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Abstract
We discuss regularising transformations for the Liénard equations of the form y′′ =
F(z, y)y′+G(z, y), where F andG are polynomials of degreesn andn+1 respectively
using the geometric approach. As a particular case we find a transformation for the
Duffing–van der Pol equation which leads to the regularisation.

Keywords Algebraic singularities · Movable singularities · Liénard equations

Mathematics Subject Classification 34M35 · 34A34 · 34A12

1 Introduction

It is well-known that nonlinear differential equations have movable singularities, the
locations of which depend on initial conditions. One can find series representations
of solutions of a differential equation in the neighborhood of a singularity. However,
it is in general difficult to show the convergence of such a series or to find a complete
list of singular behaviours of all solutions.

In [3] movable singularities of solutions of equations of the form

y′′ = F(z, y)y′ + G(z, y) (1)

were studied, where F and G are polynomials in y. It was shown that if degyG ≤
degy F+1, and certain resonance condition is satisfied, then anymovable singularity of
y that can be reached by analytic continuation along a finite length curve is algebraic.
In particular, the following result holds.
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Theorem 1 [3] Let γ be a finite length curve with z0 as one of its endpoints and let

F(z, y) =
n∑

j=0

f j (z)y
j , G(z, y) =

n+1∑

k=0

gk(z)y
k,

where n is a positive integer and f j , gk are analytic on γ ∪ {z0} and fn is nowhere
zero there. Suppose that y is a solution of Eq. (1) that is analytic on γ but cannot be
analytically continued to γ ∪ {z0}. If, in a neihborhood of z0, either

f ′
n−1 fn − fn−1 f

′
n + (n + 1) fn−1gn+1 − n fngn = 0, n > 1, (2)

or

f0 f1(2g2− f ′
1)+(2g2− f ′

1)
2− f 21 g1+ f ′

0 f
2
1 + f1(2g

′
2− f ′′

1 )− f ′
1(2g2− f ′

1) = 0, n = 1,
(3)

then y has a series expansion of the form

y(z) =
∞∑

j=0

c j (z − z0)
( j−1)/n, (4)

where cn0 = −(n + 1)/(n fn(z0)), that converges in a neighbourhood of z = z0.

Proving the existence of a recurrence relation for the coefficients of the series
solution (4) is straightforward. If conditons (2) or (3) are not satisfied, then the series
must include logarithmic terms.

Convergence is a more difficult problem. The idea of the proof of the theorem above
was similar to the proofs in [4, 11] for equations of the form (1) with F identically
equal to zero, and relied on finding an appropriate auxiliary (bounded) function and
constructing with its help a corresponding regular system of first order differential
equations and an initial value problem for which, after the change of dependent and
independent variables, the Cauchy theorem can be applied. In this paper we revisit
this result using the geometric approach (which we can apply by fixing n). We show
that by taking n = 1, 2 and 3 and assuming that the degrees of polynomials F and G
are strictly n and n + 1, we can easily reproduce conditions (2) and (3) and find the
regularising transformation to show the convergence of (4). Although this method is
computational with n fixed, we do not require any auxiliary function to find the regular
system. Moreover, there are two ways to regularise the system, and one method was
inspired by the integration of particular cases of the Duffing–van der Pol equation.

The Duffing–van der Pol oscillator is given by [2, p. 21]

y′′ + (ay2 + b)y′ − cy + dy2 + β y3 = 0. (5)

This is a particular case of the Liénard equation (1) with n = 2 and g0 = f1 = 0,
g1 = c, g2 = −d, g3 = −β, f0 = −b, f2 = −a. It admits two families y ∼
y0(z − z0)−1/2, y20 = 3/(2a) without logarithmic terms provided d = 0 and a �= 0
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(which also follows from (2)). In the followingwe assume that d = 0. TheDuffing–van
der Pol oscillator has the first integral in one particular case [2, Sect. 3.2.6], namely,
3abβ+a2c−9β2 = 0with K = (3ay′+(3ab−9β)y+a2u3)e3β y/a . Equation K = 0
can be mapped to an ODE with the Painlevé property via the so-called hodograph
transformation

(y, z) → (Y , Z) : dz = y−1dZ , y = Y . (6)

Using this transformation the Abel equation K = 0 is mapped to the Riccati
equation dY/dZ + aY 2/3 + b − 3β/a = 0. The case K = const is similar (see [2]
for details).

The geometric approach for the Painlevé equations was developed in the papers
[9, 10] (see also [7]). The method of blowing up points of indeterminacy of certain
systems of two ordinary differential equations was also applied to obtain information
about the singularity structure of solutions of the corresponding non-linear differential
equations in [5, 8]. Originally, the notion of a blow-up comes from algebraic geometry.
Algebraically, the blow-up is a certain bi-rational transformation, namely, the blow-up
at a point (p, q) = (a, b) is defined by the following construction. One introduces new
coordinate charts, p = a+u = a+UV and q = b+uv = b+V . The exceptional line
corresponds to u = 0 or V = 0. For a system of differential equations for p = p(z),
q = q(z) the points of indeterminacy of the vector field a and b may depend on z. To
take into account the infinite values of p and q one should study the system for instance
on P

1 × P
1. Performing the blow-up at the point (a, b) one re-writes the system in

new coordinates (u, v) and (U , V ) and examines whether new indeterminacy points
arise on the exceptional lines. A sequence of blow-ups (or the cascade) may be very
long, even possibly infinite. When the cascade is finite, we examine the resulting
systems. If they are not regular on the last exceptional line, one may find a way
to regularise them (for instance, by interchanging the dependent and independent
variables as in [8] or examining the n-th order regularisability in case of algebroid
solutions [6]) and extract information about the nature of singularities of the original
system (e.g., solutions havemovable algebraic branch points either locally or globally).
Keeping track of the changes of variables introduced by the blow-ups in a given
finite cascade one then finds a bi-rational regularising transformation for the system
under consideration. For the Painlevé equations the process of repeatedly blowing up
base points is finite and leads to the construction of regularising transformations [9].
For certain classes of equations with the quasi-Painlevé property this process is also
finite but the regularisation involves the interchanging of dependent and independent
variables [8]. A natural question is how to extend such results to other classes of
equations.

In this paper we examine Eq. (1).We re-write this equation in the form of the system
suitable for the geometric method to apply and find regularising transformations for
n = 1, 2, 3. We present the formulas only for n = 1 and n = 2 since n = 3 case is
analogous but very cubersome. We show that for the system equivalent to (1) there is
an infinite sequence of blow-ups and another one that terminates, which further gives
a Laurent expansion of the solution around a movable pole. We also show how the
resonance conditions (2), (3) arise. We discuss two ways to regularise the system, one
by interchanging the dependent and independent variables and the other one using the
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hodograph transformation. We conjecture that the last transformation can also be used
in a wider classes of equations, for instance in equatons with solutions possessing
movable algebraic singularities as in [8].

2 Main results

First, let us consider the case n = 1. Take y′ = p, y = q in the Liénard Eq. (1). This
yields the system

q ′ = p, p′ = ( f0 + f1q)p + g0 + g1q + g2q
2 (7)

with coefficients being functions of z. We further assume that f1, g2 are not iden-
tically zero as otherwise the geometry of the system may change. Considering the
system over P1 × P

1 (that is, introducing charts (q, P), (Q, p) and (Q, P) with
Q = 1/q, P = 1/p in addition to the original chart (q, p)), we find the first inde-
terminacy point p1 = (Q = 0, P = 0). Next we find p2 = (u1 = 0, v1 = 0) and
p5 = (u1 = 0, v1 = − f1/g2). The cascade from p5 leads to more and more compli-
cated expressions for points of indeterminacy of the corresponding systems and it does
not stop after a reasonable number of steps. In general, as discussed in [5], the infinite
cascades possibly indicate the presence of more complicated singularities or some
special solutions. Blowing up p2 we find the point p3 = (u2 = 0, v2 = 2/ f1) on the
exceptional line. Finally, we find p4 = (u3 = 0, v3 = −4( f0 f1 + 2g2 − f ′

1)/ f
3
1 ).

Blowing up this point we see that the first equation regularises at u4 = 0 and the
second equation also regularises provided condition (3) is satisfied. We have

u′
4 = R1(z, u4, v4), v′

4 = R2(z, u4, v4)

with R1 and R2 rational in u4 and v4 and R1(z, 0, v4) and R2(z, 0, v4) being nonzero.
Further points of indeterminacy do not arise. Thus, the first result is the following
statement.

Theorem 2 The bi-rational transformation

u4 = 1

q
, v4 = q4

p
+ q

f 31
(4 f0 f2 − 2 f 21 q + 8g2 − 4 f ′

1)

regularises (7) provided (3) is satisfied. The inverse transformation is given by

q = 1

u4
, p = f 31

u24(2 f
2
1 − 4 f0 f1u4 + f 31 u

2
4v4 + 4( f ′

1 − 2g2)u4)
.

The polar expansions (4) with n = 1 correspond to the usual Taylor series for u4
and v4 with u4(z0) = 0. Since the coordinates of the blow-up in (u, v) chart are related
to the coordinates in the (U , V ) chart, we have a similar statement for the system in
the other chart (U4, V4). This agrees with the results given in [3].
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We repeat the procedure for n = 2 assuming f2g3 �= 0. We start from the system

q ′ = p, p′ =
2∑

j=0

f j q
j p +

3∑

j=0

g jq
j . (8)

In this case the finite cascade is longer. We find p1 = (Q = 0, P = 0), p2 = (u1 =
0, v1 = 0), p3 = (u2 = 0, v2 = 0), p4 = (u3 = 0, v3 = 3/ f2), p5 = (u4 =
0, v4 = −9 f1/(2 f 22 )), p6 = (u5 = 0, v5 = 9(3 f 21 + 4( f ′

2 − 3g3 − f0 f2))/(4 f 32 )).
After blowing up p6 the system after imposing condition (2) becomes

u′
6 = 1

u6
R1(z, u6, v6), v′

6 = 1

u6
R2(z, u6, v6) (9)

with R1 and R2 rational in u6 and v6 and R1(z, 0, v6) and R2(z, 0, v6) being nonzero.
Note that these functions R1 and R2 are clearly different from the case n = 1 above.
The second cascade from the point p7 = (u1 = 0, v1 = − f2/g3) is infinite.

System (9) can then be regularised in two ways. The first one, as in [3] (see also [4,
11]), is by interchanging the dependent and independent variables leading to

dz

du6
= u6 R̃1(z, u6, v6),

dv6

du6
= R̃2(z, u6, v6), (10)

which is regular with z(0) = z0. Expansion y = ∑∞
j=−1 a j (z − z0) j/2 with a2−1 =

−3/(2 f2(z0)), a0 = − f1(z0)/(2 f2(z0)) and a2 arbitrary, which we write as y ∼
a−1(z − z0)−1/2 giving only the leading term in the Puiseux series, corresponds to
the Puiseux expansions u6 ∼ (z − z0)1/2/a−1 and v6(z0) = v06 . Thus, inverting the
series we have a solution to the initial value problem (10) with u6 = 0, z(0) = z0 and
v6(0) = v06 .

The second way to regularise system (9), which is inspired by the integrable case of
the Duffing–van der Pol equation, is the following. Take a new independent variable
Z defined by dZ = u−1

6 dz and take u6(z) = U (Z), v6(z) = V (Z). Then system (9)
becomes

dU

dZ
= R̂1(Z ,U , V ),

dV

dZ
= R̂2(Z ,U , V ), (11)

which is regular and to which the Cauchy theorem can be applied. One can calculate
that Z − Z0 ∼ 2a−1(z − z0)1/2, hence, we get the Taylor series z − z0 ∼ (Z −
Z0)

2/(4a2−1) so we can replace the coefficients in the system depending on z and
obtain analytic coefficients in Z . Recalculating U (Z) and V (Z) we have the usual
Taylor series with U (Z0) = 0, U (Z) ∼ (Z − Z0)/(2a2−1) and V (z0) = V0. This
shows how the algebraic expansions (4) arise from the regular systems.

Therefore, we have the following result.

Theorem 3 The bi-rational transformation

u6 = 1

q
, v6 = q6

p
− 3q

4 f 32
(9 f 21 − 6 f1 f2q + 4(3 f ′

2 − 9g3 + f 22 q
2 − 3 f0 f2))
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leads to the regularisation of (8) in the sense of (9) provided (2) with n = 2 is
satisfied. The inverse transformation is given by

q = 1

u6
,

p = 4 f 32
u36(12 f

2
2 − 18 f1 f2u6 + 27 f 21 u

2
6 − 36 f0 f2u26 − 108g3u26 + 4 f 32 u

3
6v6 + 36 f ′

2u
2
6)

.

In particular, for the Duffing–van der Pol oscillator with d = 0 we have the bi-
rational transformation

u6 = 1

q
, v6 = q6

p
+ 3q

a3
(a2q2 − 3ab + 9β).

which leads to the regularisation in the sense of (9). The inverse transformation is

q = 1

u6
, p = a3

u36(9abu
2
6 − 27βu26 − 3a2 + a3u36v6)

.

For n = 3 case the calculations are similar, but expressions are more cumbersome,
so we omit them. The only differences with the case n = 2 are that the finite cascade
is longer and instead of the first power of u6 in the denominators of (9) we have the
second power of u8 and so we need to modify all other arguments accordingly. This
leads us to conjecture that similar behaviour can be observed for general n in the
(n, n + 1)-Liénard equations and the transformation leading to the system

u′ = 1

un−1 R1(z, u, v), v′ = 1

un−1 R2(z, u, v)

that can be regularised in two ways, by interchanging of dependent and independent
variables or by an appropriate hodograph transformation, will be obtained by the
geometric method.

3 Discussion and open problems

As already mentioned in [5], Liénard type equations may possess cascades which do
not finish after a reasonable number of steps. In some cases expressions of consequitive
points become very cumbersome and the complexity of symbolic computations rise
singificantly. In other cases the form of the equations does not change much and
similar points appear over and over again. One such example is the Smith equation
y′′ = 4y3y′+y discussed in [3, 5]. Another example is themaximumbalance equation
y′′ = μyn y′ + νy2n+1 from [3] with n = 2: y′′ = μy2y′ + νy5. It has one splitting
cascade after the third point and both branches are long. In addition, the form of
equations in the systems does not change much after consequitive blowups with the
same points with zero coordinates appearing after each step which leads us to believe
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that the cascades are infinite. Therefore, in these and all cases discussed in this paper
we can speak about partial regularisability (in comparison with [8] where all cascades
of points of indeterminacy are finite). It is an interesting problem to understand this
phenomenon better. Perhaps some combination of changes of variables including the
hodograph transformation is needed in such cases.

Another open problem is how to recover auxiliary functions bounded as 1/y → 0
needed in the proof of the quasi-Painlevé property (see [4, 11]), which are almost first
integrals plus certain correction terms, using the geometric approach. In addition, it
remains open whether there exists a regularising transformation leading to a system
with polynomial right-hand sides, not rational, as in the case of the Painlevé equations
after some modifications in the blow-up procedure. This is currently work in progress.

In this paper we have studied the case with generic coefficients of the Liénard
equation. However, there might be some additional relations between the coefficients.
For instance, in the case of the Duffing–van der Pol equation with a = b = d = 0,
integrable using elliptic functions, all cascased become finite and the final systems
become regular. The full regularization also happens if a = d = 0 and c = −2b2/9.
Note that if one differentiates the Abel equation y′ = ∑3

j=0 fi (z)yi , then one finds
a particular Liénard equation (1) with n = 2 and the resonance condition (2) will
be automatically satisfied. Special relations between the coefficients might lead to
the changes in the points of indeterminacy (for instance, new points might appear in
comparisonwith the generic case). Therefore, onemore interesting question iswhether
the geometric approach can help to distinguish some integrable cases of such Liénard
equations (see, for instance, [1] and the references therein).
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