
Letters in Mathematical Physics (2023) 113:17
https://doi.org/10.1007/s11005-023-01636-4

Characterizing Schwarz maps by tracial inequalities

Eric Carlen1 · Alexander Müller-Hermes2

Received: 9 March 2022 / Revised: 6 January 2023 / Accepted: 12 January 2023 /
Published online: 2 February 2023
© The Author(s) 2023

Abstract
Let φ be a positive map from the n × n matrices Mn to the m × m matrices Mm .
It is known that φ is 2-positive if and only if for all K ∈ Mn and all strictly positive
X ∈ Mn , φ(K ∗X−1K ) � φ(K )∗φ(X)−1φ(K ). This inequality is not generally true
if φ is merely a Schwarz map. We show that the corresponding tracial inequality
Tr[φ(K ∗X−1K )] � Tr[φ(K )∗φ(X)−1φ(K )] holds for a wider class of positive maps
that is specified here. We also comment on the connections of this inequality with
various monotonicity statements that have found wide use in mathematical physics,
and apply it, and a close relative, to obtain some new, definitive results.

Keywords 2-positive maps · Schwarz maps · Tracial inequalities · Monotonicity of
quantum divergences

Mathematics Subject Classification 46L05 · 46L60 · 15B48 · 81Q10 · 81P17

1 Introduction

Throughout this paper,Mn denotes the space of n×n complex matrices.M+
n denotes

the positive semidefinite matrices inMn ,M++
n the positive definite matrices inMn ,

and finally Ms.a.
n denotes the self-adjoint matrices in Mn . We equip Mn with the

Hilbert–Schmidt inner product 〈A, B〉 = Tr[A∗B], making it a complex Euclidean
space. The adjoint of a linearmapφ : Mn → Mm with respect to theHilbert–Schmidt
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inner product is denoted by φ∗. To study different notions of positivity of linear maps,
the following lemma, which is well known, is useful:

Lemma 1 (Schur complements) Let H and H′ denote complex Euclidean spaces. For
X ∈ B(H)+, Y ∈ B(H′)+ and K ∈ B(H,H′) the following are equivalent:

(1) The block operator

(
X K

K ∗ Y

)
∈ B(H ⊕ H′)

is positive semidefinite.
(2) We have ker(Y ) ⊆ ker(K ) and X � K Y +K ∗.
(3) We have ker(X) ⊆ ker(K ∗) and Y � K ∗ X+K .

Here, we denote by Y + and X+ the Moore–Penrose generalized inverses [15].

As observed by Choi [6, Proposition 4.1], Schur complements can be used to char-
acterize the 2-positive linear maps φ between matrix algebras, i.e., the linear maps φ

such that id2 ⊗ φ is a positive map: A linear map φ : Mn → Mm is 2-positive if and
only if φ(1n) � 0 and the operator inequality

φ(K ∗ X+K ) � φ(K )∗φ(X)+φ(K ) , (1)

holds for each X ∈ M+
n and K ∈ Mn such that ker(X) ⊆ ker(K ∗). In [6], Choi

only considered the case in which φ(1n) > 0, so that the conditions on the kernel are
trivially satisfied for X > 0 (and then X � 0 is a simple limiting case). However, the
characterization of general 2-positive maps as stated is true and may even be folklore.
We do not know of a reference, but include a proof for completeness; see Corollary 7.
The inequality (1) had been proved earlier by Lieb and Ruskai [11] under the stronger
assumption that φ is completely positive.

When φ is unital, i.e., φ(1n) = 1m , and 2-positive, taking X = 1n , (1) becomes
the Schwarz inequality

φ(K ∗K ) � φ(K )∗φ(K ) , (2)

valid under these conditions onφ for every K ∈ Mn . InAppendix A of [6], Choi raised
the question as to whether all unital maps φ satisfying (2) for all K are 2-positive, and
then he answered this negatively by providing a specific counterexample onM2. One
may then ask: For which positive maps φ : Mn → Mm is the tracial inequality

Tr[φ∗(K ∗ X+K )] � Tr[φ∗(K )∗φ∗(X)+φ∗(K )] (3)

valid for all K ∈ Mm , X ∈ M+
m with ker(X) ⊆ ker(K ∗)? It is evidently valid

whenever (1) is valid for the adjoint φ∗ instead of φ, and since adjoints of 2-positive
maps are 2-positive as well, (3) is therefore valid whenever φ is 2-positive. It is natural
to expect that it is true for a wider class of maps. This is the case, but before proceeding
to prove this, we specify some classes of positive maps with which we work.
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Schwarz maps

The term Schwarz map is sometimes used to denote any linear map φ between C∗-
algebras such that the Schwarz inequality (2) is valid for all K in the domain; see, e.g.,
Petz [16, p. 62]. Other authors, e.g., Siudzińska et al. [19, p. 6], consider (2) with an
additional factor ‖φ (1n) ‖∞ on the left-hand side, or restrict the term Schwarz map to
unital maps satisfying (2) for all K in the domain, see, e.g., Wolf [22, Chapter 4]. For
clarity, we use the terminology Schwarz map to refer to unital linear maps satisfying
(2), and we define a broader class of maps as follows:

Definition 2 (Generalized Schwarz maps) A linear map φ : Mn → Mm is called a
generalized Schwarz map if

(
φ(1n) φ(K )

φ(K )∗ φ (K ∗K )

)
� 0

for all K ∈ Mn .

It is obvious that the set of generalized Schwarz maps fromMn toMm is a closed
convex cone.We shall show here that this closed convex cone coincides with the closed
convex cone of maps that satisfy the tracial inequality (3) for all X , K ∈ Mn , X > 0.

Using Lemma 1, a linear map φ : Mn → Mm is a generalized Schwarz map if
and only if the inequality

φ(K ∗K ) � φ(K )∗φ(1n)
+φ(K ) , (4)

holds for every K ∈ Mn . For some c > 0, K ∗K � c1n , and then by the positivity
of φ, φ(K ∗K ) � cφ(1n). In particular, ker(φ(1n)) ⊆ ker(φ(K ∗K )) . Thus, (4) is
equivalent to

(φ(1n)
+)1/2φ(K ∗K )(φ(1n)

+)1/2 � (φ(1n)+)1/2φ(K )∗φ(1n)
+φ(K )(φ(1n)

+)1/2 ,

(5)
and if we introduce the positive map ψ : Mn → Mm given by

ψ(K ) := (φ(1n)
+)1/2φ(K )(φ(1n)

+)1/2 , (6)

we can rewrite (5) as
ψ(K ∗K ) � ψ(K )∗ψ(K ) . (7)

Therefore, φ is a generalized Schwarz map if and only if ψ satisfies the Schwarz
inequality. When φ is unital, we have that φ = ψ is a generalized Schwarz map if and
only if it is a Schwarz map.

Our first main result is:

Theorem 3 Let φ : Mn → Mm denote a positive map. Then, φ is a generalized
Schwarz map if and only if for any (K , X) ∈ Mm×M+

m such that ker (X) ⊆ ker (K ∗),
we have

Tr[φ∗(K ∗ X+K )] � Tr[φ∗(K )∗φ∗(X)+φ∗(K )] . (8)

123



17 Page 4 of 18 E. Carlen, A. Müller-Hermes

There is another tracial inequality closely related to (3). When φ is unital, so that
φ∗ is trace preserving, (3) reduces to

Tr[K ∗ X+K ] � Tr[φ∗(K )∗φ∗(X)+φ∗(K )] . (9)

Therefore, (9) is valid at least whenever φ is 2-positive and unital. Again, one may
ask for the class of positive maps for which (9) is valid for all K ∈ Mm , X ∈ M+

m
with ker(X) ⊆ ker(K ∗). Note that the inequality (9), like the Schwarz inequality, is
not homogenous.

Our second main result is:

Theorem 4 A positive map φ : Mn → Mm satisfies (9) for all (K , X) ∈ Mm ×M+
m

with ker(X) ⊆ ker(K ∗), if and only if the map φ satisfies the Schwarz inequality (2).

In Sect. 2, we prove a duality lemma that is used in the proof of both Theorem 3
and Theorem 4, together with Schur complement arguments based on Lemma 1.
In Sect. 3, we prove Theorem 3 and Theorem 4. One motivation for studying the
relationship between the Schwarz inequality (2) and the tracial inequalities (9) (or in
this application (8)) is that these are the only two inequalities used in a method due to
Hiai and Petz [7] for proving a wide class of monotonicity theorems that have been
of great interest in mathematical physics. This is discussed in Sect. 4. In Appendix A,
we prove a theorem that gives many examples of generalized Schwarz maps that are
not 2-positive.

2 Duality and positivity

Note that the set {(K , X) ∈ Mm × M+
m : ker(X) ⊆ ker(K ∗) } is convex since for

any 0 < λ < 1 and (K j , X j ), j = 1, 2 belonging to this set,

ker((1 − λ)X1 + λX2) = ker(X1) ∩ ker(X2)

⊆ ker(K ∗
1 ) ∩ ker(K ∗

2 ) ⊆ ker((1 − λ)K ∗
1 + λK ∗

2 ) .

Moreover, the function (K , X) �→ K ∗ X−1K is jointly convex from Mn × M++
n to

M++
n by theorem of Kiefer [8]; see also [11, Theorem 1]. Consequently, (K , X) �→

Tr[K ∗ X−1K ] is jointly convex fromMn ×M++
n toR. In what follows, we will make

use of the Legendre transform of this function, which will lead to another proof of it
being jointly convex in Lemma 5. Before stating the lemma, we fix some notation. Let
K denote the real Hilbert space consisting of Mn ⊕ Ms.a.

n equipped with the inner
product

〈(K , X), (L, Y )〉K = Tr[XY ] + Tr[K ∗L] + Tr[K L∗] . (10)

Define two extended real valued functions F and G on K as follows:

F(K , X) :=
{
Tr[K ∗ X+K ] ker(X) ⊆ ker(K ∗) , X ∈ M+

n

∞ otherwise
.
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(11)

G(L, Y ) :=
{
0 (L, Y ) ∈ �

∞ otherwise
where � :=

{
(L, Y ) :

(
Y L
L∗ −I

)
� 0

}
.

(12)

We will now see that the functions F and G are Legendre transforms of one another.

Lemma 5 We have

F(K , X) = sup
(L,Y )∈K

{Tr[XY ] + Tr[K ∗L] + Tr[K L∗] − G(L, Y )} , (13)

and
G(L, Y ) = sup

(K ,X)∈K
{Tr[XY ] + Tr[K ∗L] + Tr[K L∗] − F(K , X)} . (14)

In particular, F is jointly convex and lower semicontinuous.

Proof The function G is obviously a convex lower semicontinuous function that is not
identically ∞, and hence by the Fenchel–Moreau Theorem, which gives conditions
for the Legendre transform to be involutive, it suffices to prove (13). Suppose first that
X ∈ M+

n and ker(X) ⊆ ker(K ∗) so that by Lemma 1,

A :=
(

X K
K ∗ K ∗ X+K

)
� 0.

Let (L, Y ) ∈ � so that

B :=
(

Y L
L∗ −I

)
� 0.

Then, we have

0 � Tr[AB] = Tr[XY ] + Tr[K L∗] + Tr[K ∗L] − Tr[K ∗ X+K ] ,

which is the same as F(K , X) � Tr[XY ] + Tr[K L∗] + Tr[K ∗L]. Take L := X+K
and Y := −L L∗. Then, by Lemma 1 once more, (L, Y ) ∈ �, and simple compu-
tation, using X+ X X+ = X+ and cyclicity of the trace, shows that with this choice,
F(K , X) = Tr[XY ] + Tr[K L∗] + Tr[K ∗L].

Now suppose that X ∈ Ms.a.
n has a negative eigenvalue, so that for some unit vector

v, Xv = λv with λ < 0. For t > 0, take Y := −t2|v〉〈v| and L := t |v〉〈v|, and note
that (L, Y ) ∈ �. Taking t ↑ ∞, shows that the supremum in (13) is infinite.

Finally suppose that ker(X) is not contained in ker(K ∗) so that for someunit vectorv
with Xv = 0, K ∗v �= 0,Definew := ‖K ∗v‖−1K ∗v and for t > 0, L := t |v〉〈w|. Then
for all t > 0, (L,−L L∗) ∈ � and −Tr[X L L∗] + Tr[K ∗L] + Tr[K L∗] = 2t‖K ∗v‖.
Hence, in this case, the supremum in (13) is infinite. ��
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Remark. Let C1 denote the set of maps φ that satisfy (3) for all K ∈ Mm , X ∈ M+
m

with ker(X) ⊆ ker(K ∗). Since the left side of (3) is linear in φ, C1 is convex as a
consequence of the joint convexity of F . Since the inequality (3) is homogeneous of
degree one in φ, C1 is a cone, and since F is lower semicontinuous, C1 is closed. That
is, C1 is a closed convex cone. We have already observed that the set of generalized
Schwarz maps from Mn to Mm is a closed convex cone, and Theorem 3 says that
these two cones are one and the same.

The lower semicontinuity of F is not the main point of Lemma 5, and indeed, this
much can be seen directly by other means: Note that for all K ∈ Mn , X ∈ M+

n ,

F(K , X) = lim
ε↓0 Tr[K

∗(X + ε1n)−1K ] (15)

where the right side is finite if and only if ker(X) ⊆ ker(K ∗), in which case it equals
Tr[K ∗ X+K ]. This displays F as the supremum of a family of continuous functions.

However, the lower semicontinuity of F has important consequences such as:

Lemma 6 Let φ : Mn → Mm denote a positive map. If either (8) or (9) holds for
every (K , X) ∈ Mm×M+

m withker(X) ⊆ ker(K ∗), thenker(φ∗(X)) ⊆ ker(φ∗(K )∗)
holds for every (K , X) ∈ Mm × M+

m with ker(X) ⊆ ker(K ∗).

Proof Assume that (8) holds for every (K , X) ∈ Mm ×M+
m with ker(X) ⊆ ker(K ∗)

and consider a particular such pair in the following. Define Xε = X + ε1m for every
ε > 0. By positivity of φ, we have ker(φ∗(1m)) ⊆ ker(φ∗(K )∗) and hence

ker(φ∗(Xε)) ⊆ ker(φ∗(K )∗),

for every ε > 0. Furthermore, we note that K ∗ X+
ε K → K ∗ X+K as ε → 0 whenever

ker(X) ⊆ ker(K ∗). Using first the lower semicontinuity of F (see Lemma 5) and then
(8), we find that

F(φ∗(K ), φ∗(X)) � lim inf
ε→0

F(φ∗(K ), φ∗(Xε))

= lim inf
ε→0

Tr
[
φ∗(K )∗φ∗(Xε)

+φ∗(K )
]

� lim inf
ε→0

Tr
[
φ∗(K ∗ X+

ε K )
]

= Tr
[
φ∗(K ∗ X+K )

]
< ∞.

From Lemma 5, we conclude that ker(φ∗(X)) ⊆ ker(φ∗(K )∗).
The same proof applies with minor modification when we assume that (9) holds

for every (K , X) ∈ Mm × M+
m with ker(X) ⊆ ker(K ∗). ��

As a consequence of Lemma 6, we have the following general characterization of
2-positive maps.

Corollary 7 A linear map φ : Mn → Mm is 2-positive if and only if φ(1n) � 0 and
the operator-inequality

φ(K ∗ X+K ) � φ(K )∗φ(X)+φ(K ) , (16)

123



Characterizing Schwarz maps by tracial inequalities Page 7 of 18 17

holds for each X ∈ M+
n and K ∈ Mn such that ker(X) ⊆ ker(K ∗).

Proof Clearly, φ(1n) � 0 if φ is 2-positive. Expressing the positivity of

(id2 ⊗ φ)

((
X K

K ∗ K ∗ X+K

))

using Schur complements (see Lemma 1), shows that (16) is valid whenever φ is
2-positive, and whenever X ∈ M+

n and K ∈ Mn are such that ker(X) ⊆ ker(K ∗).
To show the other direction, we assume that (16) holds for a linear map φ satisfying

φ(1n) � 0 and for every X ∈ M+
n and K ∈ Mn are such that ker(X) ⊆ ker(K ∗).

Choosing X = 1n and K ∈ Mn arbitrarily shows that φ is necessarily a positive map.
Consider now X , Y ∈ M+

n and K ∈ Mn such that

(
X K

K ∗ Y

)
� 0, (17)

and note that ker(X) ⊆ ker(K ∗) and Y − K ∗ X+K � 0 by Lemma 1. Since φ is a
positive map we find that

(
0 0
0 φ

(
Y − K ∗ X+K

)) � 0.

Moreover, taking the trace of (16) and using Lemma 6 shows that ker(φ(X)) ⊆
ker(φ(K )∗). Using this observation together with (16) in Lemma 1 shows that

(
φ(X) φ(K )

φ(K ∗) φ
(
K ∗ X+K

)) � 0.

Finally, we conclude that

(id2 ⊗ φ)

((
X K

K ∗ Y

))
=

(
0 0
0 φ

(
Y − K ∗ X+K

)) +
(

φ(X) φ(K )

φ(K ∗) φ
(
K ∗ X+K

))

is positive semidefinite and we conclude that φ is 2-positive as X , Y ∈ M+
n and

K ∈ Mn were chosen arbitrarily such that (17) is satisfied. ��

3 Proof of Theorem 3 and Theorem 4

Proof of Theorem 3 For any A ∈ Mm ,

(
0 −A
0 1m

)(
0 0

−A∗ 1m

)
=

(
AA∗ −A
−A∗ 1m

)
.
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Taking A := φ∗(X)+φ∗(K ),

(
AA∗ −A
−A∗ 1m

) (
φ∗(X) φ∗(K )

φ∗(K )∗ φ∗(K ∗ X+K )

)

=
(

Z −AD
−φ∗(K )∗φ∗(X)+φ∗(X) + φ∗(K )∗ D

)

where

D = φ∗(K ∗ X+K ) − φ∗(K )∗φ∗(X)+φ∗(K ) ,

and

Z = φ∗(X)+φ∗(K )φ∗(K )∗φ∗(X)+φ∗(X) − φ∗(X)+φ∗(K )φ∗(K )∗.

Since φ∗(X)+φ∗(X)φ∗(X)+ = φ∗(X)+ by the properties of the Moore–Penrose
pseudo inverse Tr [Z ] = 0, and the inequality (8) can be written as

Tr

[(
AA∗ −A
−A∗ 1n

) (
φ∗(X) φ∗(K )

φ∗(K )∗ φ∗(K ∗ X+K )

)]
� 0. (18)

Interpreting this trace as the Hilbert–Schmidt inner product of two self-adjoint oper-
ators, we can bring the adjoint (id2 ⊗ φ∗)∗ = id2 ⊗ φ to the other side and find that
the trace in (18) equals

Tr

[(
φ(AA∗) −φ(A)

−φ(A)∗ φ(1n)

)(
X K

K ∗ K ∗ X+K

)]
. (19)

If φ is a generalized Schwarz map,

(
φ(AA∗) −φ(A)

−φ(A)∗ φ(1n)

)
� 0

and, by Lemma 1, it is evident that

(
X K

K ∗ K ∗ X+K

)
� 0.

We conclude that the expression in (19) is the Hilbert–Schmidt inner product of two
positive operators, and hence positive.

Now, suppose that φ is not a generalized Schwarz map. Then, there exists A ∈ Mn

such that

(
φ(1n) φ(A)

φ(A)∗ φ (A∗ A)

)
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has an eigenvalue −λ < 0. Therefore, there exist u, v ∈ Cm with 〈u|u〉 + 〈v|v〉 = 1
such that

−λ =
〈(

u
v

)
,

(
φ(1n) φ(A)

φ(A)∗ φ (A∗ A)

) (
u
v

)〉

= Tr

[(
φ(1n) φ(A)

φ(A)∗ φ (A∗ A)

)( |u〉〈u| |u〉〈v|
|v〉〈u| |v〉〈v|

)]
.

Define X := |v〉〈v| and K ∗ := |u〉〈v|. Then, ker(X) = ker(K ∗), and K ∗ X+K =
|u〉〈u|. That is,

(
K ∗ X+K K ∗

K X

)
=

( |u〉〈u| |u〉〈v|
|v〉〈u| |v〉〈v|

)
� 0 .

Then, from above,

−λ = Tr

[(
1n A
A∗ A∗ A

)(
φ∗(K ∗ X+K ) φ∗(K ∗)

φ∗(K ) φ∗(X)

)]
.

Writing this in terms of the inner product on K defined in (10), we have

λ + Tr[φ∗(K ∗ X+K )] = Tr[φ∗(K )(−A)] + Tr[φ∗(K ∗)(−A∗)] + Tr[φ∗(X)(−A∗ A)]
= 〈(φ∗(K ), φ∗(X)), (−A∗,−A∗ A)〉K
� sup

(L,Y )∈�

〈(φ∗(K ), φ∗(X)), (L, Y )〉K = F(φ∗(K ), φ∗(X))

by Lemma 5. Again by Lemma 5, we conclude that if

Tr[φ∗(K ∗ X+K )] � Tr[φ∗(K )∗φ∗(X)+φ∗(K )],

then ker(φ∗(X)) � ker(φ∗(K ∗)). Finally, Lemma 6 implies that (8) cannot hold for
all (K̃ , X̃) ∈ Mm × M+

m such that ker(X̃) ⊆ ker(K̃ ∗). ��
Proof of Theorem 4 Our proof uses another duality argument for a tracial inequality
closely related to (9), but which is expressed in terms of the function F(K , X) intro-
duced in (11):

F(K , X) � F(φ∗(K ), φ∗(X)) (20)

The following two statements are equivalent:

(1) For all (K , X) ∈ Mm × M+
m with ker(X) ⊆ ker(K ∗), (9) is satisfied.

(2) For all (K , X) ∈ Mm × M+
m , (20) is satisfied.

To see this, suppose first that φ is such that (1) is valid. If ker(X) � ker(K ∗),
then F(K , X) = ∞, and (20) is trivially satisfied. If ker(X) ⊆ ker(K ∗), then we
have ker(φ∗(X)) ⊆ ker(φ∗(K ∗)) by Lemma 6. Consequently, both F(K , X) and
F(φ∗(K ), φ∗(X)) are finite, and (20) is satisfied. If φ is such that (2) is valid, then
whenever ker(X) ⊆ ker(K ∗), F(φ∗(K ), φ∗(X)) < ∞, so that (9) is satisfied.
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Next, we express the condition that φ is a Schwarz map in terms of the function G
introduced in (12).

By Lemma 1, (L, Y ) ∈ �, so that G(L, Y ) = 0, if and only if Y � −L L∗. Thus,
for a positive map φ,

G(φ(L), φ(Y )) � G(L, Y ) for all (L, Y ) ∈ Mn × M+
n (21)

if and only if φ satisfies the Schwarz inequality.
By the equivalence of statements (1) and (2), together with the characterization of

maps satisfying the Schwarz inequality, both discussed just above, it suffices to show
that φ is such that (20) is satisfied for all (K , X) ∈ Mm ×M+

m if and only if φ is such
that (21) is satisfied for all (L, Y ) ∈ Mn × M+

n .
Suppose φ satisfies (20). With K = Mm ⊕ Ms.a.

m we have

G(φ(L), φ(Y )) = sup
(K ,X)∈K

{〈(K , X), (φ(L), φ(Y ))〉 − F(K , X)}

� sup
(K ,X)∈K

{〈(φ∗(K ), φ∗(X)), (L, Y )〉 − F(φ∗(K ), φ∗(X))} � G(L, Y ) .

Likewise, suppose that φ satisfies (21). Then,

F(φ∗(K ), φ∗(X)) = sup
(L,Y )∈K

{〈(φ)∗(K ), φ∗(X)), (L, Y )〉 − G(L, Y )}
� sup

(L,Y )∈K
{〈(K , X), (φ(L), φ(Y ))〉 − G(φ(L), φ(Y ))}

� F(K , X) .

��

As an anonymous referee emphasized to us, Theorem 3 and Theorem 4 are closely
related. To bring out this point, we give a second proof of Theorem 3 using Theorem 4.

Second proof of Theorem 3 Suppose first that φ is a positive map with the properties
that S := φ(1n) > 0, and φ∗(1m) > 0. Let ψ be defined as in (6), so that in this
notation

ψ(L) = S−1/2φ(L)S−1/2 and ψ∗(K ) = φ∗(S−1/2K S−1/2) , (22)

for L ∈ Mn and K ∈ Mm . Fix any K ∈ Mm and any X ∈ M++
m so that under our

current hypotheses on φ and X , both X and φ∗(X) are invertible so that X+ = X−1

and φ∗(X)+ = φ∗(X)−1.
Then, since ψ is unital, ψ∗ is trace preserving, and

Tr[K ∗ X−1K ] = Tr[ψ∗(K ∗ X−1K )] = Tr[φ∗(S−1/2K ∗ X−1K S−1/2)]
= Tr[φ∗(K̂ ∗ X̂−1 K̂ )],
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with X̂ := S−1/2X S−1/2 and K̂ := S−1/2K S−1/2. Evidently, we also have

Tr[ψ∗(K )∗ψ∗(X)−1ψ∗(K )] = Tr[φ∗(K̂ )φ∗(X̂)−1φ∗(K̂ )] .

Therefore, φ∗ satisfies

Tr[φ∗(K̂ ∗ X̂−1 K̂ )] � Tr[φ∗(K̂ )φ∗(X̂)−1φ∗(K̂ )] (23)

if and only if
Tr[K ∗ X−1K ] � Tr[ψ∗(K )∗ψ∗(X)−1ψ∗(K )] . (24)

Now maintain the hypotheses on φ, but assume only that X ∈ M+
m . For all ε > 0,

let Xε := X + ε1m . Then (23) and (24) are valid with Xε in place of X . Note that
v ∈ ker(X) if and only if S1/2v ∈ ker(X̂), and likewise for K ∗ so that

ker(X) ⊆ ker(K ∗) ⇐⇒ ker(X̂) ⊆ ker(K̂ ∗) (25)

Taking the limit ε ↓ 0, using (15) which is also valid with 1n replaced by any A ∈
M++

n , we conclude that

Tr[φ∗(K̂ ∗ X̂+ K̂ )] � Tr[φ∗(K̂ )φ∗(X̂)+φ∗(K̂ )] (26)

if and only if
Tr[K ∗ X+K ] � Tr[ψ∗(K )∗ψ∗(X)+ψ∗(K )] . (27)

Using Theorem 4, this proves Theorem 3 under the additional assumptions that
φ(1n) > 0 and φ∗(1m) > 0. We remove this restriction as follows: Let C1 be the
convex cone consisting of maps that satisfy the homogeneous inequality (8) for all
K ∈ Mm , X ∈ M+

m such that ker(X) ⊆ ker(K ∗). Let C2 be the convex cone consist-
ing of generalized Schwarz maps. We wish to show that C1 = C2, which is the same
as

C1 ∪ C2 = C1 ∩ C2 . (28)

We have seen that both C1 and C2 are closed. This is the basis of a simple approximation
argument that proves (28).

Consider the map φD : Mn → Mm defined by φD(A) = 1
n Tr[A]1m , which is

unital and completely positive, and henceφD ∈ C1∩C2 (The adjoint ofφD , which is the
same as φD , but with the roles of m and n reversed, is also known as the “completely
depolarizing channel.”) Now let φ ∈ C1 ∪ C2 and ε > 0. Define φε = φ + εφD .
Then, for each ε > 0, φε(1n) > 0 and φ∗

ε (1m) > 0. By the first part of the proof,
φε ∈ C1 ∩ C2, and then by closure, so is φ. ��

4 On themethod of Hiai and Petz

Now, we discuss the application of our results to a beautiful and simple method of
Hiai and Petz [7] for proving a wide range of inequalities that are of great interest in
mathematical physics.
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Let Hm denote Mm equipped with the Hilbert–Schmidt inner product, making it
a complex Euclidean space. For any Y ∈ Mm , define the operator LY on Hm by
LY A = Y A, and for any X ∈ Mm , define the operator RX on Hm by RX A = AX .
Note that LY and RX commute, and that if Y , X � 0, then LY , RX � 0 (as operators
on Hm). Therefore, for any function f : (0,∞) → (0,∞) extended by f (0) = 0,
one may define the positive semidefinite operator

J f (X , Y ) := f (RX L+
Y )LY , (29)

for any Y , X � 0.
Let Hn denote the Hilbert space consisting of Mn equipped with the Hilbert–

Schmidt inner product. For a positive map φ : Mn → Mm consider the block
operator (

J f (φ
∗(X), φ∗(Y )) φ∗

φ J+
f (X , Y )

)
∈ B (Hn ⊕ Hm) . (30)

By Lemma 1, if

ker(J f (X , Y )) ⊆ ker(φ∗) and ker(J f (φ
∗(X), φ∗(Y ))) ⊆ ker(φ) , (31)

then

J f (φ
∗(X), φ∗(Y )) � φ∗J f (X , Y )φ ⇐⇒ J+

f (X , Y ) � φJ+
f (φ∗(X), φ∗(Y ))φ∗

(32)
since both conditions are then equivalent to the block operator in (30) being positive
semidefinite. For completeness, we point out the following connection between the
Schwarz inequality and this block operator:

Theorem 8 For a positive map φ : Mn → Mm, the following are equivalent:

(1) The map φ satisfies the Schwarz inequality (2).
(2) The block operator in (30) for f = id, i.e.,

(
Rφ∗(X) φ∗

φ R−1
X

)
∈ B (Hn ⊕ Hm) ,

is positive semidefinite for every X ∈ Mm with X > 0.

Proof For every X ∈ Mm with X > 0, we have {0} = ker (RX ) ⊆ ker (φ∗). By
Lemma 10, we also have ker

(
Rφ∗(X)

) ⊆ ker (φ) and by Lemma 1 the block operator
in the statement of the theorem is positive semidefinite if and only if φ∗ RXφ � Rφ∗(X)

which is equivalent to the inequality

Tr
[
φ(K ∗)φ(K )X

]
� Tr

[
φ(K ∗K )X

]
,

for all K ∈ Mn . Since the X ∈ Mm with X > 0 generate a dense set in Mm , this is
equivalent to φ satisfying the Schwarz inequality.

��
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Now suppose that

X , Y > 0 and φ∗(X), φ∗(Y ) > 0 , (33)

the latter condition being ensured by the former when φ∗(1m) > 0. Then, (31) is
trivially satisfied, and we have the following lemma [7, Lemma 1]:

Lemma 9 (Hiai, Petz) Let X , Y and φ be such that (33) is satisfied. Then, (32) is valid.

It is desirable to prove this equivalence without any conditions on φ, only assuming
that X , Y > 0. Toward this end, we prove the following lemma, which provides some
more flexibility in verifying the kernel containment conditions in Lemma 1.

Lemma 10 For any positive map φ : Mn → Mm and X ∈ M+
m.

(1) We have ker(RX ) ⊆ ker(φ∗) if and only if ker(X) ⊆ ker(φ(1n)).
(2) If ker(RX ) ⊆ ker(φ∗), then we have ker(Rφ∗(X)) ⊆ ker(φ).

The same statements hold for L X and Lφ∗(X) in place of RX and Rφ∗(X).

Proof Assume that ker(RX ) ⊆ ker(φ∗) for some X ∈ M+
m , and consider some

|v〉 ∈ ker(X). Clearly,wehave |w〉〈v|X = 0 andhenceφ∗(|w〉〈v|) = 0 for every |w〉by
assumption. Taking the trace shows that 〈v|φ(1n)|w〉 = 0 for every |w〉 and therefore
we have |v〉 ∈ ker(φ(1n)). For the other direction, assume that ker(X) ⊆ ker(φ(1n)).
By positivity ofφ, we have ker(φ(Y )) = ker(φ(1n)) for any invertibleY ∈ M+

m . Now,
consider some invertible Y ∈ M+

m and some K ∈ Mm such that RX (K ) = K X = 0.
Note that 0 = K X K ∗ � μKφ(Y )K ∗ for some μ > 0 and hence Kφ(Y ) = 0.
Taking the trace of this operator, we conclude that Tr

[
Yφ∗(K )

] = 0 and finally that
φ∗(K ) = 0 since the invertible Y ∈ M+

m was chosen arbitrarily.
Assume again that ker(RX ) ⊆ ker(φ∗) for some X ∈ M+

m . Consider K ∈ Mn such
that Rφ∗(X)(K ) = Kφ∗(X) = 0 and any Y ∈ M+

m satisfying ker(φ(1n)) ⊆ ker(Y ).
By the previous argument, there exists someλ > 0 satisfying X � λY and by positivity
of φ∗ we have φ∗(X) � λφ∗(Y ). We conclude that

0 = Kφ∗(X)K ∗ � λKφ∗(Y )K ∗.

Since φ∗(Y ) � 0, this implies

Kφ∗(Y )K ∗ =
(

Kφ∗(Y )1/2
) (

φ∗(Y )1/2K ∗) = 0,

and we conclude that Kφ∗(Y )1/2 = 0 and hence Kφ∗(Y ) = 0 as well. Finally, we
can take the trace and conclude that

0 = Tr
[
φ∗(Y )K

] = Tr [Yφ(K )] .

Since Y ∈ M+
m satisfying ker(φ(1n)) ⊆ ker(Y ) in the above argument was arbitrary,

we conclude that φ(K ) = 0. The proof evidently adapts to treat the case in which RX

and Rφ∗(X) are replaced by L X and Lφ∗(X). ��
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The following is a theorem of Hiai and Petz [7, Theorem 5] with relaxed conditions
on the positive map φ. Using the results in the previous section, we can carry through
the approach of Hiai and Petz without assuming that φ is unital, or what is the same,
without assuming that φ∗ is trace preserving. To our knowledge, this is the first time
a proof of this statement under these general conditions appears in the literature.

Theorem 11 (Hiai, Petz) Let f : (0,∞) → (0,∞) be operator monotone, and define
f (0) = 0. Let J f be defined by (29). Let φ : Mn → Mm satisfy the Schwarz
inequality. The following inequalities are both valid:

(a) For all positive definite X , Y ∈ Mm, .

φJ f (φ
∗(X), φ∗(Y ))+φ∗ � J f (X , Y )−1

(b) For all positive definite X , Y ∈ Mm,

φ∗J f (X , Y )φ � J f (φ
∗(X), φ∗(Y )) .

It should be noted that the condition of φ satisfying a Schwarz inequality in the
previous theorem cannot be relaxed further in the same generality. Indeed, Theorem
8 together with Lemma 10 shows that for f = id either of the inequalities in (32) is
equivalent to φ satisfying the Schwarz inequality (2). This has also been observed in
[4] and pointed out by the anonymous referee.

Proof of Theorem 11 Since X , Y > 0, ker(J f (X , Y )) = 0. Evidently,

ker(J f (φ
∗(X), φ∗(Y )) = ker(Rφ∗(X)) + ker(Lφ∗(Y ))

and then by Lemma 10 and X , Y > 0, ker(J f (φ
∗(X), φ∗(Y )) ⊆ ker(φ). Therefore,

(31) is satisfied, and then (32) is satisfied so that (a) and (b) are equivalent, it suffices
to prove either. Using the Löwner theorem [12, 18] giving an integral representation
of all operator monotone functions, Hiai and Petz show that it suffices to do this for
the special case

f (x) := β + γ x + x

t + x
(34)

with β, γ, t � 0. To prove (b) for this choice of f it suffices to prove

φ∗LY φ � Lφ∗(Y ) , φ∗ RXφ � Rφ∗(X) (35)

and

φ∗ RX

t + RX LY +
φ � Rφ∗(X)

t + Rφ∗(X)Lφ∗(Y )+
. (36)

For any K ∈ Mn , using the Schwarz inequality (2), we have

〈K , φ∗LY φK 〉 = Tr[φ(K )∗Yφ(K )]
� Tr[φ(K K ∗)Y ] = Tr[K K ∗φ∗(Y )] = 〈K , Lφ∗(Y )K 〉 ,
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and this proves the first inequality in (35). The proof of the second is entirely analogous.
To prove (36), note that by the equivalence of the inequalities in (a) and (b), it suffices
to show that,

φ

(
Rφ∗(X)

t + Rφ∗(X)L+
φ∗(Y )

)+
φ∗ �

(
RX

t + RX L−1
Y

)−1

. (37)

For a positive semidefinite operator, taking the generalized inverse amounts to inverting
the strictly positive eigenvalues, and leaving the zero eigenvalues alone.

By Lemma 10,

ran(φ∗) ⊆ ran(Rφ∗(X)) ∩ ran(Lφ∗(Y )) ,

and on this space, all eigenvalues of both operators are strictly positive. Let E be a
common eigenvector of both operators in the range of φ∗ with

Rφ∗(X)E = λE and Lφ∗(Y )E = μE .

Then, λ,μ > 0, and

(
Rφ∗(X)

t + Rφ∗(X)L+
φ∗(Y )

)+
E =

(
λ

t + λ/μ

)−1

E = (t R+
φ∗(X) + L+

φ∗(Y ))E .

Therefore, (37) is equivalent to

φ(t R+
φ∗(X) + L+

φ∗(Y ))φ
∗ � t R−1

X + R−1
Y , (38)

and this is equivalent to

t Tr[φ∗(K )φ∗(X)+φ∗(K ∗)] + Tr[φ∗(K ∗)φ∗(Y )+φ∗(K )]
� t Tr[K X−1K ∗] + Tr[K ∗Y −1K ] , (39)

for all K ∈ Mm . By Theorem 4 we have both

Tr[φ∗(K )φ∗(X)−1φ∗(K ∗)] � Tr[K X−1K ∗]

and

Tr[φ∗(K ∗)φ∗(Y )−1φ∗(K )] � Tr[K ∗Y −1K ] ,

and (39) follows. ��
In the case of f (x) = xr , 0 < r < 1, the resulting inequalities are

Tr[φ(K )∗Y 1−rφ(K )Xr ] � Tr[K ∗φ∗(Y )1−r Kφ∗(X)r ] , (40)
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and
Tr[φ∗(K )∗(φ∗(Y )+)1−rφ∗(K )(φ∗(X)+)r ] � Tr[K ∗Y r−1K X−r ] . (41)

valid for all maps φ satisfying the Schwarz inequality, all X , Y > 0 in Mm , and all
K ∈ Mn . Note that there is no assumption that φ is unital. These inequalities are the
monotonicity versions of Theorems 1 and 2 of [10], the Lieb Concavity Theorem and
the Lieb Convexity Theorem. The inequality (40) was already proved at this level of
generality, assuming only that φ satisfies the Schwarz inequality, in 1977 by Uhlmann
[20, Proposition 17]. Petz [16] gave a proof of (b) of Theorem 11. His proof used ideas
of Araki who proved Lieb’s inequalities in a general von Neumann algebra setting. In
his paper [1], he explained how these von Neumann algebra methods could be applied
in the simpler setting of matrix algebras, and Petz was among the first to explore the
path that Araki had opened.

The version of inequality (41) for general monotone f was first explicitly proved
by Petz [17] under the assumption that φ is 2-positive, though when φ is completely
positive and unital it follows from the Lieb Convexity Theorem in the same way that
the Data Processing Inequality follows from the Lieb Concavity Theorem; see [3,
Sect. 3]. In fact, Petz’s approach yielded somewhat more restricted results—X and
Y had not only to be positive, but to have unit trace. This superfluous condition was
removed by Kumagai [9].

The results of this paper show that the wide variety of monotonicity theorems
investigated by Hiai and Petz [7], exemplified by (40) and (41), are valid under the
sole assumption that the map φ satisfies the Schwarz inequality. This is the widest
possible condition on φ for which such a result holds.
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Appendix A. Generalized Schwarz maps from tensor products

The following theorem gives many examples of generalized Schwarz maps that are
not 2-positive including new examples of unital Schwarz maps. Its proof is inspired
by related Schwarz-type inequalities obtained in [2, 13] by Bhatia and Davis, and
Mathias, and by a joke in [22] to call unital Schwarz maps 3/2-positive.

Theorem 12 Let φ : Mn → Mm be (k + 1)-positive for some k ∈ N. Then, idk ⊗ φ

is a generalized Schwarz map.

Proof For simplicity, we state the proof in the case k = 2. The general case works in
the same way. We have to show that

(
(id2 ⊗ φ)(12n) (id2 ⊗ φ)(X)

(id2 ⊗ φ)(X)∗ (id2 ⊗ φ) (X∗ X)

)
� 0

for all X ∈ M2n . Writing

X =
(

A B
C D

)
,

for A, B, C, D ∈ Mn , the previous inequality is equivalent to

⎛
⎜⎜⎝

φ(1n) 0 φ(A) φ(B)

0 φ(1n) φ(C) φ(D)

φ(A)∗ φ(C)∗ φ(A∗ A + C∗C) φ(A∗B + C∗ D)

φ(B)∗ φ(D)∗ φ(B∗ A + D∗C) φ(B∗B + D∗ D)

⎞
⎟⎟⎠ � 0.

Now, observe that

⎛
⎜⎜⎝

φ(1n) 0 φ(A) φ(B)

0 φ(1n) φ(C) φ(D)

φ(A)∗ φ(C)∗ φ(A∗ A + C∗C) φ(A∗B + C∗D)

φ(B)∗ φ(D)∗ φ(B∗ A + D∗C) φ(B∗B + D∗D)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

φ(1n) 0 φ(A) φ(B)

0 0 0 0
φ(A)∗ 0 φ(A∗ A) φ(A∗B)

φ(B)∗ 0 φ(B∗ A) φ(B∗B)

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
0 0 0 0
0 φ(1n) φ(C) φ(D)

0 φ(C)∗ φ(C∗C) φ(C∗D)

0 φ(D)∗ φ(D∗C) φ(D∗D)

⎞
⎟⎟⎠ .

Since φ is 3-positive, these two summands are positive semidefinite and the proof is
finished. ��

By applying the previous theorem to a (k + 1)-positive map φ : Mn → Mm that
is not (k + 2)-positive for some k < min(n, m) − 1 it is easy to construct examples of
generalized Schwarzmaps that are not 2-positive. For example, consider the 3-positive
map φ : M4 → M4 given by

φ(X) = 3Tr [X ]14 − X ,
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which was introduced by Choi [5] and which is not 4-positive. Theorem 12 shows
that the map id2 ⊗ φ : M8 → M8 is a generalized Schwarz map (even a multiple
of a unital Schwarz map) that is not 2-positive. Moreover, by a result from Piani and
Mora [14, p. 9], the generalized Schwarz map id2 ⊗ φ is not decomposable, i.e., it is
not a sum of a completely positive and the composition of a completely positive maps
and a transpose (cf. [21]). To our knowledge, such an example did not appear in the
literature before.
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