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Abstract
This article reviews the foundations of the theory of the Bott index of a pair of unitary
matrices in the context of condensed matter theory, as developed by Hastings and
Loring (J. Math. Phys. 51, 015214 (2010), Ann. Phys. 326, 1699 (2011)), providing
a novel proof of the equality with the Chern number. The Bott index is defined for a
pair of unitary matrices, then extended to a pair of invertible matrices and homotopic
invariance of the index is proven. An insulator defined on a lattice on a two-torus, that
is a rectangular lattice with periodic boundary conditions, is considered and a pair of
quasi-unitary matrices associated to this physical system are introduced. It is shown
that theirBott index iswell defined and the connectionwith the transverse conductance,
the Chern number, is established proving the equality of the two quantities, in certain
units.

Keywords Bott index · Chern insulator · Homotopy invariance

Mathematics Subject Classification 47B93 · 15A60 · 46N55 · 82C10

1 Introduction

The integer quantization of the transverse (Hall) conductance (IQHE) of a two-
dimensional electron gas under an external perpendicular magnetic field has been
experimentally discovered in 1980 [1], the fractional quantization (FQHE) a couple of
years later [2]. The theoretical analysis of these phenomena has never stopped since.
Initial landmarks have been established by Laughlin [3], Halperin [4] and Thouless
et al. [5]. Different schools of thought originated to explain these phenomena: who
focused on the two-dimensional bulk aspects of the sample [6]; who stressed the rele-
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vance of the one-dimensional edge [7] and who analyzed the interplay between bulk
and edge-physics [8]. The attention to a realistic geometrical setting is particularly
relevant in the approach of Buttiker [9], while a rigorous treatment of the strong disor-
der needed for the quantization of the conductance is central in the work of Bellissard,
summarized in [10]. The initial sections of [10] can be used as an introduction to the
IQHE. Another line of research on the mathematical physics aspects of IQHE is due
to Avron, Seiler and Simon [11, 12]. Haldane in 1988 formulated a lattice model with
localized magnetic fluxes over the corners of a honeycomb lattice but with total mag-
netic fluxes per plaquette equal to zero. This model manifests a quantized transverse
conductance [13] and nowadays is calledChern insulator. TheHaldanemodel has been
relevant for the theoretical formulation [14, 15] and experimental discovery [16, 17] of
the topological insulators. Two relatively recent rigorous works, among others, on the
nature of the invariants describing topological insulators in two and higher dimensions
are [18, 19]. A rigorous discussion of the topology of one-dimensional systems with
open boundary conditions has been very recently provided by the authors of [20].

The quantization of the Hall conductance on a torus geometry, meaning that peri-
odic boundary conditions are imposed on a two- dimensional rectangular sample, is
determined by a topological invariant called Chern number. This has been showed for
the first time in the work of Thouless et al. [5], the emergence of the Chern number
has then been made explicit by Kohmoto in [21]. Also early contributions have been
made in [22] and [23].

Hastings and Loring in a set of articles [24–26] used mathematical tools includ-
ing non-commutative topology, C*-algebras and K-theory to rigorously search for the
topological invariants of the ten Altland and Zirnbauer symmetry classes [27] in a way
that is also relevant for numerical computations. The program of classification of topo-
logical invariants of Fermi systems according to their symmetries and dimensionality
started with the works of Qi et al. [28], Kitaev [29] and Ryu et al. [30].

One of the motivations for this article is to review the foundations of the theory of
the Bott index of a pair of unitarymatrices in the context of condensedmatter theory, as
developed by Hastings and Loring [25, 26], and in particular showing the equivalence
with the Chern number, with a novel proof of the equality of the two indices, providing
throughout new proofs that make this work self-contained.

In the physics literature the Bott index, following [25, 26], has been employed
to characterize several topological phenomena that goes from time-reversal invariant
systems [31], time-dependent systems [32–34], quasi periodic systems [35–38] and
ferromagnetic systems [39]. The former list is not exhaustive.

The structure of this article is as follows: In Sect. 2 the physical setting is presented:
a lattice on a two-torus, that is a finite rectangular lattice with periodic boundary
conditions, is considered and an insulator is defined on it. This is modeled by the
Fermi projection that fills the eigenstates of a short-ranged, bounded, gapped, single-
particle Hamiltonian below a spectral gap. The Hilbert space where the Hamiltonian
is defined is finite dimensional. The most important results of this section are the
bounds (3) and (4). Section 3 defines and discusses the Bott index of a pair of unitary
matrices according to [40–43], with the important generalization in Sect. 3.1 to a pair
of invertible matrices and the proof of homotopy invariance in Sect. 3.2. Section 4
gives a sufficient condition for the vanishing of the Bott index. Section 5 inspired by
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the approach of [26] in 5.1 proves that the Bott index approximates the Chern number.
A novel proof of the equality of the two indices is given in Sect. 5.2 through a mapping
to a differential equation following an analogous proof for the infinite two-dimensional
case recently presented in [44]. Three perspectives for future developments are given
in Sect. 6.

I anticipate here the main new result of this work that is an equality among the Bott
index of a pair of unitary matrices related to a Hamiltonian describing an insulator, on
a two-torus, as specified in definition 1, and the Chern number of its Fermi projection.
The proof of the theorem is in Sect. 5.2. Previously this relation has been established
only approximately making use of a pair of quasi-unitary matrices, this approach is
described in Sect. 5.1.

Theorem 11. Given a Hamiltonian H as in definition 1 and its Fermi projection P ,
the unitary matrices

e2π i P
X
L P , e2π i P

Y
L P

have a well-defined Bott index that satisfies:

Bott
(
e2π i P

X
L P , e2π i P

Y
L P
)

= 2π iTr

[
P
X

L
P, P

Y

L
P

]

= 4π

L2 ImTr (P[i X , P][iY , P]) = Ch(P)

2 Physical setting

The physical system under investigation is an insulator comprised of free fermions
on a lattice on a two-torus (that is a rectangular lattice with periodic boundary condi-
tions) filling up the energy levels of a single-particle Hamiltonian that is short-ranged,
bounded and gapped. The system’s fermions have in general N internal degrees of
freedom. The system admits weak disorder meaning that the Hamiltonian maintains a
spectral gap, the disorder is also supposed to be compatible with the periodic boundary
conditions. The presence of disorder makes the concept of Brillouin zone ill defined,
and therefore, I do not refer to it. The Hamiltonian has no extra symmetries. The first
application of the Bott index in condensed matter theory has been provided in [24].

This section shows that from the properties of the Hamiltonian, short-range,
bounded and gapped, two important estimates on norms of commutators follow that
in turn allow the introduction of two suitable unitary matrices whose Bott index will
be evaluated in Sect. 5.

Definition 1 The single-particle Hamiltonian H : l2(�) ⊗ CN → l2(�) ⊗ CN , with
� denoting a lattice on a two-torus, that is a lattice on a rectangle of sides Lx and Ly

with periodic boundary conditions,

H =
N∑

l,k=1

∑
n,m∈�

Hn,m,l,k |n, l〉〈m, k| (1)
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is:

• short-ranged with range R, meaning that: Hn,m,l,k = 0 when dist(n,m) > R, with
R � Lx and R � Ly .

• bounded: ‖H‖ is upper bounded by a finite constant independent from the system’s
size.

• gapped: there exists an energy gap �E in the spectrum of H with lower bound
unaltered increasing the size of �.

• Lx , Ly , R, ‖H‖ and �E are such that: R‖H‖
Lx�E � 1 and R‖H‖

Ly�E � 1.

The distance on the lattice is compatible with periodic boundary conditions. To
exemplify let us consider a square lattice, with lattice distance 1 over the rectangle
of sides Lx and Ly with periodic boundary conditions, then given n = (nx , ny) and
m = (mx ,my) with {nx ,mx } ∈ {0, ..., Lx − 1} and {ny,my} ∈ {0, ..., Ly − 1}, it is
dist(n,m) = mink∈Z |nx − mx + kLx | + minl∈Z |ny − my + l L y |.

For the sake of simplicity from now on it is assumed N = 1.
We “build up” an insulator out of the single-particle Hamiltonian (1) filling from

the bottom the single-particle energy levels till an energy gap of size �E is reached.

Definition 2 Given the Hamiltonian H as defined in 1 and the chemical potential μ

fixed within the spectral gap �E , the orthogonal projection P := χ(H ≤ μ) is called
the Fermi projection.

We now introduce well-defined position operators on the torus. To construct the torus
we glue together the opposite sides of a rectangle of linear sizes Lx and Ly . We
assign an ordering to the points of the rectangular lattice, such that the i th point
has coordinates (xi , yi ). We then construct the diagonal matrix X , with elements
Xi, j = xiδi, j , and the corresponding matrix Y , Yi, j = yiδi, j . The matrices X and Y
have Lx L y diagonal elements. Note that points that are physically close on the lattice
may have corresponding entries in thematrix X distant from each other, but at most Lx

elements far away. We then define the diagonal unitary matrices that are well defined
with respect to periodic boundary conditions, namely X → X+Lx and Y → Y +Ly :

exp

(
i
2π

Lx
Xi,i

)
, exp

(
i
2π

Ly
Yi,i

)
(2)

From now on it is set L := Lx = Ly .

Lemma 3

‖[e2π i XL , H ]‖ ≤ O
(
R

L
‖H‖

)
(3)

and

‖[e2π i XL , P]‖ ≤ O
(
R

L

‖H‖
�E

)
(4)
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Proof We employ the Holmgren bound for the norm of a bounded operator A, that is:

‖A‖ ≤ max

(
sup
m∈�

∑
n∈�

|〈m|A|n〉|,m ↔ n

)
(5)

m ↔ n denotes the exchange of the indices m and n in the sup and the
∑

. A proof of
this bound can be found in chapter 16 of [45], for convenience a proof is also presented
in “Appendix A.”

‖[e2π i XL , H ]‖ ≤ max

(
sup
m∈�

∑
n∈�

|〈m|[e2π i XL , H ]n〉|,m ↔ n

)
(6)

We notice that

〈m|[e2π i XL , H ]|n〉 = 〈m|(e2π i XL H − He2π i
X
L )|n〉 = (e2π i

mx
L − e2π i

nx
L )〈m|H |n〉(7)

Therefore

‖[e2π i XL , H ]‖ ≤ max

⎛
⎝ sup

m∈�

∑
dist(n,m)≤R

|e2π i mx
L − e2π i

nx
L ||〈m|H |n〉|,m ↔ n

⎞
⎠ (8)

In Eq. (8) we took into account that given a fixed point m ∈ � only the points of the
lattice within the range R contribute to 〈m|H |n〉. We see that

|e2π i mx
L − e2π i

nx
L |

= |e2π i mx
L

(
1 − e2π i

nx−mx
L

)
| ≤ 2π

L
min{|nx − mx |, L − |nx − mx |} (9)

Let us illustrate the bound (9) with mx = 1, nx = L − 1. The points (1, y) and
(L − 1, y) are on the opposite sides of the square lattice but they are close by on the
torus because of the periodic boundary conditions and therefore within the range R of
the Hamiltonian.

|e2π i mx
L − e2π i

nx
L | = |e2π i 1L − e2π i

L−1
L | = |e2π i 1L − e−2π i 1L |

= |1 − e−2π i 2L | ≤ 4π

L
(10)

It follows that

‖[e2π i XL , H ]‖ ≤ O
(
R

L
‖H‖

)
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To obtain the bound (4) we start considering, with z ∈ ρ(H), and A any matrix, the
equality:

0 = [A,1] = [A, (H − z)(H − z)−1] = [A, (H − z)](H − z)−1

+ (H − z)[A, (H − z)−1] (11)

[A, (H − z)−1] = (H − z)−1[(H − z), A](H − z)−1

= (H − z)−1[H , A](H − z)−1 (12)

The projection P on the occupied energy levels, with the loop � in the complex plane
enclosing them, can be written as

P = 1

2π i

∮

�

dz(z − H)−1 (13)

then:

[e2π i XL , P] = 1

2π i

∮

�

dz
[
e2π i

X
L , (z − H)−1

]
(14)

= 1

2π i

∮

�

dz(H − z)−1[H , e2π i
X
L ](H − z)−1 (15)

‖[e2π i XL , P]‖ ≤ 1

2π
‖[H , e2π i

X
L ]‖
∮

�

‖(H − z)−1‖2|dz| (16)

‖(H − z)−1‖ = dist(z, σ (H))−1

Let us consider the positively oriented loop � in Fig. 1. Along the edge of the loop
aligned with the imaginary axis of the complex-plane, assuming for simplicity that
the energy gap is located around zero, as in Fig. 1, we have that ‖(H − z)−1‖2 =
dist(z, σ (H))−2 = 1/

[
(�E

2 )2 + (Imz)2
]
. Sending R → ∞ the only contribution to

Fig. 1 The red stripes enclose
the spectrum of H
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the loop-integral comes from the edge along the imaginary axis, then:

∮

�

‖(H − z)−1‖2|dz| =
∫ ∞

−∞
1

(
�E
2

)2 + (Imz)2
d(Imz) = 2π

�E
(17)

Combining (3) and (16), this implies:

‖[e2π i XL , P]‖ ≤ O
(
R‖H‖
L�E

)

�

3 Bott index

The Bott index arose as an index to distinguish pairs of unitary matrices that can be
approximated by commuting unitary matrices from those that cannot. It was estab-
lished both as a winding number and a K-theoretic invariant in the early works of Exel
and Loring [40, 41, 46]. For a discussion of these aspects of the Bott index see [42]
and references therein.

The Bott index has been employed in the context of condensed matter physics by
Hastings and Loring in a set of papers [24–26].

In the following the logarithm of a matrix is defined according to the holomorphic
(Dunford) functional calculus, for a discussion see, for example, [47]. Denoting ρ

an invertible matrix and � a contour enclosing its spectrum but not the origin of the
complex plane it is:

log ρ := 1

2π i

∮

�

log z(z1 − ρ)−1dz (18)

If the spectrum of ρ does not contain real negative values then the contour � is chosen
to not intersect the real negative axis of the complex plane and log z is the principal
logarithm of z.

Definition 4 Given two unitarymatricesU and V , such that {−1} /∈ σ
(
UVU−1V−1

)
,

or equivalently such that ‖[U , V ]‖ < 2, their Bott index is defined as:

Bott(U , V ) := 1

2π i
Tr log

(
UVU−1V−1

)
(19)

Remark the equivalence of {−1} /∈ σ
(
UVU−1V−1

)
and ‖[U , V ]‖ < 2 follows from:

‖UVU−1V−1 − 1‖ = ‖(UV − VU )U−1V−1‖ = ‖[U , V ]‖ (20)

Lemma 5 The Bott index of two unitary matrices, as in Definition 4, is an integer.
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Proof Wedenote {eiθ j },with θ j ∈ (−π, π), the elements of the spectrumof the unitary
matrix UVU−1V−1. From det

(
UVU−1V−1

) = 1, it follows that: 1 = ∏
j e

iθ j =
ei
∑

j θ j . This implies Bott(U , V ) = 1
2π

∑
j θ j ∈ Z. �

It is immediate to see that when U and V are commuting their index is vanishing.

3.1 The Bott index of two invertible matrices

The Bott index of two invertible matrices, S and T , can be defined similarly as done
for unitary matrices. To ensure that log

(
ST S−1T−1

)
is well defined, having chosen

the branch cut of the logarithm on the real negative axis, we need that σ(ST S−1T−1)

does not contain any real negative value: σ(ST S−1T−1)
⋂

R− = ∅. Denoting with
λ j = |λ j |eiθ j , θ j ∈ (−π, π), the set of eigenvalues of ST S−1T−1 we get:

1 = det
(
ST S−1T−1

)
=
∏
j

λ j =
∏
j

|λ j |eiθ j =
∏
j

eiθ j ⇒ 1

2π

∑
j

θ j ∈ Z

(21)

In Eq. (21) it has been used: 1 = ∏
j λ j = |∏ j λ j | = ∏

j |λ j |, implying
0 =∑ j log |λ j |, then

Bott(S, T ) := 1

2π i
Tr log

(
ST S−1T−1

)
= 1

2π i

∑
j

log λ j

= 1

2π i

∑
j

(
log |λ j | + iθ j

) = 1

2π

∑
j

θ j ∈ Z (22)

Remark The unitary matrices are invertible matrices; the reason why two separate def-
initions are given for their Bott index is that the condition σ(ST S−1T−1)

⋂
R− = ∅

reduces in the unitary case to {−1} /∈ σ
(
UVU−1V−1

)
and in turn to ‖[U , V ]‖ < 2

that might be easier to check both analytically and numerically.

3.2 Homotopy invariance of the Bott index of two invertible matrices

Homotopy invariance of the Bott index of two unitary matrices has been previously
shown by Exel and Loring [40, 41, 46], in their approach this follows from casting
the Bott index as a winding number or a K-theoretic invariant. Here I take a direct
approach looking at the derivative of the index.

Lemma 6 Given two maps U (s) : [0, 1] → GL(N ,C) and V (s) : [0, 1] →
GL(N ,C), continuous with respect to the operator norm, such that σ(U (s)V (s)
U (s)−1V (s)−1)

⋂
R− = ∅, ∀s ∈ [0, 1] it is:

Bott(U (s), V (s)) = Bott(U (0), V (0)) (23)
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Proof A continuous path of invertible matrices can be approximated in norm by a dif-
ferentiable path, [48] proposition 1.7.2. Let us consider the partial derivatives ∂sU (s)
and ∂sV (s) of such a differentiable path.

∂sTr log(U (s)V (s)U−1(s)V−1(s))

= Tr
[
∂s(U (s)V (s)U−1(s)V−1(s))(V (s)U (s)V−1(s)U−1(s))

]

= Tr[(∂sU (s))U−1(s) +U (s)(∂sV (s))V−1(s)U−1(s)

+U (s)V (s)(∂sU
−1(s))U (s)V−1(s)U−1(s)

+U (s)V (s)U−1(s)(∂sV
−1(s))V (s)U (s)V−1(s)U−1(s)] (24)

= Tr[(∂sU (s))U−1(s)] + Tr[(∂sV (s))V−1(s)]
+ Tr[(∂sU−1(s))U (s)] + Tr[(∂sV−1(s))V (s)] (25)

Since (∂sU−1(s))U (s) = −U−1(s)∂sU (s), we obtain: ∂sBott(U (s), V (s)) = 0. �

4 A sufficient condition for the vanishing of the Bott index of a pair of
unitary matrices

Lemma 7 Given U and V a pair of unitary matrices such that ‖[U , V ]‖ < 2, if
‖[U , V ]‖1 < 4 then Bott(U , V ) = 0. ‖ · ‖1 denotes the trace norm, namely the sum
of the singular values.

Proof The statement follows from the inequality

|Bott(U , V )| ≤ 1

2π
‖ log(UVU−1V−1)‖1 ≤ 1

4
‖[U , V ]‖1 (26)

Since Bott(U , V ) is an integer, if its modulus has an upper bound strictly smaller than
1 then it vanishes.

Let us prove (26). Given the set of eigenvalues of UVU−1V−1, {eiθ j } with θ j ∈
(−π, π), it holds:

1

2π
‖ log(UVU−1V−1)‖1 = 1

2π

∑
j

|θ j | (27)

≤ 1

4

∑
j

|eiθ j − 1| = 1

4
‖UVU−1V−1 − 1‖1

= 1

4
‖(UV − VU )U−1V−1‖1 ≤ 1

4
‖[U , V ]‖1 (28)

The singular values of a normal matrix are the modulus of the eigenvalues; this is used
in (27). The inequality |θ | ≤ π

2 |eiθ − 1|, with θ ∈ [−π, π ], has been used in (28). �
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5 Equivalence of the Bott index and the Chern number on a finite
torus

The aim of this section is to introduce a pair of suitable quasi-unitary matrices, given
by (29), and a pair of unitary matrices, given by (72) that arise from the physical
system considered in Sect. 2 and prove that their Bott index equals the transverse
conductance. This implies that the transverse conductance is an integer.

In Sect. 5.1 I follow the ideas of Hastings and Loring that realized how to remove
the log in the expression of the Bott index up to corrections of order R‖H‖

L�E . In Sect. 5.2
I adopt a novel approach showing the exact equality of the Bott index of two unitary
matrices, given by (72) with the Chern number. The invertible matrices (29) and
the unitary matrices (72) are shown to be related by a homotopy within the invertible
matrices, implying the equality of theirBott indices. InSect. 5.2 I also discuss subtleties
concerning homotopies and periodic boundary conditions on the lattice.

According to sections 2F and 4 of [10], the wordings “Chern number” and “trans-
verse conductance” will be used in here as synonymous.

In the following the notation is that of Sect. 2.

5.1 The Hastings–Loring approach, andmore

Hastings and Loring considered in [26] the pair of almost unitary matrices Pe

(
i 2πX

L

)
P

and Pe

(
i 2πYL

)
P as acting on the subspace Ran(P). I will consider instead the pair of

almost unitary matrices over l2(�), already introduced by Loring in section 9 of [43]
given by (29).

Lemma 8 Given a Hamiltonian H as in 1, with P the Fermi projection, P = χ(H ≤
μ), and defining θx := 2πX

L , θy := 2πY
L and P⊥ := 1 − P, the matrices

P⊥ + Peiθx P , P⊥ + Peiθy P (29)

are almost unitary, namely it holds:

‖(P⊥ + Peiθx P)∗(P⊥ + Peiθx P) − 1‖ � 1 (30)

‖(P⊥ + Peiθx P)(P⊥ + Peiθx P)∗ − 1‖ � 1 (31)

The same is true replacing θx with θy . Moreover, the pair (29) almost commute:

‖[P⊥ + Peiθx P, P⊥ + Peiθy P]‖ � 1 (32)

Proof

‖(P⊥ + Peiθx P)∗(P⊥ + Peiθx P) − 1‖ = ‖P⊥ + Pe−iθx Peiθx P − 1‖ (33)

= ‖Pe−iθx Peiθx P − P‖ = ‖P(e−iθx (P − 1)eiθx )P‖ (34)
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= ‖Pe−iθx P⊥eiθx P‖ = ‖[P, e−iθx ]P⊥[eiθx , P]‖ (35)

≤ ‖[P, e−iθx ]‖2 ≤ O
(
R

L

‖H‖
�E

)2
� 1 (36)

Analogously ‖(P⊥ + Peiθx P)(P⊥ + Peiθx P)∗ − 1‖ � 1. Moreover,

‖[P⊥ + Peiθx P, P⊥ + Peiθy P]‖ = ‖[Peiθx P, Peiθy P]‖ (37)

= ‖P(eiθx Peiθy − eiθy Peiθx )P]‖ = ‖P(eiθy P⊥eiθx − eiθx P⊥eiθy )P]‖ (38)

= ‖[P, eiθy ]P⊥[eiθx , P] − [P, eiθx ]P⊥[eiθy , P]‖ (39)

≤ 2‖[P, eiθx ]‖‖[P, eiθy ]‖ ≤ O
(
R

L

‖H‖
�E

)2
� 1 (40)

�
We now want to evaluate the Bott index of the pair (29). With the aid of Eq. (44),

already stated in section 5.3 of [26], we get rid of the log in Eq. (45) introducing a
O(λ2) correction, with λ := R‖H‖

L �E .

Lemma 9 Given U and V two invertible matrices over CN , N � 1, and given a
parameter g with g2 ∝ 1

N , with U and V satisfying:

‖U∗U − 1‖ = O(g2), ‖UU∗ − 1‖ = O(g2) (41)

‖V ∗V − 1‖ = O(g2), ‖VV ∗ − 1‖ = O(g2) (42)

‖[U , V ]‖ = O(g2), (43)

namely they are almost unitary and they almost commute. This implies that:

‖ log(UVU−1V−1) − (UVU−1V−1 − 1)‖ ≤ O(g4) (44)

|Bott(U , V ) − 1

2π
ImTr(UVU−1V−1)| ≤ O(g2) (45)

Proof Let us consider the log series, given A with ‖A − 1‖ < 1, that implies A
invertible, it holds:

log A =
∞∑
n=1

(−1)n+1 (A − 1)n

n
(46)

Then:

‖ log A − (A − 1)‖ = ‖
∞∑
n=2

(−1)n+1 (A − 1)n

n
‖ ≤ ‖A − 1‖2

∞∑
n=2

‖A − 1‖n−2

n

(47)
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Equation (44) follows from (47) with A = UVU−1V−1. The trace of a matrix is less
equal than the norm of the matrix itself times the dimension of the space the matrix is
acting upon, then:

|Tr[log(UVU−1V−1) − (UVU−1V−1 − 1)]| ≤ O(g4)O(N ) = O(g2) (48)

Noticing that

Bott(U , V ) = 1

2π
ImTr log(UVU−1V−1) (49)

equation (45) follows. �
To show the equality of the Bott index of the pair (29) with the Chern number of

P we make use of an expression of the latter that is suitable for this proof. The name
Chern number arises within the theory of Chern class, see [49, 50], as an invariant
of manifolds. For infinite systems in dimension two when the Hilbert space of the
system is l2(Z2) the authors of [10] have shown that given a Hamiltonian with a
local Fermi projection P , P X+iY

|X+iY | P + P⊥, is a Fredholm operator, with index equal,
after average over the disorder distribution, to the transverse conductance. The same
authors in section 2F and section 4 of their work [10] develop the linear response
theory that provides the form of the transverse conductance, this coincides with the
Chern character (number) of the projection P defined as follows:

Ch(P) = −2π iTru.a.P
[
∂x P, ∂y P

]
(50)

∂x and ∂y denote non commutative derivatives, namely ∂x A := [−i X , A], ∂y A :=
[−iY , A], with X and Y the position operators. The trace Tru.a. stays for the trace per
unit area, that is: Tru.a. := limA→∞ TrA

A . From (50) it follows that

Ch(P) = −4π ImTru.a.P [X , P] [Y , P] (51)

In fact:

2π iTru.a.P
[
∂x P, ∂y P

] =2π iTru.a.P [[−i X , P], [−iY , P]] (52)

=2π iTru.a.P ([−i X , P][−iY , P] − [−iY , P][−i X , P])
= − 4π ImTru.a.P [−i X , P] [−iY , P] (53)

I remark that in here I follow a sign convention for the Chern number different from
[10], but in agreement with definitions 6.3 and 6.6 of [12], and in agreement also
with appendix C of [29]. The definition of Chern number also generalizes to higher
dimensions as can be seen in chapter 6 of [48]. Prodan is discussed in theorem 5.11
and corollary 5.12 of [51] the stability properties of the Chern number with respect to
deformations of the Hamiltonian that gives rise to the Fermi projection P .

As far as regards the physical system on the torus that we are considering, as
described in Sect. 2, the definition of Chern number is as in Eq. (51) with Tru.a.(·) =
1
L2 Trl2(�)(·).
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Theorem 10 Given a Hamiltonian H as in Definition 1 and its Fermi projection P,
the approximated expression of the Bott index, as in Eq. (45), of the almost unitary

matrices P⊥ + Pe

(
i 2πX

L

)
P and P⊥ + Pe

(
i 2πYL

)
P equals the Chern number of the

projection P, as given in Eq. (51), within a correction of order O
(
R‖H‖
L �E

)
.

Bott

(
P⊥ + Pe

(
i 2πX

L

)
P, P⊥ + Pe

(
i 2πYL

)
P

)
= Ch(P) + O(λ) (54)

with λ := R‖H‖
L �E .

Proof With an eye toward operators in infinite-dimensional Hilbert spaces, it is a good
idea to have a control on the order of magnitude of a trace, therefore starting from Eq.
(56) all the terms appearing under a trace are of order L−2, being in our model the
Hilbert space of dimension of order L2, it means that we are handling traces ofO(1).

Bott

(
P⊥ + Pe

(
i 2πX

L

)
P, P⊥ + Pe

(
i 2πYL

)
P

)

= 1

2π
ImTr

(
1 + [U , V ]U−1V−1)+ O(λ2) = 1

2π
ImTr

(
1 + [U , V ]U∗V ∗)+ O(λ2)

(55)

= 1

2π
ImTr

(
[Peiθx P, Peiθy P]Pe−iθx Pe−iθy P

)
+ O(λ2) (56)

= 1

2π
ImTr

[(
Peiθy P⊥eiθx P − eiθx P⊥eiθy P

)
e−iθx Pe−iθy P

]
+ O(λ2) (57)

= 1

2π
ImTr

(
Pe−iθy Peiθy P⊥eiθx Pe−iθx P − Pe−iθy Peiθx P⊥eiθy Pe−iθx P

)
+ O(λ2)

(58)

The terms inside the trace in Eq. (58) have quite a similar structure:

Pe−iθy Peiθy P⊥eiθx Pe−iθx P = P[−iθy, P]P⊥[iθx , P]P + O(λ)3 (59)

Inserting a couple of identities 1 = eiθy e−iθy = e−iθx eiθx in the second term of (58)
we get:

Pe−iθy Peiθx P⊥eiθy Pe−iθx P = Pe−iθy Peiθy e−iθy eiθx P⊥eiθy e−iθx eiθx Pe−iθx P (60)

= P
(
P + [−iθy, P]) (P⊥ + [i(θx − θy), P

⊥]) (P + [iθx , P]) P + O(λ)3 (61)

= −P[iθx , P]P⊥[iθx , P]P + P[iθy, P]P⊥[iθx , P]P − P[−iθy, P]P⊥[iθx , P]P
+ P[−iθy, P]P⊥[iθy, P]P + P[−iθy, P]P⊥[iθx , P]P + O(λ)3 (62)

In Eq. (62) there are two Hermitian terms, therefore they have imaginary part of the
trace vanishing, and two other terms cancel. Going back to (58), we get:

Bott

(
P⊥ + Pe

(
i 2πX

L

)
P, P⊥ + Pe

(
i 2πYL

)
P

)
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= 1

π
ImTr

(
P[θy, P]P⊥[θx , P]

)
+ O(λ) (63)

= − 1

π
ImTr

(
P[θx , P][θy, P])+ O(λ) = −4π

L2 ImTr (P[X , P][Y , P]) + O(λ)

(64)

We see that Eq. (64) coincides with Eq. (51) up to O(λ). Some remarks from the
equations above: Eqs. (59) and (61) follow from the identity, with A Hermitian:

ei ABe−i A − B = [i A, B] + 1

2
[i A, [i A, B]] + . . . + 1

n! [i A . . . [i A, B] . . .] + . . .

(65)

‖[θx , P]‖ ≤ O(λ) is equation 5.5 of [25], this has been used in (59) and (61). This
also follows from the application of the Holmgren bound, in a similar fashion to what
done in Lemma 3, to ‖[X , H ]‖, with |〈m|[X , H ]|n〉| = dist(mx , nx )|〈m|H |n〉|. With
mx and nx in the set [0, L − 1] ∩ Z the distance dist reflects the periodic boundary
conditions, namely

dist(mx , nx ) = min{|nx − mx |, L − |nx − mx |} (66)

Application of the same ideas leads to 1
L2 ‖[X , [X , H ]]‖ = O(λ2).

The first equation in (64) follows from:

ImTr
(
P[θy, P]P⊥[θx , P]

)
= ImTr

(
[θx , P][θy, P]P⊥)

= −ImTr
(
P[θx , P][θy, P]) (67)

In (67) it has been used: [A, P] = P[A, P]P⊥ + P⊥[A, P]P with A bounded and
P a projection, this implies that P[A, P]P = 0. It has also been used: given B
and C skew adjoint matrices then ImTr(BC) = −ImTr(BC)∗ = −ImTr(C∗B∗) =
−ImTr(CB) = −ImTr(BC), implying ImTr(BC) = 0.

We stress that [X , P] is well defined with periodic boundary conditions but neither
X P nor PX is well defined, if singularly taken. This implies that (64) is well defined
on a finite torus and coincides up to corrections of order O(λ) with the transverse
conductance. �

Hastings and Loring have developed the theory of the linear response on the torus
in section 5.3 of [26] making use of the current operator, with θx = 2π X

L :

Jx = 1

2

(
eiθx He−iθx − e−iθx Heiθx

)
= 2π

L
[i X , H ] + O(L−3) (68)

They show that the Bott index equals the transverse conductance on the torus up to
correction of order O(L−1).

123



On the Bott index of unitary matrices on a finite torus Page 15 of 24 126

It is worth mentioning that the Chern number of a finite-dimensional projection
P , rank(P) < ∞, defined on an infinite-dimensional Hilbert space or on a finite-
dimensional Hilbert space with open boundary conditions is vanishing, in fact:

ImTr (P[X , P][Y , P]) = ImTr
(
P[X , P]P⊥[Y , P]

)
(69)

= ImTr
(
PX P⊥Y P

)
= ImTr (PXY P − PX PY P) (70)

= −ImTr (PX PY P) = −ImTr (PY PX P) = 0 (71)

In the first equality of (71) I have used the cyclic property of the trace with respect
the two blocks PX P , PY P; in the second equality the fact that if the trace of a (trace
class) operator coincides with the trace of its adjoint then it is real. This has also been
used in (70).

On the torus, namely with periodic boundary conditions, we cannot “open” the
commutator and take the trace of each operator, like it has been done in (70), in fact in
that case PXY P and PX PY P are not well defined with respect to periodic boundary
conditions.

A proof of the Bott index - Chern number equivalence based on a “momentum
space” approach has been discussed in [33].

5.2 An exact approach: homotopies on the torus: the right and the wrong way

As stated at the beginning of Sect. 5, I will provide here a novel proof of the Bott
index - Chern number correspondence, showing the equality among the Bott index
of the pair of unitary matrices given in Eq. (72) and the Chern number Ch(P) taking
advantage of an approach developed in [44] for bounded operators. The operators
(72) have been already suggested in the context of the integer quantum Hall effect
by Kitaev in appendix C of [52], and more recently, with a suitable modification, in
the context of infinite-dimensional Hilbert spaces by the authors of [53, 54]. Being
the Bott index an integer this shows that the correction O(λ) in Eq. (54) is actually
vanishing. As an application of the homotopy invariance of the Bott index I will also
show in lemma 12 that the two almost unitary matrices 29 and the two unitary matrices
(72) are connected by an homotopy within the invertible matrices, providing another
proof of the equality of their Bott indices.

Theorem 11 Given a Hamiltonian H as in Definition 1 and its Fermi projection P,
the unitary matrices

e2π i P
X
L P , e2π i P

Y
L P (72)

have a well-defined Bott index that satisfies:
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Bott
(
e2π i P

X
L P , e2π i P

Y
L P
)

= 2π iTr

[
P
X

L
P, P

Y

L
P

]

= 4π

L2 ImTr (P[i X , P][iY , P]) = Ch(P) (73)

Proof First of all we start noticing that e2π i P
X
L P = Pe2π i P

X
L P P + P⊥, implying that

[P, e2π i P
X
L P ] = 0. Let us show that the unitary matrices in (72) almost commute

implying that their Bott index is well defined. This is implied by ‖P⊥ + Pei2π
X
L P −

e2π i P
X
L P‖ ≤ O(λ2) that can be shown as follows:

P⊥ + Pei2π
X
L P − e2π i P

X
L P = P

(
e2π i

X
L − e2π i P

X
L P
)
P (74)

= P

( ∞∑
n=2

(2π i)n

n!
[(

X

L

)n
−
(
P
X

L

)n])
P (75)

Using the following equality of bounded operators A and B

An − Bn =
n−1∑
j=0

B j (A − B)An− j−1 (76)

We obtain with n ≥ 2

P

[(
X

L

)n
−
(
P
X

L

)n]
P

= P

⎡
⎣
n−1∑
j=0

(
P
X

L

) j ( X

L
− P

X

L

)(
P
X

L

)n− j−1
⎤
⎦ P (77)

= P

⎡
⎣
n−1∑
j=0

(
P
X

L

) j

P⊥ X

L

(
P
X

L

)n− j−1
⎤
⎦ P (78)

= P

⎡
⎣
n−1∑
j=1

(
P
X

L

) j

P⊥ X

L

(
P
X

L

)n− j−1
⎤
⎦ P (79)

= P

⎡
⎣
n−1∑
j=1

(
P
X

L

)( j−1)

P
X

L
P⊥ X

L
P

(
P
X

L

)n− j−1
⎤
⎦ P (80)

= P

⎡
⎣
n−1∑
j=1

(
P
X

L

)( j−1) [
P,

X

L

]
P⊥
[
X

L
, P

](
P
X

L

)n− j−1
⎤
⎦ P (81)
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The norm of the matrix in Eq. (81) is bounded by (n − 2)O(λ2). Using the series
expansion of the exponential it is possible to show that the norm of (75) is bounded
by O(λ2). In a more concise way we can obtain an upper bound of O(λ) for (74), as
follows:

‖P⊥ + Pei2π
X
L P − e2π i P

X
L P‖

= ‖P
(
ei

2πX
L − e2π i P

X
L P
)
P‖ (82)

= ‖2π i P
∫ 1

0
ei2π

X
L t
(
X

L
− P

X

L
P

)
e2π i P

X
L P(1−t)dt P‖ (83)

= ‖2π i P
∫ 1

0
ei2π

X
L t
(
X

L
− P

X

L
P

)
Pe2π i P

X
L P(1−t)dt‖ (84)

≤ 2π‖ X
L
P − P

X

L
P‖ = 2π‖P⊥ X

L
P‖ = 2π‖P⊥

[
X

L
, P

]
‖ (85)

≤ O(λ) (86)

In Eq. (83) a DuHamel formula has been used. Then:

‖
[
e2π i P

X
L P , e2π i P

Y
L P
]
‖ (87)

= ‖P
[
e2π i P

X
L P − Pei2π

X
L P + Pei2π

X
L P, e2π i P

Y
L P − Pei2π

Y
L P + Pei2π

Y
L P
]
P‖
(88)

≤ ‖
[
Pei2π

X
L P, Pei2π

Y
L P
]
‖ + O(λ) ≤ O(λ) (89)

To prove Eq. (73) we consider the maps of unitary matricesU (t) : [0, 1] → e2π i t P
X
L P

and V (t) : [0, 1] → e2π i t P
Y
L P . With t ∈ (0, 1),U (t) and V (t) do not satisfy periodic

boundary conditions therefore they are not admissible homotopies, according to lemma
6, meaning that along the pathsU (t) and V (t), Bott (U (t), V (t)) is allowed to change.
This can be seen for example looking at Eq. (25), we see thatU−1(t)∂tU (t) must be a
well-defined matrix over the given Hilbert space, in our case l2(�) periodic boundary
conditions. On the contrary we see that

U−1(t)∂tU (t) = 2π i P
X

L
P. (90)

We now map the problem of determining the LHS of Eq. (73) into the solution of
a first-order different equation.

To simplify the notation we denote φx := 2π P X
L P and φy := 2π P Y

L P . Let
us define g(t) := Tr log

(
eitφx eitφy e−i tφx e−i tφy

)
; the argument of the log satisfies

periodic boundary conditions, in fact with X → X + nL1 and Y → Y + mL1, with
n and m ∈ Z, we have that

e
2π i t P

(
X
L +n1

)
P = e2π i tnPe2π i t P

X
L P (91)
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e
2π i t P

(
Y
L +m1

)
P = e2π i tmPe2π i t P

Y
L P (92)

This implies that the trace defining g(t) is well posed.

dg

dt
= Tr[(iφx e

itφx eitφy e−i tφx e−i tφy + eitφx iφye
itφy e−i tφx e−i tφy

− eitφx eitφy iφx e
−i tφx e−i tφy (93)

− eitφx eitφy e−i tφx iφye
−i tφy )eitφy eitφx e−i tφy e−i tφx ] (94)

= Tr
(
iφx + eitφx iφye

−i tφx − eitφx eitφy iφx e
−i tφy e−i tφx

−eitφx eitφy e−i tφx iφye
itφx e−i tφy e−i tφx

)

= Tr
(
iφx + iφy − eitφy iφx e

−i tφy − eitφy e−i tφx iφye
itφx e−i tφy

)
(95)

= Tr
(
e−i tφy iφx e

itφy + iφy − iφx − e−i tφx iφye
itφx
)

(96)

= Tr
(
e−i tφy iφx e

itφy − iφx

)
+ Tr

(
iφy − e−i tφx iφye

itφx
)

(97)

= Tr

(∫ 1

0
dse−istφy [−i tφy, iφx ]eistφy

)
+ Tr

(∫ 1

0
dse−istφx [iφy,−tiφx ]eistφx

)

(98)

= Tr
([−i tφy, iφx ]

)+ Tr
([iφy,−i tφx ]

) = 2tTr
([iφx , iφy]

)
(99)

Observing that g(0) = 0

g(t) =
∫ t

0
g′(s)ds =

∫ t

0
2sTr[iφx , iφy]ds = t2Tr[iφx , iφy] (100)

This implies that

Bott(eiφx , eiφy ) = 1

2π i
g(1) = 1

2π i
Tr[iφx , iφy] (101)

Then

Bott
(
e2π i P

X
L P , e2π i P

Y
L P
)

= 2π iTr

[
P
X

L
P, P

Y

L
P

]
(102)

Moreover,

2π iTr

[
P
X

L
P, P

Y

L
P

]
= 2π i

L2 Tr (PX PY P − PY PX P) (103)

= 2π i

L2 Tr
(
PY P⊥X P − PX P⊥Y P

)
= 4π

L2 ImTrPX P⊥Y P (104)

= 4π

L2 ImTr[P, X ]P⊥[Y , P] = −4π

L2 ImTrP[X , P][Y , P] (105)
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�

Lemma 12 Given H as in Definition 1 and P its Fermi projection, it holds:

Bott
(
Pe2π i

X
L P + P⊥, Pe2π i

Y
L P + P⊥) = Bott

(
e2π i P

X
L P , e2π i P

Y
L P
)

(106)

Proof Equation (106) follows from the relation with the Chern number established in
Theorems 10 and 11. To exemplify the construct of a homotopy, Eq. (106) can also be
proven considering the paths:

ρ(s) := (1 − s)e2π i P
X
L P + s

(
Pe2π i

X
L P + P⊥) (107)

η(s) := (1 − s)e2π i P
Y
L P + s

(
Pe2π i

Y
L P + P⊥) (108)

with s ∈ [0, 1]. It is important to stress that ρ(s) and η(s) are well defined for all
s ∈ [0, 1] with respect to periodic boundary conditions, namely ρ(s) is invariant
when X → X + nL , ∀n ∈ Z. ρ(s) is almost unitary: ρ(s)ρ∗(s) = 1 + O(λ). This
can be seen as follows:

ρ(s) = (1 − s)e2π i P
X
L P + s

(
Pe2π i

X
L P + P⊥)

= e2π i P
X
L P + sP

(
e2π i

X
L − e2π i P

X
L P
)
P (109)

According to Eq. (74), the term proportional to s in (109) is upper bounded by O(λ).
The same holds for η(s).

It is ∀s ∈ [0, 1], ‖[ρ(s), η(s)]‖ < 2. Let us verify this. Setting as before θx = 2π X
L

and θy = 2π X
L , we have:

‖[ρ(s), η(s)]‖
= ‖[(1 − s)ei Pθx P + s

(
Peiθx P + P⊥) , (1 − s)ei Pθy P + s

(
Peiθy P + P⊥)]‖

≤ (1 − s)2‖[ei Pθx P , ei Pθy P ]‖ + (1 − s)s‖[ei Pθx P , Peiθy P]‖
+ (1 − s)s‖[ei Pθy P , Peiθx P]‖ + s2‖[Peiθx P, Peiθy P]‖ (110)

≤ (1 − s)2‖[Pθx P, Pθy P]‖| + (1 − s)s‖[ei Pθx P , eiθy ]‖
+ (1 − s)s‖[ei Pθy P , eiθx ]‖ + s2O

(
λ2
)

(111)

≤ (1 − s)2O
(
λ2
)

+ (1 − s)s‖[Pθx P, θy]‖
+ (1 − s)s‖[Pθy P, θx ]‖ + s2O (λ)2 (112)

≤ (1 − s)2O(λ2) + 2(1 − s)sO(λ) + s2O(λ2) � 1 (113)

�
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As a final remark about the subtleties of homotopies let us consider W (s) :=
Pei2π(1−sP⊥) X

L (1−sP⊥)P + P⊥ that is a unitary map with the same initial and final
point of ρ(s). Nevertheless, W (s) does not satisfy periodic boundary conditions with
s ∈ (0, 1) therefore it is not admissible as an homotopy for the torus geometry.

6 Discussion and perspectives

The formulation of the theory that leads to the construction of the Bott index is com-
patible with weak disorder, meaning that disorder is admitted in the description of the
system by the model Hamiltonian as far as a spectral gap is present. The role of the
disorder in system with topological features is essential in fact it is the presence of
strong disorder that makes possible the presence of plateaus in the shape of the Hall
conductance as the external magnetic field is varied. See the introduction of [10] for
a discussion. The Chern number admits a formulation developed in [10], based on
the use of tools from non commutative geometry that shows its quantization even in
the presence of a disorder as strong as to close the band gap, for a visual illustration
of this see figure 1 of reference [55]. The presence of a mobility gap, meaning that
at the chemical potential there are only localized states, is still required, otherwise
the system would lose its insulating nature. A different rigorous approach to strong-
disordered systems is that of the so-called deterministic disorder, see for example [56]
and section 7 of [57] with the definition of SULE, and the more recent works [54, 58].
In the formulation of the Bott index a band gap has been assumed. It seems natural to
ask if the extension to strong disorder leads to a quantization of the Bott index.

A periodic driven Hamiltonians may host a peculiar topological invariant named,
after [59],W invariant that does not have a counterpart in the static case. The authors of
[60–62], among others, have extended the definition of the W invariant to the weak-
and strong-disorder cases for infinite systems in two dimensions. A formulation of
the W invariant for finite and disordered systems, in particular, the case of periodic
boundary conditions considered here, as far as I know, is missing.

The last point of this perspective is to offer a connection with the spectral localizer,
see [63] and references therein. Is it possible to replace the Fermi projection with the
Hamiltonian, or a computationally straightforward function of the Hamiltonian, in the
evaluation of the Bott index, for example, via homotopy? This would make the index
faster to compute affording also larger samples. The reference [64] provides a direct
comparison among the two indices.
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Appendices

Appendix A: Holmgren bound

A : H → H, a bounded operator over a separable Hilbert spaceH. It holds:

‖A‖ ≤
√
sup
m

∑
n

|An,m |
√
sup
n

∑
m

|An,m | (A1)

An,m := 〈χn, Aχm〉, with {χn} any ONB of H.

Proof ‖A‖ := sup{‖φ‖=1,‖ψ‖=1} |〈φ, Aψ〉|

|〈φ, Aψ〉| = |
∑
n,m

φ∗
n An,mψm | ≤

∑
n,m

|φn||An,m ||ψm | =
∑
n,m

|φn|
√|An,m |√|An,m ||ψm |

(A2)

≤
∑
n,m

|φn|
(
sup
m

√|An,m |
)(

sup
n

√|An,m |
)

|ψm | (A3)

=
∑
n

|φn|
(
sup
m

√|An,m |
)∑

m

(
sup
n

√|An,m |
)

|ψm | (A4)

ApplyingCauchy–Schwarz to the sums on n andm considered each as a scalar product,
we get:

|〈φ, Aψ〉| ≤ sup
m

√∑
a

|φa |2
√∑

b

|Ab,m | sup
n

√∑
c

|An,c|
√∑

d

|ψd |2 (A5)

It follows that:

‖A‖ ≤ sup
m

√∑
b

|Ab,m | sup
n

√∑
c

|An,c| (A6)

�
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