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Abstract
A long-standing problem in mathematical physics is the rigorous derivation of the
incompressible Euler equation from Newtonian mechanics. Recently, Han-Kwan and
Iacobelli (Proc Am Math Soc 149:3045–3061, 2021) showed that in the monokinetic
regime, one can directly obtain the Euler equation from a system of N particles inter-
acting in T

d , d ≥ 2, via Newton’s second law through a supercritical mean-field
limit. Namely, the coupling constant λ in front of the pair potential, which is Coulom-
bic, scales like N−θ for some θ ∈ (0, 1), in contrast to the usual mean-field scaling
λ ∼ N−1. Assuming θ ∈ (1 − 2

d(d+1) , 1), they showed that the empirical measure of
the system is effectively described by the solution to the Euler equation as N → ∞.
Han-Kwan and Iacobelli asked if their range for θ was optimal. We answer this ques-
tion in the negative by showing the validity of the incompressible Euler equation in the
limit N → ∞ for θ ∈ (1 − 2

d , 1). Our proof is based on Serfaty’s modulated-energy
method, but compared to that of Han-Kwan and Iacobelli, crucially uses an improved
“renormalized commutator” estimate to obtain the larger range for θ . Additionally, we
show that for θ ≤ 1− 2

d , one cannot, in general, expect convergence in the modulated
energy notion of distance.
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1 Introduction

1.1 Background

A source of much research in mathematical physics is the problem of rigorously
deriving the incompressible Euler equation in dimensions d ≥ 2

⎧
⎪⎨

⎪⎩

∂t u + (u · ∇)u = −∇ p

∇ · u = 0

u|t=0 = u0,

(t, x) ∈ R × T
d , (1.1)

which describes the evolution of the velocity field u of an ideal fluid (p is the scalar
pressure), from Newton’s laws of mechanics for the motion of N indistinguishable
particles with binary interactions

⎧
⎪⎪⎨

⎪⎪⎩

ẋi = vi

v̇i = −λ
∑

1≤ j≤N
j 	=i

∇g(xi − x j ). (1.2)

Here, (xi , vi ) denote the position and momentum, respectively, of the i-th particle,
in the phase space T

d × R
d ; g is the interaction pair potential; and λ is a scaling

parameter which encodes physical information about the system and about which we
shall saymoremomentarily.We assume g to be theCoulomb potential (i.e., theGreen’s
function of −� normalized to have zero mean). Formally, one can derive Euler’s
equation by considering the fluid as a continuum and applying Newton’s second law
to infinitesimal fluid volume elements. See, for instance, [41]. However, turning such
heuristic considerations into a mathematically rigorous proof is challenging.

Viewing Euler’s equation as a macroscopic description and Newton’s law as a
microscopic description, one strategy is to go from Newton to Euler by first passing
to a mesoscopic description, namely Boltzmann’s equation for the evolution of the
distribution function in particle phase space. By considering a suitable hydrodynamic
scaling regime, one can then derive solutions to the incompressible Euler equation
from the Boltzmann equation. Much research has been done on this topic, and we
refer the interested reader to Saint-Raymond’s monograph [33] for more details.

Recently, Han-Kwan and Iacobelli [16] rigorously derived Euler’s eq. (1.1) through
a supercritical mean-field limit of theNewtonian N -body problem (1.2) in themonoki-
netic regime. More precisely, they start from the many-body problem (1.2) with
coupling constant λ = N−θ , for θ > 0. The term monokinetic refers to the assump-
tion that the velocities vi ≈ u(xi ), for the same vector field u. Note that since we are
in the repulsive setting, the particles remain separated and have bounded velocities,
assuming the particles are initially separated. Consequently, the dynamics of (1.2) are
globally well-posed. Under the restriction

1 − 2

d(d + 1)
< θ < 1 (1.3)
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and assuming that the empirical measure of the system (1.2),

1

N

N∑

i=1

δ(xi (t),vi (t))(x, v) (1.4)

converges at time t = 0 in a suitable topology to the measure

δ0(u(t, x) − v)dxdv, (1.5)

where u is a classical solution to eq. (1.1), Han-Kwan and Iacobelli show using the
modulated-energy method of [38] that the empirical measure converges in the weak-*
topology to the measure (1.5) on the lifespan of u.

The modifier “supercritical,” coined by Han-Kwan and Iacobelli, stems from the
following trichotomy.

• In the subcritical mean-field regime θ > 1, the force term formally vanishes as
N → ∞, assuming that each term in the sum is O(1), and therefore interactions
become negligible for a very large number of particles.

• In the mean-field regime θ = 1, the force is O(1) as N → ∞, and one expects
the empirical measure of the system (1.2) to converge to a solution of the pres-
sureless Euler–Poisson equation as N → ∞. Serfaty, in collaboration with
Duerinckx, recently proved this convergence via the aforementioned modulated-
energy method in the breakthrough paper [38, Appendix].1 We also mention that
the mean-field limit outside of the monokinetic regime is of great interest, as the
limiting equation is Vlasov–Poisson, a complete derivation of which remains elu-
sive, despitemuch activity in recent years (e.g., see [2, 7, 19–24, 40] and references
therein).

• In the supercritical mean-field regime 0 < θ < 1, the force termmay, in principle,
diverge as N → ∞, leaving open the possibility of more singular behavior than
in the mean-field regime.

As they observe, one can equivalently interpret the result of Han-Kwan and Iaco-
belli [16] as convergence in the combined mean-field and quasineutral limits. More
precisely, one can introduce a parameter ε > 0 by setting λ = ε2N = N θ , so that the
system (1.2) becomes

⎧
⎨

⎩

ẋi = vi

v̇i = − 1
ε2N

∑
1≤ j≤N

j 	=i
∇g(xi − x j ),

(1.6)

and the parameter ε now has the meaning of the Debye length, which is the typical
length scale of the interactions. The limit ε → 0 is called the quasineutral limit.
The mean-field limit N → ∞ of the system (1.6) formally leads to the Vlasov–
Poisson equation, as discussed above. Several authors [3, 4, 8, 9, 11–15, 17, 25] have

1 This result of Serfaty and Duerinckx is a special case of a result covering the full range of Riesz potential
interactions. The limiting equation for super-Coulombic Riesz interactions is the so-called pressureless
Euler-Riesz system, the well-posedness of which has been studied by Choi and Jeong [5].
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13 Page 4 of 32 M. Rosenzweig

considered the quasineutral limit of Vlasov–Poisson with varying assumptions on
the initial datum. But in the monokinetic regime of present interest, Brenier [3] has
rigorously shown that the quasineutral limit leads to the incompressible Euler equation
(1.1).We also mention that the combined mean-field and quasineutral regime has been
studied in [10, 12] without the monokinetic assumption, where the expected limiting
equation is the so-called kinetic Euler equation. These results, though, are only slightly
supercritical, in the sense that the coupling constant λ ∼ (ln ln N )/N as N → ∞.

1.2 Statement of main results

A question left open by Han-Kwan and Iacobelli in [16] is whether the restriction
(1.3) is optimal. In the present article, we answer this question in the negative in all
dimensions d ≥ 2 by improving the range of θ to

1 − 2

d
< θ < 1. (1.7)

As explained below, scaling considerations suggest that this range is optimal. To state
our main results, we introduce the modulated energy from [16] (cf. the expression in
[38, pg. 40])

HN ,ε(zN , u):= 1

2N

N∑

i=1

|u(xi ) − vi |2 + 1

2ε2
FN (xN , 1 + ε2U), (1.8)

where

FN (xN , 1 + ε2U):=
∫

(Td )2\�2

g(x − y)d

(
1

N

N∑

i=1

δxi − 1 − ε2U

)⊗2

(x, y). (1.9)

Above, u is a solution to eq. (1.1), U:=∂αuβ∂βuα = −�p, and zN :=(z1, . . . , zN ),
z j = (x j , v j ), is a solution to equation (1.6). Here,�2 denotes the diagonal ofTd. The
quantity HN ,ε(zN , u) is a variant of the modulated energy introduced by Duerinckx
and Serfaty [38, Appendix] for the monokinetic mean-field limit of the system (1.6)
(i.e., ε fixed) and has proven to be a good quantity for measuring the distance between
the N -body dynamics and the limiting dynamics. Our first result, the meat of the
article, is a Gronwall-type estimate for the modulated energy, assuming the velocity
field u belongs to the Hölder space C1,s(Td), for some 0 < s < 1.

Theorem 1.1 For d ≥ 2 and 0 < s < 1, there exists a constant Cd,s > 0 such that the
following holds. Let u ∈ L∞([0, T ];C1,s(Td)) be a solution to eq. (1.1), and let zN be
a solution to eq. (1.6) with pairwise distinct initial positions. Then for all 0 ≤ t ≤ T ,
we have that2

HN ,ε(zN (t), u(t)) + cd
2Nε2

(
ln(N

−1
d )1d=2 + N 1− 2

d 1d≥3

)

2 The constant cd is the normalization constant for the potential g (see (2.15) below), and the constant Cd,s
is such that the left-hand side of (1.10) is always ≥ 0 (see Remark 3.5 below).
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+Cd,s(1 + ε2‖∇ut‖2L∞)N− 2
d

ε2

≤ exp

(

Cd,s

∫ t

0
(1 + ‖∇u(τ )‖L∞)dτ

) (

HN ,ε(zN (0), u(0))

+ cd
2Nε2

(
ln(N

1
d )1d=2 + N 1− 2

d 1d≥3

)

+Cd,s(1 + ε2‖∇ut‖2L∞)N− 2
d

ε2
+ Cd,sε

2
∫ t

0
‖u(τ )‖6C1,sdτ

)

. (1.10)

Our next result, a corollary of Theorem 1.1, shows that if ε = ε(N ) is such that the
right-hand side of (1.10) vanishes as N → ∞, then HN ,ε(zN (t), u(t)) converges to
zero on the lifespan of the solution u. Moreover, the empirical measure (1.4) of the
system (1.6) converges to the measure (1.5) in the spaceM(Td ×R

d) of finite Borel
measures equipped with the weak-* topology.

Corollary 1.2 Let u ∈ L∞([0, T ];C1,s(Td)) be a solution to equation (1.1), and let
zN be a sequence of solutions to eq. (1.6) with pairwise distinct initial positions. If

ε −−−−→
N→∞ 0,

ε2N
2
d

1 + (ln N )1d=2
−−−−→
N→∞ ∞, and HN ,ε(zN (0), u(0)) −−−−→

N→∞ 0,

(1.11)
then

1

N

N∑

i=1

δzi,N (t)
∗−−−−⇀

N→∞ δ(v − u(t, x))dxdv inM(Td × R
d) uniformly on [0, T ].

(1.12)

We record some remarks about the assumptions in the statements of Theorem 1.1
and Corollary 1.2.

Remark 1.3 The incompressible Euler equation is known to be well-posed in the space
C1,s(Td); for example, see [1, Proposition 7.16]).We have not optimized the regularity
requirement for u in this article, as our focus is on improving the range of θ for the
validity of the Euler equation as a supercritical mean-field limit. With a bit more work
and at the expense of worsening the rate of convergence in N , it is possible to relax the
regularity assumption to u ∈ B1∞,1(T

d) (see (2.1) for definition), which is a scaling-
critical space for the well-posedness of the equation. It is an interesting mathematical
problem whether one can allow for weak solutions u, in the spirit of the author’s prior
work [30] (see also [28, 29]) on the point vortex approximation in dimension d = 2.
We plan to address this question in a separate work.

Remark 1.4 Using that g has zero mean on T
d , we have

1

ε2
FN (xN (0), 1) = 1

ε2N 2

∑

1≤i 	= j≤N

g(xi (0) − x j (0)). (1.13)
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Consequently, if the preceding right-hand side converges to zero as ε → 0 and N →
∞, and

1

N

N∑

i=1

δxi (0)
∗−−−−⇀

N→∞ 1, (1.14)

then ε−2FN (xN (0), 1 + ε2U(0)) tends to zero. As noted in [16], given a sequence
ηN → 0 as N → ∞, one can choose initial velocities vi (0) such that |vi (0) −
u(0, xi (0))| ≤ ηN . It then follows that HN ,ε(zN (0), u(0)) → 0 as N → ∞ and
ε → 0.

The assumption (1.11) is statistically relevant for reasons as follows. Suppose that
for each N ≥ 1, the initial positions x01,N , . . . , x0N ,N are independent random points

in Td with uniform law μ ≡ 1. Then

1

ε2
E

(
FN (xN (0), 1

)
) = 0. (1.15)

Remark 3.5 implies that there is a constant Cd > 0 such that

∣
∣
∣
∣FN (xN (0), 1) + (ln N )

8πN
1d=2

∣
∣
∣
∣ ≤ FN (xN (0), 1) + (ln N )

8πN
1d=2 + CdN

1− 2
d , (1.16)

which in turn implies that

1

ε2
E

(|FN (xN (0), 1)|) ≤ Cd

ε2N
(| ln N |1d=2 + N 1− 2

d ). (1.17)

Evidently, the right-hand side tends to zero if ε → 0 sufficiently slowly so that
ε2N/ ln N → ∞, if d = 2, and εN 1/d → ∞, if d ≥ 3, as N → ∞.

Finally, let us address the sharpness of our range (1.7) for θ . There exists a sequence
of solutions ztN ,ε

to (1.6) and a solution ut to (1.1) such that 1
N

∑N
i=1 dδzti,N ,ε

(x, v) −⇀
dδut (x)(v)dx as ε + 1

N → 0, but the modulated energy HN ,ε(ztN ,ε
, ut ) does not

vanish. This is a consequence of the next-order asymptotics for mean-field limits of
log/Coulomb/Riesz energies obtained in [18, 27, 32, 34, 35]. More precisely, suppose
that x0N is a minimizer of the microscopic energy

1

2N

∑

1≤i 	= j≤N

g(xi − x j ). (1.18)

By taking variations, we see that x0N is a critical point: for 1 ≤ i ≤ N ,

1

N

∑

1≤ j≤N : j 	=i

∇g(x0i,N − x0j,N ) = 0. (1.19)
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For each t ∈ R, define

(xti,N , vti,N ) := (x0i,N , v0), ∀1 ≤ i ≤ N , (1.20)

for some fixed v0 ∈ R
d . Evidently,

ẋ ti,N = v0 = vti,N , (1.21)

v̇ti,N = 0 = − 1

ε2N

∑

1≤ j≤N : j 	=i

∇g(xti,N − xtj,N ). (1.22)

So ztN :=(xti,N , vti,N )Ni=1 is the unique solution of the Cauchy problem for (1.6) with

initial datum (x0i,N , v0)Ni=1. Note that the solution ztN is independent of ε. As a con-

sequence of the results of [18, 27, 32, 34, 35], it holds that 1
N

∑N
i=1 δxti,N

−−−−⇀
N→∞ 1

and

FN (x0N , 1) + ln N

8πN
1d=2 = Cd N− 2

d + o(N− 2
d ) (1.23)

as N → ∞, where Cd is a computable constant depending only on d. Hence,

HN ,ε(z
t
N , v0)+ ln N

8πNε2
1d=2 = 1

ε2

(

FN (x0N , 1) + ln N

8πN
1d=2

)

= Cd
N− 2

d

ε2
+o(N− 2

d /ε2).

(1.24)
Thus, the empiricalmeasure df tN (x, v):= 1

N

∑N
i=1 dδzti,N

(x, v) converges to dδv0(v)dx
in the modulated-energy sense of distance if and only if

lim
ε+ 1

N →0

N− 2
d

ε2
= 0. (1.25)

Hence, there is an obstruction to vanishing of the modulated energy when ε ≤ N− 1
d .

1.3 Comments on the proof

Let us now briefly discuss the proof of Theorem 1.1. Corollary 1.2 follows from
Theorem 1.1 by relatively standard arguments. At a high level, our proof is inspired
by that of Han-Kwan and Iacobelli [16], which is based on a Gronwall estimate for the
modulated energyHN ,ε(zN (t), u(t)) introduced in (1.8). This quantity is quite similar
to the modulated energy used by Duerinckx and Serfaty [38, Appendix] to derive the
pressureless Euler–Poisson equation as the mean-field limit of the system (1.2) in
the monokinetic regime. One can also view it as an N -particle version of Brenier’s
modulated energy [3] for the quasineutral limit of Vlasov–Poisson. A key difference,
though, compared to these prior works is the presence of the corrector ε2U, which
leads to good structure in the temporal derivative equation for HN ,ε(zN (t), u(t)). To
obtain the improved θ range (1.7), though, we need to perform a more sophisticated
analysis of the modulated energy to measure the balance of error terms. And for this,
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13 Page 8 of 32 M. Rosenzweig

we draw on recent work of Serfaty [39] on the fluctuations of Coulomb gasses at
arbitrary temperature.

As shown by Han-Kwan and Iacobelli [16, Section 2], HN ,ε(zN (t), u(t)) satisfies
the equation

d

dt
HN ,ε(zN (t), u(t)) = Term1 + · · · + Term4, (1.26)

where

Term1 = − 1

N

N∑

i=1

(u(t, xi (t)) − vi (t))
⊗2 : ∇u(t, xi (t)), (1.27)

Term2 = 1

2ε2

∫

(Td )2\�2

(u(t, x) − u(t, y))

· ∇g(x − y)d

(
1

N

N∑

i=1

δxi (t) − 1 − ε2U(t)

)⊗2

(x, y) (1.28)

Term3 = −
∫

Td
∇ · |∇|−2(uU)(t, x)d

(
1

N

N∑

i=1

δxi (t) − 1 − ε2U(t)

)

(x) (1.29)

Term4 = −
∫

Td
(∂t p)(t, x)d

(
1

N

N∑

i=1

δxi (t) − 1 − ε2U(t)

)

(x). (1.30)

Above, : denotes the Frobenius inner product for d × d matrices. Due to the prefactor
of ε−2, Term2 is the most challenging term. Therefore, we concentrate on it for the
purposes of this discussion.

Term2 has the structure of a commutator which has been renormalized through the
excision of the diagonal and has been averaged against the measure

1

N

N∑

i=1

δxi − 1 − ε2U. (1.31)

Indeed, ignoring the excision of the diagonal, the integration in y corresponds to the
commutator

[
u,∇|∇|−2

]
(
1

N

N∑

i=1

δxi − 1 − ε2U

)

. (1.32)

Term2 may also be written as the divergence of the stress-energy tensor of the potential
of (1.31) integrated against the vector field u. Of course, the preceding considerations
are completely formal because we have excised the diagonal in Term2 and because the
Dirac mass is too singular for either the commutator or stress-energy tensor to make
sense. However, Serfaty showed [38, Proposition 1.1] using a smearing procedure for
the Dirac masses (see Sect.3.1) that one can add back the diagonal and use this stress-
energy tensor idea to control expressions of the form Term2 up to additive error terms
quantifiably small as N → ∞. Using this result, Han-Kwan and Iacobelli obtained
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On the rigorous derivation of the incompressible Euler… Page 9 of 32 13

an estimate for Term2 in terms of the quantity (1.9). The source of the restriction

εN
1

d(d+1) → ∞ as N → ∞, equivalently 1 − 2
d(d+1) < θ < 1, is precisely the

estimate for the aforementioned additive error terms that [38, Proposition 1.1] gives.
In [30] (see also [28, 29]), the author complemented Serfaty’s smearing procedure

with the new idea of tracking the relative size of these additive terms through a series of
small, possibly time-dependent parameters. One keeps these parameters unspecified
until the conclusion of the proof, where they are chosen to optimize the balance of
all the error terms accumulated to estimate expressions of the form Term2. We could
implement a similar idea in this article, which ultimately gives a better estimate for
the additive error terms in Serfaty’s original smearing procedure. But this would only
yield the range (1.7) in dimension d = 2. In order to obtain the stated range (1.7) in all
dimensions d ≥ 2, we instead use an improved estimate (see Proposition 3.9 in Sect.
3.3 below for details) for expressions of the form (1.28) recently obtained by Serfaty
[39], which yields the (believed) sharp N -dependence for the additive errors.

Remark 1.5 Han-Kwan and Iacobelli [16, Theorem 1.2] also consider the combined
mean-field and gyrokinetic limit for particles interacting in the presence of a strong
magnetic field in dimension d = 2 using an analogous modulated-energy approach.
The N -body problem is now

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

εẋi = vi

εv̇i = − 1

N

∑

1≤ j≤N
j 	=i

∇g(xi − x j ) + v⊥
i

ε
, (1.33)

and the limiting behavior is again governed by the incompressible Euler equation. We
expect our analysis to improve their scaling restriction εN 1/6 → ∞ as N → ∞ to
ε(N/ ln N )1/2 → ∞ as N → ∞.

Added in proof While the present manuscript was under review, it was observed by
the author that the convergence to incompressible Euler in the supercritical mean-field
limit is also valid if instead of taking g to be the Coulomb potential, one allows for
a more general potential, such as a Riesz potential |x |−s appropriately periodized. In
forthcoming joint work with Serfaty [31], we obtain functional inequalities (cf. Propo-
sition 3.9 below) with optimal N -dependent additive errors for such Riesz potentials,
assuming d−2 ≤ s < d (i.e., either Coulomb or super-Coulombic). As an application,
we also prove convergence, using the modulated energy, of the empirical measure to
a solution of the incompressible Euler equation in the supercritical mean-field limit,
assuming that d − 2 ≤ s < d and θ ∈ ( sd , 1). Similar to above, this result is sharp
in the sense that there is a sequence of solutions ztN to (1.6) and a solution ut to

(1.1) such that 1
N

∑N
i=1 δzti

(x, v) −⇀ δut (x)(v), but for which the associated modulated

energy HN ,ε(ztN , ut ) does not vanish. While [31] only concerns the Coulomb/super-
Coulombic case, the reasoning is adaptable to the sub-Coulombic case 0 ≤ s < d − 2
using the analogue of Proposition 3.9 established by the authors with Nguyen in [26,
Proposition 4.1]. In this case, one obtains HN ,ε(ztN , ut ) → 0 as ε + 1

N → 0, provided
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that

lim
ε+ 1

N →0

1

ε2

(

N− 2
(s+2)(s+1) + log N

N
1s=0

)

= 0, (1.34)

which we believe is a nonsharp scaling assumption. ��

1.4 Organization of article

We briefly comment on the organization of the body of the article. In Sect. 2, we
introduce basic notation, function spaces, and properties of the Coulomb potential
used without further comment throughout the article. In Sect. 3, we review Serfaty’s
smearing procedure and properties of the modulated potential energy FN (·, ·). Since
the existing literature almost exclusively considers the case of Rd , we focus on the
modifications necessary for the periodic setting, as they do not seem to be presented
in the literature. We also give in Sect. 3.3 the proof of our “commutator” estimate for
expressions of the form (1.28), which is the workhorse of this article. Finally, in Sect.
4, we prove our main results, Theorem 1.1 and Corollary 1.2.

2 Preliminaries

In this section, we introduce the basic notation of the article, as well as the relevant
function spaces, and some facts fromharmonic analysis towhichwe frequently appeal.

2.1 Notation

Given nonnegative quantities A and B, we write A � B if there exists a constant
C > 0, independent of A and B, such that A ≤ CB. If A � B and B � A, we write
A ∼ B. To emphasize the dependence of the constant C on some parameter p, we
sometimes write A �p B or A ∼p B.

We denote the natural numbers excluding zero byN and including zero byN0. Sim-
ilarly, we denote the nonnegative real numbers by R≥0 and the positive real numbers
by R+. Given N ∈ N and points x1,N , . . . , xN ,N in some set X , we will write xN to
denote the N -tuple (x1,N , . . . , xN ,N ). We define the generalized diagonal �N of the
Cartesian product XN to be the set

�N :={(x1, . . . , xN ) ∈ XN : xi = x j for some i 	= j}. (2.1)

Given x ∈ T
d and r > 0, we denote the ball and sphere centered at x of radius r by

B(x, r) and ∂B(x, r), respectively. Given a function f , we denote the support of f
by supp f .

We denote the space of complex-valued Borel measures on T
d by M(Td). We

denote the subspace of probability measures (i.e. elements μ ∈ M(Td) with μ ≥ 0
and μ(Td) = 1) by P(Td). When μ is in fact absolutely continuous with respect to
Lebesgue measure on T

d , we shall abuse notation by writing μ for both the measure
and its density function. We denote the Banach space of complex-valued continuous
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functions on T
d by C(Td) equipped with the uniform norm ‖ · ‖∞. More generally,

we denote the Banach space of k-times continuously differentiable functions with
bounded derivatives up to order k by Ck(Td) equipped with the natural norm, and we
define C∞:= ⋂∞

k=1 C
k . We denote the subspace of smooth functions with compact

support by C∞
c (Td), and use the subscript 0 to indicate functions vanishing at infinity.

For p ∈ [1,∞] and � ⊂ T
d , we define L p(�) to be the usual Banach space equipped

with the norm

‖ f ‖L p(�):=
(∫

�

| f (x)|pdx
)1/p

(2.2)

with the obvious modification if p = ∞. When f : � → X takes values in some
Banach space (X , ‖ · ‖X ), we shall write ‖ f ‖L p(�;X).

Our convention for Fourier coefficients is

f̂ (k):=
∫

Td
f (x)e−ik·xdx, k ∈ Z

d (2.3)

f (x) = (2π)−d
∑

k∈Zd

f̂ (k)eik·x , x ∈ T
d . (2.4)

2.2 Besov spaces

Let D′(T rmd) denote the dual of the space C∞(Td). As is well-known (e.g., see [36,
Section 3.2]), elements of D′(Td) are precisely those tempered distributions on R

d

for which there exists a sequence of coefficients {ak}k∈Zd with |ak | � 〈k〉m for some
m ∈ N, such that the series ∑

k∈Zd

ake
ik·x (2.5)

converges in S ′(Rd).
To introduce the Besov scale of function spaces, we introduce a Littlewood-Paley

partition of unity as follows. Let φ ∈ C∞
c (Rd) be a radial, nonincreasing function,

such that 0 ≤ φ ≤ 1 and

φ(x) =
{
1, |x | ≤ 1

0, |x | > 3/2.
(2.6)

Define

1 = φ(x) +
∞∑

j=1

[φ(2− j x) − φ(2− j+1x)] =: φ(x) +
∞∑

j=1

ψ j (x), ∀x ∈ R
d . (2.7)

Given a distribution f ∈ D′(Td), we define the Littlewood-Paley projections

P0 f (x) := (2π)−d
∑

k∈Zd

φ(k) f̂ (k)eik·x ,

Pj f (x) := (2π)−d
∑

k∈Zd

ψ j (k) f̂ (k)e
ik·x , j ≥ 1,

(2.8)
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13 Page 12 of 32 M. Rosenzweig

and Pj f :=0 for j ≤ −1. Evidently, each of the projections Pj f ∈ C∞(Td).

Definition 2.1 Let s ∈ R and 1 ≤ p, q ≤ ∞. We define the inhomogeneous Besov
space Bs

p,q(T
d) to be the space of f ∈ D′(Td) such that

‖ f ‖Bs
p,q (Td ):=

⎛

⎝
∞∑

j=0

2 jqs‖Pj f ‖qL p(Td )

⎞

⎠

1/q

< ∞. (2.9)

Remark 2.2 The Besov scale includes a number of well-known function spaces (see
[36, Section 3.5] for full details). For example, if s ≥ 0 is not an integer, then Bs∞,∞ =
C�s�,s−�s�, while if s is an integer, we have the inclusions

Bs∞,1 ⊂ Cs ⊂ Bs∞,∞. (2.10)

Similarly, for any 1 ≤ p < ∞, we have the inclusions

B0
p,1 ⊂ L p ⊂ B0

p,∞. (2.11)

If p = q = 2, then Bs
2,2 coincides with the usual Sobolev space Hs .

The next two results on embeddings in the Besov scale are classic. The reader may
consult [1, Sections 2.7, 2.8] for the omitted details.

Lemma 2.3 Let 1 ≤ p1 ≤ p2 ≤ ∞, 1 ≤ q1 ≤ q2 ≤ ∞, and s ∈ R. Then Bs
p1,q1(T

d)

continuously embeds in B
s− d

p1
+ d

p2
p2,q2 (Td). Additionally, if s ≥ 0, then Bs∞,1(T

d) con-

tinuously embeds in Cs(Td).

Lemma 2.4 For s > 0 and 1 ≤ p, q ≤ ∞, the space L∞(Td) ∩ Bs
p,q(T

d) is an
algebra and

‖ f g‖Bs
p,q

�s,d ‖ f ‖L∞‖g‖Bs
p,q

+ ‖g‖L∞‖ f ‖Bs
p,q

. (2.12)

2.3 The Coulomb potential

We recall from the introduction that g denotes the element of D′(Td)

1

(2π)d

∑

k∈Zd :k 	=0

eik·x

|k|2 , (2.13)

which is, in fact, an element of C∞(Td\{0}) satisfying

− �g = δ0 − 1. (2.14)
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Let gRd denote the Coulomb potential on Rd :

gRd (x):=
{

−(ln |x |)/2π, d = 2

cd |x |−d+2, d ≥ 3,
(2.15)

where the normalizing constant cd = 1
d(d−2)|B(0,1)| . Evidently, gRd is radial, and

we can write gRd (x) = gRd (|x |). As is well-known, there exists a function gloc ∈
C∞(B(0, 1/4)) such that

g(x) = gRd (x) + gloc(x), ∀x ∈ B(0, 1/4). (2.16)

The next lemma will be quite useful in the proof of Proposition 3.9.

Lemma 2.5 Let d ≥ 2 and d < p ≤ ∞. Then for all f ∈ L p(Td),

‖∇|∇|−2 f ‖L∞ = ‖∇g ∗ f ‖L∞ �p,d ‖ f ‖L p . (2.17)

Proof The first identity is tautological. For x ∈ T
d , we write

∫

Td
∇g(x − y) f (y)dy =

∫

|x−y|≤1/4
∇g(x − y) f (y)dy

+
∫

|x−y|>1/4
∇g(x − y) f (y)dy

=
∫

|x−y|≤1/4
∇gRd (x − y) f (y)dy

+
∫

|x−y|≤1/4
∇gloc(x − y) f (y)dy

+
∫

|x−y|>1/4
∇g(x − y) f (y)dy. (2.18)

Since gloc isC∞ on B(0, 1/4) and since g isC∞ away from the origin, it follows from
Hölder that

∫

|x−y|≤1/4
|∇gloc(x − y) f (y)|dy +

∫

|x−y|>1/4
|∇g(x − y) f (y)|dy �d,p ‖ f ‖L p .

(2.19)
Again applying Hölder,

∫

|x−y|≤1/4
|∇gRd (x − y) f (y)|dy ≤ ‖∇gRd‖L p′ (B(0,1/4))‖ f ‖L p . (2.20)

Since (d − 1)p′ < d by assumption that p > d, we see that the proof is complete. ��
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13 Page 14 of 32 M. Rosenzweig

3 Themodulated energy

In this section, we discuss the properties of the potential part of the N -particle modu-
lated energy,

FN (xN , μ) =
∫

(Td )2\�2

g(x − y)d

(
1

N

N∑

i=1

δxi − μ

)⊗2

(x, y). (3.1)

Most of the results in this section have been established in one form or another in the
works using the modulated-energy method, such as [6, 28–30, 37, 38]. Therefore, we
shall be somewhat terse in our remarks, focusing on the proof modifications necessary
to adapt the comparable result in literature to the periodic setting,where some subtleties
arise due to the fact that the potential g is no longer explicit.

3.1 Smearing and truncation

Given η ∈ (0, 1/4), let us truncate the potential g by defining

g̃η(x):=
{
g(x), x ∈ T

d\B(0, η)

gRd (η) + gloc(x), x ∈ B(0, η),
(3.2)

where the reader will recall that gRd (x) = gRd (|x |). To obtain a function with zero
mean, we now consider

gη(x):=g̃η(x) −
∫

Td
g̃η(x)dx =: g̃η(x) − cg,η. (3.3)

We now introduce a distribution δ
(η)
0 by setting

δ
(η)
0 − 1:= − �gη. (3.4)

Lemma 3.1 Let σ∂B(0,η) denote the uniform probability measure on the sphere
∂B(0, η). Then

δ
(η)
0 = σ∂B(0,η) in D′(Td). (3.5)

Proof Let ϕ ∈ C∞(Td) be a test function. Integrating by parts twice,
∫

Td
−�ϕ(x)gη(x)dx =

∫

|x |<η
−�ϕ(x)

(
g
Rd (η) + gloc(x)

)
dx +

∫

|x |≥η
−�ϕ(x)gη(x)dx

=
∫

|x |<η
∇ϕ(x) · ∇gloc(x)dx +

∫

|x |≥η
∇ϕ(x) · ∇g(x)dx

=
∫

|x |=η
ϕ(x)∇gloc(x) · x

|x |dH
d−1(x) −

∫

|x |<η
ϕ(x)�gloc(x)dx
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+
∫

|x |=η
ϕ(x)∇g(x) · −x

|x | dH
d−1(x) −

∫

|x |≥η
ϕ(x)�g(x)dx,

(3.6)

where Hd−1 denotes the (d − 1)-dimensional Hausdorff measure. Observe that for
|x | = η,

∇gloc(x) · x

|x | − ∇g(x) · x

|x | = −∇gRd (x) · x

|x |
= (d − 2)cd

x

|x |d · x

|x | = 1

d|B(0, 1)|ηd−1 .

(3.7)

Since Hd−1(∂B(0, η)) = d|B(0, 1)|ηd−1, it follows that

∫

|x |=η

ϕ(x)∇gloc(x) · x

|x |dH
d−1(x) +

∫

|x |=η

ϕ(x)∇g(x) · −x

|x | dH
d−1(x)

= 1

Hd−1(∂B(0, η))

∫

|x |=η

ϕ(x)dHd−1(x).
(3.8)

Since −�g(x) = −1 for |x | > 0 and −�gloc(x) = −1 for |x | ≤ 1/4, we also find
that

−
∫

|x |<η

ϕ(x)�gloc(x)dx −
∫

|x |≥η

ϕ(x)�g(x)dx = −
∫

Td
ϕ(x)dx . (3.9)

Thus, we have shown that

〈ϕ,−�gη〉 = 〈ϕ, σ∂B(0,η) − 1〉. (3.10)

Since ϕ ∈ C∞(Td) was arbitrary, the conclusion of the lemma follows immediately.
��

Using the definition (3.5) of δ
(η)
0 , we have the identity

g ∗ (δ0 − δ
(η)
0 ) = g ∗ δ0 − g ∗ (−�gη + 1) = g − (δ0 − 1) ∗ gη = g − gη =: fη.

(3.11)

where we use that g, gη both have mean zero. For later use, let us now analyze fη. The
definition (3.3) of gη implies that

fη(x) =
{
0, |x | ≥ η

gRd (x) − gRd (η) + cg,η, |x | < η.
(3.12)

We also have the gradient identity

∇fη(x) = ∇gRd (x)1≤η(x). (3.13)
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13 Page 16 of 32 M. Rosenzweig

We estimate the normalizing constant cg,η with the next lemma.

Lemma 3.2 For all 0 < η < 1/4, it holds that

|cg,η| �d η2. (3.14)

Proof Since g has zero mean on T
d , it follows that

cg,η =
∫

|x |≥η

g(x)dx +
∫

|x |<η

(
gRd (η) + gloc(x)

)
dx

= −
∫

|x |<η

g(x)dx +
∫

|x |<η

(
gRd (η) + gloc(x)

)
dx

=
∫

|x |<η

(
gRd (η) − gRd (x)

)
dx

= gRd (η)|B(0, η)| −
∫

|x |<η

gRd (x)dx . (3.15)

Let us compute the second term. First, suppose that d = 2. Unpacking the definition
of gR2 and using polar coordinates, we find that

∫

|x |<η

gR2(x)dx = −
∫ η

0
r ln rdr =

(
− η2 ln η

2
+ η2

4

)
. (3.16)

Next, suppose that d ≥ 3. Proceeding similarly, we find that

∫

|x |<η

gRd (x)dx = cdHd−1(∂B(0, 1))
∫ η

0
rd−1r2−ddr = cdη2Hd−1(∂B(0, 1))

2
.

(3.17)

Since Hd−1(∂B(0, 1)) = d|B(0, 1)|, it follows that

cg,η = gRd (η)|B(0, η)| −
∫

|x |<η

gRd (x)dx =
{

− η2

4 , d = 2
η2(d−1−2−1)

d−2 , d ≥ 3.
(3.18)

��
Next, we use the preceding computation in order to estimate the L p norms of

fη,∇fη, for appropriate p.

Lemma 3.3 For d ≥ 2 and 1 ≤ p < d/(d − 2), it holds that

∀0 < η < 1/4, ‖fη‖L p(Td ) �d,p

⎧
⎨

⎩

η
2
p | ln η|, d = 2

η
2− d(p−1)

p , d ≥ 3;
(3.19)
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and for 1 ≤ p < d/(d − 1), it holds that

‖∇fη‖L p(Td ) �d,p η
1− d(p−1)

p . (3.20)

Proof By the triangle inequality and Lemma 3.2,

‖fη‖L p �d ‖gRd − gRd (η)‖L p + η2. (3.21)

For d = 2, we change to polar coordinates to obtain

‖gR2 − gR2(η)‖L p �
(∫ η

0
r(− ln r + ln η)pdr

)1/p

�p η2/p| ln η|. (3.22)

Similarly, if d ≥ 3, then

‖gRd − gRd (η)‖L p �d

(∫ η

0
rd−1(r2−d − η2−d)pdr

)1/p

�p,d η
2− d(p−1)

p , (3.23)

provided that 1 ≤ p < d/(d − 2). After a little bookkeeping, we arrive at the first
assertion. The second assertion follows from the identity (3.13) and proceeding as
before. ��

We also introduce the notation3

H
μ,xN
N ,η

N
(x):=

⎛

⎝g ∗
⎛

⎝
1

N

N∑

i=1

δ
(ηi )
xi − μ

⎞

⎠

⎞

⎠ (x) = |∇|−2

⎛

⎝
1

N

N∑

i=1

δ
(ηi )
xi − μ

⎞

⎠ (x) (3.24)

to denote the g-potential of the difference 1
N

∑N
i=1 δ

(ηi )
xi −μ. Observe fromPlancherel’s

theorem that

∫

Td
|∇H

μ,xN
N ,η

N
(x)|2dx =

∫

(Td )2
g(x − y)d

(
1

N

N∑

i=1

δ(ηi )
xi − μ

)⊗2

(x, y). (3.25)

In particular, since μ ∈ L p(Td), for p > d/2, implies that μ has finite Coulomb
energy and g ∗ μ is Hölder continuous, the left-hand side is also finite under this
assumption.

Proposition 3.4 The exists a constant Cd > 0, such that for any xN ∈ (Td)N\�N ,
μ ∈ L∞(Td), and 0 < η1, . . . , ηN < 1/8, it holds that

1

N 2

∑

1≤i 	= j≤N

(
gRd (xi − x j ) − gRd (ηi )

)

+

3 The reader should note that our notation corresponds to N−2 times the notation H
μ,xN
N ,ηN

used in [30].
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13 Page 18 of 32 M. Rosenzweig

≤ FN (xN , μ) + cd
2N 2

N∑

j=1

(
| ln η j |1d=2 + η2−d

j 1d≥3

)

−
∫

Td
|∇H

μ,xN
N ,η

N
(x)|2dx + Cd (1 + ‖μ‖L∞ )

N

N∑

j=1

η2j , (3.26)

where (·)+:=max{0, ·}.
Proof See the proof of [38, Proposition 3.3]. ��
Remark 3.5 Since the left-hand side of the inequality in Proposition 3.4 is nonnegative,
the proposition shows that there is a constant Cd > 0 such that

FN (xN , μ) + cd
2N 2

N∑

j=1

(
| ln η j |1d=2 + η2−d

j 1d≥3

)
+ Cd(1 + ‖μ‖L∞)

N

N∑

j=1

η2j ≥ 0

(3.27)
for all choices 0 < η1, . . . , ηN < 1/8. Consequently, up to the additive error detailed
above, FN and |FN | are comparable.

A quick corollary of Proposition 3.4 is that if we choose the smearing/truncation
scales η

N
to be comparable to the nearest-neighbor distances of each particle, we can

use the modulated energy to control-up to a small additiver error—the Ḣ1 norm of the
smeared potential H

μ,xN
N ,η

N
, as well as the self-interaction contribution to the energy.

Corollary 3.6 Let d ≥ 2. Then there exists a constant Cd > 0, such that for any
xN ∈ (Td)N\�N , μ ∈ L∞(Td), 0 < ε < 1/8, it holds that if

ri,ε :=min

{
1

4
min

1≤ j≤N : j 	=i
|xi − x j |, ε

}

, r N ,ε :=(r1,ε, . . . , rN ,ε), (3.28)

then

1

2

∫

Td
|∇H

μ,xN
N ,r N ,ε

(x)|2dx

≤ FN (xN , μ) + cd
2N

(
| ln ε|1d=2 + ε2−d1d≥3

)
+ Cd(1 + ‖μ‖L∞)ε2,

(3.29)

1

2N 2

N∑

i=1

gRd (ri,ε)

≤ FN (xN , μ) + cd
2N

(
| ln ε|1d=2 + ε2−d1d≥3

)
+ Cd(1 + ‖μ‖L∞)ε2.

(3.30)

Proof For the proof of estimates (3.29) and (3.30), see [30, Corollary 3.6] for the case
d = 2 and [29, Corollary 3.6] for the case d ≥ 3. ��
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Remark 3.7 Corollary 3.6 is a simple generalization of [38, Corollary 3.4], where ε is
chosen to be N−1/d , which is the typical interparticle distance. Note that the choice
ε = N−1/d is such that both error terms in (3.29) and (3.30) are of the same order in N
(up to a ln N factor if d = 2). The reason we leave ε unspecified here and throughout
the article until the very end is that doing so makes transparent the significance of the
scale N−1/d as the optimal choice. Also, if d = 2, one can exploit the fact that ε can
be chosen to be N−β for arbitrarily large fixed β, at the cost of making the constant
Cd larger. This trick has the benefit of avoiding the more complicated estimate of
Proposition 3.9 below, a point on which we comment more at the beginning of Sect.
3.3.

3.2 Control of Sobolev norms

AlthoughFN (·, ·) is not a nonnegative quantity, as noted in Remark 3.5, it nevertheless
controls Sobolev norms up to small error terms. The following proposition shows that
the difference 1

N

∑N
i=1 δxi − μ belongs to the dual space (W 1,∞(Td))∗, which by

Sobolev embedding implies that it belongs to Hs(Td) for any s < − d+2
2 .

Proposition 3.8 For d ≥ 2, there exists a constant Cd > 0, such that the following
holds: for any ϕ ∈ W 1,∞(Td), μ ∈ L∞(Td), and xN ∈ (Td)N\�N ,

∣
∣
∣
∣
∣

∫

Td
ϕ(x)d

(
1

N

N∑

i=1

δxi − μ

)

(x)

∣
∣
∣
∣
∣

�d ε‖∇ϕ‖L∞ + ‖∇ϕ‖L2

(

FN (xN , μ) + cd
2N

(
| ln ε|1d=2 + ε2−d1d≥3

)

+ Cd(1 + ‖μ‖L∞)ε2
)1/2

(3.31)

for all choices 0 < ε < 1/8.

Proof See the proof of [38, Proposition 3.6]. ��

3.3 Commutator estimate

As alluded to in Sect. 1.3 of the introduction, a key ingredient in the proof of Theorem
1.1 is essentially an order-1 smoothing estimate for the commutator

[
v,∇|∇|−2

]
(
1

N

N∑

i=1

δxi − μ

)

:=v · ∇|∇|−2

(
1

N

N∑

i=1

δxi − μ

)

− ∇|∇|−2 ·
(

v

(
1

N

N∑

i=1

δxi − μ

))

,

(3.32)
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where v is a sufficiently smooth vector field, ∇|∇|−2 is the vector valued Fourier
multiplier with symbol iξ

|ξ |2 , and μ is a measure with L∞ density. More precisely, we
need to estimate expressions of the form

∫

(Td )2\�2

∇g(x − y) · (v(x) − v(y))d

(
1

N

N∑

i=1

δxi − μ

)⊗2

(x, y) (3.33)

in terms of the quantity FN (xN , μ) and some small N -dependent error terms. Esti-
mates of these kind were originally proved by Serfaty [38, Proposition 1.1] using the
formalism of the stress-energy tensor in the setting of Rd , but the proof easily adapts
to setting of Td . The author later made the commutator structure transparent in [28,
Proposition 4.1] and obtained the (believed) sharp N -dependence for the error terms.
This latter result would suffice in dimension d = 2, but for d ≥ 3, it would still yield a
sub-optimal range for θ compared to (1.7), but still better than the range (1.3) of Han-
Kwan and Iacobelli [16]. To obtain the full range (1.7) in all dimensions d ≥ 2, we
instead use a recent result of Serfaty [39] for the “renormalized commutator” (3.33),
which we have reproduced below in the form of Proposition 3.9—specializing to the
notation of our setting.

Proposition 3.9 Let d ≥ 2. There exists a constant Cd > 0 such that for any Lipschitz
vector field v : Td → R

d , μ ∈ L∞(Td), and vector x N ∈ (Td)N\�N , we have the
estimate

∣
∣
∣
∣
∣
∣
∣

∫

(Td )2\�2

(v(x) − v(y)) · ∇g(x − y)d

⎛

⎝
1

N

N∑

i=1

δxi − μ

⎞

⎠

⊗2

(x, y)

∣
∣
∣
∣
∣
∣
∣

≤ Cd‖∇v‖L∞
(

FN (xN , μ) + cd
2N

(
| ln ε|1d=2 + ε2−d1d≥3

)
+ Cd (1 + ‖μ‖L∞ )ε2

)

,

(3.34)
for all choices 0 < ε < 1/8.

Optimizing the choice of ε by taking ε = N−1/d , this result gives a sharper N -
dependence for the additive error terms in the right-hand side of (3.34) compared to the
aforementioned works [28, 38]. The proof is much more involved, though, and relies
on a previously unsused cancellation in the difference 1

N

∑N
i=1 δxi − μ. The exact

statement of Proposition 3.9 is not contained in [39], but it follows from Proposition
4.3 and Remark 1.2 in that work. We give below a new, shorter proof that bypasses the
variation of energy argument used in that work. To this end, we first record a lemma
that will be an important ingredient in the proof.

Lemma 3.10 For d ≥ 2, let x N ∈ (Td)N\�N and μ ∈ L∞(Td). For 0 < ηi ≤ ri,ε ,
define the function

H
μ,xN
N ,η

N
,i :=g ∗

⎛

⎜
⎜
⎝

1

N

∑

1≤ j≤N
j 	=i

δ
(η j )
x j − μ

⎞

⎟
⎟
⎠ , (3.35)
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where we use the convention that δ(0)
x j = δx j . Then

‖∇H
μ,xN
N ,η

N
,i‖L∞(B(xi ,ηi )) �d

1

η
d/2
i

(∫

B(xi ,2ηi )
|∇H

μ,xN
N ,η

N
,i (x)|2dx

)1/2

+ ‖μ‖L∞ηi .

(3.36)

Proof See [39, Lemma A.2]. ��
Remark 3.11 Note that since the balls B(xi , ri,ε), 1 ≤ i ≤ N , are pairwise disjoint
and gη(x) is constant for |x | ≤ η and equals g(x) otherwise, we have for any choices
0 < ηi ≤ ri,ε ,

‖∇H
μ,xN
N ,η

N
‖2L2 =

∫

Td\⋃N
i=1 B(xi ,ηi )

|∇H
μ,xN
N (x)|2dx+

N∑

i=1

∫

B(xi ,ηi )
|∇H

μ,xN
N ,η

N
,i (x)|2dx .

(3.37)
Also note from the convexity of the function z �→ |z|2 that

|∇H
μ,xN
N ,η

N
,i (x)|2 � |∇H

μ,xN
N ,η

N
(x)|2 + 1

N 2 |∇gηi (x − xi )|2, (3.38)

and therefore,

N∑

i=1

∫

B(xi ,2ηi )
|∇H

μ,xN
N ,η

N
,i (x)|2dx � ‖∇H

μ,xN
N ,η

N
‖2L2 + 1

N2

N∑

i=1

∫

B(xi ,2ηi )
|∇gηi (x − xi )|2dx

�d ‖∇H
μ,xN
N ,η

N
‖2L2 + 1

N2

N∑

i=1

η2−d
i . (3.39)

Proof of Proposition 3.9 For shorthand, let us introduce the kernel notation

Kv(x, y) := (v(x) − v(y)) · ∇g(x − y), x 	= y ∈ T
d . (3.40)

Introducing a parameter vector η
N

∈ (R+)N to be specified momentarily, we observe
the identity

∫

(Td )2\�2

Kv(x, y)d

(
1

N

N∑

i=1

δxi − μ

)⊗2

(x, y) =
3∑

i=1

Termi , (3.41)

where

Term1 :=
∫

(Td )2\�2

Kv(x, y)d

(
1

N

N∑

i=1

δ(ηi )
xi − μ

)⊗2

(x, y), (3.42)
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Term2 := 1

N

N∑

j=1

∫

(Td )2\�2

Kv(x, y)d

(
1

N

N∑

i=1

δ(ηi )
xi − μ

)

(x)d(δx j − δ
(η j )
x j )(y),

(3.43)

Term3 := 1

N

N∑

j=1

∫

(Td )2\�2

Kv(x, y)d

(
1

N

N∑

i=1

δxi − μ

)

(x)d(δx j − δ
(η j )
x j )(y).

(3.44)

We now estimate each of the Termi .

Term1 Using [38, Lemma 4.3], we can rewrite Term1 as

Term1 =
∫

Td
∇v(x) :

[
H

μ,xN
N ,η

N
, H

μ,xN
N ,η

N

]

SE
(x)dx, (3.45)

where
[
H

μ,xN
N ,η

N
, H

μ,xN
N ,η

N

]

SE
is the (d × d) stress-energy tensor defined by

[
H

μ,xN
N ,η

N
, H

μ,xN
N ,η

N

]αβ

SE
:= 2∂αH

μ,xN
N ,η

N
∂βH

μ,xN
N ,η

N
− |∇H

μ,xN
N ,η

N
|2δαβ, α, β ∈ {1, . . . , d}.

(3.46)
So by Cauchy–Schwarz and the triangle inequality, it follows that

|Term1| �d ‖∇v‖L∞‖∇H
μ,xN
N ,η

N
‖2L2 . (3.47)

Term2 Recalling that δ
(η j )
x j is a probability measure, we rewrite Term2 as

1

N

N∑

j=1

∫

(Td )2

(
Kv(x, x j ) − Kv(x, y)

)
d

⎛

⎜
⎜
⎝

1

N

∑

1≤i≤N
i 	= j

δ(ηi )
xi − μ

⎞

⎟
⎟
⎠ (x)dδ

(η j )
x j (y)

− 1

N 2

N∑

j=1

∫

Td

(
Kv(x, x j ) − Kv(x, y)

)
d(δ

(η j )
x j )⊗2(x, y).

(3.48)
Unpacking the definition (3.40) of Kv , we add and subtract to write

Kv(x, x j ) − Kv(x, y) = (∇g(x − x j ) − ∇g(x − y)
) · (

v(x) − v(x j )
)

+∇g(x − y) · (
v(y) − v(x j )

)
. (3.49)
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Recalling identity (3.11), Fubini-Tonelli implies that

∫

(Td )2

(∇g(x − x j ) − ∇g(x − y)
) · (

v(x) − v(x j )
)
d

⎛

⎜
⎜
⎝

1

N

∑

1≤i≤N
i 	= j

× δ(ηi )
xi − μ

)
(x)dδ

(η j )
x j (y)

=
∫

Td
∇fη j (x − x j ) · (

v(x) − v(x j )
)
d

⎛

⎜
⎜
⎝

1

N

∑

1≤i≤N
i 	= j

δ(ηi )
xi − μ

⎞

⎟
⎟
⎠ (x).

(3.50)

Assuming η j ≤ r j,ε , supp(∇fη j )(· − x j ) ⊂ B(x j , η j ) implies that the second
line simplifies to

−
∫

Td
∇fη j (x − x j ) · (

v(x) − v(x j )
)
dμ(x). (3.51)

Next, we use Fubini-Tonelli to write

∫

(Td )2
∇g(x − y) · (v(y) − v(x j )

)
d

⎛

⎜
⎜
⎝

1

N

∑

1≤i≤N
i 	= j

δ(ηi )
xi − μ

⎞

⎟
⎟
⎠ (x)dδ

(η j )
x j (y)

= −
∫

Td
∇H

μ,xN
N ,η

N
, j (y) · (

v(y) − v(x j )
)
dδ

(η j )
x j (y).

(3.52)
After a little bookkeeping, we find that

Term2 = − 1

N

N∑

j=1

(∫

Td
∇fη j (x − x j ) · (

v(x) − v(x j )
)
dμ(x)

+
∫

Td
∇H

μ,xN
N ,η

N
, j (y) · (

v(y) − v(x j )
)
dδ

(η j )
x j (y)

+ 1

N

∫

Td

(
Kv(x, x j ) − Kv(x, y)

)
d(δ

(η j )
x j )⊗2(x, y)

)

.

(3.53)

We proceed to estimate each of the terms in the right-hand side of (3.53).
Since supp(∇fη j (· − x j )) ⊂ B(x j , η j ), we can use the mean-value theorem
and Hölder’s inequality to obtain

∣
∣
∣
∣

∫

Td
∇fη j (x − x j ) · (

v(x) − v(x j )
)
dμ(x)

∣
∣
∣
∣

≤ ‖∇fη j ‖L1‖∇v‖L∞‖μ‖L∞η j �d ‖∇v‖L∞‖μ‖L∞η2j , (3.54)
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where the ultimate line follows from Lemma 3.3. Since supp(δ
(η j )
x j ) ⊂

B(x j , η j ), we can argue similarly to before, obtaining

∣
∣
∣
∣

∫

Td
∇H

μ,xN
N ,η

N
, j (y) · (v(y) − v(x j )

)
dδ

(η j )
x j (y)

∣
∣
∣
∣

≤ ‖∇H
μ,xN
N ,η

N
, j‖L∞(B(x j ,η j ))‖∇v‖L∞η j

�d ‖∇v‖L∞η j

⎛

⎝
1

η
d/2
j

(∫

B(x j ,2η j )

|∇H
μ,xN
N ,η

N
, j (x)|2dx

)1/2

+ ‖μ‖L∞η j

⎞

⎠ ,

(3.55)

where the ultimate line follows from Lemma 3.10. Finally, using the crude
bound

|Kv(x, y)| �d min

{ ‖∇v‖L∞

|x − y|d−2 ,
‖v‖L∞

|x − y|d−1

}

, (3.56)

which follows from the definition (3.40) of Kv(x, y) and the mean-value the-
orem, together with the scaling invariance of Lebesgue measure, we find that
∣
∣
∣
∣

∫

Td

(
Kv(x, x j ) − Kv(x, y)

)
d(δ

(η j )
x j )⊗2(x, y)

∣
∣
∣
∣ �d ‖∇v‖L∞η2−d

j . (3.57)

Putting together the above estimates, we have shown that

|Term2| �d
‖∇v‖L∞

N

N∑

j=1

(
‖μ‖L∞η2j

+ 1

Nηd−2
j

+ η
1− d

2
j

(∫

B(x j ,2η j )

|∇H
μ,xN
N ,η

N
, j (x)|2dx

)1/2
⎞

⎠ .

(3.58)

Term3 The analysis is essentially the same as for that of Term2; therefore, we omit
the details. Ultimately, we find that Term3 is controlled by the right-hand side
of (3.58).

Putting together the estimates (3.47) and (3.58), we have shown that the left-hand
side of (3.34) is �d

‖∇v‖L∞‖∇H
μ,xN
N ,η

N
‖2L2 + ‖∇v‖L∞

N

N∑

j=1

(

‖μ‖L∞η2j + 1

Nηd−2
j

+ η
1− d

2
j

(∫

B(x j ,2η j )

|∇H
μ,xN
N ,η

N
, j (x)|2dx

)1/2 )

.

(3.59)
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By Cauchy–Schwarz in the j-summation,

1

N

N∑

j=1

η
1− d

2
j

(∫

B(x j ,2η j )

|∇H
μ,xN
N ,η

N
, j (x)|2dx

)1/2

≤
⎛

⎝
1

N 2

N∑

j=1

η2−d
j

⎞

⎠

1/2 ⎛

⎝
N∑

j=1

∫

B(x j ,2η j )

|∇H
μ,xN
N ,η

N
, j (x)|2dx

⎞

⎠

1/2

�d

⎛

⎝
1

N 2

N∑

j=1

η2−d
j

⎞

⎠

1/2

‖∇H
μ,xN
N ,η

N
‖L2 +

⎛

⎝
1

N 2

N∑

j=1

η2−d
j

⎞

⎠ , (3.60)

where we use Remark 3.11 to obtain the ultimate line. We choose ηi = ri,ε (recall
definition (3.28)) for every 1 ≤ i ≤ N , so that by estimate (3.30) of Corollary 3.6, we
have that

N−2
N∑

j=1

r2−d
j,ε ≤ Cd

(
FN (xN , μ) + cd

2N
(| ln ε|1d=2 + ε2−d1d≥3) + Cd (1 + ‖μ‖L∞ )ε2

)
.

(3.61)
Similarly, by estimate (3.29) of Corollary 3.6, we also have the bound

‖∇H
μ,xN
N ,r N ,ε

‖2L2 ≤ Cd

(
FN (xN , μ) + cd

2N
(| ln ε|1d=2 + ε2−d1d≥3) + Cd (1 + ‖μ‖L∞ )ε2

)
.

(3.62)

Using that ri,ε ≤ ε tautologically and performing a little algebra, we arrive at the
desired conclusion. ��

4 Proof of main results

In this section, we give the proof of our main results, Theorem 1.1 and Corollary
1.2. We have divided the proof into two subsections. In Sect. 4.1, we establish the
Gronwall-type estimate for the modulated energy HN ,ε(zN (t), u(t)), which proves
Theorem 1.1. In Sect. 4.2 we show how to deduce the weak-* convergence of the
empirical measure from the modulated-energy estimate, which proves Corollary 1.2.

4.1 Modulated energy estimate

We recall from Sect. 1.3 of the introduction that the time derivative of the modulated
energy satisfies the identify

d

dt
HN ,ε(zN (t), u(t)) = Term1 + · · · + Term4, (4.1)
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where the definitions of Term1, . . . ,Term4 are given in (1.27)–(1.30). Through a series
of four lemmas, we estimate each of the Term j , beginning with Term1. Since all of
the estimates are static (i.e., they hold pointwise in time), we shall omit the time
dependence until the end of this subsection. Also, we shall omit the underlying spatial
domain T

d in our function space notation.

Lemma 4.1 For d ≥ 2,

|Term1| �d
‖∇u‖L∞

N

N∑

i=1

|u(xi ) − vi |2. (4.2)

Proof Immediate from taking absolute values. ��
Lemma 4.2 For d ≥ 2,

|Term2| �d
‖∇u‖L∞

ε2

(

FN (xN , 1 + ε2U) + cd
2N

(
| ln ε|1d=2 + ε2−d1d≥3

)

+ Cd(1 + ε2‖∇u‖2L∞)ε2
)

,

(4.3)

for all choices 0 < ε < 1/8

Proof Apply Proposition 3.9 with v = u and μ = 1 + ε2U and use that ‖U‖L∞ �d

‖∇u‖2L∞ . ��
Lemma 4.3 For d ≥ 2 and s > 0, there exists a constant Cd,s > 0 such that

|Term3| ≤ Cd,s‖u‖3
B1+s∞,∞

(

FN (xN , 1 + ε2U) + cd
2N

(
| ln ε|1d=2 + ε2−d1d≥3

)

+ Cd,s(1 + ε2‖∇u‖2L∞)ε2
)1/2

,

(4.4)

for all choices 0 < ε < 1/8.

Proof Applying Proposition 3.8 with test function ϕ = ∇|∇|−2(uU) and measure
μ = 1 + ε2U, we find that

|Term3| �d ε‖∇⊗2|∇|−2(uU)‖L∞ + ‖∇⊗2|∇|−2(uU)‖L2

(

FN (xN , 1 + ε2U)

+ cd
2N

(
| ln ε|1d=2 + ε2−d1d≥3

)
+ Cd(1 + ε2‖U‖L∞)ε2

)1/2

(4.5)
From the definition of the B0∞,1 norm and the fact that ∇⊗2|∇|−2(uU) has Fourier
support away from the origin, it follows that

‖∇⊗2|∇|−2(uU)‖L∞ �d ‖uU‖B0∞,1
�s,d ‖uU‖Bs∞,∞ (4.6)
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for any s > 0. Using Proposition 2.4, it follows that

‖uU‖Bs∞,∞ �s,d ‖u‖3
B1+s∞,∞

. (4.7)

Since ‖ · ‖L2 ≤ ‖ · ‖L∞ by Hölder’s inequality, we see that the proof is complete. ��

Lemma 4.4 For d ≥ 2 and s > 0, there exists a constant Cd,s > 0 such that

|Term4| ≤ Cd,s‖u‖3
B1+s∞,∞

(

FN (xN , 1 + ε2U) + cd
2N

(
| ln ε|1d=2 + ε2−d1d≥3

)

+ Cd,s(1 + ε2‖∇u‖2L∞)ε2
)1/2

.

(4.8)

for all choices 0 < ε < 1/8.

Proof The proof is similar to that of Lemma 4.3. Applying Proposition 3.8 with test
function ϕ = ∂t p and measure μ = 1 + ε2U, we find that

|Term4| �d ε‖∇∂t p‖L∞ + ‖∇∂t p‖L2

(

FN (xN , 1 + ε2U) + cd
2N

(
| ln ε|1d=2 + ε2−d1d≥3

)

+ Cd (1 + ε2‖U‖L∞ )ε2
)1/2

.

(4.9)
By direct computation, one finds that the pressure p satisfies the equation

∂t p = 2∂α|∇|−2(uγ ∂γ u
β∂βu

α) + 2|∇|−2
(
∂α∂β |∇|−2U∂βu

α
)

, (4.10)

where we use the convention of Einstein summation. We now proceed similarly as to
in the proof of the previous lemma to find that

‖∂t∇ p‖L∞ �s,d ‖u‖3
B1+s∞,∞

. (4.11)

Since ‖ · ‖L2 ≤ ‖ · ‖L∞ by Hölder, the proof is complete. ��
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Using the triangle inequality and applying Lemmas 4.1 to 4.4, we find that there
are constants Cd ,Cd,s > 0 such that

HN ,ε(zN (t), u(t)) + cd
2Nε2

(
| ln ε|1d=2 + ε2−d1d≥3

)
+ Cd (1 + ε2‖∇ut‖2L∞ )ε2

ε2

≤ HN ,ε(zN (0), u(0)) + cd
2Nε2

(
| ln ε|1d=2 + ε2−d1d≥3

)
+ Cd (1 + ε2‖∇ut‖2L∞ )ε2

ε2

+
∫ t

0

Cd‖∇u(τ )‖L∞
N

N∑

i=1

|u(τ, xi (τ )) − vi (τ )|2dτ

+
∫ t

0

Cd‖∇u(τ )‖L∞
ε2

(

FN (xN (τ ), 1 + ε2U(τ )) + cd
2N

(
| ln ε|1d=2 + ε2−d1d≥3

)

+ Cd (1 + ε2‖∇u(τ )‖2L∞)ε2
)

dτ

+
∫ t

0
Cd,s‖u(τ )‖3

B1+s∞,∞

(

FN (xN (τ ), 1 + ε2U(τ )) + cd
2N

(
| ln ε|1d=2 + ε2−d1d≥3

)

+ Cd,s(1 + ε2‖∇u(τ )‖2L∞)ε2
)1/2

dτ.

(4.12)
Remembering the definition (1.8) ofHN ,ε(zN , u) and simplifying a little, the preceding
inequality implies

HN ,ε(zN (t), u(t)) + cd
2Nε2

(
| ln ε|1d=2 + ε2−d1d≥3

)
+ Cd (1 + ε2‖∇ut‖2L∞)ε2

ε2

≤ HN ,ε(zN (0), u(0)) + cd
2Nε2

(
| ln ε|1d=2 + ε2−d1d≥3

)
+ Cd (1 + ε2‖∇ut‖2L∞ )ε2

ε2

+Cd,s

∫ t

0
(1 + ‖∇u(τ )‖L∞)

(
HN ,ε(zN (τ ), u(τ )) + cd

2Nε2

(
| ln ε|1d=2 + ε2−d1d≥3

)

+Cd,s(1 + ε2‖∇u(τ )‖2L∞)ε2

ε2

)
dτ

+Cd,sε
2
∫ t

0
‖u(τ )‖6

B1+s∞,∞
dτ, (4.13)

where Cd,s > 0 is a possibly larger constant.
To complete the proof of Theorem 1.1, we now balance the terms in the ultimate

line by choosing ε = N−1/d/8. This choice satisfies the constraint 0 < ε < 1/8
and is such that all terms in the ultimate line are of the same order in N (up to a
logarithmic factor if d = 2). Substituting this choice of ε into the right-hand side of
inequality (4.13) and applying the Gronwall-Bellman lemma, we see that the proof of
the theorem is complete.
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4.2 Convergence of the empirical measure

Finally, we show that the quantitative estimate (1.10) for the modulated energy
HN ,ε(zN , u) implies weak-* convergence of the empirical measure to the limiting
measure (1.5). This then proves Corollary 1.2.

It suffices to show that if ϕ ∈ C(Td ×R
d) is such that for every κ > 0, there exists

a compact set Kκ ⊂ R
d so that

sup
x∈Td ,v∈Kc

κ

|ϕ(x, v)| ≤ κ, (4.14)

then

sup
0≤t≤T

∣
∣
∣
∣
∣

1

N

N∑

i=1

ϕ(xi (t), vi (t)) −
∫

Td
ϕ(x, u(t, x))dx

∣
∣
∣
∣
∣
−−−−→
N→∞ 0. (4.15)

Let χ be a compactly supported mollifier on R
d , and let

ϕη(x, v):=η−2d
∫

Td×Rd
ϕ(x − x ′, v − v′)χ

(
x ′

η

)

χ

(
v′

η

)

dxdv. (4.16)

Since for any compact set K ′ ⊂ R
d , Td × K ′ is compact, we have that

sup
(x,v)∈Td×K ′

|ϕ(x, v) − ϕη(x, v)| −−−→
η→0+ 0. (4.17)

It follows now from the triangle inequality that we can replace ϕ in (4.15) with ϕη

at the expense of picking up a term which can be made arbitrarily small by taking η

arbitrarily small. Sowithout loss of generality, wemay assume thatϕ ∈ C∞(Td×R
d).

With this assumption, we use the triangle inequality to control the left-hand side of
(4.15) by

sup
0≤t≤T

(
1

N

N∑

i=1

|ϕ(xi (t), vi (t)) − ϕ(xi (t), u(t, xi (t)))|

+
∣
∣
∣
∣
∣
∣

∫

Td
ϕ(x, u(t, x))d

⎛

⎝
1

N

N∑

i=1

δxi (t) − 1 − ε2U(t)

⎞

⎠ (x)

∣
∣
∣
∣
∣
∣
+ ε2‖ϕ‖L∞

x,v
‖∇u(t)‖2L∞

)

.

(4.18)
By the mean-value theorem in the velocity variable,

1

N

N∑

i=1

|ϕ(xi (t), vi (t)) − ϕ(xi (t), u(t, xi (t)))| ≤ ‖∇vϕ‖L∞
N

N∑

i=1

|vi (t) − u(t, xi (t))|
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≤ ‖∇vϕ‖L∞
N1/2

⎛

⎝
N∑

i=1

|vi (t) − u(t, xi (t))|2
⎞

⎠

1/2

.

(4.19)

By Proposition 3.8 applied with μ = 1 + ε2U and test function ϕ̃(x):=ϕ(x, u(x)),

∣
∣
∣
∣
∣

∫

Td
ϕ(x, u(t, x))d

(
1

N

N∑

i=1

δxi (t) − 1 − ε2U(t)

)

(x)

∣
∣
∣
∣
∣

� ‖∇ϕ̃‖L∞
(

FN (xN , 1 + ε2U) + cd
2N

(
| ln ε|1d=2 + ε2−d1d≥3

)

+ Cd(1 + ε2‖∇u‖2L∞)ε2
)1/2

,

(4.20)

for some constant Cd > 0 and all choices 0 < ε < 1/8. We optimize by choosing
ε = N−1/d . Note that by the chain rule,

‖∇ϕ̃‖L∞ ≤ ‖∇xϕ‖L∞
x,v

+ ‖∇vϕ‖L∞
x,v

‖∇u‖L∞ . (4.21)

Letting N → ∞ and appealing to Theorem 1.1, a little bookkeeping reveals that all
terms above vanish uniformly on the interval [0, T ]. Therefore, the proof is complete.
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