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Abstract
A Lagrangian multiform structure is established for a generalisation of the Darboux
system describing orthogonal curvilinear coordinate systems. It has been shown in the
past that this system of coupled PDEs is in fact an encoding of the entire Kadomtsev–
Petviashvili (KP) hierarchy in terms so-called Miwa variables. Thus, in providing a
Lagrangian description of this multidimensionally consistent system amounts to a new
Lagrangian 3-form structure for the continuous KP system. A generalisation to the
matrix (also known as non-Abelian) KP system is discussed.

Keywords Integrable system · Multi-dimensional consistency · Lagrangian
multiforms · KP hierarchy · Darboux systems
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1 Introduction

The notion of Lagrangian multiforms was introduced in [23] to provide a variational
formalism for systems integrable in the sense ofmultidimensional consistency (MDC).
This novel variational approach to integrable systems allows for the derivation of an
entire system (called a hierarchy) of simultaneous compatible equations from a single
variational framework, in which the conventional Lagrange function is replaced by
a Lagrangian d-form integrated over arbitrary hypersurfaces in a space of indepen-
dent variables of arbitrary dimension. Lagrangian multiform theory has undergone a
significant development in the last decade (cf. e.g. [42, 46], or [19] and references
therein). It has become evident that Lagrangian multiform ( or, in its variant formula-
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tion, pluri-Lagrangian systems, cf. e.g. [1, 5, 6, 43–45]) forms a universal variational
aspect of integrability. It distinguished itself from the conventional least-action prin-
ciple in that, where the latter produces through the standard Euler–Lagrange (EL)
equations only one equation per component of the field variable, the multiform EL
equations comprise a multitude of compatible equations for every component of the
fields. Furthermore, the Lagrangian components themselves have to be very special
(they have to be ‘admissible’, which implies ‘integrable’), and in a precise sense the
Lagrangians themselves can be considered as solutions of the systems of generalised
EL equations.

In this note, I will focus on the Darboux system of equations, [10], which in the
original notation of Darboux reads

∂βkk′

∂ρk′′
= βkk′′βk′′k′ , (1.1)

where the indices k, k′, k′′ run over a set of integers, and the quantities βkk′ , etc., are
functions of a set of coordinates ρ1, · · · , ρn . These equations describe conjugate nets
for a system of curvilinear orthogonal coordinates, following on from earlier work
by Lamé [22]. It is well known that the set of Eq. (1.1), or generalisations thereof,
are closely related to integrable three-dimensional equations, cf. e.g. [13, 15, 50], in
particular the N -component wave equation. In fact, in [27] it was shown that they form
a realisation of the KP hierarchy in terms of so-calledMiwa variables, [28], which are
variables depending on a continuous parameter associated with an underlying lattice
structure. Here, I will show that this set of equations possesses a Lagrangian 3-form
structure, in the sense of [24, 39], cf. also [6]. Whereas our previous treatment of the
Lagrange multiform structure of the continuous KP hierarchy used a representation in
terms of pseudo-differential operators, going back to [11, 12], the multiform structure
of the Darboux system is more compact and can be viewed as a generating system for
the KP hierarchy, encoding the latter in a more covariant way.

In the next section, I will present this 3-form structure and demonstrate the salient
multiform features, while in the ensuing section I will discuss the connection to the KP
hierarchy, and further generalisations in the remainder. Some speculative applications
are discussed in the Conclusion section.

2 Lagrangian 3-form structure for the generalised Darboux system

The generalised Darboux system reads

∂Bqr

∂ξp
= BqpBpr ,

∂Brq
∂ξp

= BrpBpq , (2.1a)

∂Bpr

∂ξq
= Bpq Bqr ,

∂Brp
∂ξq

= Brq Bqp , (2.1b)

∂Bpq

∂ξr
= Bpr Brq ,

∂Bqp

∂ξr
= Bqr Brp , (2.1c)
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where Bpq , etc., are scalar functions (but can be readily generalised to matrices) of
the independent variables ξp, ξq and ξr , which are continuous variables labelled by
parameters p, q and r , respectively, which themselves are in principle continuous
variables taking values in a continuous subset of the real or complex numbers (hence,
the term ‘generalised’). We assume that these parameters are distinct, and we will not
consider for now quantities B for which they coincide (quantities of the type Bpp).
A main property of the system (2.1) is that it can be extended in a consistent way to
an arbitrarily large set of copies of these equations in terms of additional variables ξs ,
etc., similarly labelled by values of the parameters. This compatibility is expressed as
follows.

Theorem 2.1 The PDE system (2.1) for the quantities B·· is multidimensionally con-
sistent.

Proof The proof is by direct computation, introducing a fourth variable ξs and associ-
ated lattice direction with parameter s, such that the system of independent variables
is extended to include Bps, Bqs, Brs and Bsp, Bsq , Bsr obeying relations of the form

∂Bps

∂ξq
= Bpq Bqs ,

etc., and where the other variables depend also on ξs such that

∂Bpq

∂ξs
= Bps Bsq ,

etc. We then establish by direct computation from the extended system of equations
comprising (2.1) and the PDEs w.r.t. ξs , the relation

∂

∂ξs

(
∂

∂ξp
Bqr

)
= ∂

∂ξp

(
∂

∂ξs
Bqr

)
,

by direct computation. Similarly, all relations obtained from cross-differentiation hold
by the same token. ��

The system (2.1) possesses a Lax multiplet, cf. e.g. [13], in the following sense.

Proposition 2.1 If the system (2.1) is satisfied, each of the following linear overde-
termined systems (one system for a parameter-labelled family of functions �· and
another system for the parameter family of functions �·)

∂�q

∂ξp
= Bqp�p, and

∂�r

∂ξp
= �p Bpr , (2.2)

respectively (and similar relations for all variables ξq and ξr ), is consistent in the
sense of possessing a common general solution.
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Proof Again, this is by direct computation. Cross-differentiation of two copies of the
first equation of (2.2) we get the equality

∂

∂ξr

(
∂�q

∂ξp

)
=

(
∂

∂ξr
Bqp

)
�p + BqpBpr�r

= ∂

∂ξp

(
∂�q

∂ξr

)
=

(
∂

∂ξp
Bqr

)
�r + Bqr Brp�p ,

and hence the equality of the coefficients of�r and�p give us the desired differential
equations for Bqp and Bqr , respectively. The same hold true for the ‘adjoint’ Lax
multiplet in terms of the functions �·. ��

Wenote that theLaxmultiplets (2.2) canbeobtained from theDarboux system itself,
relying on the multidimensional consistency, by identifying the Lax wave functions
� and � by fixing two, possibly separate, directions in the space of independent
variables, ξk and ξl , say (where k and l play the role of spectral parameters), such
that �p = Bpk and �p = Blp. Furthermore, the quantities � and � obey a linear
homogeneous set of equations of the form

∂p∂q�r = (∂p ln�q)∂q�r + (∂q ln�p)∂p�r , (2.3a)

∂p∂q�r = (∂p ln�q)∂q�r + (∂q ln�p)∂p�r , (2.3b)

thus obeying both an identical equation.
We now introduce the Lagrangian structure. Let us consider the following

Lagrangian components:

Lpqr = 1
2

(
Brq∂ξp Bqr − Bqr∂ξp Brq

) + 1
2

(
Bqp∂ξr Bpq − Bpq∂ξr Bqp

)
+ 1

2

(
Bpr∂ξq Brp − Brp∂ξq Bpr

) + BrpBpq Bqr − Brq BqpBpr . (2.4)

Then, we have the following main statement.

Theorem 2.2 The differential of the Lagrangian 3-form

L := Lpqr dξp ∧ dξq ∧ dξr + Lqrs dξq ∧ dξr ∧ dξs+
+ Lrsp dξr ∧ dξs ∧ dξp + Lspq dξs ∧ dξp ∧ dξq , (2.5)

has a ‘double zero’ on the solutions of the set of generalised Darboux equations (2.1),
i.e. dL can be written as

dL = Apqrs dξp ∧ dξq ∧ dξr ∧ dξs (2.6)

with the coefficientApqrs being a sum of products of factors which vanish on solutions
of the EL equations.
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Proof Computing the components of the differential dL, we obtain

∂ξsLpqr − ∂ξpLqrs + ∂ξqLrsp − ∂ξrLspq

= �s;rq�p;qr − �p;rq�s;qr + �s;qp�r;pq − �r;qp�s;pq
+ �s;pr�q;rp − �q;pr�s;rp + �q;sr�p;rs − �p;sr�q;rs
+ �p;sq�r;qs − �r;sq�p;qs + �q;ps�r;sp − �r;ps�q;sp ,

where

�p;qs = ∂ξp Bqs − BqpBps ,

and similarly for the other indices. The set of generalised EL equations in this case are
obtained from δApqrs = 0, repeating the general argument, cf. e.g. [41, 42, 45], for
deriving the EL equations from the differential of the Lagrangian multiform. Thus,
since all the variations δBpq , etc., and their first derivatives, are independent, the
coefficients are precisely all the combinations �r;pq , etc., which will have to vanish
at the critical point for the action

S[B(ξ);V] =
∫
V
L =

∫
W

dL , (2.7)

integrated over any arbitrary three-dimensional closed hypersurfaces V in the multi-
variable space of all the ξp’s, and where the enclosed volumeW is such that V = ∂W .

��
As a corollary, the statement of Theorem 2.2 holds more generally for Lagrangian

3-forms embedded in a higher-dimensional space of independent variables, namely

Corollary 2.1 In a space of variables { p = (p j ) j∈I } where the pi denote complex-
valued continuous variables labelled by an index set I , the Lagrangian 3-form

L =
∑

i, j,k∈I
Lpi ,p j ,pk dξpi ∧ dξp j ∧ dξpk , (2.8)

with Lpi ,p j ,pk as given in (2.4), we have that

dL =
∑

i, j,k,l∈I
Api ,p j ,pk ,pl dξpi ∧ dξp j ∧ dξpk ∧ dξpl ,

has a double zero on solutions of the system (2.1) written in the relevant variables
labelled by pi , p j , pk, pl .

The proof is an obvious extension of the one for Theorem 2.2, assuming that all labels
of the piν are distinct.

The variational equations obtained from δdL = 0 for the Lagrangian multiform
(2.5) constitute the set of multiform Euler–Lagrange equations in the language of the
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variational bicomplex, cf. e.g. [12]. In fact, considering all the fields B·· indepen-
dent for different labels, this compact form of the variational equations, through the
double-zero form, implies the vanishing of all the factors � in the above computation,
which amounts to the set of generalised Darboux equations. Furthermore, as a direct
consequence of the double-zero form for dL the Lagrangian multiform L is closed on
solutions of the Darboux system (2.1), i.e. dL|EL = 0 (but not trivially so, only ‘on-
shell’), which implies that for the critical fields which obey the Darboux system the
action is invariant under smooth deformations of the hypersurface V . This is precisely
the phenomenon of multidimensional consistency: the Darboux system is compatible
on any hypersurface in the multidimensional space of Miwa variables.

It is important to mention in this context that multi-time Euler–Lagrange equations
were derived in various papers, notably [43, 48] in the case of Lagrangian 1-forms,
[44, 45], continuous 2-forms (and in [5, 25] in the discrete case) and, more generally, in
[42, 46] in the general continuous case. These derivations follow different approaches,
but they have in common that the conventional EL equations associated with a spe-
cific choice (meaning in the present context fixing V in (2.7)) of integration manifold
(in the multi-time space of independent variables) must hold simultaneously for all
possible choices of V and are supplemented by a set of additional constraints link-
ing the Lagrangian components arising from ‘alien derivatives’ (i.e. derivatives w.r.t.
independent variables that are not integrated over in the action functional S[B(ξ);V]
along the direction of the components in question of the Lagrangian multiform L). I
don’t intend to write down the general formulae here, as they require a lot of additional
notations, cf. e.g. [42, 45, 46] for a detailed presentation. In fact, in [42] the double-
zero condition is shown to be a sufficient condition for the multi-time EL equations
to be satisfied, and this is all we need for the purpose of the present paper.

It may also need pointing out that in the case that the dimension of the embedding
space of independent variables coincides with the number of variables in the system
(2.1), i.e. when the cardinality of the index set |I | = 3 in (2.8), we recover the
conventional case of a Lagrangian volume-form with Lagrangian density Lpqr =
Lpi ,p j ,pk , in which case the standard Euler–Lagrange equations yield

δLpqr

δBpq
= −∂Bqp

∂ξr
+ Bqr Brp ,

δLpqr

δBqp
= ∂Bpq

∂ξr
+ Bpr Brq , (2.9)

and similarly for the components Bqr , Brq , Bpr and Brp. Thus, we obtain the Dar-
boux system (2.1), but the integrability in the sense of MDC is not evident from the
conventional Lagrangian formalism.

Another corollary of the multiform structure is that we also have a variational
description of the Lax system (2.2). To see this, note that we can extend the set of
Miwa variables to include variables ξk associated with a ‘spectral parameter’ k. Thus,
we are led to the following statement.

Corollary 2.2 The Lagrangian 3-form

L(k) := Lpq(k) dξp ∧ dξq ∧ dξk + Lqr(k) dξq ∧ dξr ∧ dξk+
+ Lrp(k) dξr ∧ dξp ∧ dξk + Lpqr dξp ∧ dξq ∧ dξr , (2.10)
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with components

Lpq(k) = 1
2

(
�q∂ξp�q − (∂ξp�q)�q

) − 1
2

(
�p∂ξq�p − (∂ξq�p)�p

)
+ 1

2

(
Bqp∂ξk Bpq − Bpq∂ξk Bqp

) + �p Bpq�q − �q Bqp�p , (2.11)

through the EL equations δdL(k) = 0 constitutes a variational description of the Lax
multiplet (2.2).

A similar variational description of the Lax systemwas obtained in [40] for the 1+1-
dimensional Lax system associatedwith the so-called Zakharov–Mikhailov action.We
note that the Lagrangian 3-form (2.10) should really be considered as a Lagrangian 2-
formwhen integrating out the direction ξk associated with the (fixed) spectral variable.

3 Discrete Darboux system

A discrete analogue of the Darboux system of orthogonal coordinate systems, i.e. was
found in [2, 14] where its integrability was inserted. In fact, an interesting connection
with integrable quadrilateral lattices was discovered, as well as with multidimensional
circular lattices, cf. [9, 26]. The corresponding discrete analogue of the generalised
Darboux system (2.1) reads

�p Bqr = BqpTpBpr , �p Brq = BrpTpBpq , (3.1a)

�q Brp = BrqTq Bqp , �q Bpr = BpqTq Bqr , (3.1b)

�r Bpq = Bpr Tr Brq , �r Bqp = Bqr Tr Brp , (3.1c)

where �p denotes the difference operator �p = Tp − id. This system is related to
other multidimensional lattice systems that were formulated in [29].

Theorem 3.1 The system of difference equations (3.1) is multidimensionally consis-
tent, and furthermore, it is consistent with the differential system (2.1).

Proof The consistency of the set of difference equations is by direct computation. For
instance, rewriting the difference equation as follows:

Bqr = TpBqr − BqpTpBpr

= Tp
(
Ts Bqr − BqsTs Bsr

) − BqpTp
(
Ts Bpr − BpsTs Bsr

)
= TpTs Bqr − (TpBqs)TpTs Bsr − BqpTpTs Bpr + Bqp(TpBps)TpTs Bsr

which is equal to the same expression with the labels p and s interchanged. Thus, the
latter is equal to

= TsTpBqr − (Ts Bqp)TsTpBpr − BqsTsTpBsr + Bqs(Ts Bsp)TsTpBpr .
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Assuming that the shifts Tp and Ts commute, and collecting the factors with TpTs Bpr

and the oneswith TpTs Bpr , regarding the latter as independent, we obtain the relations

TpBqs − Bqs − BqpTpBps = 0 , and Ts Bqp − Bqp − BqsTs Bsp = 0 ,

which are two of the discrete Darboux equations. Thus, the relations are consistent
under mutual shifts. The compatibility with the continuous Darboux system (2.1)
follows from a similar computation. Abbreviating ∂/∂ξp by ∂p, we get

∂p(Ts Bqr ) = ∂p
(
Bqr + BqsTs Bsr

) = ∂p Bqr + (∂pBqs)Ts Bsr + Bqs∂pTs Bsr

whereas

Ts∂p Bqr = Ts(BqpBpr ) = (Ts Bqp)Ts Bpr = (Bqp + BqsTs Bsp)Ts Bpr

⇒ BqpBpr + BqpBpsTs Bsr +�������
BqsTs

(
BspBpr

)
= BqpTs Bpr +��������

Bqs(Ts Bsp)Ts Bpr ,

and the remaining terms cancel as well due to the discrete Darboux relation. ��
Similarly to the continuous case we have a Lax system, and its adjoint, given by

�p�q = BqpTp�p , �p�q = �pTpBpq , (3.2)

and the homogeneous linear difference system for an eigenfunctions �r , �r , respec-
tively,

�p�q�r = �p(Tq�q)

Tq�q
�q�r + �q(Tp�p)

Tp�p
�p�r , (3.3)

�p�q�r = �p�q

Tp�q
�q(Tp�r ) + �q�p

Tq�p
�p(Tq�r ) . (3.4)

Note that in the discrete case the equations for the eigenfunction and its adjoint are no
longer the same. It is natural to assume that the discrete Darboux system (3.1), like its
continuous counterpart (2.1), admits a Lagrangian 3-form structure. I intend to settle
this question in a future publication [32].

4 Connection with the (scalar) KP system

TheKP system of equations is often introduced as the set of Lax equations arising from
a Lax operator in a ring of pseudo-differential operators with respect to a singled-out
variable x , cf. [38]. This has a disadvantage that the inherent covariant structure of
the KP system is broken, and not all independent variables (the higher time variables)
appear on the same footing as the variable x . A more covariant approach is provided
by the ‘direct linearisation’ set-up, cf. e.g. [18] and references therein, where there
is no need to single out a particular variable to describe the KP hierarchy. It can be
argued that the generalised Darboux system (2.1) provides also a covariant description
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but in the sense of encoding the hierarchy through Miwa variables, cf. [27]. In that
sense, the generalised Darboux system is similar in spirit as the ‘hierarchy generating
PDEs’ of [35, 47], but for a three-dimensional system of PDEs instead of the KdV or
Boussinesq hierarchies, respectively.

Solutions of the discrete KP system were considered in [17, 33, 34] using the direct
linearisation (DL) approach, cf. also [37]. The dynamics is governed by plane-wave
factors which take the form

ρk =
[∏

ν

(pν − k)nν

]
exp

{
kξ −

∑
ν

ξpν

pν − k

}
, (4.1a)

σk′ =
[∏

ν

(pν − k′)−nν

]
exp

{
−k′ξ +

∑
ν

ξpν

pν − k′

}
. (4.1b)

Here, the ξpν are the independent variables of the generalised Darboux system, and
the nν are associated discrete variables, in terms of which the KP τ function obeys the
compatible set Hirota bilinear equations1

(p − q)(TpTqτ)Trτ + (q − r)(TqTrτ)Tpτ + (r − p)(Tr Tpτ)Tqτ = 0 , (4.2)

where Tpν (p, q, r being any three of the pν) denotes the elementary shift in the
variable nν associated with pν (which in this context) has the interpretation of a
lattice parameter measuring the grid width in the discrete direction labelled by nν .

The interplay between discrete and continuous variables turns out to be an essential
feature of the structure. In fact, the τ -function obeys the relations

∂τ

∂ξp
= −

(
T−1
p

d

dp
Tp

)
τ := lim

ε→0

T−1
p Tp−ετ − τ

ετ
, (4.3)

for any of the parameters pν = p, where we should think of the p − ε as the lattice
parameter associated with lattice directions with elementary lattice shift Tp−ε for
all arbitrary small ε. Using the identification between lattice shifts and derivatives
as in (4.3), we can perform a limit r → p on (4.2) and thus obtain the following
differential-difference equation for τ :

(p − q)

(
τ Tq

∂τ

∂ξp
− (Tqτ)

∂τ

∂ξp

)
= τ Tqτ − (Tpτ) TqT

−1
p τ . (4.4)

1 In the literature, cf. e.g. [15, 27], the dependence on discrete shifts in what is essentially the scalar
KP system, is confusingly often referred to as the ‘multicomponent KP hierarchy’ (because lattice-shifted
variables are considered as components). This should not be confused with the matrix KP system, cf. e.g.
[20, 29], which in my opinion more rightfully deserves the name ’multicomponent’, and which is related to
the system in section 5. The difference between the two resides in that the scalar KP is governed essentially
by a scalar integral measure in the underlying DL framework, while the matrix KP is governed by a matrix
measure and hence has a much richer solution structure.
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Furthermore, the τ -function also obeys the differential-difference equation

1 + (p − q)2
∂2 ln τ

∂ξp ∂ξq
= (TpT−1

q τ)TqT−1
p τ

τ 2
, (4.5)

which can be readily cast into bilinear form. In fact, Eq. (4.5) is the bilinear form of the
2D Toda equation (with the discrete variable along the skew-diagonal lattice direction
in the lattice generated by the Tp and Tq shifts).

It turns out that the Darboux variables of the system (2.1) can be expressed in terms
of the KP τ -function exploiting the underlying discrete structure2. To do so, consider
the quantities

Sa,b = T−1
a Tbτ

τ
, (4.6)

as a consequence (4.2) and (4.4) obey the following relations:

(p − b)TpSa,b − (p − a)Sa,b = (a − b)Sa,pTpSp,b , (4.7a)

(p − a)(p − b)
∂Sa,b

∂ξp
= (a − b)

(
Sa,pSp,b − Sa,b

)
. (4.7b)

Similar relations appeared in [15, 27] derived from a different perspective from [17].
These relations are compatible for all parameters p and corresponding shifts and
derivatives w.r.t. the corresponding Miwa variables ξp. They form the basis for the
generalised Darboux and a discrete analogue of the Darboux system, where the latter
can be obtained by a gauge transformation with factors ρ−aσb of the form (4.1).
Furthermore, the quantity S = Sa,b obeys the following three-dimensional partial
difference equation: [33],

[
(p − b)TpTq S − (p − a)Tq S

] [
(q − b)TqTr S − (q − a)Tr S

]
[
(p − b)TpTr S − (p − a)Tr S

] [
(q − b)TpTq S − (q − a)TpS

]

×
[
(r − b)TpTr S − (r − a)TpS

]
[
(r − b)TqTr S − (r − a)Tq S

] = 1 (4.8)

which is essentially the lattice Schwarzian KP equation, first given in its well-known
pure form in [16].

The KP hierarchy can be obtained by the expansions

t j = δ j,1ξ +
∑
ν

(
ξpν

p j+1
ν

+ 1

j

nν

p j
ν

)

⇒ Tpν τ = τ

(
{t j + 1

j p j
ν

}
)

and
∂τ

∂ pν

=
∞∑
j=1

1

p j+1
ν

∂τ

∂t j
, (4.9)

2 In [15, 27], a similar connection was exhibited, which differs from the present one in that my presentation
is based on results from the DL approach, whereas the Sato or fermionic-type approach seems to cover a
more restricted solution sector of the theory.
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where the t j are the usual independent time variables in the hierarchy.
From (4.7b), it follows that the Darboux quantities can be identified as

Bpq = σpρq Sp,q
q − p

= σpρq
T−1
p Tqτ

(q − p)τ
, q 
= p , (4.10)

from which, together with (4.1), we get the relations (2.1) whenever q 
= p. When
q = p, we have Bpp = C∂ξp (ln τ), where C is some constant normalisation factor.

The eigenfunctions of the Lax multiplet are obtained from

φa(k) = Sa,kρk

a − k
, ψb(k

′) = Sk′,bσk′

b − k′ , (4.11)

which obey the set of relations

(p − a)φa(k) = Tpφa(k) − Sa,pTpφp(k) , (4.12a)

(p − b)Tpψb(k
′) = ψb(k

′) − ψp(k
′)TpSp,b , (4.12b)

(a − p)
∂

∂ξp
φa(k) = φa(k) − Sa,pφp(k) , (4.12c)

− (b − p)
∂

∂ξp
ψb(k

′) = ψb(k
′) − ψp(k

′)Sp,b , (4.12d)

the compatibility conditions of which reproduce Eq. (4.7).
Within the setting of the DL approach, the following combination of the quantities

S, for arbitrary values of c, possesses a quadratic eigenfunction expansion of the form

Sa,b − Sa,cSc,b =
∫∫

D
dζ(l, l ′)(l − l ′) (c − a)(c − b)

(c − l)(c − l ′)
φa(l)ψb(l

′) . (4.13)

Here, the integration is over an arbitrary measure in a region D ⊂ C × C of values
of l, l ′ in a spectral space with measure dζ(l, l ′). Under special conditions, these
integrals correspond to the generalised Cauchy integrals arising in the ∂̄ problem
or nonlocal Riemann–Hilbert problems for the KP-type spectral problems, cf. [21,
49]. (The choices of c must be such that singularities in the integrals are avoided,
and this requires some conditions on the integrations, which play a role when we
consider special solutions. We will not address these issues of analysis here.) Note
that when c = pν , i.e. coincides with any of the parameters associated with the
Miwa variables ξp , then the left-hand side of (4.13) coincides with the expression on
the right-hand side of (4.7). I.o.w. the right-hand side of (4.13) provides a quadratic
eigenfunction expansion for the derivative of Sa,b w.r.t. ξp (modulo a constant factor).
However, (4.13) is independent of the choice of Miwa variables and holds for any c. In
particular, in the limit c → ∞ we obtain the following fundamental bilinear identity
for the solution of the τ function associated with the choice of measure and integration
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region D:

∫∫
D
dζ(l, l ′) (l − l ′)ρlσl ′

(a − l ′)(a′ − l)
(T−1

a′ Tlτ)(T−1
l ′ Taτ) =

= τ (T−1
a′ Taτ) − (T−1

a′ τ)(Taτ) , (4.14)

which can be considered as a bilinear integro-difference equation for the τ function.
The relation (4.14) is reminiscent of the fundamental bilinear identity that plays a
central role in the Sato approach to the KP hierarchy, cf. also [3], which is, however,
not the approach taken here to derive this relation. It is maybe useful to mention at
this juncture that, while all definitions of a τ -function are in a sense non-universal
and depend on the solution class under consideration, what may be the most general
definition of a τ -function was formulated in [30], namely in terms of a fermionic path
integral associated with the direct linearising transform structure.

5 Generalisation to thematrix case

In a talk at the June 1987 NEEDSmeeting, I presented a 2+1-dimensional Lagrangian
matrix KP systemwhich effectively amounts to amatrix generalisation of the Darboux
system, that became a focus of attention in the mid 1990s. We proposed the following
Lagrangian, cf. [36],

Li jk = 1
2 tr

{
Gi j Ji (∂kG ji )J j − (∂kGi j )JiG ji J j + cycl. (ijk)

}
− tr

{
Gi j JiGki JkG jk J j − G ji J jGkj JkGik Ji

}
, (5.1)

which is a matrix generalisation of (2.4). In fact, the Gi j are N × N matrix functions

of dynamical variables xi = ξ
Ji
li

, x j = ξ
J j
l j

, xk = ξ
Jk
lk

, . . . , which are labelled not
only by a continuous parameter l· (like the p, q, r in the scalar case), but also by a
matrix J· which in a sense ’tunes’ a hierarchy of associated KP type equations. while
the Ji , J j , Jk are constant N × N matrices, which commute among themselves3, i.e.
[Ji , J j ] = [J j , Jk] = [Jk, Ji ] = 0. In (5.1) we have denoted ∂/∂ξl j =: ∂ j , etc., for
the sake of brevity. Like (2.4) the Lagrangian (5.1) can be viewed as a component of
a Lagrangian 3-form

L =
∑

i< j<k

Li jk dxi ∧ dx j ∧ dxk , (5.2)

which is closed on solutions of the Euler–Lagrange equations

∂i G jk = Gik JiG ji , i 
= j 
= k 
= i . (5.3)

The main statement is that these Lagrangians form the components of a Lagrangian
3-form. Thus, we have

3 In fact, one can also consider the non-commutative case [Ji , J j ] = �k
i j Jk , in which case we get non-

commuting flows on a loop group, for which a Lagrangian description was proposed recently in [7] for
(1+1)-dimensional systems.
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Theorem 5.1 The Lagrangian 3-form (5.2) has a double zero on solutions of the fun-
damental set of equations (5.3).

Proof The proof is again computational, and in essence similar to the one of Theo-
rem 2.2, with the main difference occurring in the matrix ordering within the trace.
Computing the differential of L, we get in the matrix case

dL =
∑
i, j,k,l

Ai jkl dxi ∧ dx j ∧ dxk ∧ dxl ,

with

Ai jkl = 1
2 tr

{
�l;i, j Ji�k; j,i J j − �k;i, j Ji�l; j,i J j

+ �l;k,i Jk� j;i,k Ji − � j;k,i Jk�l;i,k Ji
�l; j,k J j�i;k, j Jk − �i; j,k J j�l;k, j Jk ± cycl (i jkl)

}
,

where the cyclic permutation over the indices (i, j, k, l) is done with alternating signs
of the six terms inside the bracket, resulting in 24 terms in total. Here, the quantities
� are given by

�i; j .k = ∂i G jk − Gik JiG ji ,

and hence we have a double-zero expansion of dL implying that the generalised Euler–
Lagrange equations arising from δdL = 0 for allGi j varied independently (for different
indices) gives rise to the entire system of matrix Darboux equations to yield the critical
point of the action

S[G ·,·(x);V] =
∫
V
L ,

as a functional of all the matrix fields G ·,· as well as of the hypersurfaces V in the
space of independent variables. As a consequence of the double-zero expansion form
we have dL = 0 for the fields G obeying the set of EL equations, and hence the action
is independent of the choice of hypersurface for those critical fields. ��

More or less simultaneously to our paper [36], and independently, Bogdanov and
Manakov investigated a (2+1)-dimensional Lagrangian matrix system, cf. [4]. In ret-
rospect both systems are very similar and originate from the consideration of nonlocal
inverse problems, either through Direct Linearisation in the case of [36], in a frame-
work also exploited for the case of three-dimensional matrix lattice equations, cf. [29,
34], or using nonlocal ∂̄ in the case of [4]. Like in the scalar case of section 2, these
Lagrangians can be seen as components of a Lagrangian 3-form, and in a precise
sense they generate the entire hierarchy of matrix KP equations (I will not dwell on
that aspect in the present note).

To be more precise let us first, in the notation of [36], specify the matrix (or, in the
parlance of the last decade, the non-Abelian or non-commutative) KP structure. Note
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that one of the first papers that addressed thematrixKP system, from an inverse scatter-
ing point of view, was [20]. The main set of equations, in fact the matrix generalisation
of (4.7), is the family of relations given by

∂ J
k Hab = J

k − a
Hab − Hab

J

k − b
+ Hak J Hkb , (5.4)

where k 
= a 
= b 
= k are complex-valued parameters and the derivatives ∂ J
k is

with respect to some Miwa-type variables ξ J
k characterised by the constant matrix J

as well as the label k which here is complex parameter. The family of Eqs. (5.4) is
multidimensionally consistent for different values of k and commuting sets ofmatrices
J , as can be readily verified.

A Lagrangian for the set of equations (5.4) is given by

Lklm = 1
2 tr

{
Hml J̃ (∂ J

k Hlm) Ĵ − (∂ J
k Hml) J̃ Hlm Ĵ

+ Hkm Ĵ (∂ J̃
l Hmk)J − (∂ J̃

l Hkm) Ĵ Hmk J

+Hlk J (∂ Ĵ
m Hkl) J̃ − (∂ Ĵ

m Hlk)J Hkl J̃
}

+ tr

{
Hml J̃ Hlm

J Ĵ

k − m
− Hml

J̃ J

k − l
Hlm Ĵ

+ Hkm Ĵ Hmk
J̃ J

l − k
− Hkm

Ĵ J̃

l − m
Hmk J

+Hlk J Hkl
Ĵ J̃

m − l
− Hlk

Ĵ J

m − k
Hkl J̃

}

+ tr
{
Hlm Ĵ Hmk J Hkl J̃ − Hml J̃ Hlk J Hkm Ĵ

}
, (5.5)

which essentially is equivalent to the Lagrangian of [4]. The variational equations

δLklm

δHT
ml

= 0 ⇒ ∂ J
k Hlm = J

k − l
Hlm − Hlm

J

k − m
+ Hlk J Hkm ,

and similarly the other equations with k, l,m and J , J̃ , Ĵ , respectively, all per-
muted, follow from this Lagrangian. By expanding the Miwa variables we can derive
Lagrangians for the matrix KP hierarchy (examples of matrix KP hierarchy equations
arising from the analogous Lagrange structure were provided in [4]). The main new
insight provided here, and which is a direct consequence, in fact a specification, of
Theorem 5.1, is that this Lagrangian structure can be extended to a Lagrangian 3-form
structure for the matrix KP hierarchy in (matrix) Miwa variables4, provided by

4 Since integrable matrix hierarchies comprise not a single sequence of higher time flows, but several
families, each generated by a zeroth-order time flow associated with a constant matrix J , this matrix serves
as the label for the corresponding sequence of higher times t Jj , cf. e.g. [12], and associated Miwa-type

variables ξ J
p can be defined by ‘compounding’ those hierarchies in the sense of [31], i.e. constructing

weighted sums of higher time derivatives as in (4.9).
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L = Lklmdξ
J
k ∧ dξ J̃

l ∧ dξ Ĵ
m + Llmndξ

J̃
l ∧ dξ Ĵ

m ∧ dξ J
n

+ Lmnkdξ
Ĵ
m ∧ dξ J

n ∧ dξ J
k + Lklmdξ

J
k ∧ dξ J̃

l ∧ dξ Ĵ
m

(which can be readily extended to a multi-sum involving more variables of the type x J
k

with different labels and differentmatrices J ). As a conclusion, this provides the proper
variational structure of the matrix KP hierarchy in its generating form. This is direct
consequence of Theorem 5.1, where the correspondence between the matrices Gkl

and the matrices Hkl is obtained by introducing matrix analogues of the plane-wave
factors ρk and σk′ , given by nonsingular N × N matrices ϕ0

k and tϕ0
l obeying

∂ J
mϕ0

k = J

m − k
ϕ0 , ∂ J

m
tϕ0
l = −tϕ0

l
J

m − l
,

(where the superscript 0 denotes the aspect that these are ’free’ solutions of the under-
lying linear system), and setting

Gkl = tϕ0
l Hlkϕ

0
k , and Jm = (tϕ0

m)−1 J (ϕ0
m)−1 .

As a consequence, relying on Theorem 5.1, the Lagrangian (5.5) form the components
of a Lagrangian 3-form whose generalised EL equations provide the system of Eq.
(5.4). This is essentially the generating set of equations for the matrix KP hierarchy.

6 Discussion

The results in this paper generalise in an essential way those of [39] where the mul-
tiform structure of the KP hierarchy was established in the conventional presentation
in terms of pseudo-differential operators. In this paper, we consider the KP hierarchy
from the point of view of generating PDEs, namely through their representation in
terms of Miwa variables. This has the advantage that the structure becomes much
more covariant. Thus the KP hierarchy is being treated as multi-parameter family
of equations in the sense of what we called a generating PDE, i.e. a PDE in terms
of Miwa-type variables, which by expansion in powers of the parameters lead to
the conventional hierarchy of KP equations in the multi-time form (in the cases of
(1+1)-dimensional hierarchies these generating PDEs are obtained from the conven-
tional enumerative hierarchies, by a process of ‘compounding’, cf [31]). A connection
between Lagrangian multiforms in this parameter-family representation and the clas-
sical r -matrix was recently put forward in [8]. Lifting those results to the case of the
(2+1)-dimensional KP hierarchy could provide a novel route to the quantisation of the
KP system. Identifying a classical (and possible in due course a quantum) R-matrix
for the KP system would form a major step towards both a canonical as well as path
integral route towards its quantisation.

In this context it is worth mentioning another connection. In the Direct Linearising
Transform (DLT) approach to the KP system (discrete as well as continuous), cf.
[17, 29, 33, 34] the invariance under integral transforms with a kernel Gkk′ is the key
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element of the construction. This kernel is a path-independent line-integral in the space
of independent variables of the system, constructed from of a closed (on solutions of
the equation of motion) 1-form constructed from the Lax multiplet eigenfunctions.
The kernel Gkk′ solves the following class of generalised Darboux systems

∂i Gkk′ =
∫∫

Di

Glk′ dζi (l, l
′)Gkl ′ , i ∈ I , (6.1)

where the integration is over a set (labelled by I ) of domains Di ∈ C × C in some
spectral-type variables l and l ′ over a set of matrix-valued measures dζi (l, l ′) in that
domain. The independent variables are assumed to be characterised by the integration
data: xi = x(ζi , Di ) and ∂i = ∂/∂xi . Notable is the dual role played by Gkk′ , on
the one hand as the integral kernel of an integral transform, on the other hand as a
solution of a parameter family of nonlinear equations of Darboux type, which can
be reconstructed from the quantities Hk,k′ of the previous section. Most important in
the present context is the observation that this general system can be endowed with a
Lagrangian 3-form structure very similar to the ones described in the previous section,
namely given by Lagrangian components

Li jk = 1
2

∫∫
Di

∫∫
Dj

tr
{
Gl,k′ dζi (l, l

′) (∂kGk,l ′) dζ j (k, k
′)

− (∂kGl,k′) dζi (l, l
′)Gk,l ′ dζ j (k, k

′) + cycl(i jk)
}

+
∫∫

Di

∫∫
Dj

∫∫
Dk

tr
{
Gl,k′ dζi (l, l

′)Gm,l ′ dζ j (m,m′)Gk,m′ dζk(k, k
′)

−Gl,k′ dζi (l, l
′)Gm,l ′ dζk(m,m′)Gk,m′ dζ j (k, k

′)
}

. (6.2)

It can be proven by similar computations, and under some generous assumptions on
the integrations in the formula, that analogous statements to the ones in the previ-
ous sections, that the Lagrangian 3-form with components given by (6.2) possesses
a Lagrangian multiform structure. This forms arguably the most general multiform
structure so far considered in the theory. Note also that the corresponding action func-
tional S[G ·,·(x);V] where as before V is an arbitrary three-dimensional hypersurface
in the space of independent variables x = ({xi , i ∈ I }), shows some resemblance
some action functionals associated with the Chern–Simons theory in topological field
theory, but this connection still remains to be explored.
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