners and let P:=(Pi )ki=1 be a k-tuple of
closed subsets of M , k ≥ 1. By induction on k, we say that P is admissible (in M) if:

(i) P1 is a closed p-submanifold of M ,
(ii) there is no i > 1 such that Pi � P1, and
(iii) if k > 1, P ′ is admissible in [M : P1], where P ′ = (β∗M,P1

(Pj ))
k
j=2 is the

pullback of P as before (in particular, β∗M,P1
is as defined in (13)).

Of course, k ≥ |P|. If k = 0, that is, if P = ∅, then we also say that P is admissible
in M .

This definition of and admissible k-tuple is more general than the one in [6].

Remark 3.15 We notice the following

(1) A k-tuple with an admissible order is, in particular, also blow-up-suitable.
(2) P is admissible if, and only if, (∅,P) is admissible.
(3) Assume the (k + 1)-tuple S = (P0, P1, . . . , Pk) is a clean semilattice, P0 = ∅.

Then, S̃:=(∅, β∗M,P1
(P2), β∗M,P1

(P3), ..., β∗M,P1
(Pk)

)
is also a clean semilattice

by the results of [1], see Remark 3.12 (iv).
Moreover, S (with the indicated order) is admissible if, and only if, S̃ (with the
induced order) is admissible. This explains why we sometimes consider S̃ and do
not work exclusively with the iterated pullbacks S ′,S ′′, . . . ,S( j).

We now consider a different type of blow-up with respect to a k-tuple of p-subma-
nifolds that is immediately seen not to depend on the choice of the order. To define it,
we introduce themulti-diagonal map. For a semilattice S endowed with an admissible
order, we let U :=M �

⋃S, which is a dense subset of [M : S]. The multi-diagonal
map is the map

δ : U →
∏

P∈S
[M : P], x �→ (x, x, . . . , x). (15)

Definition 3.16 Let P = (Pi ) be a k-tuple of closed p-submanifolds of the manifold
with corners M and let δ be the multi-diagonal map defined in (15). Then, the graph
blow-up {M : P} of M along P is defined by

{M : P} := δ(M �
⋃P) = {(x, x, . . . , x) | x ∈ M �

⋃P} ⊂
∏

i∈I
[M : Pi ].

For the graph blow-up, we can also remove the repetitions.

Remark 3.17 The graph blow-up {M : P} is a weak submanifold of Q:=∏i∈I [M :
Pi ]. The notion of a “weak submanifold”was introduced in [6, Subsec. 2.3.1]; however,
the only aspect we need to know about it here is that, if one restricts the sheaf of smooth
functions on Q to {M : P}, then this restriction defines the structure of a manifold
with corners on {M : P} which is compatible with the topology induced from Q.
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Theorem 4.19 of [6] shows that, if S is a semilattice endowed with an admissible
order, then the iterated blow-up and the graph blow-ups of M with respect to S are
canonically diffeomorphic. The following statement combines the statement of that
theorem with part of Remark 4.13 and with Theorem 4.21 of that paper.

Theorem 3.18 Let S 
 ∅ be a clean semilattice of closed p-submanifolds of M with an
admissible order on its elements (Definition 3.14). Then, the iterated blow-up [M : S]
is defined and {M : S} is a manifold with corners that is canonically diffeomorphic
to [M : S]. If G is a Lie group acting smoothly on M such that G maps S to itself,
then G acts by diffeomorphisms on [M : S].

In the theorem “canonically diffeomorphic” means that the multi-diagonal map
defined in (15) has a unique smooth extension which provides this diffeomorphism.

The iterated blow-up does not depend on the order of the sets (up to a canonical
diffeomorphism). Hence, an immediate consequence of the last theorem is that the
iterated blow-up [M : S] does not depend on the choice of the admissible order on S.

The reader may wonder, at this time, whether admissible orders exist on a given
k-tuple. Note that, at this time, it is not clear even that a blow-up-suitable order exists
on a given k-tuple of closed p-submanifolds of M . The following proposition gives a
positive answer to this question if our k-tuple is a clean semilattice. This result and
the previous theorem motivates the use of semilattices in our work.

Remark 3.19 Let S be a finite, clean semilattice of closed p-submanifolds of M ,
∅ ∈ S. Let us assume construct an order (P0, P1, . . . , Pk) on the elements of
S = {P0, P1, . . . , Pk} by choosing Pj ∈ S by induction on 0 ≤ j ≤ k = |S| − 1 as
follows.

(i) Let us choose an arbitrary initial order on the elements of S, to be able to talk
about pullbacks. With each choice of Pj , we modify this order by moving Pj

on the ( j + 1)-position. (So, after choosing Pj , the first ( j + 1)-elements of the
modified order will be the chosen elements (P0, P1, . . . , Pj ).)

(ii) We begin by choosing P0:=∅, which implies that the pullback S ′ is given by
S ′ = S � {∅} (after which we change the order on S according to the previous
point).

(iii) We let P1 to be an arbitrary minimal element of S ′ for inclusion.
(iv) Let

S̃:=(∅,S ′′):=(∅, β∗M,P1(S � {∅, P1})
) = β∗M,P1(S � {∅}).

Then, the elements of S̃ form again a clean semilattice of closed p-submani-
folds of M [1, Theorem 2.8] and we choose P2 ∈ S � {P0, P1} such that the lift
β∗M,P1

(P2) of P2 is minimal element of S ′′ for inclusion. In particular, β∗M,P1
(P2)

will be a closed p-submanifold of [M : P1] by the aforementioned result in [1].
(v) We then iterate this construction with S̃ in place of S. More precisely, recall

from Remark 3.12(v) that S j := S̃ j−1 = (∅,S( j+1)), where S( j+1) = (S( j))′
and S0 = S(0) = S. Assume P0, P1, . . . , Pj were chosen. Then, we choose
Pj+1 ∈ S � {P0, P1, . . . , Pj }, j + 1 ≤ k, to correspond to a minimal element
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of S( j+1) for inclusion. This satisfies the desired condition that the lift of Pj+1
in S( j+1) be a p-submanifold.

Proposition 3.20 We use the notation introduced in Remark 3.19. First, the procedure
of that remark is well defined in the sense that it yields an order (P0, P1, . . . , Pk) on
the elements of S. Most importantly, the resulting order is admissible. Let ∅ 	= Y ∈ S.
With suitable choices in the procedure of that remark, we obtain an admissible order
on S such that all elements that precede Y in this order are contained in Y .

Proof The procedure of Remark 3.19 is well defined since, at each step, the resulting

tuples S̃ := (∅,S ′′) and (∅,S( j+1)) := ˜(∅,S( j)), k ≥ 1, are clean semilattices, by
[1], so the procedure stops only after we have chosen Pk (i.e., after having ordered
all elements). (See Remark 3.12(v) for the notation.) The resulting order on S is
admissible, by the definition of an admissible order and by induction on the number
of elements of S. Finally, given Y ∈ S, we are going to successively choose the sets
Pk to be either Y or a set contained in Y , if possible (that is, unless Y has already been
chosen). This procedure will yield the desired admissible order on S. ��

3.4 A blow-up point of view on the spherical compactification

This subsection is not needed for the main results of the article. We will show the
following proposition which might add a helpful perspective for future research. In
particular, it shows that if we blow up at infinity the one-point compactification X∞
of a finite-dimensional vector space X obtained by stereographic projection, then we
obtain a compactification canonically diffeomorphic to the spherical compactification
X .

For introducing the one-point compactification X∞, we use the scalar product 〈•, •〉
on X , and we consider the (unit) sphere SR×X in R × X . We define the south pole
S:=(−1, 0) ∈ SR×X . The stereographic projection is the map

σ : SR×X � {S} → X ,

R× X 

(

cos θ

sin(θ) · y
)

�→ tan
(θ

2

)
· y, θ ∈ (0, π ], y ∈ SX .

After formally defining ∞:=σ(S), there is a unique topology and a unique smooth
structure on X∞:=X ∪ {∞} such that σ is a diffeomorphism. This manifold X∞ is
called the one-point-compactification of X.

We also consider a new map �X , which is a slightly modified version of the map
�n from (8). For that purpose, let

S
′+ :=

{
x + S | x ∈ S[0,∞)×X

} = {
x − (1, 0) | x = (x0, x ′), ‖x‖ = 1, x0 ≥ 0

}
,

�X : X → S
′+,

{
�X (x) := 1√

1+〈x,x〉 (0, x) ∈ S
′+ if x ∈ X ,

�X (R+v) := 1
‖v‖ (−1, v) ∈ S

′+ if R+v ∈ SX .

We write SX :=X � X for the sphere at infinity of X , as usual.
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X

R

SR×X

S

α

α2α

Fig. 2 One-point and disk compactification. The stereographic projection σ maps the dot on the circle to
the dot on the line, and the map �X maps the dot on the line to the dot on the half-circle

Lemma 3.21 Let � : X → X∞ be the map with �|X = idX and �(SX ) = {∞}.
This is a smooth map from the spherical compactification X to the one-point-
compactification X∞, extending the identity idX . There is a diffeomorphism � : X →[
X∞ : {∞}

]
extending idX , and thus � ◦�−1 is the blow-down map βX∞,{∞}.

Proof We defineψ :=σ−1 ◦�−1X : S
′+ → SR×X . Then,� = σ ◦ψ ◦�X . By construc-

tion,σ and�X are diffeomorphisms.Toprove the lemma, one thus has to show thatψ is
that there is a diffeomorphism φ : S

′+ →
[
SR×X : {S}

]
such thatψ ◦φ−1 = βSR×X ,{S}.

The construction of such a φ is an easy exercise, if one uses the following formula for
ψ , which is apparent in view of Fig. 2, setting θ :=2α above.

ψ
((

(cosα)− 1, (sin α)y
)) = (

(cos 2α), (sin 2α)y
)
, α ∈ [0, π/2], Y ∈ SX .

The function cosα is a boundary defining function for S
′+ and a smoothed distance

function for S in SR×X . This completes the proof. ��

4 Distance functions and Sobolev spaces for blown-up spaces

We now investigate how several geometric quantities (metrics, distance functions,
Sobolev spaces, natural differential operators, …) change when performing a blow-
up. The manifolds M we consider have a complete metric in the interior M0 described
precisely in terms of Lie manifolds, Definition 4.20. One important case will be that
when M0 is a Euclidean vector space X with its spherical compactification M = X ,
which was described in the Introduction. Some other times, M will be a blow-up of
X .
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We distinguish here the case of a blow-up along a submanifold contained in the
boundary (the easy case) and the case of a manifold not contained in the boundary
(the difficult case, but treated already in [1] and in other papers). In the first case, the
boundary case, we will additionally require that our vector fields are tangent to the
submanifold contained in the boundary. In that case, the metric in the interior remains
the same, only the compactification is altered, which makes many investigations much
easier. In the second case, the interior case, the metric will be changed conformally by
multiplicationwith r−2, where r is a “smoothed distance function,” (a concept that will
be defined in this section). The main technical result of this section is the behavior of
“smoothed distance functions” when performing iterated blow-ups, Proposition 4.15.
We also recall in this section the needed regularity result on Lie manifolds from [3].

4.1 Smoothed distance function to a p-submanifold

Let M denote a manifold with corners, as before. We assume thatP ⊂ 2M—equipped
with a suitable ordering—is a blow-up-suitable k-tuple of subsets ofM (so that [M : P]
is defined). As always, we shall write

⋃P :=
⋃

P∈P
P.

We shall need the following simple concept of “equivalent functions” on [M : P].
Definition 4.1 Let M be a manifold with corners, let P be a blow-up-suitable k-tuple
of p-submanifolds of M (so, in particular, [M : P] is defined), and let k ∈ N∪{0,∞}.
Assume that we have two continuous functions fi : M → [0,∞), i = 0, 1, such that
the functions fi are Ck on M �

⋃P and nowhere vanishing. We shall say that f0 and
f1 are Ck-equivalent (on [M : P]) or that f0 is Ck-equivalent (on [M : P]) to f1 if

f1
∣
∣
M�

⋃P
f0
∣
∣
M�

⋃P

extends to a nowhere vanishing Ck function on [M : P]. In the case k = ∞, we shall
say that f0 is smoothly equivalent or just equivalent to f1 and write f0 ∼ f1. In the
case k = 0, we say f0 and f1 are continuously equivalent.

The family P as well as the space [M : P], which we assumed to be defined, will
sometimes be understood, so we may occasionally not mention them. Recall that two
functions f1, f2 : U → [0,∞) are called Lipschitz equivalent if there exists C > 0
such that

C−1 f1 ≤ f2 ≤ C f1. (16)

Two functions f1, f2 : M → [0,∞) are called locally Lipschitz equivalent if any point
in M has an open neighborhood U such that f1|U and f2|U are Lipschitz equivalent.
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Remark 4.2 Let us record a few easy consequences of the definition:

(i) Clearly, the Ck-equivalence of functions on [M : P] is an equivalence relation.
(ii) Since M �

⋃P is dense in [M : P] (Proposition 3.10) the extension of the

quotient
f1|M�

⋃P
f0|M�

⋃P
to [M : P] by continuity is unique (when it exists).

(iii) Obviously Ck-equivalence implies C-equivalence for  ≤ k.
(iv) If two functions fi : M → [0,∞) as above are continuously equivalent, then

they are locally Lipschitz equivalent. As a consequence, for M compact, C0-
equivalence implies Lipschitz equivalence.

(v) If H is a boundary hyperface of M with at least one defining function, then any
two defining functions of H will be equivalent on [M : H ] � M .

Let us now discuss the type of metrics that we will use. Let M be a manifold with
corners. In the following, we shall make use of two kinds of metrics on M . The first
kind of metrics will consist of what we are calling “true Riemannian metrics” on M .
A true Riemannian metric on M is, by definition, nothing but a smooth, fiberwise
positive definite symmetric section of T ∗M ⊗ T ∗M → M (the usual kind of metrics
on M). The second kind of metrics will consist of the so-called compatible metrics,
which will be defined below, Definition 4.20, and whose definition requires some
additional data (a structural Lie algebra of vector fields on M). Compatible metrics
are Riemannian metrics on M0:=M � ∂M and do not extend to a true metric on M ,
unless ∂M = ∅.

Let P be a closed p-submanifold of M . Recall that βM,P : [M : P] → M denotes
the blow-down map (see Definition 3.1).

Definition 4.3 Let M be a manifold with corners and P ⊂ M be a closed p-submani-
fold. A function rP : M → [0,∞) will be called a smoothed distance function to P
(in M) if its lift β∗M,P (rP):=rP ◦βM,P is a boundary defining function (Definition 2.4)

for SNM+ P = β−1M,P (P), the hyperface (or union of hyperfaces) of [M : P] obtained
by blowing up M along P .

We also remark that a smoothed distance function to P in M is continuous since
it lifts to a continuous function on [M : P] and M has the quotient topology. The
following remark explains the name “smoothed distance function to P” in M for rP .

Remark 4.4 The function f : M → [0, 1] is a smoothed distance function to P in M
if, and only if, it satisfies the following conditions:

(i) it is continuous on M and smooth on M � P ,
(ii) f −1({0}) = P , and most importantly,
(iii) there is a neighborhood V of P such that f is (smoothly) equivalent on [V : P]

to the distance to P with respect to some suitable true metric on M .

We omit details here, as this fact will not be used in our article.

Remark 4.5 In general, a smoothed distance to P in M function rP will not be smooth
on M ; in fact, smoothness on M will only hold if P is empty, or a union of connected
components of M . However, it will be continuous on M and smooth on [M : P]. This
is one of the main reasons for considering the blow-up [M : P].
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Remark 4.6 Given a closed p-submanifold P ⊂ M , we see that a smoothed distance to
P in M (Definition 4.3) is not uniquely determined. However, any two such smoothed
distance functions are equivalent on [M : P], and hence they are equivalent on any
other iterated blow-up [M : P] aswell, as long as P ∈ P . This is, in fact, ourmotivation
for introducing the notion of equivalence of such functions. For this reason, we will
sometimes talk about the smoothed distance to P , although we will really mean the
equivalence class of the smoothed distances to P in M .

Remark 4.7 In the case that M = X is the spherical compactification of some
Euclidean vector space X as explained in Sect. 1.1 and ifY is a linear subspace of X , we
may consider the Euclidean distance function dY := min

{‖x−y‖ | y ∈ Y
}
introduced

in Eq. (2). If rY : X → [0,∞) is a smoothed distance function to Y , then the function
rY is clearly not Lipschitz equivalent to dY , as the first one is bounded and the second
one is not. One can also show that rY is also not bi-Lipschitz to arctan ◦dY , as these two
functions behave differently close to SX . The precise behavior of rY is that it is con-
tinuously equivalent and Lipschitz equivalent to x �→ arctan

(
(‖x‖2 + 1)−1/2dY (x)

)
.

Furthermore, rY is continuously equivalent and thus locally Lipschitz equivalent to
x �→ (‖x‖2 + 1)−1/2dY (x).

We now consider as in [6] and [37] pairs (P, Q) of closed p-submanifolds of M .
As in those papers, we need to consider the cases Q ⊂ P and Q ∩ P = ∅. We begin
with the first case.

Lemma 4.8 Let P ⊂ M be a closed p-submanifold of the manifold with corners M,
let Q ⊂ P be a closed p-submanifold of P, and let rP (respectively, rQ) be a smoothed
distance function to P (respectively, to Q) in M. Then,

(r−1Q rP )
∣
∣
M�P

extends to a smoothed distance function to β∗M,Q(P):=β−1M,Q(P � Q) in [M : Q].

Of course, in the above lemma, we have β∗M,Q(P):=β−1M,Q(P � Q) � [P : Q]
see Proposition 3.3. Here � denotes the existence of a diffeomorphism extending the
identity on P�Q. Also, for the simplicity of the presentation, wemay andwill assume
in the following that β∗M,Q(P) = [P : Q].
Remark 4.9 Note that the assumptions in the lemma allow the casewhen, for all q ∈ Q,
we have dimq(Q) = dimq(P). In this case β∗M,Q(P) = P � Q is a union of some

connected components of P , and thus for any q ∈ Q we have (βM,Q)−1(q) ∩ [P :
Q] = ∅. If U is an open neighborhood of q, then any positive function defined on
β−1M,Q(U ) is thus a smoothed distance function to [P : Q] ∩ β−1M,Q(U ) = ∅.

On the other hand, in this special case, r−1Q rP , defined on U � {q}, where U is
an open neighborhood of q with U ∩ P = Q, extends to a positive smooth function
on β∗[M :Q],[P:Q](β∗M,Q(U )) = β∗M,Q(U ). The latter statement follows as rP |U is a
smooth distance function to Q in U and using Remark 4.5. These arguments provide
a proof of the lemma in this exceptional case.
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This special case is also included in the following proof, if we use the convention
S
−1 = ∅ (here S

−1 is the unit sphere in R
0).

Proof of Lemma 4.8 We need to prove that the function r−1Q rP : M � P → (0,∞),
extends to a smooth function on

[M : Q, P] := [[M : Q] : [P : Q]]

and that this extension of r−1Q rP is a defining function for the hyperface

P ′ := S
(
N [M :Q]+ [P : Q]) = β−1[M :Q],[P:Q]([P : Q])

of [M : Q, P]. Let

β := βM,Q,P := βM,Q ◦ β[M :Q],[P:Q] : [M : Q, P] → M

be the blow-down map and z ∈ P ′ (see Definition 3.8). Then, β(z) ∈ P .
Recall that by the definition of rP , we have that rP ◦ βM,P is a boundary defining

function rP ◦ βM,P : [M : P] → [0,∞) of S(NM+ P) = β−1M,P (P) ⊂ [M : P] as
a hyperface of [M : P]. The map [M : Q, P] → [M : P], defined by Lemma 3.4
is a diffeomorphism outside the preimage of Q. Thus, if β(z) /∈ Q, the function
r−1Q rP : M � P = [M : Q] � [P : Q] → [0,∞) extends locally—i.e., in a
neighborhood of z—to a defining function for P ′ ⊂ [M : Q, P], since rQ > 0 at and
near z and since rP is a defining function of S(NM

P ), the pullback of P in [M : P], as
we have just explained.

On the other hand, if β(z) ∈ Q, we use (again) the fact that our problem is local.
Thus, by choosing a suitable chart around β(z), we can reduce the lemma to the special
case

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

M = R
k
 × R

k′
′ × R

k′′
′′ 
 (x, x ′, x ′′)

P = R
k
 × R

k′
′ × {0} 
 (x, x ′, 0)

Q = R
k
 × {0} × {0} 
 (x, 0, 0)

β(z) = (0, 0, 0).

Assume first that ′ = ′′ = 0. In this very special case, we have

[M : Q] = R
k
 × S

k′+k′′−1 × [0,∞) 
 (x, ξ, r),

[P : Q] = R
k
 × S

k′−1 × [0,∞),

where r = √
(x ′)2 + (x ′′)2 and ξ = (x ′, x ′′)/r away from Q. Furthermore, the inclu-

sion [P : Q] ⊂ [M : Q] is given by the inclusion of S
k′−1 ⊂ S

k′+k′′−1 on the first k′
components of S

k′+k′′−1 and by the identity on the other factors (that is, on R
k
 and on

[0,∞)). For ξ ∈ S
k′+k′′−1, let θ(ξ) be the length of the shortest geodesic from ξ to
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S
k′−1, unless k′ = 0. In the case k′ = 0, we set θ ≡ π/2, thus sin ◦θ ≡ 1. Then,

r̂ := sin ◦ θ : S
k′+k′′−1 → [0, 1]

is a smoothed distance function to S
k′−1 in S

k′+k′′−1, thus—by pullback—r̂ is also a
smoothed distance function to [P : Q] in [M : Q]. Smoothed distance functions rQ
and rP (for Q and P in M) are then given by

rQ(x, η, r) =
√
‖x ′‖2 + ‖x ′′‖2 = r and rP = ‖x ′′‖ = r sin(θ(ξ)).

Since, obviously, r̂ = r−1Q rP , we obtain the desired statement if ′ = ′′ = 0. The

general case follows by replacing S
k′−1 with S

k′−1
′ and S

k′+k′′−1 with S
k′+k′′−1 ∩

(Rk′
′ × R

k′′
′′ ). ��

We now turn to the second case, that when P and Q are disjoint. For later use, we
prove a more general statement.

Lemma 4.10 Let M be a compact manifold with corners, let P ⊂ M be a closed
p-submanifold and Q = (Q1, Q2, . . . , Qk) be a blow-up-suitable k-tuple of closed
subsets of M disjoint from P. Let β : [M : Q] → M be the blow-down map and let
rP be a smoothed distance to P (in M). Let P̂ := β−1(P) = β∗(P). Then, rP ◦ β is
a smoothed distance function to P̂ in [M : Q].
Proof Let us prove our result by induction on k. For k = 0 (i.e., for Q = ∅) there
is nothing to prove according to our conventions for the blow-up with respect to an
empty family. Let us write Q = Q1, for the simplicity of the notation. Let us prove our
result for k = 1. The blow-down [M : Q, P] → [M : P] induces a diffeomorphism
[M : Q, P] � β−1(Q) → [M � Q : P] (see Lemma 3.6). The function rP ◦ βM,Q

is a smoothed distance function to β−1(P) on M � Q ⊂ [M : Q]′ (since it coincides
with rP there). Moreover, rP ◦ βM,Q is smooth everywhere on the iterated blow-up
[M : Q, P] and vanishes only on the preimage of P (in particular, it is > 0 on the
preimage of Q, which is disjoint from the preimage of P). Hence, rP ◦ βM,Q is a
smoothed distance function to β∗M,Q(P) = β−1M,Q(P) in [M : Q]. The induction
step is always to perform an additional blow-up, so it reduces to the case k = 1 just
proved. ��

4.2 Smoothed distance functions to a family

We need to extend the definition of the smoothed distance function to families. (The
reader may want to review Definition 3.8 at this point.)

Definition 4.11 Let P:=(Pi )ki=1, Pi ⊂ M be a blow-up-suitable k-tuple (that is,
an ordered family of closed subsets of M such that the iterated blow-up [M :
P1, P2, . . . , Pk] is defined, Definition 3.7). Let β : [M : P1] → M be the blow-
down map and P ′:=(β∗(P2), β∗(P3), . . . , β∗(Pk)

)
, which, we recall, is a family of
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closed p-submanifolds of [M : P1]. We then define a smoothed distance function ρP
to P in M to be a function ρP : M → [0,∞) given by induction on k by the formula

ρP (x) :=
{

rP1(x) if k = 1

rP1(x)ρP ′(y) if k > 1 and y ∈ β−1({x}),

where rP1 : M → [0,∞) is a smoothed distance function to P1 in M (Definition 4.3)
and ρP ′ is a smoothed distance function to P ′ in [M : P1]. (We note that the last
expression is well defined since, for x /∈ P1, y is unique whereas, for x ∈ P1, we have
rP1(x) = 0.)

Again, we use the notation introduced in Definition 3.8 (which is, in turn, the same
as the one in [6, Definition 4.1]). We have then, similarly to [6, Remark 4.3].

Remark 4.12 We have that ρP is continuous on M and that ρ−1P ({0}) = ⋃P =
⋃k

j=1 Pj . Let γ0 = id, γ1:=β∗1 and γ j :=β∗j ◦ γ j−1 = β∗j ◦ ... ◦ β∗1 , where

βk := β[M :P1,...,Pk−1],[Pk :P1,...,Pk−1] : [M : P1, . . . , Pk] → [M : P1, . . . , Pk−1].

If x /∈ ⋃P , then

ρP (x) = rγ ∗0 (P1)(x)rγ ∗1 (P2)(x) . . . rγ ∗k−1(Pk )(x).

In particular, it follows that the pullback of ρP to [M : P] is smooth, or equivalently,
suppressing all pullbacks from the notation, ρP ∈ C∞([M : P]). However, note that
in contrast to the non-iterated case, ρP ∈ C∞([M : P]) is no longer a boundary
defining function for some boundary hypersurface of [M : P].
Remark 4.13 As in Remark 4.6, a smoothed distance to P function ρP (see Defini-
tion 4.11) is not unique, but it is unique up to equivalence on [M : P]. Indeed, this
follows from Remark 4.12 since all the factors rγ ∗k−1(Pk ) are uniquely determined up to
equivalence on [M : P] and the equivalence is compatiblewith products and preserved
when we increase P .

The following result extends to smoothed distance functions the compatibility with
products of Proposition 3.13.

Proposition 4.14 Let M and M1 be two manifolds with corners and P = (Pi )ki=1 be
a blow-up-suitable k-tuple of subsets of M. Then,

P × M1:=
(
Pj × M1

)k
j=1

is a blow-up-suitable k-tuple of subsets of M ×M1. Let rP be a smoothed distance to
P in M and p : M × M1 → M the projection. Then, rP ◦ p is a smoothed distance
function to P × M1 in M × M1.
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Proof If H is a hyperface of M and rH is a defining function for H in M , then rH ◦ p
is a defining function for the hyperface H × M1 in M × M1. The result follows from
definitions by induction on k using repeatedly this observation. Indeed, there is nothing
to prove if k = 0. The case k = 1 follows from Proposition 3.13 (used also for k = 1)
and the observation about hyperfaces. The induction step is completely similar to the
case k = 1 and it reduces to that one, as in the proof of Proposition 3.13, using that
proposition, the relation β∗(P ×M1) = β∗(P)×M1, and the definition of smoothed
distance functions. ��

From now on, we shall assume that our k-tuple is a clean semilattice of closed
p-submanifolds of M , endowed with an admissible order. Also, from now on we shall
denote our k-tuple withS instead ofP in order to stress that it is stable for intersections
(i.e., that S is a semilattice). (Recall that we can choose any admissible order on S.)
The following proposition will play a crucial role in our application to N -body-type
problems.

Proposition 4.15 Let S be a clean semilattice of closed p-submanifolds of a connected
manifold with corners M and ∅ 	= Y ∈ S. Let rY be a smoothed distance function
to Y in M (Definition 4.3) and ρS be a smoothed distance function to S in M (Def-
inition 4.11). Then, the function ρS/rY : M �

⋃S → (0,∞) extends to a smooth
function on [M : S].

Note that in the statement of the proposition, it is important that rY is a smoothed
distance in M and not in some blow-up of M . The proposition would be a trivial
consequence of the recursive definition of ρS if we replaced rY by a smooth distance
function in some suitable blow-up of M .

Proof There is no loss of generality to assume that ∅ ∈ S, so we will do so for brevity.
(The case ∅ /∈ S is completely similar.) We shall prove the statement by induction on
the number of elements of S.

If S has only one non-trivial element, that is, if S = (∅,Y ), then we have ρS � rY ,
by the definition of ρS , as explained in Remarks 4.6 and 4.13.

Now, for the induction step, let us arrange S = (P0 = ∅, P1, P2, . . . , Pk) in an
admissible order. Let us blow up along P1 ∈ S (which is a minimal element of S�{∅},
by the definition of an admissible order). We use the notation introduced in Definition
4.11, in particular S ′ consists of the lifts to [M : P1]of the p-submanifolds P2, · · · , Pk .
If Y = P1, then the result follows from the formula for ρS in Remark 4.12. Let us
assume therefore that Y 	= P1. Since P1 is a minimal (non-empty) element of S, we
have two possibilities: either P1 ⊂ Y or P1 ∩ Y = ∅.

Let us assume that we are in the case P1 ⊂ Y . We choose then as a smoothed
distance for [Y : P1] in [M : P1] the function r ′[Y :P1]:=rY /rP1 , which is possible in

view of Lemma 4.8. By the induction hypothesis, we know that (rY /rP1)
−1ρS ′ extends

to a smooth function on
[[M : P1] : S ′

]
.

Since [[M : P1] : S ′] = [M : S], by the definition of the iterated blow-up, by
suppressing pullbacks in notation we obtain that

r−1Y ρS = r−1Y rP1ρS ′ = (rY /rP1)
−1ρS ′ ∈ C∞([M : S]). (17)
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This equation should be understood in the sense of functions M �
⋃S → R+ that

extend to smooth functions on [M : S]. Thus, we have obtained the desired relation,
so the proof is complete in the case P1 ⊂ Y .

Let us assume now that P1 ∩ Y = ∅. The proof is then an immediate application of
Lemma 4.10 for k = 1. ��

The following remark recalls [1, Lemma 3.17].

Remark 4.16 Recall that in this and in the following sections,S is a clean semilattice of
closed p-submanifolds of M . Let ρ(x):= distg(x,S):= distg(x,

⋃S) be the distance
to S in some truemetric g on M . (That is, a metric on T M that extends smoothly to the
boundary of M , unlike a “compatible metric,” a concept that will be introduced shortly
andwhich is really only ametric onM�∂M with some additional properties.) One can
show that the functions ρS and ρ are continuously equivalent. A special case of this
statement which is in fact the only case needed in the present article was proved in [1,
Lemma 3.17] based on preliminarywork in [8]. In [1] it is additionally assumed that all
p-submanifolds in S are interior submanifolds. By definition, an interior submanifold
is a p-submanifold of positive boundary depth, i.e., no component is contained in
∂M . However, a proof may be extended to the full statement claimed above; the
result extends to p-submanifolds that are not interior, either by adapting the proofs
or by embedding the manifold M into a Riemannian manifold N without corners
and boundary, such that all boundary hypersurfaces of M are totally geodesic. The
function ρ, however, is not smooth on M �

⋃S, in general. This justifies the notations
ρ and ρS , since they are very similar in scope. See Lemma A.2 for an extension of
this remark.

4.3 Blow-ups and Lie manifolds

We now look at a class of differential operators that will “desingularize” the N -body
Hamiltonian (with Coulomb or inverse square potentials). Let thus M be a manifold
with corners and V ⊂ C∞(M; T M) be a subspace of smooth vector fields on M that
is stable for the Lie bracket and for multiplication with functions in C∞(M). We then
let DiffmV (M) denote the space of differential operators of order ≤ m on M generated
by C∞(M) and by V and

DiffV (M) :=
⋃

m∈N0

DiffmV (M) =
{∑

aV1V2 . . . Vk | a ∈ C∞(M), Vj ∈ V
}
.

(18)

Furthermore, we will assume that (M,V) is a “Lie manifold,” a concept from [4] that
we now recall.

Definition 4.17 Let M be a smooth, compact manifold with corners and V ⊂
C∞(M; T M) be a subspace of smooth vector fields on M . In addition to the rela-
tions C∞(M)V = V and [V,V] ⊂ V , let us also assume that:

(i) C∞c (M � ∂M; T M) ⊂ V;
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(ii) all vector fields in V are tangent to the boundary; and
(iii) V has a C∞(M)-local basis near each point.

Then, we shall say that (M;V) is a Lie manifold; the space V will be called its
associated structural Lie algebra of vector fields.

Remark 4.18 The condition (iii) in the above definition means that any p ∈ M has a
closed neighborhood U such that the restriction of V to U is a free C∞(U )-module.
An even better way of expressing condition (iii) is to assume the existence of a vector
bundle A → M together a vector bundle morphism � : A → T M over idM with
�(�(A)) = V . The morphism � is called an anchor map, see [4, 40] and the references
therein. Then, Condition (i) is equivalent to saying that � restricts to a vector bundle
isomorphism on M0 := M � ∂M . Similarly, Condition (ii) is equivalent to saying
that, for any p ∈ ∂M of boundary depth 1, we have �(Ap) ⊂ Tp(∂M) � TpM . This
condition then implies analogous tangency conditions for points of boundary depth
≥ 2.

The following simple and basic example(s) will play a crucial role in our applica-
tions to the N -body problem.

Example 4.19 We continue to assume that X is a finite-dimensional real vector space
and that X is its spherical compactification. We shall take X for our ambient manifold
(thus X plays the role of the manifold typically called M so far). Then, X identifies
with the space of constant vector fields on itself. Corollary B.3 tells us that these
vector fields extend to vector fields on X and that these extended vector fields vanish
on SX . We shall consider then the structural Lie algebra of vector fields V:=C∞(X)X .
Then, the pair (X;V) is a Lie manifold (Definition 4.17). Indeed, V is a free C∞(X)–
module since any basis of X , viewed as a vector space, also provides a basis of V
as a C∞(X)-module. The resulting algebra of differential operators DiffV (X) is the
algebra of differential operators on X with coefficients in C∞(X).

To a Lie manifold (M;V), there is canonically associated a class of metrics on the
interior of M , called V-compatible metrics on M0 = M � ∂M , as follows:

Definition 4.20 Let (M,V) be a Lie manifold, n = dim(X). A V-compatible metric
on M is defined as a Riemannian metric on M0 with the following property: each
x ∈ M has a closed neighborhood Ux such that the restriction of V to Ux has a
C∞(Ux )-basis (v1, v2, . . . , vn) that is orthonormal in the sense

∀y ∈ M0 ∩Ux : (v1, v2, . . . , vn) is an orthonormal basis of(TyM, gy).

(Of course, this is a true restriction on g and V only at the boundary of M).

A V-compatible metric on M will never be a true metric on M since the induced
metric on T M0 will not extend continuously to M . For instance, for Example 4.19
(and the related Example 5.2 relevant for the N -body problem), any Euclidean metric
on X will be a V-compatible metric on M .
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Remark 4.21 An alternative way to define a V-compatible is as follows. We briefly
recall this, as it will be used in “Appendix A.” See [4] for a proof of the equivalence of
the definitions. Let (M,V) be aLiemanifoldwith anchormap� : A→ T M as defined
above. A compatible metric may be defined as a metric on A, which is by definition a
symmetric positive definite section γ ∈ �(A∗⊗ A∗). The anchor map � induces a map
ρ∗ = ρ⊗ρ : A⊗ A→ T M⊗T M , and on M0 the inverse of the anchor map, namely
(
�|M0

)−1, may be dualized to a pullback map
((

�|M0

)−1)∗ : A∗|M0 → T ∗M0. Then,

g:=
((

�|M0

)−1)∗ ⊗
((

�|M0

)−1)∗
(γ ) is a Riemannian metric on M0. A Riemannian

metric on M0 is V-compatible if, and only if it arises this way.
If B ∈ V ∗ ⊗ V ∗ is a symmetric bilinear form on a finite-dimensional vector

space V , then we denote �B : V → V ∗, X �→ B(X , •) the associated canonical
homomorphism. If B is non-degenerate, �B is invertible and one defines �B :=�−1B . In
this case we can define �B�:=B(�B(•), �B(•)) ∈ V ⊗ V whose matrix with respect
to some basis of V is the inverse of the matrix of B with respect to its dual basis.
Now, if γ is a metric on the vector bundle A, we map apply this construction for any
q ∈ M to γ |q ∈ A∗q ⊗ A∗q , and we obtain a smooth section �γ � ∈ �(A ⊗ A). Then,

G:=(ρ ⊗ ρ
)
( �γ �) ∈ �(T M ⊗ T M) is a well-defined smooth tensor. One can easily

show that G is the unique continuous extension of �g� for the g defined above. We
will use this description to proof in “Appendix A” for a true metric g and a compatible
metric gwe have, see LemmaA.2, a constantC with g ≤ Cg in the sense of symmetric
forms, i.e., Cg − g is positive semi-definite.

Any two V-compatible metrics g and g̃ are Lipschitz equivalent, i.e., there exists a
constant C > 0 with C−1g̃ ≤ g ≤ Cg̃, again in the sense of symmetric forms. Thus,
the volume forms are Lipschitz equivalent as well, and hence the definition of the
space L p(M, g) = L p(M;V) only depends on V , and not on the metric. This allows
us to define the associated Sobolev spaces on X (or M) as

Wk,p(M;V)

= {
u
∣
∣ V1 . . . Vju ∈ L p(M;V), ∀V1, . . . , Vj ∈ V, j ∈ {0, 1, . . . , k}} (19)

where k ∈ N0 and 1 ≤ p ≤ ∞. Obviously, they do not depend on the choice of V-
compatible metric. These Sobolev spaces coincide with the standard Sobolev spaces
on the complete Riemannian manifold associated with any compatible metric.

The main reason we are interested in Lie manifolds is that there is also a notion of
an associated pseudodifferential calculus [5], a notion of ellipticity in DiffV (M), and,
most importantly for this paper, an elliptic regularity result [3]. Explicitly, an operator
in DiffmV (M) is elliptic in DiffmV (M) if its principal symbol is uniformly elliptic in one
(equivalently, any) V-compatible metric.

The following theorem is the special case s = 0 and m ∈ Z+ of [3, Theorem 8.7].

Theorem 4.22 (Ammann–Ionescu–Nistor)Let (M;V)beaLiemanifold. Let k, j ∈ Z,
m ∈ Z+, 1 < p < ∞, and P ∈ DiffmV (M) be elliptic. Let u ∈ Wk,p(M;V) be such
that Pu ∈ W j,p(M;V). Then, u ∈ W j+m,p(M;V).
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Let us mention also that for in Example 4.19 (and the related Example 5.2 relevant
for the N -body problem), an operator P ∈ DiffV (M) is elliptic in that algebra if,
and only if, it is uniformly elliptic (in the usual, Euclidean metric of X ). In particular,
the above regularity theorem (Theorem 6.1) can also be obtained from the regularity
result in [2].

Let us now provide an alternative, more general method to obtain a Lie manifold
structure on the Georgescu–Vasy space XGV. (See the Introduction or Sect. 5 (22) for
the definition of XGV.)

Remark 4.23 Let (M;V) be a Lie manifold and Y ⊂ M be a closed p-submanifold.
We assume Y ⊂ ∂M , i.e., Y is everywhere of positive boundary depth. We also
assume that all V ∈ V satisfy V |Y ∈ �(TY ). The latter condition implies (due to a
straightforward modification of [1, Proposition 3.2]) that any V ∈ V has a lift Ṽ , that
is, a vector field on [M : Y ] such that

[M : Y ] Ṽ

βM,Y

T [M : Y ]
dβM,Y

M
V

T M .

commutes. As a consequence, the inclusion V ↪→ �(T M) “lifts” to a map V ↪→
�(T [M : Y ]), both maps are injective Lie algebra homomorphisms and C∞(M)-
linear. We obtain a Lie manifold structure on [M : Y ] by taking as structural Lie
algebra of vector fields

Wbdry := C∞([M : Y ]V. (20)

Let us record here how the various quantities associated with the Lie manifold (M,V)

change when going to the blow-up Lie manifold ([M : Y ],Wbdry):

• The interior smooth manifold is the same: M0 = M �∂M = [M : Y ]�∂[M : Y ].
• If a metric on M0 is V-compatible, then it is alsoWbdry-compatible.
• Wk,p(M;V) = Wk,p([M : Y ];Wbdry).
• DiffWbdry([M : Y ]) = C∞([M : Y ])DiffV (M).

The last equality is based on the fact that the lift of V acts on C∞([M : Y ]) by
derivations. By iterating this construction, we can obtain similarly a Lie manifold
structure on [M : Y], where Y is a clean semilattice of p-submanifolds of ∂M .
Indeed, let us assume that V is tangent to each manifold Y ⊂ Y , then V will lift to all
intermediate blow-ups leading to [M : Y]. At each step, by density, the lifting of V
will be tangent to the manifold with respect to which we blow up.

One typically describes a Lie manifold via the local behavior of the vector fields
near the boundary points. This is not what we did in our case (in the remark right
above and the one following next). See [10, 12, 39] for similar Lie manifold structures
that are described locally.
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Example 4.24 Recall from the Introduction that F is a finite semilattice of linear sub-
spaces of X such that {0} ∈ F and X /∈ F . The Lie manifold structure on XGV will
be obtained starting from X by taking Y :=SF :={SY | Y ∈ F}. Since the action of
X on the boundary SX of X is trivial, see Remark 4.19 and “Appendix C,” the vector
fields in V:={ f V | f ∈ C∞(X), V ∈ X} are tangent to all the submanifolds of SF .

The situation described in the last remark changes, however, dramatically if Y has
boundary depth 0, i.e., if no connected component of Y is contained of the boundary.
In that case, there is, in principle, more work to be done, but that has already been
completed to a large extent in [1]. Let us summarize some required results from that
article.

Remark 4.25 We use the notation introduced in Remark 4.23. Unlike there, however,
we shall consider, this time, the case when Y is connected and has boundary depth 0
(that is, it is not contained in the boundary ∂M of M). Let rY be a smoothed distance
function to Y , Definition 4.3. We then obtain a Lie manifold structure on [M : Y ] as
in [1] by taking as structural Lie algebra of vector fields

Wint := rYC∞([M : Y ])V. (21)

See [1, Lemma 3.8 and Theorem 3.10] where it was proved that all vector fields in
rYV lift canonically to smooth vector fields on [M : Y ]. (This justifies the additional
factor rY , since without it, that would not cover our case.) Let us record here how the
various quantities associated with the Lie manifold (M,V) change when going to the
blow-up Lie manifold ([M : Y ],Wint):

• The interior smooth manifold of the blow-up is, this time:

M1 := [M : Y ]� ∂[M : Y ] = M � (∂M ∪ Y ).

• If g is a V-compatible metric on M , then g̃:=r−2Y β∗M,Y g is a Wint-compatible
metric on [M : Y ].

• The volume forms for g and g̃ are related by the formula dvolg̃ = r−nY β∗[M :Y ] dvolg ,
n = dim(M). As a consequence we have

u ∈ L p([M : Y ];Wint) ⇐⇒ r−n/p
Y u ∈ L p(M;V)

• The Sobolev spaces defined by Wint are “weighted Sobolev spaces” in the old
metric (compare to Equation (19) and notice the factor r j

Y ):

Wk,p([M : Y ],Wint
) =

{
u
∣
∣ r j

Y V1 . . . Vju ∈ L p([M : Y ];Wint
)
,

∀V1, . . . , Vj ∈ V, j ∈ {0, 1, . . . , k}
}

• Let m ∈ Z+, then DiffmWint
([M : Y ]) is the linear span of differential monomials

of the form r j
Y aV1V2 . . . Vj , with a ∈ C∞([M : Y ]), V1, V2, . . . , Vj ∈ V , and
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0 ≤ j ≤ m. Moreover, if D ∈ DiffmV (M), then rmY D ∈ DiffmWint
([M : Y ]) and, if

D is elliptic in DiffmV (M), then rmY D is elliptic in DiffmWint
([M : Y ]).

The last two statements are also obtained using that V (rY ) ∈ C∞([M : Y ]) for all
V ∈ V . (We note in passing that V (rY ) /∈ C∞(M).)

As in Remark 4.23, we can iterate the construction of Remark 4.25, to obtain
similarly a Lie manifold structure on [M : Y], where Y is a clean semilattice (i.e., a
cleanly intersecting semilattice) of p-submanifolds of M . All the resulting objects on
[M : Y] will be independent on the admissible order chosen on Y .

5 The Lie manifolds associated with the generalized N-body problem

We now investigate how the constructions of the previous section particularize to the
case of N -body problems. Let us recall our standing conventions that X is a finite-
dimensional, real vector space and that F is a finite semilattice of linear subspaces
of X satisfying {0} ∈ F and X /∈ F . (We stress, however, that the assumptions {0} ∈ F
and X /∈ F are not essential, since the general case of a finite semilattice F easily
reduces to this case.)

5.1 Semilattices and blow-ups for the N-body problem

We begin by introducing the semilattices that we will use for the study of the N -body
problem. These semilattices will then be used to introduce the associated blow-ups
and Lie manifolds.

5.1.1 The semilattices and the blow-ups

We denote by {0} the vector space consisting of just 0 ∈ X . We agree that S{0} = ∅,
and hence {0} = {0}. As in [1, 6], we shall consider the semilattices F :={Y | Y ∈ F}
and SF :={SY | Y ∈ F}, recalled earlier in Eq. (4). Note that ∅ ∈ SF because 0 ∈ F .

Proposition 5.1 The sets F , SF , SF ∪ F are clean semilattices of p-submanifolds of
X.

Proof In view of Remark 2.13, this result is obtained by a direct application of
Lemma 2.15. ��

We fix an admissible order on SF , but the constructions below do not depend on
this choice. For instance, the Georgescu–Vasy space

XGV := [X : SF ] (22)

does not depend on the choice of an admissible order on SF . (This space is the same as
the one introduced in [6] and in Eq. (5).) We now introduce the Lie manifold structure
on XGV.
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Example 5.2 Let X act on X by translations, as in Example 4.19. Let also S be a finite,
clean semilattice of closed submanifolds of SX = X � X . The Lie group action of X
on X acts trivially on SX , thus it preserves S, and therefore we obtain an action of X
on the blown-up space [X : S] (where the blow-up is defined using any admissible
order on S). As explained in Lemma B.4, this implies that any constant vector field
on X extends to a smooth vector field on M :=[X : S] that is tangent to the boundary.
Let Wbdry:=C∞(M)X .

As in Example 4.19, then (M;Wbdry) is a Lie manifold (Definition 4.17). Indeed,
again, Wbdry is a free C∞(M)–module, a basis being given by extensions of the
canonical basis, viewed as constant vector fields. In this case, the resulting algebra of
differential operators DiffWbdry(M) is the algebra of differential operators on X with

coefficients in C∞(M). So the blow-up of X by S leads to a larger algebra of differ-
ential operators than the one associated with the Lie algebroid (X ,V), V:=C∞(X)X ,
considered in Example 4.19. The class of differential operators to which our regular-
ity results apply, however, is even larger than DiffWbdry(M) (it allows also for interior
blow-ups).

For us, the relevant choice is S = SF , which yields [X : SF ] =: XGV. (Note
that XGV was defined using only boundary blow-ups.) We thus have obtained a Lie
manifold structure on the Georgescu–Vasy space XGV. This class of examples appears
implicitly (but prominently) in Georgescu’s work [26, 27].

We now proceed to further blow-up XGV with respect toF , i.e., the lifts of elements
of F .

Lemma 5.3 Let us arrange both SF and F in admissible orders (see Definition 3.14).
We then use the resulting order to obtain an order relation on SF ∪F in which all the
elements of SF precede the ones of F . Then, the resulting order on the union SF ∪F
is an admissible order.

Proof Let Y ∈ F , where Y ∈ F . Let also P ⊂ SF , P 	= SF , and β : [X : P] → X
be the blow-down map. Then, β∗(Y ) will contain Y and hence cannot be a minimal
element of (SF ∪ F) � P since it is not contained in any element of SF � P . ��

We shall need for the following result the following notation for the lifts of F to
XGV. Let βGV : XGV:=[X : SF ] → X be the blow-down map. If Y ∈ F , we let

Ŷ := β∗GVY ⊂ XGV and

F̂ := {Ŷ | Y ∈ F} = β∗GVF .
(23)

(In general, later on, we shall denote by Ŷ the lift of Y to any intermediate blow-up
between XGV := [X : SF ] and [X : SF ∪ F].)

The independence of the blow-up on the admissible order [6] (a result reminded in
Theorem 3.18) gives the following:

Corollary 5.4 We have canonical diffeomorphisms

XF := [X : SF ∪ F] � [[X : SF ] : F̂
] = [XGV : F̂],

123



A regularity result for the bound states of N-body… Page 35 of 53 26

where F̂ is the lift of F to [X : SF ].
Remark 5.5 Let us assume that we have an order F = (Y0 = {0},Y1, . . . ,Yk) on the
linear subspaces of F such that Yi � Y j ⇒ i < j (that is, we have a “size-order” on
F , in the sense of Kottke [37]). Then, this is an admissible order onF and the induced
orders on SF , F , and F̂ are again admissible.

So XF is obtained from XGV using only interior blow-ups. By contrast, in [1], the
process of blowing up along the collision planesF started from X to arrive at [X : F].
This had the disadvantage that the smooth functions on X/Y do not lift to smooth
functions on [X : F]. Our paper thus fixes this issue from [1] and provides uniform
estimates at infinity.

5.1.2 Boundary blow-ups and the data on XGV

Let us now see how the constructions of Lie manifolds and of their geometric objects
of the previous section particularize to our setting, taking into account the two types
of blow-ups: boundary blow-up (along a p-submanifold contained in the boundary)
and interior blow-up (along a p-submanifold not contained in the boundary). We
begin with the blow-up of X with respect to SF , which, we recall, is obtained using
a sequence of boundary blow-ups. We will letWeucl denote the structural Lie algebra
of vector fields on X .

Remark 5.6 We will now define a Lie manifold structure on X , as well as on any of
the intermediate blow-ups leading all the way up to XGV:=[X : SF ]. At first, the Lie
manifold structure on X is defined by the action of X on itself and on X as described
in Example 4.19, namely, the structural Lie algebra of vector fields Weucl on X is
Weucl:=C∞(X)X . We have already described in [6] and in then in the Introduction of
this paper how to get from X to XGV by iterated blow-ups. On any of these intermediate
blow-ups X̂ Theorem 3.18 defines an action of X (as a Lie group) on X̂ extending
smoothly the translation action. Deriving this Lie group action yields a Lie algebra
action of X on X̂ , given by a linear map E : X → �(X̂), which in fact provides
smooth extensions of all constant vector fields on X to the compactification X̂ . In
general E(X) will not vanish at the boundary, but it will be tangent to the boundary,
see below for further discussion.

On all these blow-ups leading to the Georgescu–Vasy space XGV, the Euclidean
metric will be compatible with the Lie manifold structure on the (intermediate) blow-
ups, since we are performing only boundary blow-ups.

An alternative way to obtain the Lie manifold structure on all the iterated blow-
ups X̂ , including XGV is to use Remark 4.23 to define the Lie manifold structure
inductively, starting from the Lie manifold structure on X . It is easy to check by
induction over the iterated blow-ups that this construction yields the sameLiemanifold
structures as above.

We stress that, as a consequence of Remark 4.23, the resulting Sobolev spaces on
all the blow-ups between X and XGV will be the same. Namely, they are the usual
Sobolev spaces on X . Recall that we identify X with constant vector fields on itself.
The algebra of differential operators, however, will change with each blow-up (along
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some SY , Y ∈ F), eventually leading on [X : SF ] to the structural Lie algebra of
vector fields Wbdry:=C∞([X : SF ])X . Therefore,

DiffWbdry(XGV) = C∞(XGV)C[X ],

where C[X ] denotes the algebra of polynomials on X and where a monomial of
degree d is interpreted as a differential operator of degree d with constant coefficients.

5.1.3 Interior blow-ups

As we have seen already, the situation becomes more complicated once we start per-
forming blow-ups along (lifts of) elements of F .

Remark 5.7 We use the notation introduced in Example 5.2 and Lemma 5.3. In par-
ticular, let F̂ be the lifting of F to XGV. Let ρF̂ be a smoothed distance function to F̂
in XGV:=[X : SF ]. By iterating Remark 4.25, we obtain a Lie manifold structure on

XF := [X : SF ∪ F] = [[X : SF ] : F̂
] = [XGV : F̂]

(see Corollary 5.4) by taking

WF := ρF̂ C∞(XF )Wint = ρF̂ C∞(XF )Weucl = ρF̂ C∞(XF )X .

Let us record here what are the various quantities associated with the Lie manifold
(XF ,WF ), again by iterating Remark 4.25 (starting from M :=XGV and successively
blowing up with respect to the lifts of Y ∈ F):

• The interior smooth manifold of the blow-up is this time:

XF � ∂(XF ) = X �
⋃F .

• If g is aWeucl-compatible metric on XGV, then g̃:=ρ−2F̂ β∗g is aWF -compatible

metric on XF :=[XGV : F̂]. Here β : XF → XGV is the associated blow-down
map.

• The volume forms for g and g̃ are related by the formula dvolg̃ = ρ−nF̂ β∗ dvolg ,
n = dim(M) = dim(X). As a consequence, we have

u ∈ L p(XF ;WF ) ⇐⇒ ρ
−n/p
F̂ u ∈ L p(XGV;Wint)

⇐⇒ ρ
−n/p
F̂ u ∈ L p(X; dvolg).

• The Sobolev spaces defined by WF are “weighted Sobolev spaces” in the old
metric g (compare to Equation (19) and notice the factor ρ

j
F̂ ):

Wk,p(XF ,WF
)
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=
{
u
∣
∣ ρ

j
F̂v1 . . . v j u ∈ L p(XF ;WF

)
, ∀v1, . . . , v j ∈ X , 0 ≤ j ≤ k

}

=
{
u
∣
∣ ρ

j
F̂V1 . . . Vju ∈ L p(XF ;WF

)
, ∀V1, . . . , Vj ∈Wint, 0 ≤ j ≤ k

}
.

• DiffmWF (XF ) is the linear span of differential monomials of the form aρ
j
F̂V1V2 . . .

Vj , with a ∈ C∞(XF ), V1, V2, . . . , Vj ∈Weucl, 0 ≤ j ≤ m.

In order to obtain the last statement, we use, in particular, that ρF̂ is the product of
the smoothed distance functions to the blow-ups of Ŷ , where Ŷ ∈ F̂ , see Remark 4.12.
It is important to keep inmind that ρF̂ is a smooth distance functions in XGV and that it
is a product of smoothed distance functions in blow-ups of XGV; the statements would
be different for smoothed distance functions in X and the corresponding blow-ups
thereof.

5.2 A lifting lemma and smoothed distance functions

We continue to let X be a finite-dimensional Euclidean vector space. Let Y be a linear
subspace of X . In this subsection, we prove a technical lemma (a lifting lemma) and
apply it to the study of smoothed distance functions, leading to some results that will
be used in the next subsection. Recall that the projection map πX/Y : X → X/Y
extends canonically to a smooth map ψY : [X : SY ] → X/Y , see [6, Proposition 5.2]
and the proof of [37, Theorem 4.1]. See also [42].

Lemma 5.8 There exists a diffeomorphism

�Y = (ψY , χ) : [X : SY ] → X/Y × Y (24)

such that χ(y) = y if y ∈ Y and βX ,SY
◦�−1

Y restricts on X/Y ×SY to the projection

X/Y × SY → SY .

Proof This follows from [6, Lemma 4.14] for k = 1 and k′ = 0, see Proposition C.2
in “Appendix C” for details. ��
Remark 5.9 In order to compare the above well-known lemma to the literature, we
mention that it says that the map ψY is the projection maps of a trivial fibration with
fiber Y . In this context, a smooth map f : A→ B between manifolds with corners is
the projection of a trivial fibration with fiber C , if and only if, f is the first component
of a diffeomorphism A→ B × C . This is a special case of a fibration in the sense of
[42, Subsection 2.4], a concept whose definition will not be recalled here, as it will
not be required further.

Continuing our idea to extend the map �Y to a case with more than one blow-up,
let us introduce some notation. Let Y ∈ F and choose an admissible order (P0 =
∅, P1, . . . , Pk) on SF (which is the same as choosing an admissible order on F).
According to the last part of Proposition 3.20, we can choose this admissible order
such that SY = Pt for some t ≤ k and SPj ⊂ SY for all j < t . Admissibility implies
SPj 	⊂ SY for j > t . Let �Y be the diffeomorphism defined in Lemma 5.8. Let
P:=(P0, P1, . . . , Pt−1), X̂ :=[X : (P, SY )].
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Corollary 5.10 Let Ŷ be the lift of Y to X̂ :=[X : (P, SY )]. Using the notation we have
just introduced, we have that the diffeomorphism �Y : [X : SY ] → X/Y × Y of
Lemma 5.8 lifts to a diffeomorphism

�̂Y : X̂ := [X : (P, SY )] → X/Y × [Y : P]. (25)

This diffeomorphism maps Ŷ to {0X/Y } × [Y : P] diffeomorphically. In particular,
a smoothed distance function to {0X/Y } in X/Y pulls back via �̂Y to a smoothed
distance function to Ŷ in X̂ .

Proof Let β := βX ,SY
and β−1(P) := (β−1(P0), β−1(P1), . . . , β−1(Pt−1)). (Notice

that β−1(P0) = β−1(∅) = ∅.) Thanks to the properties of the family F and the
fact that SY is a maximum of {P0, P1, . . . , Pt }, the two orders (P0, P1, . . . Pt =
SY ) and (P0, SY , P1, . . . Pt−1) are both “intersection orders” in the sense of [37]
for the semilattice (Pi )ti=1. Corollary 3.5 of [37] gives the first diffeomorphism of the
following equation:

[X : (P, SY )] � [[X : SY ], β−1(P)
]

� [X/Y × Y : �Y (β−1(P))]
� [X/Y × Y : X/Y × P]
� X/Y × [Y : P].

The second diffeomorphism of this equation is obtained by using the diffeomorphism
�Y of Lemma 5.8. Using Pj ⊂ SY , Lemma 5.8 implies, �Y (β−1(Pj )) = X/Y × Pj ,
and hence �Y (β−1(P)) = X/Y × P . This provides the third diffeomorphism. The
last diffeomorphism follows then from Proposition 3.13.

We now turn to the second statement of our result, namely, that �̂Y maps Ŷ to
{0X/Y } × [Y : P] diffeomorphically. By definition, the lift Ŷ of Y to X̂ is the closure
of Y � P in Ŷ . In view of the diffeomorphism of the last equation and of Lemma
5.8, this lift is the closure of {0} × Y in X/Y × [Y : P], and hence diffeomorphic to
[Y : P]. (The diffeomorphism Ŷ � [Y : P] also follows by iterating Proposition 3.3.)

The final statement about distances is then an immediate consequence of this
diffeomorphism. (It is also a consequence of the more general result proved in Propo-
sition 4.14.) ��

Wewill use Corollary 5.10 to define a canonical map b : XGV:=[X : SF ] → X/Y .
This map coincides with the composite map considered also in [6, Proposition 5.10].
Combining with Lemma 4.10, we obtain the following.

Corollary 5.11 Using the notation introduced in Corollary 5.10, let r0 be a smoothed
distance function to 0 ∈ X/Y . Let βGV : [X : SF ] → X be the blow-down map. Let
b be the composite map

XGV:=[X : SF ] → [X : (P, SY )] → X/Y (26)
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obtained fromCorollary 5.10. Then, r0◦b is a smoothed distance function toβ∗GV(Y ) ⊂
[X : SF ] in [X : SF ].
Proof This follows from the properties of the map b and the aforementioned
Lemma 4.10 and Corollary 5.10 as follows. Let P and Ŷ be as in Corollary 5.10. The
remaining spheres at infinity yield Prem:=βX ,(P,SY )(SF � {P, SY }) which consists

of p-submanifolds disjoint from Ŷ . We first have that r0 ◦ b is a distance func-
tion to Ŷ in X̂ :=[X : (P, SY )]. Then, this lifts to a distance function to β∗(Y ) in
XGV:=

[[X : (P, SY )] : Prem
]
by Lemma 4.10. ��

5.3 More on smooth distance functions on blow-ups

As before let βGV : XGV:=[X : SF ] → X be the blow-down map from the
Georgescu–Vasy compactification to the ball compactification. Again for Y ∈ F ,
we write β∗GV(Y ) for the lift of Y ⊂ X to [X : SF ], i.e., it is the closure of Y in
[X : SF ]. In this subsection we use the notation Ŷ :=β∗GV(Y ). (Note that now Ŷ only
has this specific meaning, whereas it denoted a more general class of lifts previously.)

The goal of the current subsection is to compare a smoothed distance to Ŷ in XGV
to the Euclidean distance to Y . More precisely, we show in the following lemma that
functions similar to arctan(dY ) : X → R, where dY is the Euclidean distance function
to X , extend to a smoothed distance function to Ŷ in XGV. This is mostly a question
about the asymptotic of dY at infinity.

The reader should be aware that a smoothed distance to Y in X will not pull back
to a smoothed distance function to Ŷ in XGV; thus, it is important to keep in mind
with respect to which of the two compactifications, X or X̂ , the smoothed distance
functions is defined. Again, we let F̂ :=β∗GV(F) = {Ŷ | Y ∈ F} and recall from
Corollary 5.4 that [XGV : F̂] = [X : SF ∪ F] =: XF .

Lemma 5.12 Let φ0 : [0,∞) → [0, 1] be a smooth, non-decreasing function satisfy-
ing φ0(t) = t for t ≤ 1/2 and φ0(t) = 1 for t ≥ 1. Let Y ∈ F and dY (x):= dist(x,Y )

be the distance function from x ∈ X to Y with respect to the Euclidean distance
on X, as before. Then, φ0 ◦ dY extends to a smoothed distance function rŶ to Ŷ in
XGV:=[X : SF ] such that rŶ /dY extends to a smooth function on XGV.

It follows trivially from the lemma that rŶ /dY extends to a smooth function on
XF :=[XGV : F̂].
Proof Let r0(z):=φ0(|z|) = φ0(dist(z, 0)), where z ∈ X/Y . Then, r0 extends to a
smooth distance function to 0 in X/Y . Let b be the map of Corollary 5.11. Then, that
corollary gives that rŶ = r0 ◦ b is a smoothed distance function to Ŷ in XGV that
coincides with φ0 ◦ dY on X .

Next, the function q(z):=r0(z)/|z| = φ0(|z|)/|z| extends to a smooth function on
X/Y . Hence, q ◦ b is smooth on XGV. This function is the desired smooth extension
of rŶ /dY . ��
Remark 5.13 Note that dY |X is a smoothed distance function to Y in X , but not in X
as it does not extend to a continuous (or smooth) function X → [0,∞).
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The purpose of the framework developed in Sect. 4.1 was to prove the following
result.

Proposition 5.14 Let Y ∈ F and dY (x):= dist(x,Y ) = inf
{‖x − y‖ | y ∈ Y

}
be

the Euclidean distance function from x ∈ X to Y and F̂ be the lift of F to XGV, as
before. Let ρF̂ : XGV → [0,∞) be a smoothed distance function to F̂ in XGV. Then,
ρF̂ d−1Y : X � Y → [0,∞) extends smoothly to a function in C∞([XGV : F̂]

) =
C∞(XF ), denoted again by ρF̂ d−1Y .

Proof We use the notation introduced in Lemma 5.12, in particular, rŶ :=r0 ◦b extends
φ0◦dY .We thus have that rŶ /dY ∈ C∞(XGV) ⊂ C∞(XF ), by Lemma5.12.Moreover,
rŶ is a smoothed distance to Ŷ in XGV = [X : SF ], by the same lemma. Hence, ρF̂/rŶ
extends to a smooth function on

[[X : SF ] : F̂
] = [X : SF∪F] = XF , byProposition

4.15 for M = [X : SF ] and S = F̂ . Hence,

ρF̂ d−1Y = ρF̂
rŶ
· rŶ
dY
∈ C∞(XF ).

The proof is complete. ��
We fix in what follows ρF̂ to be a smoothed distance to F̂ in [X : SF ]. Our

constructions and reasoning will not depend on the particular choice of ρF̂ .

6 Regularity results for eigenfunctions

We now formulate and prove our main regularity results for certain differential opera-
tors with singular coefficients on X . These results apply, in particular, to Schrödinger
operators with “inverse square potentials,” a class of potentials which will be defined
below and that includes the classical Schrödinger operator with Coulomb potential,
which are used in physics and chemistry. The more general class of Schrödinger oper-
ators with inverse square potentials became of renewed interest [14, 16, 32, 33, 41].
To summarize our approach, we use the method in [1], but starting with XGV instead
of X . This improvement leads to regularity statements which are even uniform close
to infinity. The Lie manifold structure on XGV is obtained from the action of X , as
explained in Example 5.2. (See also Remarks 4.23 and 5.6.)

Recall that, throughout this paper, F is a finite semilattice of linear subspaces of X
with 0 ∈ F , X /∈ F , and SF ∪F is the associated clean semilattice, as in Equation (4).
There is no loss of generality to assume that X = R

n , when convenient. As before,
we let

• XGV:=[X : SF ], the Georgescu–Vasy space;
• XF :=[X : SF ∪ F] = [[X : SF ] : F̂

]
; the blow-up along SF ∪ F ;

• ρF̂ : XGV → [0,∞), a smoothed distance to F̂ in XGV, see Definition 4.11;
• WF :=ρF̂ C∞(XF )X , the structural Lie algebra of vector fields on XF , discussed
in more detail in Remark 5.7.
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Theorem 6.1 We use the usual notation, recalled for instance in the last paragraph.
Let m ∈ N and D0, D1, . . . , Dm be differential operators on X with coefficients in
C∞(XF ), Dk of order ≤ k, and D:=Dm + ρ−1F̂ Dm−1 + . . .+ ρ−mF̂ D0. Then,

(i) ρm
F̂D ∈ DiffmWF (XF ).

(ii) If Dm is uniformly elliptic on X, then ρm
F̂D is elliptic in DiffmWF (XF ).

(iii) For each boundary hyperface H of XF , let xH be a defining function and μH ∈
R. Let χ :=∏H xμH

H and 1 < p < ∞. We assume that ρm
F̂D is elliptic in

DiffmWF (XF ) and that u ∈ χL p(XF ) satisfies Du = λu on XF � ∂XF ⊂ X

for some λ ∈ R. Then, u ∈ χW ,p(XF ,WF ) for all  ∈ N.

Before proceeding to the proof, let us make a few comments on the setting.

Remark 6.2 All of XGV, XF , ρF̂ , and WF are defined using an inductive procedure
based on an ordering of SF ∪ F . This ordering is not important, as long as it is an
admissible order (see Definition 3.14). In our case, however, it is convenient to use
an admissible order that puts first the elements of SF and then the elements of F , as
many objects are defined on the intermediary blow-up XGV:=[X : SF ]. We note also
that L p(XGV) = L p(X) since

XGV � ∂XGV = X � ∂X = X �
⋃F , (27)

with the same induced measure. However, the measure on the interior of XF , XF �

∂XF = X �
⋃F differs from the measure on X by the factor ρ−nF̂ , where n = dim M .

Also, we mention that this theorem generalizes Theorem 4.2 in [1], but note that, in
the statement (ii) of that theorem, the radial compactification (denoted S in that paper)
needs to be replaced with the Georgescu–Vasy space XGV.

Proof
Ad (i): This follows from Remarks 5.6 and 5.7 and from the definitions of XF and

WF .
Ad (ii): This follows from (i) just proved by combining with Remarks 4.25, 5.6,

and 5.7.
Ad (iii): Let u ∈ χL p(XF ) be such that Du = λu. Then, Q:=ρm

F̂D − λρm
F̂ is an

elliptic operator in DiffWF (XF ), by (ii) just proved. It satisfies Qu = 0.
The result is hence a direct consequence of the regularity result in [3] (this
result was recalled in Theorem 4.22).

��
Let us give now a more concrete application. We fix a Euclidean metric on X ,

n = dim(X). First, let us note that it follows from Remarks 4.25 and 5.6 that

Wk,p(XF ,WF ) := {u : X → C | ρ
|α|
F̂ ∂αu ∈ L p(X , μF ), |α| ≤ k }

= {u : X → C | ρ
|α|−(n/p)
F̂ ∂αu ∈ L p(X , μeucl), |α| ≤ k } ,(28)

where we used the standard Lebesgue measureμeucl and the measureμF = ρ−nF̂ μeucl

associated with gF = ρ−2F̂ geucl on X .
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Definition 6.3 Let X , F , SF ∪ F , and XF :=[X : SF ∪ F] be as above (as in The-
orem 1.1, for instance). Let dY (x):= dist(x,Y ) denote the distance from x ∈ X
to Y ∈ F . An inverse square potential with singularities in F is a function
V : X �

⋃F → C of the form

V (x) :=
∑

Y∈F

(
aY (x)

dY (x)2
+ bY (x)

dY (x)

)

+ c(x),

where aY , bY , c ∈ C∞(XF ).

Note that, since C∞(X) ⊂ C∞(XF ), our inverse square potentials are rather general
and include the usual inverse square potentials. The following lemma justifies our
definition of inverse square potentials.

Lemma 6.4 The set of inverse square potentials is a complex vector space. Let V be
an inverse square potential, then ρ2

F̂V ∈ C∞(XF ).

Proof From the definition above, it is clear that the set of inverse square potentials
is a complex vector space. Proposition 5.14 gives ρF̂dY ∈ C∞(XF ). The result then
follows since ρF̂ ∈ C∞(XF ). ��
Example 6.5 (TheSchrödinger operator in quantumphysics)TheSchrödinger operator
of an atomwith heavy nucleus and with N electrons, studied in physics, is the operator

u(x) �→ (Hu)(x) := �u(x)+ V (x)u(x),

regarded as an unbounded, densely defined operator in L2(Rn), n = 3N . We write
x = (x1, x2, . . . , xN ) ∈ R

3N with xi ∈ R
3. The potential V is given by

V (x) :=
∑

1≤ j≤N

b j

‖x j‖ +
∑

1≤i< j≤N

ci j
‖xi − x j‖ .

The potential V is an inverse square potential with singularities on the collision planes
(more precisely, on the semilattice generated by the collision planes). We thus may
apply Theorem 6.1 to eigenfunctions of the differential operator H.

Moreover, the inverse square potentials considered in [14, 16, 32, 33, 41] are also
inverse square potentials in our sense.

Theorem 6.6 We use the notation introduced in Theorem 6.1. Let D be a constant
coefficient elliptic operator on X = R

n and V be an inverse square potential. Let
ρF̂ be a smoothed distance function to F̂ , as above. Assume u ∈ L2(Rn) is an
eigenfunction of D + V , then

ρ
|α|
F̂ ∂αu ∈ L2(Rn)

for all multi-indices α.
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Proof Let gRn be the canonical Euclidean metric on R
n . It is also a compatible met-

ric gGV on XGV, as explained in Remark 5.6. Then, gXF = ρ−2F̂ gRn is a compatible
metric gF on XF , as explained in Remark 5.7. Hence, we have that

L2(Rn, gRn ) = L2(XGV, gGV ) = ρ
−n/2
F̂ L2(XF , gF ).

The function ρF̂ is a product of defining functions of hyperfaces of XF , by the
definition of a smoothed distance function to a semilattice (Definition 4.11), and hence
ρ
−3N/2
F̂ = χ , for some χ as in Theorem 6.1 (iii) with μH ≡ −n/2. The result then

follows from Theorem 6.1 (iii) and the description of Sobolev spaces in Eq. (28). ��
Of course, D = −� satisfies the assumptions of the above theorem, so our regular-

ity estimates are valid for Schrödiner operators with inverse square or Coulomb-type
singularities. ToobtainTheorem1.1 stated in the Introduction, recall fromRemark4.16
the following. Let ρ(x):= distg(x,

⋃ F̂) be the distance to
⋃ F̂ in some truemetric g

on XGV. Then, the functions ρF̂ , ρ, and the function δF :=min{dist(x,⋃F), 1} are
Lipschitz equivalent, see “Appendix A.”

Remark 6.7 The methods in this article also generalize to nonlinear equations. As an
example, we consider equations of the form

�u + V |u|su = λu (29)

onR
n , where λ ∈ C, 0 < s ≤ 2/(n−2), and V is of Coulomb type (i.e., as in (6)). Let

ĝ:=ρ−2F̂ geucl be an adapted Riemannian metric on (XF ,WF ). We define the Yamabe

operator Lg:=�g− n−2
4(n−1) scal

g , and one may find in any reference about the Yamabe
problem or conformal geometry that

Lĝ(û) = (ρF̂ )(n+2)/2Leucl((ρF̂ )−(n−2)/2û
)
.

After multiplication with (ρF̂ )(n+2)/2, Eq. (29) transforms into

Lĝû + ρt
F̂V |û|s û = ρ2

F̂λû

with t = (
(n + 2) − (s + 1)(n − 2)

)
/2 = 2 − (s + 1)(n − 2)/2 and û:=ρ

(n−2)/2
F̂ u.

We have t ≥ 1 if and only if s ≤ 2/(n− 2), and in this case the Coulomb assumption
implies the boundedness of ρt

F̂V . Then, regularity theory yields for any η ∈ C∞(XF ):
if

û ∈ ηL2(XF ,WF ) ∩ η1/(s+1)L2/(s+1)(XF ,WF ) (30)

then

û ∈ ηW 2,2(XF ,WF ). (31)
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We may apply this for example to η:=ρ
−(1+ ns

2 )
F̂ . Then,

u ∈ L2(X , geucl) ∩ L2/(s+1)(X , geucl) (32)

implies (30), and then (31) implies

ρ
|α|+ ns

2

F̂ ∂αu ∈ L2(X , geucl) for all multi-indices α with |α| ≤ 2. (33)

Thus, we have (32)⇒ (33), and many similar conclusions are possible.

Remark 6.8 The point of view of Sect. 3.4 yields an alternative way to construct the
space XF . Recall that as a set we have X∞ = X ∪ {∞} with the differential structure
given by stereographic projection. Instead of taking the closure of a {0} 	= Y ∈ F�{0}
in X , we may take its closure in X∞ which is then Y∞ = Y ∪ {∞}. For Y = {0}, we
use {0}∞ = {0,∞} instead of the closure. We define

F∞:=
{
Y∞

∣
∣ Y ∈ F}.

Since we have (always) assumed that F is a finite semilattice of linear subspaces of
X with {0} ∈ F , we see that F∞ is a clean semilattice of closed p-submanifolds of
X∞ (i.e., a cleanly intersecting family of closed p-submanifolds and a semilattice),
which we endow with an admissible ordering. Because of the diffeomorphisms [X∞ :
{∞}] � X and [Y∞ : {∞}] = Y ⊂ [X∞ : {∞}], we see that [X∞ : F∞] = [X ,F ].
This is the blow-up used in [1]. However, it differs from the blow-up constructed in
this article, which is XF = [XGV : F].

Example 6.9 Consider F = {{0},Y } then F∞ = {{0} ∪ {∞},Y∞}. Using the result
that [M : P, Q] � [[M : P] : [Q : P]] for P ⊂ Q, we obtain

[X∞ : F∞] = [[X∞ : {∞, 0}, [Y∞ : {∞, 0}]] = [[X∞ : {∞}] : {0}, [Y∞ : {∞}] : {0}]
= [X : {0},Y ] = [X : F] 	= XF = [X : SF ∪ F].
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Appendix A. The equivalence of � and ıF

Let X and F be as in the previous sections, that is, F is a finite semilattice of linear
subspaces of the real, finite-dimensional vector space X . For each Y ∈ F let Ŷ be the
closure of Y in XGV (it coincides with the lift β∗Y of Y to XGV) and F̂ := {Ŷ | Y ∈ F}.
Recall from the Introduction that ρ(x):= distg(x, F̂) = distg(x,F) be the distance
to F̂ in some true metric g on XGV. Let dist(x,

⋃F) be the distance from x to
⋃F

in the usual, Euclidean distance and set δF (x):=min{dist(x,⋃F), 1}, again as in
the Introduction. The function ρ used to obtain our regularity results in the previous
section is maybe not explicit enough, so we prove now that the functions ρ and δF
are Lipschitz equivalent. More precisely, we shall prove the following result.

Proposition A.1 Let F be a semilattice of linear subspaces of the real, finite-
dimensional vector space X. The following functions are Lipschitz equivalent (as
functions on X):

(1) ρ:= the distance function to
⋃ F̂ in some true metric on XGV;

(2) δF (x):=min{dist(x,⋃F), 1}; and
(3) ρF := a smoothed distance function to

⋃ F̂ .

We recall that it was proved in [1] that ρF and ρ are continuously equivalent and
thus Lipschitz equivalent. (This result was discussed and reminded in Remark 4.16.)
The rest of this section will then be devoted to proving that ρ and δF are Lipschitz
equivalent.

Lemma A.2 Let (M,V) be a Lie manifold (and hence M is compact, see Defini-
tion 4.17), let g be a true metric on M, and let g be a V-compatible metric. Then,
there exists C > 0 such that g ≤ C2 g. In particular, for all x, y ∈ M � ∂M,

distg(x, y) ≤ C distg(x, y).

Proof As explained in Remark 4.21, a compatible metric on M is given by a metric
γ ∈ �(A∗⊗A∗) on the vector bundle (Lie algebroid) A, and thenG := (

�⊗�
)
( �γ �) ∈

�(T M ⊗ T M) is a well-defined smooth symmetric section. On M0, the section G is
non-degenerate, and thus we have G|M0 = �g0� for some V-compatible Riemannian
metric g0 on M0. By definition, any V-compatible Riemannian metric arises in this
way for some γ . We thus have seen that �g� extends smoothly to a symmetric tensor
G ∈ �(T M ⊗ T M). The g-unit cotangent bundle S

∗
gM ⊂ T ∗M is compact. By

continuity of G and compactness of S
∗
gM the supremum c1:= sup{G(X , X) | X ∈
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S
∗
gM ⊂ T ∗M} is bounded.We getG ≤ c1 �ḡ� and thus also �g� ≤ c1 �ḡ�. This implies

the statement by duality for C := √c1. ��
We obtain the following corollary.

Corollary A.3 Let g be the Euclidean distance onR
n and g be any true metric on XGV.

Then, there exists C > 0 such that, for any x ∈ X, we have

distg(x,
⋃F) ≤ C distg(x,

⋃F)

Proof Let y ∈ ⋃F be such that distg(x,
⋃F) = distg(x, y), which exists since

⋃F
is a closed subset of X . Also, let C be as in Lemma A.2. Then,

C distg(x,
⋃F) = C distg(x, y) ≥ distg(x, y) ≥ distg(x,

⋃F). ��
Let L:={x ∈ X | distg(x,⋃F) ≥ 1}.

Corollary A.4 There is C > 0 such that, for all x ∈ X, ρ(x) ≤ CδF (x).

Proof The function ρ is bounded by some C1 > 0 (since XGV is compact). Hence, if
x ∈ L , ρ(x) ≤ C1 = C1δF (x). On the other hand, with C as in Corollary A.3,
if x /∈ L:={x ∈ X | distg(x,

⋃F) ≥ 1}, we have ρ(x) = distg(x,
⋃F) ≤

C distg(x,
⋃F) = CδF (x). So the desired C is the largest of C1 and the C of

Corollary A.3. ��
Recall that in [6], one of the main results, namely Theorem 4.19, states that XGV

is diffeomorphic to the closure of δ(X), where δ is the diagonal map from X to∏
Y∈F X/Y (we assume that 0 ∈ F). The diffeomorphism is the unique extension of

the diagonal map x �→ (x, . . . , x).
Let (Z)r resp. (Z)r be the open resp. closed ball of radius r around 0 in a Euclidean

vector space Z .

Lemma A.5 Let Z be a finite-dimensional Euclidean space with open unit ball (Z)1.
There exists a true metric gZ on Z such that on (Z)1 it yields the same distances as
the Euclidean metric.

Proof Let us define [0,∞] as the closure of [0,∞) inR. Then [0,∞] inherits a smooth
structure ofR, and is a compactmanifoldwith boundary, and there is a diffeomorphism
ρ : [0,∞] → [0, 2] with ρ(t) = t for t ≤ 1. We obtain a diffeomorphism θ : Z →
(Z)2 defined by: 0 �→ 0, Z � {0} 
 z �→ ρ(‖z‖)

‖z‖ z, and for ‖z‖ = 1: SZ 
 R+z �→ 2z.
Then, gZ := θ∗geucl is a suitable true metric. ��

Let g be the Euclidean metric on X = R
n , which, we recall, is a compatible metric

on X .
We are ready now to prove Proposition A.1.

Proof of Proposition A.1 We have proved in Corollary A.4 one of the two desired
inequalities (CδF ≥ ρ) needed to prove that δF and ρ are equivalent. Let us prove
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now the opposite inequality. To that end, we can choose any true metric on XGV (they
are all equivalent). We shall choose then on each X/Y the true metric gY defined in
Lemma A.5, and on

∏
Y∈F X/Y we shall choose the product metric of these metrics.

On XGV we shall choose the induced Riemannian metric g provided by the (diago-
nal) embedding XGV = δ(X) ⊂ ∏

Y∈F X/Y which is again a true metric. For this
particular choice of true metric, we will show

ρ(x) ≥ δF (x). (34)

Note that the Riemannian distance from x to y in XGV is bounded from below by the
Riemannian distance of the same points x and y in

∏
Y∈F X/Y . This implies

ρ(x)2 ≥
∑

Y∈F
distgY (πY (x), 0)2 ≥ distgZ (πZ (x), 0)2

for any Z ∈ F . We also have

δF (x) = min
{
1,minY∈F dist(x,Y )

} ≤ min{1, dist(x, Z)}.

Thus, (34) will follow once we have shown

distgZ (πZ (x), 0) ≥ min{1, dist(x, Z)} (35)

for any Z ∈ F . Note that dist(x, Z) coincides with the Euclidean norm of πZ (x). As
the distance with respect to gZ coincides with the Euclidean distance inside the unit
ball of X/Z , see Lemma A.5 inequality (35) follows immediately. This completes the
proof of (34) and thus of the proposition. ��

Appendix B. Group actions on compactifications of vector spaces

Here, we include the details on how the constant vector fields on a vector space extend
to various compactifications. In order for the paper to be self-contained, we also recall
and extend here some facts about several compactifications of a vector space X . We
will start by considering the spherical compactification. We use the definitions of R

n
k

and S
n
k as in (7).

Lemma B.1 Let X be a finite-dimensional real vector space. Let A ∈ GL(X) and
V ∈ X. Then, the affine map p �→ LA,V (p) := Ap + V extends to a diffeomorphism
of X.

Proof Let us assume first that V = R
n . As a first, step we want to construct a smooth

map f A,V : S
n
1 → S

n
1 such that �−1n ◦ f A,V ◦ �n is an extension of the affine map

L A,V , where �n is the map X → S
n
1 given by (8). As a second step, we prove that it

is a diffeomorphism.
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At first, we consider the linear map FA,V : Rn+1 → R
n+1, (t, p) �→ (t, Ap+ tV ).

Obviously FA,V maps R
n+1
1 to itself and FA,V ((1, p)) = (1, LA,V (p)). It is easy to

check that the smooth map

f A,V
(
(t, p)

) := FA,V ((t, p))

‖FA,V ((t, p))‖
has the extension property for LA,V described above. It is obvious to see that FA,V ◦
FA′,V ′ = FAA′,V+AV ′ and as a consequence f A,V ◦ f A′,V ′ = f AA′,V+AV ′ . It follows
that f A−1,−A−1V is the inverse to f A,V , and hence f A,V is a diffeomorphism. The case
of a general vector space X is obtained by choosing a linear isomorphism X � R

n . In
view of the results proved, the resulting smooth structure on X and the smoothness of
the affine maps on X do not depend on the choice of the isomorphism X � R

n . ��
Obviously, the diffeomorphism f A,V : X → X restricts to diffeomorphisms of the

boundary, namely the sphere at infinity f A,V |SX : SX → SX . From the proof of the
last lemma, we also get:

Corollary B.2 The extension constructed in Lemma B.1 yields a group homomorphism
Aff(X) → Diff(X), L A,V �→ f A,V . For a translation L1,V : X → X by V , we have

f1,V |SX = idSX .

Proof The proof is immediate from the formula defining the extensions of affine maps
to the spherical compactification (see the proof of Lemma B.1). ��

The map in the corollary defines a Lie group action of Aff(X) on X , and the
derivative of this Lie group action yields a Lie algebra action of aff(X), the Lie
algebra of the affine group of X on X . We may restrict to the Lie group of translations,
resp. to the corresponding Lie algebra. This Lie algebra is X with the trivial bracket.
We thus have a Lie algebra action of X on X . If a Lie algebra g acts on a manifold
with corners M , then this is given by a Lie algebra homomorphism L : g→ �(T M).
In the above situation X = g and L maps a vector of X to the corresponding constant
vector field in �(X). As the Lie algebra X acts on X , any constant vector field on X
extends to a vector field on X . As the Lie group of translations acts by the identity on
SX , the Lie group X acts trivially on SX which proves that the smooth extension of a
constant vector field to X vanishes on SX . We thus have proven the following.

Corollary B.3 For any V ∈ X, the vector field

W (p) :=
{
V if p ∈ X

0 if p ∈ SX ,

is a smooth vector field on X.

We now turn to more involved compactifications. Let S be a finite, clean semilattice
of closed submanifolds of SX . We consider the compactification, M := [X : S], an
example being the Georgescu–Vasy compactification XGV discussed in 5.1.1.
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The action of the Lie group X on X constructed above is the identity on any
P ∈ S, as P ⊂ SX . Thus, [6, Theorem 4.21] or Theorem 3.18 tells us that the Lie
group action of X on X lifts (uniquely) to an action of X on M . The action is by
diffeomorphisms, and, as X is connected, the action of an element of X on M maps
each boundary face of M to itself. The corresponding Lie algebra action yields a Lie
algebra homomorphism L : X = Lie(X) → �(T M). Its image consists of vector
fields tangent to the boundary of M as the corresponding Lie group action preserves
all boundary faces. We have thus obtained the following result:

Lemma B.4 Let X and F be as above and M := [X : F]. Then, any constant vector
field on X extends to a smooth vector field on M that is tangent to the boundary.

We will now discuss whether the smooth extension of a constant vector field to
M :=[X : S] still vanishes on the boundary.

Example B.5 Let X and S = {SY }, Y ⊂ X , Y 	= {0}. Then, we have seen that the
constant vector fields v ∈ X extend to a vector fields on X vanishing at the boundary
SX . One can show that the lift of v to [X : SY ] vanishes at all the boundary faces of
[X : SY ] if, and only if v ∈ Y . If v /∈ Y , then its lift does not vanish on the boundary
hyperface emerging from SY , but it still vanishes on the other boundary hyperface
of M (respectively, in the exceptional case dim Y = dim X − 1, on the other two
boundary hyperfaces of [X : SY ]).

Appendix C. A splitting lemma

We now include the promised details explaining how Lemma 5.8 follows from [6,
Lemma 4.14]. In particular, we consider the relations between (blow-ups of) the
(spherical) compactification of the vector space X and the compactification of lin-
ear subspaces, providing, in particular, the full details of the proof of Lemma 5.8. So
let Y be a linear subspace of X . We have shown in [6, Proposition 5.2] that the quotient
map X → X/Y extends uniquely to a smooth map ψY : [X : SY ] → X/Y . We will
show that ψY is a trivial fibration, a trivialization will be provided by the choice of
any complement; in other words: [X : SY ] is a product of manifolds with corners, and
ψY the projection to one of its factors.

In order towork on the space [X : SX ], it is convenient to have a better understanding
of its structure, including of its smooth structure. The following result due to Melrose
(see [6, Lemma 4.14] and the references therein) provide the needed initial results.

In the following lemma, we write elements R
m+m′+1
k+k′ in the following way. At first,

up to permutation of the coordinates R
m+m′+1
k+k′ coincides with R

m
k ×R

m′+1
k′ , which we

write as R
m+m′+1
k+k′ ∼= R

m
k ×R

m′+1
k′ . Then, a vector in R

m+m′+1
k+k′ will be written as a pair

(η, μ) with respect to the product R
m
k × R

m′+1
k′ .

Lemma C.1 Let S
m,m′
k,k′ := S

m+m′ ∩ (Rm
k × R

m′+1
k′

) ∼= S
m+m′
k+k′ . If we define

� : Sm,m′
k,k′ �

({0} × S
m′
k′
) → S

m−1
k × S

m′+1
k′+1 , �(η, μ) =

( η

|η| ,
(|η|, μ)

)
,
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then � extends to a diffeomorphism

�̃ : [Sm,m′
k,k′ : {0} × S

m′
k′ ]

∼−→ S
m−1
k × S

m′+1
k′+1 (36)

Up to a suitable permutation of coordinates, we permute the coordinates and if we
identify S

m
k with {0} × S

m
k as subset of S

m+m′
k+k′ , we obtain a diffeomorphism:

�̃ : [Sm+m′
k+k′ : {0} × S

m′
k′ ]

∼−→ S
m−1
k × S

m′+1
k′+1

A proof of this result with our notations can be found in [6, Lemma 4.14] In the
following proposition, we shall identify X/Y with Y⊥, for some fixed scalar product
〈•,•〉 on X .

Proposition C.2 Let X be a real finite vector space and Y 	= 0 be a linear subspace
of X. Then, there is a diffeomorphism

�Y = (ψY , χ) : [X : SY ] → X/Y × Y

such that the restriction of ψY to X � SY is the extension of the canonical projection
πY : X → X/Y and χ(y) = y if y ∈ Y . Moreover, the blow-down map βX ,SY

is

determined by �Y :=βX ,SY
◦�−1

Y : X/Y × Y → X which is given by:

�Y (z, y) =
{

y if y ∈ SY ,

z +√1+ 〈z, z〉 y if (z, y) ∈ X/Y × Y .

Proof The proof is a modification of the proof of [6, Proposition 5.2]. The map ψY

is the same as the one defined in the aforementioned Proposition and used before in
this paper. Let us recall briefly the construction of this map ψY and then introduce the
map χ . Let dim Y = p and dim X = n. Without loss of generality, we may assume
that Y = R

p ⊂ X = R
n . Then, �p(SY ) = ∂S

p
1
∼= S

p−1 may be viewed as subset of
�n(SX ) = ∂S

n
1
∼= S

n−1. Using this identification, we can obtain

[X : SY ] ��
β
n [Sn

1 : Sp−1] ,

where �
β
n is the lift of �n to the two blow-up spaces. Using Lemma C.1 for m =

n− p+1 andm′ = p, we have the diffeomorphism [Sn
1 : Sp−1] � S

n−p
1 ×S

p
1 . We go

back to the compactified vector spaces using (�−1n−p,�
−1
p ) : Sn−p

1 ×S
p
1 → X/Y ×Y .

Composing these diffeomorphisms, we obtain:

[X : SY ] ��
β
n [Sn

1 : Sp−1] ��
S
n−p
1 × S

p
1 �(�−1n−p,�

−1
p ) X/Y × Y .
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At this point, the reader might want to check the definition of �n and �−1n defined in
(8) and (9), as well as � defined in (36). If v = (vY , v⊥) ∈ Y ⊕ Y⊥, we obtain

�̃ ◦�n(v) = �
( 1

〈v〉 (1, v)
)
=
( 1

〈v⊥〉 (1, v⊥),
1

〈v〉 (〈v⊥〉, vY )
)
. (37)

For the first component, we obtain �−1n−p

(
1
〈v⊥〉 (1, v⊥)

)
= v⊥ = πY (v). Hence, we

have the required property for �Y . In the second component, if v ∈ Y , that is v⊥ = 0,
we obtain 〈v⊥〉 = 1 and 〈v〉 = 〈vY 〉 then

�−1p
(

1

〈vY 〉 (1, vY )

)

= vY .

Hence, we have χ(y) = y for y ∈ Y . A long computation gives the required propriety
for �Y = βX ,SY

◦�−1
Y . ��

Note that in contrast to the map ψY , the constructions of the maps χ and �Y

depend on more than the space X and its subspace Y , it also depends on the scalar
product (and thus indirectly on the choice of the orthogonal complement). Thus, if
A : (X ,Y ) → (X ′,Y ′) is an automorphism of pairs of vector space, and if we denote
maps induced by A also by A, then we have the naturality relation πY ′ ◦ A = A ◦ πY ,
but in general χ and �Y are not natural, i.e., χ ◦ A 	= A ◦ χ and �Y ′ ◦ A 	= A ◦�Y .
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