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Abstract
Ultracold quantumgases of equal-spin fermionswith short-range interactions are often
considered free even in the presence of strongly binding spin-up–spin-down pairs. We
describe a large class of many-particle Schrödinger operators with short-range pair
interactions, where this approximation can be justified rigorously.

Keywords Fermi gas · Short-range interactions · Zero-range limit of many-particle
Schrödinger operators · Contact interactions for fermions · Ultracold quantum gases

1 Introduction

Short-range interactions among equal-spin fermions in ultracold quantum gases are
often neglected, while at the same time the interaction between particles of opposite
spin is modeled by zero-range (i.e., contact) interactions [6, 10, 20]. This can be jus-
tified by the fact that zero-range interactions among spinless (or equal spin) fermions
are prohibited by the Pauli principle (see Theorem 5.1), and by the recent approxima-
tion results for zero-range interactions in terms of short-range potentials [2, 11, 12].
In the present paper, we give a more direct analysis of the weakness of short-range
interactions among spinless fermions in terms of estimates for the resolvent difference
of free and interacting Hamiltonians. Our main results hold for all space dimensions
d ≤ 3.

We consider fermionic N -particle systems in the Hilbert space

H f = ∧N L2(Rd)
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described by Schrödinger operators

Hε = −� − λε

∑

i< j

Vε(xi − x j ), (1)

where Vε(r) = ε−2V (r/ε), V (−r) = V (r), λε > 0 and d ∈ {1, 2, 3}. We are
primarily interested in the case, where the interaction strength of two distinct particles,
in their center-of-mass frame described by

− 2� − λεVε, in L2(Rd), (2)

is independent of ε in the sense that (2) has a ground state energy Eε that is fixed
or convergent Eε → E with limit E < 0. It is well known in the spectral theory of
Schrödinger operators what this means for λε [17, 22]. In fact, ε �→ λε and V can
be chosen, depending on d, in such a way that the resolvent of (2)—and hence the
spectrum of (2)—has a limit as ε → 0. Since E < 0, the limit of (2) describes a
non-trivial point interaction at the origin [1].

Our main result, Theorem 3.1, can be described in simplified form as follows.
Assuming V ∈ L1 ∩ L2(Rd) with V ≥ 0, CV = supr∈Rd V (r)|r |2 < ∞, some
further decay of V in the case d = 1, and

lim sup
ε→0

λε <
d2

CV N
, (3)

we show that

Hε → −� (ε → 0) (4)

in norm resolvent sense. The rate of convergence depends on the size of λε and—to
some extent—on the decay of V (x) as |x | → ∞. Given sufficient decay of V , the
regularity of H2(Rd)-functions, and hence the dimension d, begins to play a role. If
we choose λε as described above, where Eε → E < 0, then condition (3) is satisfied
for all N if d ≤ 2, and for some N ≥ 3 if d = 3. Surprisingly, this particular choice
of λε conspires with the regularity of Sobolev functions in such a way that

‖(Hε + z)−1 − (−� + z)−1‖ = O(ε2) (ε → 0) (5)

with the bound O(ε2) independent of the space dimension d. Another choice for
the coupling constant, consistent with (3) as well, is the one where λε is a positive
constant smaller than d2/CV N . Then, operator (2), upon a rescaling, is proportional to
ε−2 and hence the (negative) binding energy Eε diverges. In this case, the limit ε → 0
amounts to a combined short-range and strong interaction limit, which is interesting
and relevant physically [20].

In summary, we can say that fully spin-polarized Fermi gases in d ≤ 2 with
short-range interactions—the spin-up–spin-down interaction strength being fixed—
are asymptotically free in the limit of zero-range interaction. This is true in dimension
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d = 3 as well for suitable V and small N ≥ 3, depending on V . The result remains
correct even in a suitable combined limit of short-range and strong interaction.

We conclude with some remarks on the literature: For single particles, the approx-
imation of point-like disturbances by short-range potentials is discussed at length and
in rich detail in [1], see also [5]. For systems of N ≥ 3 particles in d ≤ 2 dimensions,
it was recently shown in a series of papers that contact interactions (of TMS-type)
can be approximated by rescaled two-body potentials in the norm resolvent sense of
N -particle Hamiltonians [2, 11–14]. From these results, the mere convergence (4)
can be derived by a reduction in the Hilbert space to antisymmetric wave functions.
This works for the very special choice of λε needed for the approximation of contact
interactions, and for d ≤ 2, only. For d = 3, systems of N ≥ 3 distinct (or bosonic)
particles with two-body short-range interactions are prone to suffer collapse, a phe-
nomenon known as Thomas effect. See Proposition 4.1. In order to avoid this effect,
suitable many-body forces are required [3, 8, 9].

This work is organized as follows. In Sect. 2, we present an explicit estimate of the
norm of (Hε=1 + z)−1 − (−�+ z)−1 in terms of the pair potential V . This estimate is
then used in Sect. 3 to prove (4) and (5). The proofs benefit from the methods and tools
developed in [11, 12]. Section4 gives examples illustrating our results, in particular
for d = 3 and N = 3. Finally, in Sect. 5, we prove the impossibility of fermionic
contact interaction in d ≥ 2. This improves, for fermions, a well-known result about
the impossibility of contact interactions in dimensions d ≥ 4 [23].

2 The resolvent difference

Let H0 = −� inH f and let R0(z) = (H0+ z)−1. We consider N -body Hamiltonians
H = H0 − W inH f with

W =
∑

i< j

Vi j ,

where Vi j denotes multiplication with V (xi − x j ) and V ∈ L1 ∩ L2(Rd) is real-
valued and even. There is no scaling parameter and no coupling constant. We assume
d ≤ 3 and hence H is self-adjoint on D(H) = D(H0) [21]. The result of this section,
Proposition 2.1, is based on a suitable factorizationW = A∗B and an iterated (second)
resolvent identity related to the Konno–Kuroda formula [18]. We start by constructing
the factorization.

Let

Xf := L2
odd(R

d , dr) ⊗ L2(Rd , dR) ⊗
N∧

i=3

L2(Rd , dxi ), (6)

where L2
odd denotes the subspace of odd functions from L2. The integration variables

r and R in (6) correspond to the relative and center-of-mass coordinates of the fermion
positions x1 and x2. This change of coordinates is implemented isometrically by the
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operator K : Hf → Xf given by

(
K ψ

)
(r , R, x3, ..., xN ) := ψ

(
R − r

2
, R + r

2
, x3, ..., xN

)
. (7)

From 〈ϕ, Vi jψ〉 = 〈ϕ, V12ψ〉 and from 〈ϕ, V12ψ〉 = 〈K ϕ,K V12ψ〉 =
〈K ϕ, (V ⊗ 1)K ψ〉, it follows that

W =
(
N

2

)
K ∗(V ⊗ 1)K . (8)

We therefore write V = vu with

v(r) := |V (r)|1/2,
u(r) := J |V (r)|1/2, J := sgn(V ),

and we set

A :=
(
N

2

)1/2

(v ⊗ 1)K , (9)

B :=
(
N

2

)1/2

(u ⊗ 1)K = J A. (10)

Recall that V ∈ L1(Rd) and hence u, v ∈ L2(Rd). The domain D(A) of A : D(A) ⊂
Hf → Xf is determined by the domain of the multiplication operator v ⊗ 1, so it
follows that A and B are densely defined and closed on D(A) ⊃ D(H0). Hence, H
can be rewritten in the form

H = H0 − A∗B. (11)

By an iteration of the resolvent identity, we find

(H + z)−1 = R0(z) + R0(z)WR0(z) + R0(z)W (H + z)−1WR0(z). (12)

Upon setting W = A∗B, Identity (12) can be written in the form

(H + z)−1 = R0(z) + (AR0(z))
∗S(z)BR0(z), (13)

S(z) = 1 + B(H + z)−1A∗. (14)

The following proposition is our tool for proving norm resolvent convergence in the
next section.

Proposition 2.1 Suppose there exists δ > 0 such that H0− (1+δ)W ≥ 0 and suppose
that V ≥ 0, V ≤ 0, or that

∑
i< j |Vi j | ≤ CH0 with some C > 0. Then, H ≥ 0 and,

123
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for all z > 0,

‖(H + z)−1 − (H0 + z)−1‖ ≤ Cδ

(
N

2

)
‖v(−� + z)−1‖2odd,

where v = |V |1/2, and Cδ is a function of C and δ. Here, ‖ · ‖odd denotes the operator
norm in L2

odd(R
d , dr).

Proof Suppose, temporarily, that H ≥ 0 and let z > 0. Then, from (13), the definition
of A, and from ‖(−�r ⊗ 1 + z)K (H0 + z)−1‖ ≤ 1, it follows that

‖(H + z)−1 − R0(z)‖ ≤
(
N

2

)
‖v(−� + z)−1‖2odd‖S(z)‖.

It remains to prove H ≥ 0 and ‖S(z)‖ ≤ Cδ under the various assumptions on V .
In the case V ≤ 0, we have J = −1, B = −A, and hence, H = H0 + A∗A ≥

A∗A ≥ 0. By Lemma 2.2, it follows that ‖S(z)‖ ≤ 2.
In the case V ≥ 0, we have J = 1, B = A, and hence the assumption H0 − (1 +

δ)W ≥ 0 implies that

H ≥ δW = δA∗A.

By Lemma 2.2, it follows that A(H + μ)−1A∗ ≤ 1/δ, and hence ‖S(z)‖ ≤ 1 + δ−1,
by (14).

It remains to consider the case where V changes sign. The assumption H0 − (1 +
δ)W ≥ 0 implies that

H = δ

1 + δ
H0 + 1

1 + δ
(H0 − (1 + δ)W ) ≥ δ

1 + δ
H0.

Combining this with the assumption on |V |, that is, with CH0 ≥ ∑
i< j |Vi j | = A∗A,

we find that

H ≥ δ

1 + δ

1

C
A∗A.

This, by Lemma 2.2, implies A(H + μ)−1A∗ ≤ C(1 + δ)/δ and the desired bound
on ‖S(z)‖ follows from (14). ��
Lemma 2.2 Let H , A be any two closed operators in a Hilbert space, with H∗ = H ≥
0 and D(A) ⊃ D(H). If H ≥ λA∗A for some λ > 0, then D(A) ⊃ D(H1/2) and for
all μ > 0,

A(H + μ)−1A∗ ≤ 1

λ
.
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Proof The assumption means that ‖(H +μ)1/2ψ‖2 ≥ λ‖Aψ‖2 forμ > 0 and allψ ∈
D(H). By an approximation argument, this inequality extends to all ψ ∈ D(H1/2),
and D(A) ⊃ D(H1/2) follows from the closedness of A. Upon rewriting the inequality
in terms of ϕ = (H + μ)1/2ψ ∈ H f , the assertion follows. ��

3 The resolvent convergence

We now apply the results from the previous section to Schrödinger operators with
rescaled two-body potentials, that is

Hε = −� − λε

∑

i< j

Vε,i j , (15)

where λε > 0 and Vε(r) = ε−2V (r/ε). The Schrödinger operator ε2Hε is unitarily
equivalent to Sλ := −� − λ

∑
i< j Vi j with λ = λε. We therefore define

λmax := sup{λ ≥ 0 | Sλ ≥ 0}. (16)

Note that Sλ ≥ 0 for all λ ≤ λmax. This follows from the fact that Eλ := inf σ(Sλ) as
a function of λ is concave (hence continuous) and E0 = 0.

For Theorem 3.1 to be non-void, we need that λmax > 0. This can be achieved, e.g.,
by assuming that

CV := sup
x∈Rd

V (x)|x |2 < ∞.

Then, λmax ≥ d2/(CV N ) > 0, by the Hardy inequality for fermionic wave functions
ψ ∈ H f [15],

∑

i< j

∫ |ψ(x1, . . . , xN )|2
|xi − x j |2 dx ≤ N

d2
‖∇ψ‖2. (17)

Statement as well as proof of Theorem 3.1 depends on the regularity of H2-Sobolev
functions. Explicitly, we use the embedding H2(Rd) ↪→ C0,s(Rd), valid for s ∈ Id ,
where I1 = [0, 1], I2 = [0, 1) and I3 = [0, 1/2], and we use Lemma 3.2, which
improves the embedding in the case d = 2. Here, C0,s(Rd) denotes the space of
continuous functions that are uniformly Hölder continuous of exponent s.

Theorem 3.1 Suppose that V ≥ 0, V ≤ 0, or that supx∈Rd |V (x)||x |2 < ∞. If
λ0 := lim supε→0 λε < λmax, then Hε ≥ 0 for ε small enough, and for all z > 0,

‖(Hε + z)−1 − (H0 + z)−1‖ = o(λεε
d−2) (ε → 0). (18)

Moreover, the following is true:
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(a) If
∫ |V (r)||r |2s dr < ∞ for some s ∈ Id , then

‖(Hε + z)−1 − (H0 + z)−1‖ = O(λεε
d−2+2s) (ε → 0).

(b) If d = 2 and
∫ |V (r)||r |2| log |r || dr < ∞, then

‖(Hε + z)−1 − (H0 + z)−1‖ = O(λεε
d | log ε|) (ε → 0).

In the situation described in the Introduction, where inf σ(−2� − λεVε) has a
limit E < 0, the bounds (a) and (b) reveal a surprising interplay between λε and the
(optimal) regularity of H2(Rd)-functions: if, depending on d, we choose λε = O(ε),
λε = O(1/| log ε|), and λε = O(1) for d = 1, d = 2, and d = 3, respectively, then,
for all d ∈ {1, 2, 3},

‖(Hε + z)−1 − (H0 + z)−1‖ = O(ε2), (ε → 0)

provided V decays fast enough, e.g., as in the hypothesis of (b), and N is small if
d = 3.

Remarks 1. Part (a) of the theorem shows that, for a large class of potentials,

Hε → H0 (ε → 0) (19)

in the norm resolvent sense, provided that λεε
d−2+2s → 0 as ε → 0. This is

not true for the Hamiltonians H̃ε defined by (15) on the enlarged Hilbert space
L2(RNd), as shown in the next section.

2. For the convergence (19) in norm resolvent sense to hold, it is necessary that
inf σ(Hε) → inf σ(H0) = 0. Therefore, the assumption lim supε→0 λε < λmax
in Theorem 3.1 cannot be relaxed significantly. Strong resolvent convergence, by
contrast, has much weaker spectral implications and hence—given some decay of
V—much less is needed of λε, see Proposition 3.3.

3. A weaker result, similar to Theorem 3.1, could be derived from [11, 12]. Indeed,
for suitable λε we know from [11, 12] that Hε → H in norm resolvent sense,
where H = −� onHf. Information on the rate of convergence can also be found
in these papers.

Proof We are going to apply Proposition 2.1 to the Hamiltonian (15), and we assume
that V changes sign, the other cases being easier. Due to the unitary equivalence of
ε2Hε and Sλε , the hypotheses of Proposition 2.1 are equivalent to

H0 − (1 + δ)λε

∑

i< j

Vi j ≥ 0 (20)

CH0 − λε

∑

i< j

|Vi j | ≥ 0 (21)

123



1 Page 8 of 18 M. Griesemer, M. Hofacker

for some δ,C > 0. Both (20) and (21) are true for ε small enough. This follows from
λ0 = lim supε→0 λε < λmax, from supx∈Rd |V (x)||x |2 < ∞, and from the Hardy
inequality for fermions (17). Hence, by Proposition 2.1, for ε > 0 small enough,

‖(Hε + z)−1 − (H0 + z)−1‖ ≤ Cδ

(
N

2

)
λεε

d−2‖vε(−� + z)−1‖2odd, (22)

where vε(x) := ε−d/2|V (x/ε)|1/2.
By the Sobolev embedding H2(Rd) ↪→ C0,s(Rd), valid for s ∈ Id , the elements

ψ ∈ H2(Rd) ∩ L2
odd(R

d) are Hölder continuous (of exponent s) odd functions. It
follows that ψ(0) = 0 and that

|ψ(x)| = |ψ(x) − ψ(0)| ≤ Cs‖ψ‖H2 |x |s . (23)

Therefore, for all ψ ∈ H2(Rd) ∩ L2
odd(R

d),

‖vεψ‖2 ≤ C2
s ‖ψ‖2H2

∫
|vε(x)|2|x |2s dx

= ε2sC2
s ‖ψ‖2H2

∫
|V (x)||x |2s dx . (24)

This is true for all s ∈ Id and, combined with (22), it proves statement (a) of the
theorem. To prove (b), we use Lemma 3.2 in (23) (rather than H2 ↪→ C0,s) and then
(24) becomes Cε2| log ε| ∫ |V (x)||x |2(1+| log |x ||) dx , where the integral is finite by
the assumptions on V .

It remains to prove (18). Equation (24) with s = 0 implies that ‖vε(−� +
z)−1‖odd = O(1), which can be improved as follows: let χk denote the character-
istic function of the ball |x | ≤ k in Rd and let (vχk)ε = vεχεk . Then, by (24),

‖(vχk)ε(−� + z)−1‖2odd = O(ε2s) = o(1) (ε → 0) (25)

for any s > 0 in Id . On the other hand,

‖(v − vχk)ε(−� + z)−1‖HS ≤ C‖v − vχk‖ = o(1) (k → ∞) (26)

uniformly in ε > 0, where HS refers to Hilbert–Schmidt norm. The combination of
(22), (25) and (26) proves (18) and concludes the proof of the theorem. ��

In the proof of Theorem3.1, we have used the following lemma,which can probably
be found in the literature, but we are not aware of suitable reference.

Lemma 3.2 For all u ∈ H2(R2) and all x, y ∈ R
2, y �= 0, we have

|u(x + y) − u(x)| ≤ 1

2
√

π
|y|(2 + | log |y||)1/2

(
‖�u‖2 + ‖∇u‖2

)1/2
.
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Remark By our method of proof, this inequality can be generalized to derivatives ∂αu,
|α| ≤ k, of functions u ∈ Hs(Rn) with s − (n/2) = k + 1, s ∈ R and k ∈ N0.

Proof We first note that u ∈ H2(R2) implies that û ∈ L1(R2), and hence, for all
x ∈ R

2,

u(x) = 1

2π

∫

R2
û(p) exp(i px) dp.

Therefore, by Cauchy–Schwarz,

2π
|u(x + y) − u(x)|

|y| ≤
∫

R2

| exp(i py) − 1|
|y| |̂u(p)| dp

≤ I (y)1/2
(
‖�u‖2 + ‖∇u‖2

)1/2
, (27)

where

I (y) :=
∫

R2

| exp(i py) − 1|2
|y|2

1

|p|4 + |p|2 dp.

To estimate the integral I (y), we may assume that y = (|y|, 0). Then, upon the
substitution q = p|y|, we find that, for any Q > 0,

I (y) =
∫

R2

| exp(iq1) − 1|2
|q|4+|y|2|q|2 dq ≤

∫

|q|≤Q

q21
|q|4 + |y|2|q|2 dq+

∫

|q|>Q

4

|q|4 dq, (28)

where | exp(iq1) − 1| ≤ |q1| and | exp(iq1) − 1| ≤ 2 was used, respectively. Both
integrals on the right of (28) can be computed explicitly. For the first one, we obtain

∫

|q|≤Q

q21
|q|4 + |y|2|q|2 dq = 1

2

∫

|q|≤Q

1

|q|2 + |y|2 dq

= π

2
log

(
1+ Q2

|y|2
)

≤π

(
| log |y||+| log Q| + 1

2
log(2)

)
,

(29)

where the inequality follows from log(1 + t) ≤ | log t | + log 2, valid for all t > 0.
The second integral on the right side of (28) equals 4π/Q2. Choosing Q = 2

√
2, we

find from (28) and (29) that

I (y) ≤ π(| log |y|| + c)

with c = 1
2 + log 4 < 2. This concludes the proof. ��
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We conclude this section with the proposition announced in Remark 2. It is a
consequenceofTheorem5.1 concerning the essential self-adjointness of theLaplacian.
In all the following � = R

Nd \ Γ , where

Γ :=
⋃

i< j

{
x = (x1, . . . , xN ) ∈ R

Nd | xi = x j
}
. (30)

Furthermore, C∞
0 (�) := {ψ ∈ C∞

0 (RNd) | suppψ ⊂ �}.
Proposition 3.3 Let d ≥ 2 and suppose that V ∈ L2(Rd). Suppose there exists s ≥ 0
such that

∫
V (r)2|r |2s dr < ∞ and lim supε→0 λε εs+d/2−2 < ∞. Then, Hε → H0

in the strong resolvent sense as ε → 0.

Proof In view of ‖(Hε+i)−1‖ = 1 = ‖R0(i)‖ it suffices to prove that (Hε+i)−1ψ →
R0(i)ψ forψ from a dense subset ofH f . By Theorem 5.1, the set of allψ = (H0+i)ϕ
with ϕ ∈ C∞

0 (�) ∩ Hf is dense inHf, and for such ψ ,

‖(Hε + i)−1ψ − R0(i)ψ‖ ≤
∥∥∥λε

∑

i< j

Vε,i jϕ

∥∥∥ ≤ λε

(
N

2

)
‖Vε,12ϕ‖,

where the (anti-)symmetry of ϕ was used in the second inequality. Let ϕ̃ := K ϕ, that
is

ϕ̃(r , R, x ′) = ϕ(R − r/2, R + r/2, x ′),

where x ′ = (x3, . . . , xN ). Like ϕ, ϕ̃ is compactly supported and hence supp ϕ̃ ⊂
R
d × BN−1 for some ball BN−1 ⊂ R

d(N−1). It follows that, for any c > 0,

ε4−d‖Vε,12ϕ‖2 =
∫

BN−1

dR dx ′
∫

|r |≤c

|V (r)|2 ∣∣ϕ̃(εr , R, x ′)
∣∣2 dr

+
∫

BN−1

dR dx ′
∫

|r |>c

|V (r)|2 ∣∣ϕ̃(εr , R, x ′)
∣∣2 dr . (31)

By assumption on ϕ, ϕ̃(r , R, x ′) = 0 for r < dist(suppϕ, Γ ). This means that the
first summand vanishes for εc < dist(suppϕ, Γ ) and that

∣∣ϕ̃(r , R, x ′)
∣∣ ≤ C(ϕ̃, s)|r |s

for each s ≥ 0. It follows that

λε‖Vε,12ϕ‖ ≤ λεε
s+d/2−2C(ϕ̃, s)|BN−1|1/2

(∫

|r |>c
|V (r)|2 |r |2sdr

)1/2

,
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On the weakness of short-range interactions in Fermi gases Page 11 of 18 1

where the integral can be made arbitrarily small by choosing c large. By assumption,
lim supε→0 λεε

s+d/2−2 < ∞; hence, it follows that limε→0 λε‖Vε,12ϕ‖ = 0, and the
proof is complete. ��

4 Examples and discussion

To put Theorem 3.1 into a broader perspective and to demonstrate its dependence on
the Pauli principle, we now view Hε as the restriction

Hε = H̃ε |̀H f ,

where H̃ε denotes the Schrödinger operator defined by expression (15) on the enlarged
Hilbert space L2(RNd). We shall give choices for λε and V , where H̃ε, in contrast to
Hε, has a limit H̃ describing non-trivial contact interactions or no limit at all.

In the cases d = 1 and d = 2 we choose, for simplicity, a two-body potential
V ∈ L∞(Rd) with compact support and

∫
V (r) dr = 1. Suppose further that

λε = gε > 0 if d = 1,

λ−1
ε = | log(ε)|

4π
+ a if d = 2.

Then, λmax > 0 and λ0 = lim supε→0 λε = 0. So, the hypotheses of Theorem 3.1
are satisfied and hence Hε → H0 in norm resolvent sense. On the other hand, by
[11, 12], H̃ε → H̃ , where H̃ describes non-trivial contact interactions. That is, H̃
is a self-adjoint extension of −�|̀C∞

0 (RNd\Γ ) distinct from −�. See (30) for the
definition of Γ .

We now turn to the more interesting case of N particles in d = 3 dimensions. In
the following, N is exhibited in the notation: we write HN ,ε for Hε and H̃N ,ε for H̃ε.
For the coupling constant and the two-body potential, we choose λε = 2 and

V (r) :=
⎧
⎨

⎩

2

|r | − 1 if |r | ≤ 1

0 if |r | > 1.
(32)

Then, 0 ≤ V (r) ≤ |r |−2 and hence CV = sup V (r)|r |2 ≤ 1. It follows that

λ0 = lim sup
ε→0

λε = 2

λmax ≥ d2

NCV
≥ 9

N
.

Thus, for N ≤ 4 we have λ0 < λmax and hence, by Theorem 3.1, HN ,ε → H0 in
norm resolvent sense. On the other hand, concerning H̃N ,ε the following can be said:

Proposition 4.1 With the above notations, in the case d = 3 we have
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(a) For N = 2, H̃2,ε → H̃2 in norm resolvent sense, where H̃2 is a non-trivial
self-adjoint extension of −�|̀C∞

0 (R6\Γ ).
(b) For each N ≥ 3, there exists a constant CN < 0 such that

σ(H̃N ,ε) = [CN ε−2,∞).

Remark The divergence of the ground state energy established in Part (b) is known as
Thomas effect [24].

Proof With respect to center-of-mass and relative coordinates R = (x1 + x2)/2 and
r = x2 − x1, the Schrödinger operator for N = 2 takes the form

H̃2,ε = −�R/2 ⊗ 1 + 1 ⊗ hε

hε = −2�r − λεVε.

By construction of V , h = −� − V ≥ 0 and z = 0 is not an eigenvalue but a
resonance energy. This means that the Birman–Schwinger operator V 1/2(−�)−1V 1/2

has the (simple) eigenvalue 1, but the corresponding solution ψ of (−� − V )ψ = 0
fails to be square-integrable. Explicitly, in the present case, ψ(x) = e−|x | for |x | ≤ 1
and ψ(x) = e−1/|x | for |x | > 1. These properties of V imply that hε → −2�0
in norm resolvent sense, as ε → 0, where �0 denotes a self-adjoint extension of
�|̀C∞

0 (R3\{0}) that is distinct from the free Laplacian [1]. Since −�R/2 ≥ 0, it
follows that H̃2,ε → −�R/2 ⊗ 1 + 1 ⊗ (−2�0) in norm resolvent sense, which
proves assertion (a) (for details see [14]).

In the case (b), we use that the Schrödinger operator H̃N ,ε is unitarily equivalent
to ε−2 H̃N ,ε=1. For N = 3, the presence of a zero-energy resonance in the two-body
Hamiltonian leads to non-empty (in fact, infinite) discrete spectrum in the three-particle
Hamiltonian with center-of-mass motion removed [7, 16, 19]. This is the Efimov
effect. It means, in particular, that C3 := inf σ(H̃3,ε=1) < 0. By the HVZ theorem,
CN := inf σ(H̃N ,ε=1) ≤ C3 for all N ≥ 3. ��

5 Absence of contact interactions for d ≥ 2

In space dimensions d ≥ 2, zero-range interactions among equal-spin fermions are
prohibited by the Pauli principle. This is true in the very strong form of Theorem 5.1.
For a related result in the physics literature concerning two fermions in d = 2, see [4].

Let Γi j := {x = (x1, . . . , xN ) ∈ R
Nd | xi = x j } and �i j = R

Nd\Γi j . Recall from
Sect. 3 that Γ = ∪i< jΓi j and

� = R
Nd\Γ =

⋂

i< j

�i j .
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Theorem 5.1 If d ≥ 2, then C∞
0 (�) ∩ H f is dense in H2(RNd) ∩ H f with respect

to the norm of H2. This means that

H2
0 (�) ∩ H f = H2(RNd) ∩ H f ,

and it implies that the Laplacian� inH f is essentially self-adjoint on C∞
0 (�)∩H f .

Remarks 1. The main point of Theorem 5.1 is that elements of C∞
0 (�) vanish in

an entire neighborhood of the collision set Γ . The elements of C∞
0 (RNd) ∩ H f

vanish on Γ too. But the weaker statement, that C∞
0 (RNd) ∩ H f is dense in

H2(RNd) ∩ H f , is true for all d ≥ 1 and it easily follows from the fact that
C∞
0 (RNd) is dense in H2(RNd).

2. For d = 1, the assertion of the theorem is false. To see this, consider a sequence
(ψn) in C∞

0 (�) with ψn → ψ in the norm of H2. Then, ∇ψn → ∇ψ in the norm
of H1. Since the trace operators Ti j : H1(RN ) → L2(Γi j ) are continuous, and
since, clearly, ∇ψn = 0 on all hyperplanes Γi j , it follows that

∇ψ = 0 on all Γi j , (33)

or, more precisely, Ti j∇ψ = 0 in L2(Γi j ). We now give an example of an anti-
symmetric wave function ψ ∈ H2(RN ) without property (33), which proves that
C∞
0 (�) ∩ H f is not dense in H2(RN ) ∩ H f .

Let |x |2 := ∑N
i=1 x

2
i and

ψ(x1, . . . , xN ) := e−|x |2 ∏

i< j

(x j − xi ).

Apart from the Gaussian, this is a Vandermonde determinant. This shows that ψ

is antisymmetric. On the hyperplane Γ12, we have

∂ψ

∂x1

∣∣∣
x1=x2

= −e−|x |2
N∏

j=3

(x j − x1)
∏

2≤i< j

(x j − xi ),

which shows that ∇ψ does not vanish on Γ12.

The proof of Theorem 5.1 is based on the following lemmas, Lemma 5.2 being the
heart of it.

Lemma 5.2 If d ≥ 2, then there exists a sequence un ∈ C∞
0 (Rd , [0, 1])with un(x) = 1

if |x | ≤ 1/n, and, in the limit n → ∞, diam(supp un) → 0 as well as

∫
|∇un(x)|2 dx → 0 (34)

∫
|x |2|�un(x)|2 dx → 0. (35)
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Proof In the case d ≥ 3, we may choose any function u ∈ C∞
0 (Rd , [0, 1]) with

u(x) = 1 for |x | ≤ 1 and define un(x) = u(nx). Then, with the substitution y = nx ,
in the limit n → ∞,

∫
|∇un(x)|2 dx =

∫
|∇u(y)|2 dy · n2−d → 0,

∫
|x |2|�un(x)|2 dx =

∫
|y|2|�u(y)|2 dy · n2−d → 0.

In the case d = 2, we define un(0) := 1 and for |x | > 0 we set

un(x) := g

(
log(n|x |)
log log n

)
,

where g ∈ C∞(R, [0, 1]) with

g(s) :=
{
1 s ≤ 0

0 s ≥ 1.

It follows that un(x) = 1 for |x | ≤ 1/n, un(x) = 0 for |x | ≥ (log n)/n and hence that
un ∈ C∞

0 (Rd , [0, 1]). Moreover,

1

2π

∫
|∇un(x)|2 dx =

∫ (log n)/n

1/n
g′

(
log(nr)

log log n

)2 dr

r
· 1

(log log n)2

=
∫ 1

0
g′(s)2 ds · 1

log log n
.

On the other hand, using that on radially symmetric functions

r2� =
(
r

∂

∂r

)2

,

we find

1

2π

∫
|x |2|�un(x)|2 dx =

∫ (log n)/n

1/n

∣∣∣∣∣

(
r

∂

∂r

)2

g

(
log(nr)

log log n

)∣∣∣∣∣

2
dr

r

=
∫ (log n)/n

1/n
g′′

(
log(nr)

log log n

)2 dr

r
· 1

(log log n)4

=
∫ 1

0
g′′(s)2 ds · 1

(log log n)3
.

This concludes the proof. ��

123



On the weakness of short-range interactions in Fermi gases Page 15 of 18 1

Lemma 5.3 Suppose that d ≥ 2 and let ψ ∈ C∞
0 (RNd) with ψ = 0 on Γ . Then, for

each pair i, j ∈ {1, . . . , N }, i �= j and for each ε > 0, there exists ψε ∈ C∞
0 (�i j )

with suppψε ⊂ suppψ , ψε = 0 on Γ , and

‖(−� + 1)(ψ − ψε)‖ < ε.

Proof We may assume that (i, j) = (1, 2) and we introduce the relative and center-
of-mass coordinates

r := x2 − x1, R := 1

2
(x1 + x2).

Then,

� = 2�r + 1

2
�R + �x ′ , (36)

where x ′ := (x3, . . . , xN ). Let ψ ∈ C∞
0 (RNd) with ψ = 0 on Γ and let

ψn(x1, . . . , xN ) = ψ(x1, . . . , xN ) · (1 − un(x2 − x1))

where un is given by Lemma 5.2. In the following un also denotes the function
(x1, . . . , xN ) �→ un(x2 − x1). Then, ψ − ψn = ψun and hence

‖(−� + 1)(ψ − ψn)‖ ≤ ‖ψun‖ + ‖�(ψun)‖.

Clearly ‖ψun‖ → 0 because |ψun| ≤ |ψ | and because ψun → 0 pointwise as
n → ∞. On the other hand, using (36) and the fact that un depends on r only,

�(ψun) = 2�r (ψun) + 1

2
(�Rψ)un + (�x ′ψ)un

where the first term equals

2�r (ψun) = 2(�rψ)un + 4(∇rψ)(∇r un) + 2ψ�r un .

By the pointwise convergence un → 0, as explained above, (�rψ)un, (�Rψ)un and
(�x ′ψ)un have vanishing L2-norm in the limit n → ∞. It remains to show that

‖∇rψ · ∇r un‖ → 0 (n → ∞)

‖ψ · �r un‖ → 0 (n → ∞).

From Lemma 5.2, we know that

‖∇rψ · ∇r un‖2 ≤
∫

|∇rψ(r , R, x ′)|2|∇un(r)|2 drdRdx ′
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≤ sup
r∈Rd

∫
|∇rψ(r , R, x ′)|2 dRdx ′ · ‖∇un‖2 → 0 (n → ∞).

For ψ�un , we use that ψ(0, R, x ′) = 0 and hence that

ψ(r , R, x ′) =
∫ 1

0
(∇rψ)(tr , R, x ′) · r dt .

It follows that
∫

|ψ�un|2 drdRdx ′

≤
∫

drdRdx ′
(∫ 1

0
|∇rψ(tr , R, x ′)|2 dt

)
|r |2|�un(r)|2

≤ C
∫

|r |2|�un(r)|2 dr → 0, (n → ∞)

by Lemma 5.2, because

C := sup
r∈Rd

∫
dRdx ′

∫ 1

0
|∇rψ(tr , R, x ′)|2 dt < ∞.

��
Proof of Theorem 5.1 For given ψ ∈ H2(RNd) ∩ H f and ε > 0 it suffices to find
φε ∈ C∞

0 (�) with ‖ψ − φε‖H2 < ε. Let Pf : L2(RNd) → L2(RNd) denote the
orthogonal projection onto H f . Then, ψε := Pf φε belongs to C∞

0 (�) ∩ H f and

‖ψ − ψε‖H2 = ‖Pf (ψ − φε)‖H2 ≤ ‖ψ − φε‖H2 < ε

because Pf is an orthogonal projection in H2 (if suitably normed). To find φε, we
may assume that ψ ∈ C∞

0 (RNd) ∩ H f , which is dense in H2(RNd) ∩ H f , and we
use Lemma 5.3 repeatedly. That is, we use {σk | k = 0, . . . , n} to denote the set of
n := (N

2

)
pairs (i, j), we define �0 := R

Nd and

�k := ∩k
j=1�σ j , k = 1 . . . n.

Then, we construct smooth functions (γk)
n
k=0 recursively with γ0 := ψ , supp(γk) ⊂

supp(γk−1) ∩ �k , γk = 0 on Γ , and ‖(−� + 1)(γk − γk−1)‖ < ε/n. This is achieved
with the help of Lemma 5.3. The function φε := γn has the desired properties. ��
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