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Abstract
This article includes a short survey of selected averaging and dimension reduction
techniques for deterministic fast–slow systems. This survey includes, among others,
classical techniques, such as theWKB approximation or the averagingmethod, as well
as modern techniques, such as the GENERIC formalism. The main part of this article
combines ideas of some of these techniques and addresses the problem of deriving a
reduced system for the slow degrees of freedom (DOF) of a fast–slow Hamiltonian
system. In the first part, we derive an asymptotic expansion of the averaged evolution
of the fast–slow system up to second order, using weak convergence techniques and
two-scale convergence. In the second part, we determine quantities which can be
interpreted as temperature and entropy of the system and expand these quantities up
to second order, using results from the first part. The results give new insights into the
thermodynamic interpretation of the fast–slow system at different scales.
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1 Introduction

A common strategy for analysing how physical properties of macroscopic objects
change over time is to model the system on the microscopic scale and then derive
macroscopic information, through either analytical considerations or computer simu-
lations.

This method hasmany advantages. It is conceptually easy to develop amodel on the
microscopic scale that describes amacroscopic object to high accuracy. Thismodel can
then be analysed under different circumstances, either analytically or with computer
simulations, often under conditions that allow insight into the object’s propertieswhich
cannot be derived based on real-world experimental data alone. Moreover, modelling
the physical properties of a macroscopic object based on well-established physical
laws on the microscopic scale allows to control and analyse its most fundamental
components, which are often more mathematically sound than phenomenologically
derived laws on themacroscopic scale. Finally, provided themodel on themicroscopic
scale reflects the actual physical properties to high accuracy, the derived data contain
details of the object of the highest fidelity. This can in principle be used to extract and
analyse any desired physical properties on the macroscopic scale.

However, this method has some disadvantages. One often models macroscopic
objects by means of their constituent particles as large-scale interacting particle sys-
tems, where the known physical properties on the microscopic scale are given by
intermolecular forces. Thus, even for small macroscopic objects, the number of par-
ticles that need to be modelled in order to obtain an accurate representation of the
object is typically very large. This inhibits the analytical evaluation of these models
dramatically, except for a few cases. Consequently, such models are usually analysed
using computer simulations. Here, additionally, the maximal step size in numerical
integration schemes that still ensures numerical stability is usually very small. Both
factors combined pose a huge obstacle in the scalability of simulations of interacting
particle systems in time and in space.

The goal is thus to develop mathematical methods that reduce the complexity of a
given large-scale interacting particle system on themicroscopic scale in a rigorousway
so that the desired macroscopic properties of the system are preserved. This process
would free up resources that can be used to further scale the simulation in time as well
as in space.

In this article, we start by summarising some of the mathematical methods that are
used to reduce the complexity of deterministic systems on the microscopic scale and
will show how they preserve important information on the macroscopic scale. These
mathematical methods usually include some averaging procedures (coarse-graining
techniques) or dimension reduction techniques. In the latter case, thermodynamic
considerations often play an important role in the analysis of these systems. By con-
struction, thesemathematicalmethods only givemacroscopic insight into the dynamics
of the system. Therefore, in the main part of this article, we build on some of these
mathematical methods and analyse the macroscopic properties of a simple fast–slow
mechanical system in more detail by expanding the dynamics of the system to second
order and interpreting it from a thermodynamic point of view.
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1.1 Review of some averaging and dimension reduction techniques

We focus on models which describe a macroscopic system by deterministic dynamics
on the microscopic scale. This microscopic dynamics can be modelled in time and/or
in space. Typical for these models is the presence of a small scale parameter ε. It rep-
resents the ratio of the fast dynamics on the microscopic scale and the slow dynamics
on the macroscopic scale. A recurrent approach to study these fast–slow systems is to
consider the limit ε → 0 and thus derive an average or reduced model which is, in
some sense, oblivious to the small-scale motion in the system. These procedures can
broadly be classified into three different categories: non-projective, projective, and
phenomenologically derived continuum mechanical methods.

While phenomenologically derived continuummechanicalmethods aim to describe
amacroscopic systemas a continuous objectwithout resorting to themicroscopic scale,
non-projective and projective methods aim to describe a macroscopic system by its
most prominent properties that materialise in terms of some descriptive variables by
studying the system on themicroscopic scale. In general, projectivemethods start from
a large-scale microscopic system and apply mathematical transformations to extract
information about a handful of variables chosen a priori such as volume, pressure,
or density. Then the evolution of the microscopic system is largely confined to a
low-dimensional submanifold, on which it can be described by these macroscopic
variables. Non-projective methods often aim to describe the dynamics of the system
by systematically deriving the most dominant motion of the whole system. Here, the
dynamics of the whole system is reduced to the dynamics of a less complex system.
In contrast to projective methods, the resulting variables are not necessarily given but
appear in the process, e.g. through averaging, and can sometimes be given a physical
interpretation a posteriori, as shown in this article for a model problem.

Under the non-projective methods, the WKB method is a classic and well-known
representative. As described, for instance, in [1, 2], it is often used in the analysis of
quantum mechanical systems. It can be used to calculate an approximate solution to
the stationary Schrödinger equation, which is a second-order differential equation of
the form

ε2φ′′(x) = Q(x)φ(x), (1)

complemented with some initial conditions, where ε is a small scale parameter and
Q : � → R is related to the system’s potential. The WKB method consists of an
explicit ansatz for the oscillatory part of the solution, which is necessary to analyse
the dynamics for ε > 0. Equation (1) can approximately be solved with the WKB
ansatz

φ(x) ∼ exp

[
1

ε

∞∑
n=0

εn Sn(x)

]
for ε → 0.

By comparing powers of ε one derives a sequence of equations which determine
S0, S1, . . . and thus a representation of the solution at different scales.
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The averaging method is an alternative representative of the class of non-projective
methods. It can be used to derive the slow dynamics of solutions to ordinary differential
equations if the evolution of the system’s DOF can be decomposed into the form

ẏ = f (y, z), ż = ε−1g(y, z), (2)

with y(0) = y∗ and z(0) = z∗, where y : R → R
n describes the slow and z : R → R

m

the fast degrees of freedom. Ingeneral, one is only interested in the dynamics of y,while
z is introduced to accurately model the dynamics on the microscopic scale. Systems of
this kind can be used to model, for example, the evolution of molecules in the united
atom representation [3–5] where the parameter ε represents the scale ratio between
the fast molecular vibrations and the slow conformal motion of the molecule, or the
development of long- and short-term weather phenomena [6, 7], where ε represents
the scale ratio between the fast change of local weather phenomena and the slow
development of the global climate.

A natural choice to reduce the complexity of the model (2) is to average out the fast
dynamics in the system. If the function f is periodic in z with period T , then under
very mild assumptions, one can consider the averaged system

˙̄y = f̄ (ȳ), where f̄ (·) = 1

T

∫ T

0
f (·, s) ds, (3)

with ȳ(0) = y∗. It can be shown (see, for example, [8–10]) that ȳ remains close to y
for timescales of order O(1). Thus, system (3) provides for a sufficiently small time
interval an approximate but less complex description of the dynamics of y.

If the fast DOF are deterministic but sufficiently “chaotic”, the scaled difference
ε−1/2(y − ȳ) can be interpreted in the limit ε → 0 as Gaussian white noise, which
can be analysed using probabilistic tools such as the central limit theorem or large
deviation principles [6, 7].

Another closely related non-projectivemethodology is thehomogenisation of differ-
ential equations [11–13]. Other than the averaging method, which is a coarse-graining
method in time, the homogenisation method is a coarse-graining method in space. The
idea is to simplify, for example, an elliptic partial differential equation of the type

− ∇ · (A(x/ε)∇uε(x)) = f (x) for x ∈ �, uε = 0 for x ∈ ∂�, (4)

with f ∈ L2(�), � ⊂ R
n , where y 
→ A(y) ∈ R

n×n is 1-periodic. By applying a
two-scale ansatz of the form

uε(x) = u0(x, ε−1x) + εu1(x, ε−1x) + O(ε2), (5)

it can be shown (see, for example, [10]) that u0 solves the homogenised partial differ-
ential equation

− ∇ · ( Ā∇u0(x)) = f (x) for x ∈ �, u0 = 0 for x ∈ ∂�, (6)
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for a computable homogenised conductivity tensor Ā. Without the ε-dependent con-
ductivity tensor A(x/ε), system (6) is less complex and thus its solution u0 can be
easier derived than uε, the solution to the original system (4).

Other non-projective methods comprise the perturbation theory of integrable
Hamiltonian systems [8] or multiple-scale asymptotics [14]; modern presentations
for several of these approaches include [10, 15].

The Mori–Zwanzig framework [16, 17] represents an example for a projective
method. It has been extensively studied by Chorin et al. under the name of “optimal
prediction”, for example, in [18–20]. Other relevant references can be found in [21].
The Mori–Zwanzig framework provides a way to study the reduced system for y by
rewriting the deterministic system (2) into a formwhich resembles a general Langevin
equation, where the dynamics of z is transformed into the stochastic component. In
general, the Langevin equation for y in the Mori–Zwanzig framework takes the form

dy

dt
= h(y(t)) +

∫ t

0
K (y(t − s), s) ds + Ẇt . (7)

Here, the first term on the right-hand side is Markovian, the second term describes the
possible memory effect of the process, and Wt denotes the stochastic process.

The Mori–Zwanzig framework can be seen as a generalisation of the averaging
method. In particular, if the Mori–Zwanzig framework is applied to the deterministic
system (2), then theMarkovian term h and thememory kernel K in (7) are ε-dependent,
i.e. h = hε and K = Kε. It is formally described in [22] that in this case, Eq. (7)
converges for ε → 0 to the averaged Eq. (3) derived with the averaging method.

In general, the stochastic process in Eq. (7) describes a diffusion of the process and
has the physical interpretation of thermal fluctuations. Thus, the dynamics of y can be
interpreted in a thermodynamic sense.

Another framework in the class of projective methods, which is used to study non-
equilibrium thermodynamic processes modelled by fast–slow mechanical systems, is
known as GENERIC (general equation for the non-equilibrium reversible–irreversible
coupling, [23–25]). The idea is to find a projection operator so that the system’s DOF
can be divided into a set of fast and slow variables. The fast variables are collectively
interpreted as the thermodynamic component of the system, while the slow variables
are interpreted as the mechanical component. The GENERIC is of the form

dx

dt
= L

δE

δx
+ M

δS

δx
,

where x is the macroscopic quantity of interest, which changes in time driven by the
non-equilibrium thermodynamic processes, and E and S are potentials which have
the physical meaning of energy and entropy; L is a symplectic operator and M is
positive semidefinite. If a system can be written in GENERIC form, thermodynamic
consistency is automatically ensured.

Finally, a macroscopic system can directly be described by continuum mechanics
[26]. Instead of modelling the system on themicroscopic scale by interacting particles,
in continuum mechanics the macroscopic object is considered as a continuous object.
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Pivotal in this description is that the fundamental equations in continuum mechanics
are based on phenomenologically derived conservation laws. Their rigorous derivation
from interacting particle models is for many models an open problem.

1.2 Context of this work

While the thermodynamic characteristics of projective methods and the thermody-
namic foundation of continuum mechanics are well-established theories that allow to
analyse complex phenomena on the macroscopic scale, it is surprising that relatively
little is known about non-projective upscaling methods and their relation to thermo-
dynamics [27, 28]. Insights into this relation are particularly important for molecular
dynamic simulations, since the aforementioned scaling problem is particularly pro-
nounced in this field and one would expect thermodynamic relations to hold, which
could greatly speed up computations if suitably incorporated in place of many-particle
simulations of a solvent, for example.

To analyse the thermodynamic relation of non-projective upscaling methods, we
study in this article a long-standing problem in the theory of mechanical systems, i.e.
the “strong confinement problem” [29–32]. In particular, we study a simplified version
of a model which was analysed in detail by Bornemann in [5]. The original model
was used to analyse the macroscopic dynamics of the four CH-groups of the butane
molecule by deriving a homogenised model which is confined to a slow submanifold
in the configuration space of the four CH-groups, using averaging methods in the form
of homogenisation procedures.

The simplified version studied in this article consists of a system of one fast and
one slow particle, whose dynamics is governed by the Lagrangian (8). This simplified
model has the advantage that the notation can be kept to a minimum while the most
important results can still be conveyed to the reader. The results presented in this
article do generalise to a system of multiple fast and slow particles [33, 34]. The low-
dimensional presentation we have chosen here, however, makes the arguments more
transparent, and the extension tomore complex situations is relatively straightforward.
We use weak convergence methods in our proofs similar to [5], see also [35] for a
related approach. Moreover, because of the simplicity of the model, it is possible to
frame the analytical results in this article in a form using two-scale convergence (cf.
Eq. (5)).

The interaction of one fast and one slow particle is one of the simplestmodels falling
into the class of mechanical systems studied by Bornemann in [5]. It is also one of the
simplest systems which can potentially exhibit thermodynamic effects. Indeed, one of
the core assumptions of thermodynamics is that the system under consideration has a
clear separation of scales (such as conformal motion described by elasticity combined
with fast oscillations described by temperature). The number of particles does not have
to be large or infinite. Notably, the physicist Paul Hertz developed a thermodynamic
theory [36] for Hamiltonian systems under a slow external perturbation. Specifically,
he introduced an entropy, using a notion of temperature as developed by Boltzmann.
The book by Berdichevsky [37] gives an excellent introduction to this theory.
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If one applies the theory of Hertz to system (8), one can interpret the dynamics
associated with the fast DOF as a fast subsystem that is slowly perturbed by themotion
resulting from the slow subsystem associated with the slow DOF. Hertz’ theory then
allows to describe the fast subsystem from a thermodynamic point of view, using a
notion of temperature Tε, entropy Sε, and external force Fε (the force exerted by yε

on zε). We reiterate that analogous findings hold for many-particle interactions, as
described below.

With ε as a scale parameter, we can analyse the system on different scales in
time and space. In the first part of this article, we rigorously derive a higher-order
asymptotic expansion of the slow dynamics of the system using weak convergence
techniques similar to [5, 35]. While the dynamics to leading order is slow as already
shown in [5, 38], it turns out that the dynamics to second order can be decomposed into
a slow component, describing the average motion, and a fast component, describing
fast oscillatory motion. The results from the first part allow to similarly derive the
second-order asymptotic expansion of the temperature, the entropy, and the external
force of the fast subsystem. It turns out that the leading order as well as the average
dynamics to second order satisfy equations which resemble the first and second law
of thermodynamics. This finding can potentially accelerate the simulation of slow
dynamics in molecular dynamics simulations to higher accuracy. Some numerical
experiments can be found in [33, 34].

2 Themodel problem

For a small scale parameter 0 < ε < ε0, we study a family of mechanical systems
described by the Lagrangian

Lε(yε, zε, ẏε, żε) = 1
2 ẏ2ε + 1

2 ż2ε − 1
2ε

−2ω2(yε)z
2
ε, (8)

on the two-dimensional Euclidean configuration space M = R
2. This system is a sim-

plified version of the model problem introduced in [5, Sect. 1.2.1]. The corresponding
Newtonian equations of motion take the form

ÿε = −ε−2ω(yε)ω
′(yε)z

2
ε, (9a)

z̈ε = −ε−2ω2(yε)zε. (9b)

We assume that ω ∈ C∞(R) is a uniformly positive function, i.e. there is a constant
ω∗ > 0 such that

ω(y) ≥ ω∗, for all y ∈ R.

The ε-independent initial values are

yε(0) = y∗, ẏε(0) = p∗, zε(0) = 0, żε(0) = u∗. (10)
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Notice that y∗ ∈ R can be chosen arbitrarily but the particular choice zε(0) = 0 is
necessary to ensure that the constant energy Eε of the system is independent of ε and
thus remains finite for all ε,

Eε = 1
2 ẏ2ε + 1

2 ż2ε + 1
2ε

−2ω2(yε)z
2
ε = 1

2 p2∗ + 1
2u2∗ = E∗. (11)

We are primarily interested in the time evolution of the slow DOF yε. Theorem 1
in [5, Chapter I, Sect. 2] shows that yε converges in the limit ε → 0 to a function y0
in C1([0, T ]), which is given as the solution to the second-order differential equation
ÿ0 = −θ∗ω′(y0) with initial values y0(0) = y∗, ẏ0(0) = p∗. The constant θ∗ in the
effective potential is of the form θ∗ = u2∗/2ω(y∗), with y∗ and u∗ as in (10). We will
later see that θ∗ is proportional to the action of the fast subsystem in the limit ε → 0.
As a consequence, some information of the fast subsystem is retained in the slow
evolution of y0.

We extend the theory developed in [5] by deriving rigorously the second-order
asymptotic expansion for the solution of the equations of motion (9) and interpret the
corresponding expansion of the energy (11) from a thermodynamic point of view. A
crucial step in the derivation of these expansions is the introduction of action-angle
variables for the rapidly oscillating DOF (zε, żε) 
→ (θε, φε), which also involves a
transformation of the generalised momentum ẏε 
→ pε to preserve the symplectic
structure on the phase space as a whole.

2.1 Main results

The main results in this work can be stated as follows:

1. There is a second-order asymptotic expansion of the variables yε, pε, θε, φε intro-
duced in the previous paragraph and defined precisely in Sect. 4; this expansion is
of the form

yε = y0 + ε[ȳ1]ε + ε2[ȳ2]ε + ε2yε
3,

pε = p0 + ε[ p̄1]ε + ε2[ p̄2]ε + ε2 pε
3,

θε = θ∗ + ε[θ̄1]ε + ε2[θ̄2]ε + ε2θε
3 ,

φε = φ0 + ε[φ̄1]ε + ε2[φ̄2]ε + ε2φε
3,

where for i ∈ {1, 2},

[ȳi ]ε := ȳi + [yi ]ε ∗
⇀ ȳi in L∞([0, T ]), yε

3 → 0 in C([0, T ]),
[ p̄i ]ε := p̄i + [pi ]ε ∗

⇀ p̄i in L∞([0, T ]), pε
3 → 0 in C([0, T ]),

[θ̄i ]ε := θ̄i + [θi ]ε ∗
⇀ θ̄i in L∞([0, T ]), θε

3 → 0 in C([0, T ]),
[φ̄i ]ε := φ̄i + [φi ]ε ∗

⇀ φ̄i in L∞([0, T ]), φε
3 → 0 in C([0, T ]).

In other words, for each variable the second-order asymptotic expansion is
characterised—to leading order by Theorem 1 in [5]—to i th order by a decom-
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position into a slow term, indicated by an overbar, which constitutes the average
motion of the i th-order expansion, and a fast term, indicated by square brackets,
which oscillate rapidly and converge weakly∗ to zero in L∞([0, T ])—and by a
residual term, indicated with a subscript three, which converges uniformly to zero
in C([0, T ]). In particular, we show that

[ȳ1]ε = 0, [ p̄1]ε = 0, [θ̄1]ε = [θ1]ε, [φ̄1]ε = 0,

and that (φ̄2, θ̄2, ȳ2, p̄2) is given as the solution to the initial value problem (24), (25)
(Theorem 1). Moreover, the rapidly oscillating functions [θ1]ε, [y2]ε, [p2]ε, [θ2]ε,
and [φ2]ε are explicitly given in Definition 1.
Finally, we show that this expansion can be interpreted as a nonlinear version of a
two-scale expansion, which we briefly introduce in Sect. 4.4.

2. Using the framework of Hertz [36], we define a temperature Tε, an entropy Sε, and
an external force Fε for the fast subsystem (see Sect. 5). In combination with the
analytic result discussed under item 1, we decompose the total energy Eε into the
energy associated with the fast subsystem E⊥

ε , i.e.

E⊥
ε = 1

2 ż2ε + 1
2ε

−2ω2(yε)z
2
ε,

and the residual energy E‖
ε = Eε − E⊥

ε . We expand, similar to above, E⊥
ε , E‖

ε , Tε,
Sε, and Fε into the form

E⊥
ε = E⊥

0 + ε[Ē⊥
1 ]ε + ε2[Ē⊥

2 ]ε + ε2E⊥ε
3 ,

E‖
ε = E‖

0 + ε[Ē‖
1]ε + ε2[Ē‖

2]ε + ε2E‖ε
3 ,

Sε = S0 + ε[S̄1]ε + ε2[S̄2]ε + ε2Sε
3,

Tε = T0 + T ε
1 ,

Fε = F0 + Fε
1 ,

where T ε
1 , Fε

1 → 0 in C([0, T ]) and for i ∈ {1, 2}

[Ē⊥
i ]ε := Ē⊥

i + [E⊥
i ]ε ∗

⇀ Ē⊥
i in L∞([0, T ]), E⊥ε

3 → 0 in C([0, T ]),
[Ē‖

i ]ε := Ē‖
i + [E‖

i ]ε ∗
⇀ Ē‖

i in L∞([0, T ]), E‖ε
3 → 0 in C([0, T ]),

[S̄i ]ε := S̄i + [Si ]ε ∗
⇀ S̄i in L∞([0, T ]), Sε

3 → 0 in C([0, T ]).

The characterisation of the i th-order expansion is similar to above; moreover, it
follows from (11) that

Eε = E⊥
0 + E‖

0 = E∗, [Ē⊥
1 ]ε + [Ē‖

1]ε = 0,

[Ē⊥
2 ]ε + [Ē‖

2]ε = 0, E⊥ε
3 + E‖ε

3 = 0.
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In Sect. 5, we show that

[Ē⊥
1 ]ε = [E⊥

1 ]ε, [Ē‖
1]ε = [E‖

1]ε, [S̄1]ε = [S1]ε,

and interpret the asymptotic expansion from a thermodynamic point of view. In
particular, we show that to leading order the entropy expression remains constant,
i.e. dS0 = 0, and consequently, the dynamics can be interpreted as an adiabatic
thermodynamic process characterised by an energy relation that defines processes
in thermodynamic equilibrium,

dE⊥
0 = F0dy0 + T0dS0.

In contrast, we show that the averaged second-order dynamics, i.e. the dynamics in
theweak∗ limit, indicated by an overbar, represents a non-adiabatic thermodynamic
process with an averaged non-constant entropy, dS̄2 �= 0, that similar to above
satisfies relations akin to equilibrium thermodynamics—namely

dĒ⊥
2 = F0dȳ2 + T0dS̄2,

where S̄2 indicates the averaged second-order entropy expression—despite being
beyond the limit ε → 0. Finally, we show in Theorem 2 that the evolution of
(ȳ2, p̄2) is governed by equations which formally bear resemblance to Hamilton’s
canonical equations,

dȳ2
dt

= ∂ Ē2

∂ p0
,

d p̄2
dt

= −∂ Ē2

∂ y0
,

for Ē2 = Ē⊥
2 + Ē‖

2 , which are complemented by the ε-independent initial values

ȳ2(0) = −[y2]ε(0), p̄2(0) = −[p2]ε(0).

3 Themodel problem in action-angle variables

To study the dynamics of yε and zε for 0 < ε < ε0, a detailed asymptotic analysis
is required. An in-depth description for the case of multiple fast and slow DOF can
be found in [33], which similarly uses ideas from [5, 39]. The proof sketches given
below are conceptually similar to those in [33], but are more transparent due to less
notational overhead. The idea is to transform the fast DOF into action-angle variables.
To this end, one first phrases the problem in Hamiltonian form. For this, one denotes
by (ηε, ζε) the canonical momenta corresponding to the positions (yε, zε). Then the
equations of motion (9), together with the velocity relations ẏε = ηε and żε = ζε, are
given by the canonical equations of motion belonging to the energy function

Eε(yε, ηε, zε, ζε) = 1
2η

2
ε + 1

2ζ
2
ε + 1

2ε
−2ω2(yε)z

2
ε . (12)
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To take the oscillatory character of zε into account, one introduces particular action-
angle variables (θε, φε) for the fast DOF (zε, ζε),

zε = ε

√
2θε

ω(yε)
sin(ε−1φε), ζε = √

2θεω(yε) cos(ε
−1φε), (13)

where we recall inequality (2), i.e. ω(y) ≥ ω∗ > 0 for all y ∈ R.
The transformation (zε, ζε) 
→ (θε, φε) can be found using the theory of gener-

ating functions [30, Sect. 48]. Even though this transformation would be symplectic
for fixed yε, this is not the case for the transformation of all phase-space variables
(yε, ηε; zε, ζε) 
→ (yε, ηε; θε, φε). To ensure that the transformation of all phase-
space variables remains symplectic, an additional transformation of the position yε or
the momentum ηε is required. If we decide to keep the position variable unaffected by
the transformation, the generating function takes the form

Sgen(yε, pε, zε, φε) = pε yε + 1
2ε

−1ω(yε)z
2
ε cot(ε

−1φε). (14)

The resulting transformation (yε, ηε; zε, ζε) 
→ (yε, pε;φε, θε) is symplectic on the
whole phase space. Indeed, the energy function (12) transforms to the expression

Eε = 1

2
p2ε +θεω(yε)+ε

θε pεω
′(yε)

2ω(yε)
sin(2ε−1φε) + ε2

8

(
θεω

′(yε)

ω(yε)
sin(2ε−1φε)

)2

,

(15)

and the transformed DOF satisfy the equations of motion

φ̇ε = ∂ Eε

∂θε

, θ̇ε = −∂ Eε

∂φε

, ẏε = ∂ Eε

∂ pε

, ṗε = −∂ Eε

∂ yε

.

After some calculations, the equations of motion take the form

φ̇ε = ω(yε) + ε
pεω

′(yε)

2ω(yε)
sin(2ε−1φε) + ε2

θε

(
ω′(yε)

)2
4ω2(yε)

sin2(2ε−1φε), (16a)

θ̇ε = −θε pεω
′(yε)

ω(yε)
cos(2ε−1φε) − ε

θ2ε
(
ω′(yε)

)2
4ω2(yε)

sin(4ε−1φε), (16b)

ẏε = pε + ε
θεω

′(yε)

2ω(yε)
sin(2ε−1φε), (16c)

ṗε = −θεω
′(yε) + ε

θε pε

(
ω′(yε)

)2
2ω2(yε)

sin(2ε−1φε)

− ε
θε pεω

′′(yε)

2ω(yε)
sin(2ε−1φε) + ε2

θ2ε
(
ω′(yε)

)3
4ω3(yε)

sin2(2ε−1φε)

− ε2
θ2ε ω′(yε)ω

′′(yε)

4ω2(yε)
sin2(2ε−1φε). (16d)
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The initial values, as given in (10), transform to

φε(0) = 0, θε(0) = θ∗ = u2∗
2ω(y∗)

, yε(0) = y∗, pε(0) = p∗. (17)

At this point, it becomes clear, how the governing Newtonian equations of
motion (9) are related to Eq. (2), which forms the basis for many fast–slow sys-
tems usually analysed using averaging methods. That is, by introducing the slow DOF
yε := (θε, yε, pε) and the fast DOF zε := ε−1φε, the system of differential Eqs. (16)
takes the form

ẏε = f0(yε, zε) + ε f1(yε, zε) + ε2 f2(yε, zε),

żε = ε−1g−1(yε, zε) + g0(yε, zε) + εg1(yε, zε),

which, except for some higher-order terms, coincides with Eq. (2).

4 Second-order asymptotic expansion

In this section, we rigorously derive the second-order asymptotic expansion for the
solution of the initial value problem (16), (17). Let us denote the right-hand side
of (16) byFε : R4 → R

4. BecauseFε is locally Lipschitz continuous, by the standard
existence and uniqueness theory for ordinary differential equations, there exists a
0 < T < ∞ such that the initial value problem (16), (17) has a unique solution
(φε, θε, yε, pε) in C∞([0, T ],R4), for fixed 0 < ε < ε0.

4.1 Leading-order expansion

For 0 < ε < ε0, let (φε, θε, yε, pε) in C∞([0, T ],R4) be the unique solution of the
initial value problem (16), (17). We analyse a sequence {φε}, {θε}, {yε}, {pε} of this
solution for ε → 0. The right-hand side of (16) is oscillatory and has in particular
highly oscillatory leading-order terms. As a consequence, the sequences {dφε/dt},
{θε}, {dyε/dt}, {dpεdt} are bounded in the space C0,1([0, T ]) of uniformly Lips-
chitz continuous functions, while sequences of higher-order derivatives (in particular
{d2θε/dt2}, which will require special attention in the later part of this work) become
unbounded as ε → 0. It follows from the extended Arzelà–Ascoli theorem [5, Prin-
ciple 4, Chapter I, Sect. 1] that we can extract a subsequence, not relabelled, and
functions θ0 ∈ C0,1([0, T ]) and φ0, y0, p0 ∈ C1,1([0, T ]), such that

φε → φ0 in C1([0, T ]), φ̈ε

∗
⇀ φ̈0 in L∞([0, T ]), (18a)

θε → θ0 in C([0, T ]), θ̇ε

∗
⇀ θ̇0 in L∞([0, T ]), (18b)

yε → y0 in C1([0, T ]), ÿε

∗
⇀ ÿ0 in L∞([0, T ]), (18c)

pε → p0 in C1([0, T ]), p̈ε

∗
⇀ p̈0 in L∞([0, T ]). (18d)
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By taking the limit ε → 0 in Eqs. (16a), (16c), and (16d), we deduce that φ̇0 = ω(y0),
ẏ0 = p0, and ṗ0 = −θ0ω

′(y0). Moreover, from Eq. (16b) it can be read off that
θ̇ε is rapidly oscillating around zero. By observing that the weak∗ convergence in
L∞([0, T ]) helps to ignore rapid fluctuations of functions, property (18b) can be used
to deduct that θ̇0 = 0 and in particular, that θ0 ≡ θ∗ (compare with (17)).

Finally, since the right-hand side of the limit equations

φ̇0 = ω(y0), θ̇0 = 0, ẏ0 = p0, ṗ0 = −θ∗ω′(y0), (19)

do not depend on a chosen subsequence, we can discard the extraction of subsequences
altogether [5, Principle 5, Chapter I, Sect. 1].

4.2 Reformulation of the governing equations

For the following part of this work, it is convenient to introduce a notation which
simplifies the system of differential Eq. (16); namely, for 0 ≤ ε < ε0 and k, l ∈ N0
we define the expression Lε := log (ω(yε)) and, based on this,

Dk
t Dl

y Lε := dk

dtk

dl Lε

dyl
ε

.

Then the system of differential Eq. (16) can be written as

φ̇ε = ω(yε) + ε

2
Dt Lε sin

(
2ε−1φε

)
, (20a)

θ̇ε = −θε Dt Lε cos(2ε
−1φε), (20b)

ẏε = pε + ε

2
θε Dy Lε sin(2ε

−1φε), (20c)

ṗε = −θεω
′(yε) − ε

2
θε Dt Dy Lε sin(2ε

−1φε). (20d)

4.3 First- and second-order expansion

To analyse the dynamics of the model problem away from the limit ε → 0, a higher-
order asymptotic expansion in ε is required.

We first define particular functions that appear in the first- and second-order expan-
sion beforewe state the theorem that embodies the firstmain result (item 1) of Sect. 2.1.

Definition 1 Let (φε, θε, yε, pε) be the solution to the initial value problem (16), (17)
and (φ0, θ0, y0, p0) be the solution to the initial value problem (19), (17) such that (18)
holds. With the notation introduced in Sect. 4.2, we define the functions

θε
1 := θε − θ∗

ε
, (21)
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and

φε
2 := φε − φ0

ε2
, yε

2 := yε − y0
ε2

, pε
2 := pε − p0

ε2
, θε

2 := θε
1 − [θ1]ε

ε
,

[θ1]ε := −θ∗ Dt L0

2ω(y0)
sin(2ε−1φ0), [φ2]ε := − Dt L0

4ω(y0)
cos(2ε−1φ0),

[y2]ε := −θ∗ Dy L0

4ω(y0)
cos(2ε−1φ0), [p2]ε := d

dt

(
θ∗ Dy L0

4ω(y0)

)
cos(2ε−1φ0), (22)

and

[θ2]ε := −θ∗ Dy L0[y2]ε − p0
ω(y0)

[p2]ε + θ2∗ (Dy L0)
2

16ω(y0)
cos(4ε−1φ0)

− θ∗ Dt L0

ω(y0)
φ̄2 cos(2ε

−1φ0).

The functions θε
1 , φ

ε
2, yε

2 , and pε
2 as defined in (21) and (22) describe scaled versions

of the residual motion of the originally given DOF and their homogenised versions.
The corresponding subscript indicates the scaling order and marks their relevance in
the first- and second-order expansion. To determine the relevant term in the second-
order expansion for θε, we similarly define by θε

2 the scaled residual motion of θε and
its first-order expansion, which is derived in a two-step procedure via θε

1 . As indicated
before in item 1 in Sect. 2.1, the second-order expansions consist of oscillating and
non-oscillating terms. The oscillating terms are denoted by expressions in square
brackets. They oscillate rapidly around zero and thus satisfy

[θ1]ε, [φ2]ε, [y2]ε, [p2]ε, [θ2]ε ∗
⇀ 0 in L∞([0, T ]). (23)

The non-oscillatory terms are characterised in the following theorem, which is the
main analytic result of this article. One key result is that the non-oscillatory terms of
the second-order expansion, marked by an overbar and subscript 2, satisfy a system
of ordinary differential equations.

Theorem 1 Let (φε, θε, yε, pε) be the solution to the initial value problem (16), (17)
and (φ0, θ0, y0, p0) be the solution to the initial value problem (19), (17) such that (18)
holds. Then, the functions specified in Definition 1 satisfy

θε
1 − [θ1]ε → 0 in C([0, T ]), d

dt

(
θε
1 − [θ1]ε

) ∗
⇀ 0 in L∞([0, T ]),

φε
2 − [φ2]ε → φ̄2 in C([0, T ]), d

dt

(
φε
2 − [φ2]ε

) ∗
⇀

dφ̄2

dt
in L∞([0, T ]),

yε
2 − [y2]ε → ȳ2 in C([0, T ]), d

dt

(
yε
2 − [y2]ε

) ∗
⇀

d ȳ2
dt

in L∞([0, T ]),

pε
2 − [p2]ε → p̄2 in C([0, T ]), d

dt

(
pε
2 − [p2]ε

) ∗
⇀

d p̄2
dt

in L∞([0, T ]),
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and

θε
2 − [θ2]ε → θ̄2 in C([0, T ]),

where (φ̄2, θ̄2, ȳ2, p̄2) is the unique solution to the inhomogeneous linear system of
differential equations

dφ̄2

dt
= ω′(y0)ȳ2 + θ∗(Dy L0)

2

8
− (Dt L0)

2

8ω(y0)
, (24a)

dθ̄2
dt

= d

dt

θ∗(Dt L0)
2

8ω2(y0)
, (24b)

d ȳ2
dt

= p̄2 − θ∗ Dy L0Dt L0

4ω(y0)
, (24c)

d p̄2
dt

= −ω′(y0)θ̄2 − θ∗ω′′(y0)ȳ2 − θ2∗ Dy L0D2
y L0

8
+ θ∗ Dt L0Dt Dy L0

4ω(y0)
, (24d)

with ε-independent initial values

φ̄2(0) = −[φ2]ε(0), θ̄2(0) = −[θ2]ε(0), (25a)

ȳ2(0) = −[y2]ε(0), p̄2(0) = −[p2]ε(0). (25b)

The result in Theorem 1 is central for this article in two different ways. Firstly, it
will be crucial for the thermodynamic interpretation in the second part of this article.
Secondly, it is interesting for computational purposes. That is, in simulating a natural
evolution of a light particle coupled to a heavy particle, their mass ratio ε will be
small but finite and enters into the underlying model through potentials of different
strengths. The above result says that rather than solving the coupled system directly,
which is restricted to a small step size to ensure numerical stability, the approximation
to second order can be computed by combining explicitly known oscillatory functions
(as given in Definition 1) with the solution of an inhomogeneous linear system of
differential equations, as given in Theorem 1.

4.3.1 Proof of Theorem 1

The detailed proof of Theorem 1 was already carried out, in the case of multiple fast
and slow DOF in [33]. For this reason, we will only summarise the essential steps
and indicate the differences. The simpler notation in the present article makes the
presentation more transparent.

It is first shown that the sequences of functions {θε
1 }, {φε

2}, {yε
2}, and {pε

2} are uni-
formly bounded in L∞([0, T ]). This follows directly from the system of differential
Eq. (20) and Gronwall’s inequality. Moreover, one shows that the sequence of func-
tions {θε

2 } is also uniformly bounded in L∞([0, T ]). Other than in [33], which requires
lengthy calculations, this follows directly from the second-order energy (Eqs. (46)
and (50)) and the uniform boundedness of {θε

1 }, {φε
2}, {yε

2}, and {pε
2}.
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Since we introduced the action-angle variables, it is possible to calculate the high-
frequency terms [θ1]ε, [φ2]ε, [y2]ε, [p2]ε, and [θ2]ε through integration by parts.

By taking the time derivative of the functions φε
2−[φ2]ε, yε

2 −[y2]ε, and pε
2−[p2]ε,

we obtain

d

dt

(
φε
2 − [φ2]ε

) = ω(yε) − ω(y0)

ε2
+ d

dt

(
Dt Lε

4φ̇ε

)
cos(2ε−1φε)

− d

dt

(
[φ2]ε + Dt Lε

4φ̇ε

cos(2ε−1φε)

)
,

d

dt

(
yε
2 − [y2]ε

) = pε − p0
ε2

+ d

dt

(
θε Dy Lε

4φ̇ε

)
cos(2ε−1φε)

− d

dt

(
[y2]ε + θε Dy Lε

4φ̇ε

cos(2ε−1φε)

)
,

d

dt

(
pε
2 − [p2]ε

) = −θ∗
ω′(yε) − ω′(y0)

ε2
− θε

1 − [θ1]ε
ε

ω′(yε)

− d

dt

(
θε Dt Dy Lε

4φ̇ε

)
cos(2ε−1φε)

− d

dt

(
[p2]ε1 − θε Dt Dy Lε

4φ̇ε

cos(2ε−1φε)

)

+ d

dt

(
θ∗Dt L0

4ω2(y0)
ω′(yε)

)
cos(2ε−1φ0)

− d

dt

(
[p2]ε2 + θ∗ Dt L0

4ω2(y0)
ω′(yε) cos(2ε

−1φ0)

)
, (26)

where we write [p2]ε = [p2]ε1 + [p2]ε2 with

[p2]ε1 := θ∗ Dt Dy L0

4ω(y0)
cos(2ε−1φ0), [p2]ε2 := −θ∗ Dt L0Dy L0

4ω(y0)
cos(2ε−1φ0).

For the derivation of Eq. (26), we note that in

dpε
2

dt
= −θ∗

ω′(yε) − ω′(y0)

ε2
− θε − θ∗

ε2
ω′(yε) − d

dt

(
θε Dt Dy Lε

4φ̇ε

)
cos(2ε−1φε)

+ d

dt

(
θε Dt Dy Lε

4φ̇ε

cos(2ε−1φε)

)
,

we can rewrite the second term on the right-hand side by introducing [θ1]ε, i.e.

θε − θ∗
ε2

ω′(yε) = θε
1 − [θ1]ε

ε
ω′(yε) − d

dt

(
θ∗Dt L0

4ω2(y0)
ω′(yε)

)
cos(2ε−1φ0)

+ d

dt

(
θ∗ Dt L0

4ω2(y0)
ω′(yε) cos(2ε

−1φ0)

)
.
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Asdescribed in [33],we infer that the sequences {φε
2−[φ2]ε}, {yε

2−[y2]ε}, and {pε
2−[p2]ε} are bounded in C0,1([0, T ]). The claim follows after successive applications

of the extended Arzelà–Ascoli theorem [5, Principle 4, Chapter I, Sect. 1]. For the
reader’s convenience, we will exemplify the sketch of proof for yε. We recall that

d

dt

(
yε
2 − [y2]ε

) = pε − p0
ε2

+ d

dt

(
θε Dy Lε

4φ̇ε

)
cos(2ε−1φε)

− d

dt

(
[y2]ε + θε Dy Lε

4φ̇ε

cos(2ε−1φε)

)
,

where we take the weak∗ limit of the right-hand side. The first term on the right-
hand side is uniformly bounded in L∞([0, T ]). It follows that there exists a function
p̄2 ∈ L∞([0, T ]) and a subsequence such that pε

2
∗
⇀ p̄2 in L∞([0, T ]). The second

term on the right-hand side converges weakly∗ to the second term on the right-hand
side of Eq. (24c), which follows from Lemma 5.7 in [33]. The weak∗ limit of this
term is nonzero because the terms that appear from the amplitude after taking the time
derivative are in resonance with the cosine term, thus leading to a nonzero contribution
in the weak∗ limit. Finally, the last term on the right-hand side converges weakly∗ to
zero by construction.

The weak∗ limits for φε
2 − [φ2]ε and pε

2 − [p2]ε can be derived in a similar way.
The form of [θ̄2]ε can then be derived through expansion of the energy term.

4.4 Interpretation of the asymptotic expansion in the two-scale convergence
framework

The convergence results in Theorem 1 exhibit scale separations that are characteristic
of the theory of two-scale convergence. In this section, we give a summary of the
theory and introduce a nonlinear version of two-scale convergence, which can be used
to reformulate the results derived in Theorem 1.

4.4.1 Two-scale convergence

The theory of two-scale convergence was first introduced by Nguetseng [40]. We
follow here the presentation in [41, 42], though restricted to the one-dimensional case.
We denote by S the set S := [0, 1) equipped with the topology of the one-dimensional
torus, and identify any function on S with its 1-periodic extension on R.

In general, a bounded sequence {uε} of functions in L2(�) is said to weakly two-
scale converge to u ∈ L2(� × S), symbolically indicated by uε −⇀

2
u, if and only

if

lim
ε→0

∫
�

uε(t)ψ
(

t, ε−1t
)
dt =

∫∫
�×S

u(t, s)ψ(t, s) dt ds, (27)
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for any smooth functionψ : R×R → Rwhich is S-periodic with respect to the second
argument. Typically, these uε are of the form uε(t) = v(t, ε−1t) for some function v

of two arguments, which is periodic in the second argument.

4.4.2 Two-scale decomposition

For any ε > 0, one can decompose a real number t ∈ R as t = ε[N (t/ε) + R(t/ε)],
where

N (t) := max{n ∈ Z : n ≤ t}, R(t) := t − N (t) ∈ S.

Visually,N is the floor function andR is the sawtooth wave function. If ε is the ratio
between two disparate scales, N (t/ε) and R(t/ε) may then be regarded as a coarse-
scale and a fine-scale variable, respectively. Besides this two-scale decomposition,
one defines a two-scale composition function:

hε(t, s) := εN (t/ε) + εs ∀(t, s) ∈ R × S, ∀ε > 0.

The two-scale composition function can be written as hε(t, s) = t +ε[s −R(t/ε)].
Since, for all t ∈ R, R(t) ∈ S, one has εR(t/ε) → 0 uniformly in t , and thus,

hε(t, s) → t uniformly in R × S, as ε → 0.

With the introduction of hε, one can define an equivalent definition of two-scale
convergence. That is, one has for a sequence {uε} in L2(R) that

uε −⇀
2

u in L2(R × S) ⇔ uε ◦ hε −⇀ u in L2(R × S).

For any domain � ⊂ R, two-scale convergence in L2(� × S) is then defined by
extending functions to R\� with vanishing value.

For uε ∈ L2(�), it is shown in [42] that this definition of two-scale convergence
is equivalent to the definition in (27). However, it is more versatile. In particular, it
allows defining two-scale convergence in C([0, T ] × S).

4.4.3 Two-scale convergence in C([0, T ] × S)

Some modifications are needed to extend the definition of two-scale convergence to
C([0, T ]×S), for in general the function uε ◦hε is discontinuous with respect to t ∈ R

and s ∈ S, even if uε is continuous. One therefore replaces uε ◦ hε by a continuous
function, Lεuε := (J ◦ Iε)(uε ◦ hε), constructed via linear interpolation with respect
to each argument. The details of this linear interpolation can be found in [42].

One then says that uε strongly two-scale converges to u in C([0, T ] ×S), symbol-
ically indicated by uε −→

2
u, if and only if

Lεuε → u in C([0, T ] × S).
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4.4.4 Nonlinear two-scale convergence

The two-scale convergence theory is a generalisation of the weak convergence theory
which retains information about the oscillatory character of uε in the limit ε → 0.
For instance, we have sin(2πε−1t) −⇀

2
sin(2πs) in L2([0, T ] × S). Notice, how-

ever, that with test functions in form of the Fourier basis functions ψk(t, ε−1t) :=
exp(2π ikε−1t) one has for all k ∈ Z

sin
(
2πε−1ϕ(t)

)
ψk(t, ε

−1t) ⇀ 0 in L2([0, T ] × S),

for any nonlinear C∞-Diffeomorphism ϕ : [0, T ] → [0, ϕ(T )], and thus,
sin

(
2πε−1ϕ(t)

) −⇀
2

0 in L2([0, T ]×S). To derive a nonzero two-scale limit in such a

case, we introduce a nonlinear change of coordinates that temporarily annihilates the
nonlinearity so that the standard two-scale limit can be taken before it is reintroduced
into the two-scale limit.

Definition 2 (Two-scale convergence with respect to ϕ) Let ϕ : [0, T ] → [0, ϕ(T )]
be a C∞-Diffeomorphism, {uε} ⊂ C([0, T ]) and u ∈ C([0, T ] × S). We say that
uε two-scale converges with respect to ϕ to u in C([0, T ] × S) if uε ◦ ϕ two-scale
converges to u ◦ (ϕ, Id) in C([0, ϕ(T )] × S), i.e.

uε
ϕ−→
2

u in C([0, T ] × S)

if and only if

uε(ϕ(r)) −→
2

u(ϕ(r), s) in C([0, ϕ−1(T )] × S).

With this definition at hand, we can express the uniform convergence results of Theo-
rem 1 using the notation of two-scale convergence. Rephrasing the weak∗ convergence
results in Theorem 1 in a similar way requires more notation.

Proposition 1 With the notation introduced in Definition 2, the uniform convergences
in Theorem 1 are equivalent to the following strong two-scale convergences with
respect to ϕ(r) := φ−1

0 (πr) for r ∈ [0, π−1φ0(T )]:

φε
2

ϕ−→
2

φ̄2 + [φ2] in C([0, T ] × S), θε
2

ϕ−→
2

θ̄2 + [θ2] in C([0, T ] × S),

yε
2

ϕ−→
2

ȳ2 + [y2] in C([0, T ] × S), pε
2

ϕ−→
2

p̄2 + [p2] in C([0, T ] × S),

θε
1

ϕ−→
2

[θ1] in C([0, T ] × S),
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where (φ̄2, θ̄2, ȳ2, p̄2) is the unique solution to the initial value problem (24) with (25)
and where for t ∈ [0, T ] and s ∈ S we define

[θ1](t, s) := −θ∗ Dt L0(t)

2ω(y0(t))
sin (2πs) , [φ2](t, s) := − Dt L0(t)

4ω(y0(t))
cos(2πs),

[y2](t, s) := −θ∗ Dy L0(t)

4ω(y0(t))
cos(2πs), [p2](t, s) := d

dt

(
θ∗ Dy L0(t)

4ω(y0(t))

)
cos(2πs)

and

[θ2](t, s) :=−θ∗ Dy L0(t)[y2](t, s)− p0(t)

ω(y0(t))
[p2](t, s) + θ2∗ (Dy L0(t))2

16ω(y0(t))
cos(4πs)

− θ∗ Dt L0(t)

ω(y0(t))
φ̄2(t) cos(2πs).

Proof The equivalence follows from Theorem 1 and [42, Proposition 2.4]. ��
Note that in Proposition 1 the constant π was chosen to normalise the period of the

rapidly oscillating functions.

4.5 Asymptotic expansion in themultidimensional case

The asymptotic expansion results presented in this article can be generalised to the case
of multiple fast and slow DOF. This case was discussed in [33], where the governing
Lagrangian generalises by the natural extension of (8) to the case of multiple fast and
slowDOF, i.e. yε ∈ R

n and zε ∈ R
r for n, r ≥ 1. In the case r > 1, it is possible that the

zε are in resonancewith each other. After introducing some constraints on the system in
form of two non-resonance conditions, a similar result to Theorem 1 can be derived.
These non-resonance conditions bypass the so-called small divisor problem which
commonly emerges when deriving higher-order asymptotic expansions of trajectories
of systems of multiple fast DOF (see [9, Chap. 7]). Non-resonance conditions also
arise in connection with the KAM (Kolmogorov–Arnol’d–Moser) theorem [43, 44] to
similarly handle small divisors.

The proof is similar to the one presented in this article. First, one introduces a
change of coordinates (zε, ζε) 
→ (θε, φε) via a generalised version of the generating
function (14) and one defines sequences of scaled residual terms {θε

1 }, {φε
2}, {yε

2}, {pε
2},

and {θε
2 } similar to Definition 1. Next, one shows that the sequences {θε

1 } and {φε
2}

are uniformly bounded in L∞([0, T ],Rr ) and {yε
2} and {pε

2} are uniformly bounded
in L∞([0, T ],Rn). After deriving the oscillatory terms, which is possible due to the
transformation of the fast DOF into action-angle variables and integration by parts, the
weak∗ limit can be derived with the extended Arzelà–Ascoli theorem [5, Principle 4,
Chapter I, Sect. 1], similar to the sketch of proof in Sect. 4.3.1. Since θε

2 ∈ R
r , a

simple derivation from the energy, as described in this article for the case r = 1, is
not possible. Thus, more convoluted calculations are necessary to prove its uniform
bound in L∞([0, T ],Rr ) and its convergence in the weak∗ limit.
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5 Thermodynamic expansion and interpretation

We now give a thermodynamic interpretation of the analytic result presented in The-
orem 1. Thermodynamic effects can, in principle, occur when a separation of scales
exist; Hertz developed a thermodynamic theory for Hamiltonian systems which are
perturbed by slow external agents [36]. The model considered in this article is an
example of this kind, if we restrict the analysis to the fast DOF (variable zε) and con-
sider the slowDOF (variable yε) as an external agent. The question we want to address
in this section is “Can we replace the dynamics of the fast DOF with a thermodynamic
description in terms of temperature and entropy?” As it turns out, even in this simple
model problem, an interesting adiabatic/non-adiabatic characteristic emerges through
a higher-order asymptotic expansion.

The concept of adiabatic invariance finds applications in the analysis of slowly
perturbed dynamical systems, where one is primarily interested in the derivation of
the effective evolution of the system. It emerged in celestial mechanics in the form
of the perturbation theory of Hamiltonian dynamical systems [30, Chapter 10] and
can be found in many other fields [35, 38, 45, 46]. In particular, adiabatic invariance
plays a crucial role in thermodynamics. There, adiabatic thermodynamic processes
are idealised models in the limit of an infinite separation of timescales and are, by
definition, processes with constant entropy [47].

For a thermodynamic interpretation of the system, we will regard the fast DOF
zε as the system’s thermal vibrations, acting on the slow DOF yε, which represents
the system’s slow (mechanical) dynamics. As such, we will mainly focus the thermo-
dynamic analysis on the energy associated with the fast DOF E⊥

ε , in contrast to the

residual energy E‖
ε , which describes the remaining part of the system. Both energies

can be read off from the total energy (11), i.e.

E⊥
ε = 1

2 ż2ε + 1
2ε

−2ω2(yε)z
2
ε, E‖

ε = Eε − E⊥
ε . (28)

Note that the evolution of the fast DOF zε is governed by the energy E⊥
ε =

E⊥
ε (zε, żε; yε), which is subject to a dynamically varying external agent given by

the evolution of the slow DOF yε. This framework allows us to apply the theory
developed by Hertz [37].

5.1 The first and second law of thermodynamics

Hertz considered a thermodynamic system under a slowly changing external agent y.
A typical example is a vessel filled with gas, where y indicates the height of a piston
that compresses the gas. In line with Hertz’ analysis, we consider for the problem
studied in this article the fast subsystem with energy E⊥

ε as a thermodynamic system
under a slowly changing external agent represented by yε. We point out that Hertz’
theory is based on dynamical systems which are inherently reversible in time and are
thus regarded as idealised thermodynamic systems. As such, on a macroscopic level,
the dynamics is described by the first and second law of thermodynamics, where the
second law is given in Carathéodory’s form [47].
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The first law states that every infinitesimal thermodynamic process can be described
as a change of the internal energy dA, given by the work performed on the system
via the application of an external force F along a displacement dy, i.e. dA = Fdy,
and the heat supply dQ such that the sum dA + dQ is the differential of some energy
function E ,

dE = dA + dQ.

The second law of thermodynamics states that, for reversible processes, there are
two functions of state, namely the absolute temperature T and the entropy S such that

dQ = T dS.

Hence, the first and second law of thermodynamics combined read

dE = Fdy + T dS. (29)

Equation (29) can be reduced to the statement that there exists an entropy S = S(E, y)

such that the constitutive equations

1

T
= ∂S(E, y)

∂ E
and F = −T

∂S(E, y)

∂ y
(30)

are satisfied.
The special case of a process without heat exchange, dQ = 0, is called an adiabatic

thermodynamic process. In this case, all work dA is converted into a change of energy,

dE = dA, (31)

or, equivalently, the entropy of the system stays constant,

S(E, y) = const.

Remark 1 With E = E(S, y), the constitutive Eq. (30) read equivalently

T = ∂ E(S, y)

∂S
and F = ∂ E(S, y)

∂ y
. (32)

5.2 Derivation of the thermodynamic quantities

We follow for the derivation of the temperature, entropy, and external force the anal-
ysis in [37]. This derivation was used, in a similar way, in [33] to determine the
thermodynamic quantities in the case of multiple fast DOF.
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We consider the Hamiltonian and the associated energy of the fast subsystem given
by

H⊥
ε (zε, ζε; yε) = 1

2
ζ 2
ε + 1

2
ε−2ω2(yε)z

2
ε = E⊥

ε . (33)

Since (zε, ζε) are fast relative to yε, we can, as a reasonable good approximation,
assume that for one closed loop of (zε, ζε) on the energy surface, the variable yε

remains constant. This system is thus a harmonic oscillator, which is in one dimension
ergodic on the energy surface. (The multidimensional case is discussed below.) It thus
admits a unique invariant measure, given by

μ(A) =

∫
A

dσ

|∇H⊥
ε |∫

�

dσ

|∇H⊥
ε |

,

where A ⊆ � is a region on the level set � = {(zε, ζε) ∈ R
2 : H⊥

ε (zε, ζε; y∗) = E⊥∗ }
and dσ is an infinitesimal small area element on the energy surface. In equilibrium
thermodynamics, the temperature is considered a time-independent variable, which is
proportional to the time average of the kinetic energy of the system.

In general, if 〈φ〉 denotes the time average of some function φ = φ(t), the temper-
ature T in equilibrium thermodynamics can be defined by the relation T = 〈2Ekin〉
where 2Ekin = p ∂ H(q,p)

∂ p and (q, p) is a time-dependent trajectory on the energy
surface in phase space.

With the help of the ergodic theorem of Birkhoff and Khinchin (see, for example,
[48]), the invariant measure μ can be used to derive the time average in the definition
of the temperature by calculating the space average of p ∂ H(q,p)

∂ p on the energy surface.
In particular, in our example the temperature takes the form

Tε(E⊥∗ , y∗) =
〈
ζε

∂ H⊥
ε (zε, ζε; y∗)

∂ζε

〉
=

∫
�

ζε

∂ H⊥
ε

∂ζε

dσ

|∇H⊥
ε |∫

�

dσ

|∇H⊥
ε |

. (34)

Here, the numerator can be calculated using Gauss’ theorem. It turns out that

∫
�

ζε

∂ H⊥
ε

∂ζε

dσ

|∇H⊥
ε | = �ε(E⊥∗ , y∗), (35)

where �ε(E⊥∗ , y∗) is the phase-space volume enclosed by the trajectory of (zε, ζε)

and is also known as the action of the orbit in Hamiltonian dynamics [49].
To derive the denominator in (34), we calculate the derivative of �ε(E⊥∗ , y∗) with

respect to E⊥∗ and find, with some geometrical considerations, that
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∫
�

dσ

|∇H⊥
ε | = ∂�ε(E⊥∗ , y∗)

∂ E⊥∗
. (36)

Thus, in Eq. (34) the numerator is given by (35) and the denominator by (36), which
allows us to express the temperature in terms of the phase-space volume �ε(E⊥∗ , y∗),
i.e.

Tε(E⊥∗ , y∗) = �ε(E⊥∗ , y∗)
∂�ε(E⊥∗ , y∗)/∂ E⊥∗

. (37)

According to the left equation in (30), we integrate T −1
ε in (37) with respect to E⊥∗ and

obtain as formula for the entropy Sε(E⊥∗ , y∗) = log
(
�ε(E⊥∗ , y∗)

)+ fε(y∗). It remains
to show that the function fε is constant. To see this, we investigate the dependence of
Sε on y∗ and will, similar to above, use (30).

We can define the external force as the time average of ∂y H(q, p; y) for a Hamil-
tonian system depending on some external agent y and apply, similar to above, the
Birkhoff–Kinchin Theorem, to derive in our example

Fε(E⊥∗ , y∗) =
〈
∂ H⊥

ε (zε, ζε; y∗)
∂ y∗

〉
=

∫
�

∂ H⊥
ε

∂ y∗
dσ

|∇H⊥
ε |∫

�

dσ

|∇H⊥
ε |

. (38)

For the numerator, we calculate this time the derivative of �ε(E⊥∗ , y∗) with respect
to y∗.

Similar to before, geometric considerations imply that

∫
�

∂ H⊥
ε

∂ y∗
dσ

|∇H⊥
ε | = −∂�ε(E⊥∗ , y∗)

∂ y∗
. (39)

Combining Eqs. (36), (38), and (39), we obtain

Fε(E⊥∗ , y∗) = − ∂�ε(E⊥∗ , y∗)/∂ y∗
∂�ε(E⊥∗ , y∗)/∂ E⊥∗

. (40)

Once again, according to the right equation in (30), we integrate −Fε/Tε in (37)
and (40) with respect to y∗ and find the desired formula for the entropy,

Sε(E⊥∗ , y∗) = log
(
�ε(E⊥∗ , y∗)

)
+ Cε, (41)

where Cε is an arbitrary constant. This is a key result of Hertz: The entropy of a
Hamiltonian system under the influence of a slowly varying agent is, up to a constant,
the logarithm of the phase-space volume.
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The phase-space volume of a harmonic oscillator in one dimension with fixed
energy E⊥∗ and fixed external agent y∗ is geometrically described by an ellipse; thus,
using (13) and (33) with E⊥

ε and yε fixed yields

�ε(E⊥∗ , y∗) = 2πε
E⊥∗

ω(y∗)
= 2πεθ∗.

Since on the fast timescale, slowly varying E⊥
ε and yε can be considered to good

approximation as constant, we argue by similarity and replace in Eqs. (37), (40),
and (41) y∗ by yε and E⊥∗ by E⊥

ε so that

�ε(E⊥
ε , yε) = 2πε

E⊥
ε

ω(yε)
= 2πεθε.

To avoid a divergent entropy in the limit ε → 0, the constant in the entropy has to
be chosen accordingly, for example, Cε = − log(�ε(E⊥∗ , y∗)). In this case, we would
have

Sε(E⊥
ε , yε) = log

(
�ε(E⊥

ε , yε)

�ε(E⊥∗ , y∗)

)
= log

(
θε

θ∗

)
= log(θε) + C,

where C = − log(θ∗).
Thus, altogether, we derive for ε > 0 the following expressions for the temperature

Tε, the entropy Sε, and the external force Fε in the fast subsystem:

Tε = θεω(yε), Sε = log(θε) + C, Fε = θεω
′(yε). (42)

5.3 Expansion of the thermodynamic quantities

In combinationwith the second-order expansion derived in Theorem1,wewill analyse
the asymptotic properties of the above thermodynamic expressions, by expanding
yε and θε in (42), which in turn defines higher-order asymptotic expansions of the
form Tε = T0 + T ε

1 , Fε = F0 + Fε
1 and Sε = S0 + ε[S̄1]ε + ε2[S̄2]ε + ε2Sε

3 with
T ε
1 , Fε

1 , Sε
3 → 0 in C([0, T ]), where

T0 := θ∗ω(y0), F0 := θ∗ω′(y0), (43)

and

S0 := log(θ∗) + C, [S̄1]ε := [θ1]ε
θ∗

, [S̄2]ε := θ̄2 + [θ2]ε
θ∗

− 1

2

( [θ1]ε
θ∗

)2

. (44)

Analogously, by substituting (13) into (28), we expand the energy of the fast subsystem
E⊥

ε = θεω(yε) = E⊥
0 + ε[Ē⊥

1 ]ε + ε2[Ē⊥
2 ]ε + ε2E⊥ε

3 where E⊥ε
3 → 0 in C([0, T ])
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and obtain

E⊥
0 := θ∗ω(y0), [Ē⊥

1 ]ε := ω(y0) [θ1]
ε , (45)

[Ē⊥
2 ]ε := θ∗ω′(y0)

(
ȳ2 + [y2]

ε
) + ω(y0)

(
θ̄2 + [θ2]

ε
)
. (46)

5.4 Leading-order thermodynamics

We show in this section that to leading order (limit ε → 0), the resulting thermody-
namic process is adiabatic or, in other words, a thermodynamic process with constant
entropy.

In fact, by comparing this resultwith the leading-order expansionof the temperature,
entropy, and external force in the model problem as derived in (43) and (44), i.e.

T0 = θ∗ω(y0), S0 = log(θ∗) + C, F0 = θ∗ω′(y0),

we observe that S0 ≡ const. and hence reason that the limit process can be interpreted
as an adiabatic thermodynamic process. This is in particular a result of the external
agent y0, which affects the fast system to leading order only slowly. The energy in the
limit ε → 0 (see Eq. (45)) is given by E⊥

0 (y0) = θ∗ω(y0), and therefore (cf. Eq. (31)),

dE⊥
0 = F0dy0 + T0dS0 = F0dy0, (47)

which resembles Eq. (29).

Remark 2 Note that by action and reaction, the force exerted on the fast subsystem F0
is equal but of opposite sign to the force acting on the slow DOF, i.e. ÿ0 = −F0 (see
also (19)).

5.5 Second-order thermodynamics

We calculate the average contribution of the higher-order microscale oscillations in
E⊥

ε and Sε by taking the weak∗ limit of the asymptotic expansion terms [Ē⊥
1 ]ε,

[Ē⊥
2 ]ε, [S̄1]ε, and [S̄2]ε in (44)–(46). With property (23), i.e. [θ1]ε, [y2]ε, [θ2]ε ∗

⇀ 0
in L∞([0, T ]), this yields

[Ē⊥
1 ]ε ∗

⇀ 0 in L∞([0, T ]), [S̄1]ε ∗
⇀ 0 in L∞([0, T ]),

and

[Ē⊥
2 ]ε ∗

⇀ Ē⊥
2 := θ∗ω′(y0)ȳ2 + ω(y0)θ̄2 in L∞([0, T ]), (48)

[S̄2]ε ∗
⇀ S̄2 := θ̄2

θ∗
−

(
Dt L0

4ω(y0)

)2

in L∞([0, T ]). (49)
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We can now define the second-order average energy and entropy

Ē⊥
ε := E⊥

0 + ε2 Ē⊥
2 , S̄ε := S0 + ε2 S̄2.

To analyse the thermodynamic properties of Ē⊥
ε for ε > 0, we focus on the second-

order expansion term Ē⊥
2 . The appropriate temperature, entropy, and external force

can be read off from (48) and (49):

T0 = θ∗ω(y0), S̄2 = θ̄2

θ∗
−

(
Dt L0

4ω(y0)

)2

, F0 = θ∗ω′(y0).

Note that the entropy in this case is not constant. This can be explained by the
second-order correction of the external agent yε, which exhibits according to The-
orem 1 a decomposition into a slowly varying component ȳ2 and a rapidly varying
component [y2]ε. By considering Ē⊥

2 = Ē⊥
2 (S̄2, ȳ2; y0, p0), we obtain (cf. Eq. (29))

for fixed (y0, p0)

dĒ⊥
2 = F0d ȳ2 + T0dS̄2,

which agrees with the qualitative discussion of Sect. 5.1.
Finally, let us inspect how the thermodynamic energy balance is realised in the total

second-order energy correction of Eε. Analogous to the decomposition (28), we split
the total energy Eε in (15) into E⊥

ε and E‖
ε , i.e. Eε = E‖

ε + E⊥
ε , where

E‖
ε = 1

2
p2ε + ε

2
θε pε Dy Lε sin(2ε

−1φε) + ε2

8
θ2ε (Dy Lε)

2 sin2(2ε−1φε).

We then use the expressions derived in Theorem 1 to expand E‖
ε = E‖

0 + ε[Ē‖
1]ε +

ε2[Ē‖
2]ε + ε2E‖ε

3 , where E‖ε
3 → 0 in C([0, T ]) with

E‖
0 := 1

2
p20, [Ē‖

1]ε := θ∗
2

Dt L0 sin(2ε
−1φ0),

and

[Ē‖
2]ε := p0

(
p̄2 + [p2]

ε
) + θ2∗ (Dy L0)

2

8
sin2(2ε−1φ0)

+θ∗ Dt L0
(
φ̄2 + [φ2]ε

)
cos(2ε−1φ0) + [θ1]ε Dt L0

2
sin(2ε−1φ0). (50)

As before, we take the weak∗ limit to determine the average energy correction at
first and second order, and find

[Ē‖
1]ε

∗
⇀ 0 in L∞([0, T ]),

[Ē‖
2]ε

∗
⇀ Ē‖

2 := p0 p̄2 +
(

θ∗ Dy L0

4

)2

− θ∗(Dt L0)
2

4ω(y0)
in L∞([0, T ]),
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and define the averaged residual energy Ē‖
ε := E‖

0 + ε2 Ē‖
2 . The following theorem

shows how the Hamiltonian character of the model problem and the thermodynamic
interpretation materialise for the averaged total second-order energy correction Ē2 =
Ē‖
2 + Ē⊥

2 .

Theorem 2 Let (y0, p0) be as in (18) and (ȳ2, p̄2) be as in Theorem 1. Let Ē2 be the
averaged total second-order energy correction Ē2 = Ē‖

2 + Ē⊥
2 , where

Ē‖
2(ȳ2, p̄2; y0, p0) = p0 p̄2 + θ2∗ω′(y0)2

16ω2(y0)
− θ∗(p0ω′(y0))2

4ω3(y0)
,

and

Ē⊥
2 (ȳ2; y0, p0) = θ∗ω′(y0)ȳ2 + ω(y0)θ̄2(y0, p0),

with

θ̄2(y0, p0) = θ∗ p0(ω′(y0))2

8ω4(y0)
+ Cθ , Cθ = −θ∗ p∗(ω′(y∗))2

8ω4(y∗)
− [θ2]ε(0).

Then the differential Eqs. (24c) and (24d) take the form

d ȳ2
dt

= ∂ Ē2

∂ p0
,

d p̄2
dt

= −∂ Ē2

∂ y0
.

Additionally, with the functions T0, S̄2, and F0, which can be interpreted as the temper-
ature, entropy, and external force in the fast subsystem, the energy Ē⊥

2 can be written
as

Ē⊥
2 (S̄2, ȳ2; y0, p0) = F0 ȳ2 + T0 S̄2 + θ∗(p0ω′(y0))2

16ω3(y0)
.

With this notation, the energy Ē⊥
2 satisfies the constituent Eq. (32) in the form

F0 = ∂ Ē2

∂ ȳ2
, T0 = ∂ Ē2

∂ S̄2
.

Proof The claim follows directly from (24c) and (24d). ��

5.6 Thermodynamic interpretation in themultidimensional case

The discussion in [33] shows how to derive the second-order asymptotic expansion
in the case of multiple fast and slow DOF. Similar to the expansion covered in this
article, one can interpret the dynamics to leading order as well as to second order from
a thermodynamic point of view. If there is only one fast DOF, the fast subsystem is
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ergodic, and thus, Hertz’ theory can be applied directly. In particular (see Remark 2),
the derived force to leading order of the internal energy (47) coincides (up to sign) with
the force of the slow DOF derived through the weak ∗ limit (19). If there are more than
one fastDOF, however, the fast subsystem is in general not ergodic. Thus,Hertz’ theory
has to be adapted in Eqs. (34) and (38) by considering the ensemble average instead of
the time average. This allows to derive expressions which correspond to temperature,
entropy, and external force. These expressions can be expanded to second order, similar
to the procedure described in this article. It turns out that in this case, energy relations
appear which likewise resemble the first and second law of thermodynamics. However,
in contrast to the case of one fast DOF, the derived force to leading order of the internal
energy does not coincide (up to sign) with the force of the slow degrees of freedom
derived through weak∗ convergence techniques.

While the force derived in the latter case corresponds to the total force the slow
DOF experience, the force derived in the former case is due only to a change of the
internal energy. In fact, if we assume that temperature is kept constant in the system
or if we consider only a very small time frame such that y0 ≈ y∗, then the force
derived from the internal energy coincides with the force derived from the Fixman
potential assuming equi-distribution of energy in the normal vibrational modes (see
[5]). Thus, similar to [5], the Fixman potential provides an inexact description of
the slow dynamics of the system. An exact description of the slow dynamics can be
obtained by considering further contributions from the mutual interactions with the
fast DOF. This information can be obtained from the entropic term.

6 Conclusions

In this article, we discussed a simple fast–slow mechanical system. It represents a
minimal example of a class of related models. The expansion to second order and
its thermodynamic interpretation carry over to finitely many DOF. It is a natural next
step to consider the extension to real-world applications in molecular dynamics. In
molecular dynamics, one is usually interested in the slow macroscopic dynamics; the
fast microscopic dynamics is less important but is necessary to obtain an accurate rep-
resentation of the dynamics on the microscopic scale. Through averaging techniques,
it is possible (see for instance [5]) to derive a homogenised system, which describes
the dynamics only of the slow DOF. However, this homogenised system has to be
understood as an approximation to the slow dynamics of the original system because
it is derived by considering the limit ε → 0. For a more detailed description of the
slow dynamics in this system, a higher-order asymptotic expansion is of interest, as
the scale parameter ε is a quotient of mass ratios and thus in many applications small
but finite.

The fast–slowmechanical system studied in this article is one of the simplestmodels
that can potentially exhibit thermodynamic effects. Indeed, one of the core assumptions
of thermodynamics is that the system under consideration has a clear separation of
scales. This assumption is by construction satisfied for our system.Many theories have
been developed to study large-scale interacting particle systems froma thermodynamic
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point of view, but only a few focus on applying the theory in combination with the
averaging methods for dynamical systems.

One of the earliest attempts to describe fast–slow mechanical systems from a ther-
modynamic point of viewdates back to thework ofHertz [36]. Since the fast subsystem
in our model is ergodic, Hertz’ methodology can directly be applied to the fast–slow
system studied in this article. We derived the second-order asymptotic expansion of
the dynamics in the system via weak convergence techniques and expressed in addi-
tion the results in the framework of two-scale convergence. Moreover, we showed that
the dynamics to leading order as well as on average to second order satisfy equations
resembling the first and second law of thermodynamics. In the limit ε → 0, the expres-
sion of the internal energy can be used to derive the same evolution equation for the
slow dynamics as by methods based on homogenisation procedures [5]. For ε > 0,
i.e. for the average second-order asymptotic expansion, a similar statement cannot be
made because the entropic term does not vanish, implyingmore complicated dynamics
to second order, which cannot just be described by the internal energy.

From the first and second lawof thermodynamics, it is clear that a simple description
of the slow dynamics can be achieved when the entropic term vanishes, which is
the case if the fast dynamics is ergodic. In the case of multiple fast DOF, the fast
dynamics is, in general, not ergodic. Thus, a direct application of Hertz’ theory is not
possible. As demonstrated in [33], however, some adjusted techniques can be used to
derive a thermodynamic interpretation of the system. It turns out that the leading-order
and the averaged second-order dynamics do not have a vanishing ergodic term and
thus the internal energy alone cannot be used to describe the slow dynamics in the
system. Contributions from the entropic term need to be considered to describe the
slow dynamics in the system correctly.

The discussion in this article provides two different perspectives on the asymptotic
expansion of solutions to our model problem (9). Firstly, the rigorous derivation of
the asymptotic expansion of the system’s dynamics provides accurate information
about the evolution of the system up to second order. Secondly, the thermodynamic
interpretation up to second order provides a bridge to the realmof statisticalmechanics.
A possible application of the theory presented in this article is to approximate the
dynamics of system (9) by a system that describes the slow evolution accurately, but
the fast evolution by thermodynamic expressions in terms of temperature and entropy.
Whether the evolution of these quantities can be derived is an open problem, as is the
role of entropy for thermodynamic consistency. Yet, the asymptotic expansion can be
used profitable in numerical simulations [33].
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